Search Results

Search found 25346 results on 1014 pages for 'framework design'.

Page 2/1014 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • A design pattern for data binding an object (with subclasses) to asp.net user control

    - by Rohith Nair
    I have an abstract class called Address and I am deriving three classes ; HomeAddress, Work Address, NextOfKin address. My idea is to bind this to a usercontrol and based on the type of Address it should bind properly to the ASP.NET user control. My idea is the user control doesn't know which address it is going to present and based on the type it will parse accordingly. How can I design such a setup, based on the fact that, the user control can take any type of address and bind accordingly. I know of one method like :- Declare class objects for all the three types (Home,Work,NextOfKin). Declare an enum to hold these types and based on the type of this enum passed to user control, instantiate the appropriate object based on setter injection. As a part of my generic design, I just created a class structure like this :- I know I am missing a lot of pieces in design. Can anybody give me an idea of how to approach this in proper way.

    Read the article

  • How to design database having multiple interrelated entities

    - by Sharath Chandra
    I am designing a new system which is more of a help system for core applications in banks or healthcare sector. Given the nature of the system this is not a heavy transaction oriented system but more of read intensive. Now within this application I have multiple entities which are related to each other. For e.g. Assume the following entities in the system User Training Regulations Now each of these entities have M:N Relationship with each other. Assuming the usage of a standard RDBMS, the design may involve many relationship tables each containing the relationships one other entity ("User_Training", "User_Regulations", "Training_Regulations"). This design is limiting since I have more than 3 entities in the system and maintaining the relationship graph is difficult this way. The most frequently used operation is "given an entity get me all the related entities" . I need to design the database where this operation is relatively inexpensive. What are the different recommendations for modelling this kind of database.

    Read the article

  • Requesting feedback on my OO design

    - by Prog
    I'm working on an application that creates music by itself. I'm seeking feedback for my OO design so far. This question will focus on one part of the program. The application produces Tune objects, that are the final musical products. Tune is an abstract class with an abstract method play. It has two subclasses: SimpleTune and StructuredTune. SimpleTune owns a Melody and a Progression (chord sequence). It's play implementation plays these two objects simultaneously. StructuredTune owns two Tune instances. It's own play plays the two Tunes one after the other according to a pattern (currently only ABAB). Melody is an abstract class with an abstract play method. It has two subclasses: SimpleMelody and StructuredMelody. SimpleMelody is composed of an array of notes. Invoking play on it plays these notes one after the other. StructuredMelody is composed of an array of Melody objects. Invoking play on it plays these Melodyies one after the other. I think you're starting to see the pattern. Progression is also an abstract class with a play method and two subclasses: SimpleProgression and StructuredProgression, each composed differently and played differently. SimpleProgression owns an array of chords and plays them sequentially. StructuredProgression owns an array of Progressions and it's play implementation plays them sequentially. Every class has a corresponding Generator class. Tune, Melody and Progression are matched with corresponding abstract TuneGenerator, MelodyGenerator and ProgressionGenerator classes, each with an abstract generate method. For example MelodyGenerator defines an abstract Melody generate method. Each of the generators has two subclasses, Simple and Structured. So for example MelodyGenerator has a subclasses SimpleMelodyGenerator, with an implementation of generate that returns a SimpleMelody. (It's important to note that the generate methods encapsulate complex algorithms. They are more than mere factory method. For example SimpleProgressionGenerator.generate() implements an algorithm to compose a series of Chord objects, which are used to instantiate the returned SimpleProgression). Every Structured generator uses another generator internally. It is a Simple generator be default, but in special cases may be a Structured generator. Parts of this design are meant to allow the end-user through the GUI to choose what kind of music is to be created. For example the user can choose between a "simple tune" (SimpleTuneGenerator) and a "full tune" (StructuredTuneGenerator). Other parts of the system aren't subject to direct user-control. What do you think of this design from an OOD perspective? What potential problems do you see with this design? Please share with me your criticism, I'm here to learn. Apart from this, a more specific question: the "every class has a corresponding Generator class" part feels very wrong. However I'm not sure how I could design this differently and achieve the same flexibility. Any ideas?

    Read the article

  • New design patterns/design strategies

    - by steven
    I've studied and implemented design patterns for a few years now, and I'm wondering. What are some of the newer design patterns (since the GOF)? Also, what should one, similar to myself, study [in the way of software design] next? Note: I've been using TDD, and UML for some time now. I'm curious about the newer paradigm shifts, and or newer design patterns.

    Read the article

  • Design Pattern Advice for Bluetooth App for Android

    - by Aimee Jones
    I’m looking for some advice on which patterns would apply to some of my work. I’m planning on doing a project as part of my college work and I need a bit of help. My main project is to make a basic Android bluetooth tracking system where the fixed locations of bluetooth dongles are mapped onto a map of a building. So my android app will regularly scan for nearby dongles and triangulate its location based on signal strength. The dongles location would be saved to a database along with their mac addresses to differentiate between them. The android phones location will then be sent to a server. This information will be used to show the phone’s location on a map of the building, or map of a route taken, on a website. My side project is to choose a suitable design pattern that could be implemented in this main project. I’m still a bit new to design patterns and am finding it hard to get my head around ones that may be suitable. I’ve heard maybe some that are aimed at web applications for the server side of things may be appropriate. My research so far is leading me to the following: Navigation Strategy Pattern Observer Pattern Command Pattern News Design Pattern Any advice would be a great help! Thanks

    Read the article

  • Authorization design-pattern / practice?

    - by Lawtonfogle
    On one end, you have users. On the other end, you have activities. I was wondering if there is a best practice to relate the two. The simplest way I can think of is to have every activity have a role, and assign every user every role they need. The problem is that this gets really messy in practice as soon as you go beyond a trivial system. A way I recently designed was to have users who have roles, and roles have privileges, and activities require some combinations of privileges. For the trivial case, this is more complex, but I think it will scale better. But after I implemented it, I felt like it was overkill for the system I had. Another option would be to have users, who have roles, and activities require you to have a certain role to perform with many activities sharing roles. A more complex variant of this would given activities many possible roles, which you only needed one of. And an even more complex variant would be to allow logical statements of role ownership to use an activity (i.e. Must have A and (B exclusive or C) and must not have D). I could continue to list more, but I think this already gives a picture. And many of these have trade offs. But in software design, there are oftentimes solutions, while perhaps not perfect in every possible case, are clearly top of the pack to an extent it isn't even considered opinion based (i.e. how to store passwords, plain text is worse, hashing better, hashing and salt even better, despite the increased complexity of each level) (i.e. 2, Smart UI designs for applications are bad, even if it is subjective as to what the best design is). So, is there a best practice for authorization design that is not purely opinion based/subjective?

    Read the article

  • Clean MVC design when there is viewer latency

    - by Tony Suffolk 66
    It isn't clear if this question has already been answered, so apologies in advance if this is a duplicate : I am implementing a game and trying to design around a clean MVC pattern - so my Control plane will implement the rules of the game (but not how the game is displayed), and the View plane implements how the game is displayed, and user iteraction - i.e. what game items or controls the user has activated. The challenge that I have is this : In my game the Control Plane can move game items more or less instaneously (The decision about what item to place where - and some of the initial consequences of that placement are reasonably trivial to calculate), but I want to design the Control Plane so that the View plane can display these movements either instaneously or using movement animations. The other complication is that player interaction must be locked out while those game items are moving (similar to chess - you can't attack an opposing piece as it moves past one of your pieces) So do I : Implement all the logic in the Control Plane asynchronously - and separate the descision making from the actions - so the Control plane decides piece 'A' needs to move to a given place - tells the view plane, and but does not implement the move in data until the view plane informs the control plane that the move/animation is complete. A lot of interlock points between the two layers. Implement all the control plane logic in one place - decisions and movement (keeping track of what moved where), and pass all the movements in one go to the View plane to do with what it will. Control Plane is almost fire and forget here. A hybrid of 1 & 2 - The control plane implements all the moves in a temporary data store - but maintains a second store which reflects what is actually visible to the viewer, based on calls and feedback from the View plane. All 3 are relatively easy to implement (target language is python), but having never done a clean MVC pattern with view latency before - I am not sure which design is best

    Read the article

  • Design Book–Dimensional or No Dimensional, that is..the question

    - by drsql
    So, it is right there in the title of the book “Relational Database Design” etc (the title is kinda long :)  But as I consider what to cover and, conversely, what not to cover, dimensional design inevitably pops up. So I am considering including it in the book. One thing I try to do is to cover topics to a level where you can start using it immediately, and I am not sure that I could get a deep enough coverage of the subject to do that. I don’t really feel like it has to be the definitive source...(read more)

    Read the article

  • Recommendations for books and training resources covering for Design for Programmers

    - by Jon Hopkins
    Off the back of one of the answers to this question (currently the second highest scoring), it made me think, what's the best way to get developers up to speed on good basic design principals. I'm not talking about making them into graphic designers but some developers almost take pride in ugly UIs, seeing them as unimportant next to the functionality. What primarily interested in are the graphic design elements rather than the usability aspects which is pretty well covered by books such as Don't Make Me Think. Use of white space, emphasis, font selection and a million other things I'm probably not even aware of. I know people are often seen as artistic or not artistic but surely the basics can be taught and someone has written a book covering this?

    Read the article

  • Databinding to an Entity Framework in WPF

    - by King Chan
    Is it good to use databinding to Entity Framework's Entity in WPF? I created a singleton entity framework context: To have only one connection and it won't open and close all the time. So I can pass the Entity around to any class, and can modify the Entity and make changes to the database. All ViewModels getting the entity out from the same Context and databinding to the View saves me time from mapping new object, but now I imagine there is problem in not using the newest Context: A ViewModel databinding to a Entity, then someone else updated the data. The ViewModel will still display the old data, because the Context is never being dispose to refresh. I always create new Context and then dispose of it. If I want to pass the Entity around, then there will be conflicts between Context and Entity. What is the suggested way of doing this ?

    Read the article

  • Is this proper OO design for C++?

    - by user121917
    I recently took a software processes course and this is my first time attempting OO design on my own. I am trying to follow OO design principles and C++ conventions. I attempted and gave up on MVC for this application, but I am trying to "decouple" my classes such that they can be easily unit-tested and so that I can easily change the GUI library used and/or the target OS. At this time, I have finished designing classes but have not yet started implementing methods. The function of the software is to log all packets sent and received, and display them on the screen (like WireShark, but for one local process only). The software accomplishes this by hooking the send() and recv() functions in winsock32.dll, or some other pair of analogous functions depending on what the intended Target is. The hooks add packets to SendPacketList/RecvPacketList. The GuiLogic class starts a thread which checks for new packets. When new packets are found, it utilizes the PacketFilter class to determine the formatting for the new packet, and then sends it to MainWindow, a native win32 window (with intent to later port to Qt).1 Full size image of UML class diagram Here are my classes in skeleton/header form (this is my actual code): class PacketModel { protected: std::vector<byte> data; int id; public: PacketModel(); PacketModel(byte* data, unsigned int size); PacketModel(int id, byte* data, unsigned int size); int GetLen(); bool IsValid(); //len >= sizeof(opcode_t) opcode_t GetOpcode(); byte* GetData(); //returns &(data[0]) bool GetData(byte* outdata, int maxlen); void SetData(byte* pdata, int len); int GetId(); void SetId(int id); bool ParseData(char* instr); bool StringRepr(char* outstr); byte& operator[] (const int index); }; class SendPacket : public PacketModel { protected: byte* returnAddy; public: byte* GetReturnAddy(); void SetReturnAddy(byte* addy); }; class RecvPacket : public PacketModel { protected: byte* callAddy; public: byte* GetCallAddy(); void SetCallAddy(byte* addy); }; //problem: packets may be added to list at any time by any number of threads //solution: critical section associated with each packet list class Synch { public: void Enter(); void Leave(); }; template<class PacketType> class PacketList { private: static const int MAX_STORED_PACKETS = 1000; public: static const int DEFAULT_SHOWN_PACKETS = 100; private: vector<PacketType> list; Synch synch; //wrapper for critical section public: void AddPacket(PacketType* packet); PacketType* GetPacket(int id); int TotalPackets(); }; class SendPacketList : PacketList<SendPacket> { }; class RecvPacketList : PacketList<RecvPacket> { }; class Target //one socket { bool Send(SendPacket* packet); bool Inject(RecvPacket* packet); bool InitSendHook(SendPacketList* sendList); bool InitRecvHook(RecvPacketList* recvList); }; class FilterModel { private: opcode_t opcode; int colorID; bool bFilter; char name[41]; }; class FilterFile { private: FilterModel filter; public: void Save(); void Load(); FilterModel* GetFilter(opcode_t opcode); }; class PacketFilter { private: FilterFile filters; public: bool IsFiltered(opcode_t opcode); bool GetName(opcode_t opcode, char* namestr); //return false if name does not exist COLORREF GetColor(opcode_t opcode); //return default color if no custom color }; class GuiLogic { private: SendPacketList sendList; RecvPacketList recvList; PacketFilter packetFilter; void GetPacketRepr(PacketModel* packet); void ReadNew(); void AddToWindow(); public: void Refresh(); //called from thread void GetPacketInfo(int id); //called from MainWindow }; I'm looking for a general review of my OO design, use of UML, and use of C++ features. I especially just want to know if I'm doing anything considerably wrong. From what I've read, design review is on-topic for this site (and off-topic for the Code Review site). Any sort of feedback is greatly appreciated. Thanks for reading this.

    Read the article

  • Design for a plugin based application

    - by Varun Naik
    I am working on application, details of which I cannot discuss here. We have core framework and the rest is designed as plug in. In the core framework we have a domain object. This domain object is updated by the plugins. I have defined an interface in which I have function as DomainObject doProcessing(DomainObject object) My intention here is I pass the domain object, the plug in will update it and return it. This updated object is then passed again to different plugin to be updated. I am not sure if this is a good approach. I don't like passing the DomainObject to plugin. Is there a better way I can achieve this? Should I just request data from plugin and update the domain object myself?

    Read the article

  • Design Pattern for Complex Data Modeling

    - by Aaron Hayman
    I'm developing a program that has a SQL database as a backing store. As a very broad description, the program itself allows a user to generate records in any number of user-defined tables and make connections between them. As for specs: Any record generated must be able to be connected to any other record in any other user table (excluding itself...the record, not the table). These "connections" are directional, and the list of connections a record has is user ordered. Moreover, a record must "know" of connections made from it to others as well as connections made to it from others. The connections are kind of the point of this program, so there is a strong possibility that the number of connections made is very high, especially if the user is using the software as intended. A record's field can also include aggregate information from it's connections (like obtaining average, sum, etc) that must be updated on change from another record it's connected to. To conserve memory, only relevant information must be loaded at any one time (can't load the entire database in memory at load and go from there). I cannot assume the backing store is local. Right now it is, but eventually this program will include syncing to a remote db. Neither the user tables, connections or records are known at design time as they are user generated. I've spent a lot of time trying to figure out how to design the backing store and the object model to best fit these specs. In my first design attempt on this, I had one object managing all a table's records and connections. I attempted this first because it kept the memory footprint smaller (records and connections were simple dicts), but maintaining aggregate and link information between tables became....onerous (ie...a huge spaghettified mess). Tracing dependencies using this method almost became impossible. Instead, I've settled on a distributed graph model where each record and connection is 'aware' of what's around it by managing it own data and connections to other records. Doing this increases my memory footprint but also let me create a faulting system so connections/records aren't loaded into memory until they're needed. It's also much easier to code: trace dependencies, eliminate cycling recursive updates, etc. My biggest problem is storing/loading the connections. I'm not happy with any of my current solutions/ideas so I wanted to ask and see if anybody else has any ideas of how this should be structured. Connections are fairly simple. They contain: fromRecordID, fromTableID, fromRecordOrder, toRecordID, toTableID, toRecordOrder. Here's what I've come up with so far: Store all the connections in one big table. If I do this, either I load all connections at once (one big db call) or make a call every time a user table is loaded. The big issue here: the size of the connections table has the potential to be huge, and I'm afraid it would slow things down. Store in separate tables all the outgoing connections for each user table. This is probably the worst idea I've had. Now my connections are 'spread out' over multiple tables (one for each user table), which means I have to make a separate DB called to each table (or make a huge join) just to find all the incoming connections for a particular user table. I've avoided making "one big ass table", but I'm not sure the cost is worth it. Store in separate tables all outgoing AND incoming connections for each user table (using a flag to distinguish between incoming vs outgoing). This is the idea I'm leaning towards, but it will essentially double the total DB storage for all the connections (as each connection will be stored in two tables). It also means I have to make sure connection information is kept in sync in both places. This is obviously not ideal but it does mean that when I load a user table, I only need to load one 'connection' table and have all the information I need. This also presents a separate problem, that of connection object creation. Since each user table has a list of all connections, there are two opportunities for a connection object to be made. However, connections objects (designed to facilitate communication between records) should only be created once. This means I'll have to devise a common caching/factory object to make sure only one connection object is made per connection. Does anybody have any ideas of a better way to do this? Once I've committed to a particular design pattern I'm pretty much stuck with it, so I want to make sure I've come up with the best one possible.

    Read the article

  • What does Symfony Framework offer that Zend Framework does not?

    - by Fatmuemoo
    I have professionally working with Zend Framework for about a year. No major complaints. With some modifications, it has done a good job. I'm beginning to work on a side project where I want to heavily rely on MongoDb and Doctrine. I thought it might be a good idea to broaden my horizons and learn another enterprise level framework. There seems to be a lot a buzz about Symfony. After quickly looking over the site and documentation, I must say I came away pretty underwhelmed. I'm woundering what, if anything, Symfony has to offer that Zend doesn't? What would the advantage be in choosing Symfony?

    Read the article

  • sync Framework for Compact Framework

    - by CF_Maintainer
    Has anyone got sync framework to work on a mobile device as a sync mechanism in place of RDA or Merge replication? If yes, could you point me to any resources available. If one was to start a green field compact framework based application, what would one use as the sync mechanism (sync framework/RDA/Merge replication/any other...)? Thanks

    Read the article

  • Design Application to "Actively" Invite Users (pretend they have privileges)

    - by user3086451
    I am designing an application where users message one another privately, and may send messages to any Entity in the database (an Entity may not have a user account yet, it is a professional database). I am not sure how to best design the database and the API to allow messaging unregistered users. The application should remain secure, and data only accessed by those with correct permissions. Messages sent to persons without user accounts serve as an invitation. The invited person should be able to view the message, act on it, and complete the user registration upon receiving an InviteMessage. In simple terms, I have: User misc user fields (email, pw, dateJoined) Entity (large professional dataset): personalDetails... user->User (may be null) UserMessage: sender->User recipient->User dateCreated messageContent, other fields..... InviteMessage: sender->User recipient->Entity expiringUrl inviteeEmail inviteePhone I plan to alert the user when selecting a recipient that is not registered yet, and inform that he may send the message as an invitation by providing email, phone where we can send the invitation. Invitations will have a unique, one-time-use URL, e.g. uuid.uuid4(). When accessed, the invitee will see the InviteMessage and details about completing his/her registration profile. When registration is complete, InviteMessage details to a new instance of UserMessage (to not lose their data), and assign it to the newly created User. The ability to interact with and invite persons who do not yet have accounts is a key feature of the application, and it seems better to separate the invitation from the private, app messages (easier to keep functionality separate, better if data model changes). Is this a reasonable, good design? If not, what would you suggest? Do you have any improvements? Am I correct to choose to create a separate endpoint for creating invitations via the API?

    Read the article

  • Recommened design pattern to handle multiple compression algorithms for a class hierarchy

    - by sgorozco
    For all you OOD experts. What would be the recommended way to model the following scenario? I have a certain class hierarchy similar to the following one: class Base { ... } class Derived1 : Base { ... } class Derived2 : Base { ... } ... Next, I would like to implement different compression/decompression engines for this hierarchy. (I already have code for several strategies that best handle different cases, like file compression, network stream compression, legacy system compression, etc.) I would like the compression strategy to be pluggable and chosen at runtime, however I'm not sure how to handle the class hierarchy. Currently I have a tighly-coupled design that looks like this: interface ICompressor { byte[] Compress(Base instance); } class Strategy1Compressor : ICompressor { byte[] Compress(Base instance) { // Common compression guts for Base class ... // if( instance is Derived1 ) { // Compression guts for Derived1 class } if( instance is Derived2 ) { // Compression guts for Derived2 class } // Additional compression logic to handle other class derivations ... } } As it is, whenever I add a new derived class inheriting from Base, I would have to modify all compression strategies to take into account this new class. Is there a design pattern that allows me to decouple this, and allow me to easily introduce more classes to the Base hierarchy and/or additional compression strategies?

    Read the article

  • OOP Design: relationship between entity classes

    - by beginner_
    I have at first sight a simple issue but can't wrap my head around on how to solve. I have an abstract class Compound. A Compound is made up of Structures. Then there is also a Container which holds 1 Compound. A "special" implementation of Compound has Versions. For that type of Compound I want the Container to hold the Versionof the Compound and not the Compound itself. You could say "just create an interface Containable" and a Container holds 1 Containable. However that won't work. The reason is I'm creating a framework and the main part of that framework is to simplify storing and especially searching for special data type held by Structure objects. Hence to search for Containers which contain a Compound made up of a specific Structure requires that the "Path" from Containerto Structure is well defined (Number of relationships or joins). I hope this was understandable. My question is how to design the classes and relationships to be able to do what I outlined.

    Read the article

  • Differences Between NHibernate and Entity Framework

    - by Ricardo Peres
    Introduction NHibernate and Entity Framework are two of the most popular O/RM frameworks on the .NET world. Although they share some functionality, there are some aspects on which they are quite different. This post will describe this differences and will hopefully help you get started with the one you know less. Mind you, this is a personal selection of features to compare, it is by no way an exhaustive list. History First, a bit of history. NHibernate is an open-source project that was first ported from Java’s venerable Hibernate framework, one of the first O/RM frameworks, but nowadays it is not tied to it, for example, it has .NET specific features, and has evolved in different ways from those of its Java counterpart. Current version is 3.3, with 3.4 on the horizon. It currently targets .NET 3.5, but can be used as well in .NET 4, it only makes no use of any of its specific functionality. You can find its home page at NHForge. Entity Framework 1 came out with .NET 3.5 and is now on its second major version, despite being version 4. Code First sits on top of it and but came separately and will also continue to be released out of line with major .NET distributions. It is currently on version 4.3.1 and version 5 will be released together with .NET Framework 4.5. All versions will target the current version of .NET, at the time of their release. Its home location is located at MSDN. Architecture In NHibernate, there is a separation between the Unit of Work and the configuration and model instances. You start off by creating a Configuration object, where you specify all global NHibernate settings such as the database and dialect to use, the batch sizes, the mappings, etc, then you build an ISessionFactory from it. The ISessionFactory holds model and metadata that is tied to a particular database and to the settings that came from the Configuration object, and, there will typically be only one instance of each in a process. Finally, you create instances of ISession from the ISessionFactory, which is the NHibernate representation of the Unit of Work and Identity Map. This is a lightweight object, it basically opens and closes a database connection as required and keeps track of the entities associated with it. ISession objects are cheap to create and dispose, because all of the model complexity is stored in the ISessionFactory and Configuration objects. As for Entity Framework, the ObjectContext/DbContext holds the configuration, model and acts as the Unit of Work, holding references to all of the known entity instances. This class is therefore not lightweight as its NHibernate counterpart and it is not uncommon to see examples where an instance is cached on a field. Mappings Both NHibernate and Entity Framework (Code First) support the use of POCOs to represent entities, no base classes are required (or even possible, in the case of NHibernate). As for mapping to and from the database, NHibernate supports three types of mappings: XML-based, which have the advantage of not tying the entity classes to a particular O/RM; the XML files can be deployed as files on the file system or as embedded resources in an assembly; Attribute-based, for keeping both the entities and database details on the same place at the expense of polluting the entity classes with NHibernate-specific attributes; Strongly-typed code-based, which allows dynamic creation of the model and strongly typing it, so that if, for example, a property name changes, the mapping will also be updated. Entity Framework can use: Attribute-based (although attributes cannot express all of the available possibilities – for example, cascading); Strongly-typed code mappings. Database Support With NHibernate you can use mostly any database you want, including: SQL Server; SQL Server Compact; SQL Server Azure; Oracle; DB2; PostgreSQL; MySQL; Sybase Adaptive Server/SQL Anywhere; Firebird; SQLLite; Informix; Any through OLE DB; Any through ODBC. Out of the box, Entity Framework only supports SQL Server, but a number of providers exist, both free and commercial, for some of the most used databases, such as Oracle and MySQL. See a list here. Inheritance Strategies Both NHibernate and Entity Framework support the three canonical inheritance strategies: Table Per Type Hierarchy (Single Table Inheritance), Table Per Type (Class Table Inheritance) and Table Per Concrete Type (Concrete Table Inheritance). Associations Regarding associations, both support one to one, one to many and many to many. However, NHibernate offers far more collection types: Bags of entities or values: unordered, possibly with duplicates; Lists of entities or values: ordered, indexed by a number column; Maps of entities or values: indexed by either an entity or any value; Sets of entities or values: unordered, no duplicates; Arrays of entities or values: indexed, immutable. Querying NHibernate exposes several querying APIs: LINQ is probably the most used nowadays, and really does not need to be introduced; Hibernate Query Language (HQL) is a database-agnostic, object-oriented SQL-alike language that exists since NHibernate’s creation and still offers the most advanced querying possibilities; well suited for dynamic queries, even if using string concatenation; Criteria API is an implementation of the Query Object pattern where you create a semi-abstract conceptual representation of the query you wish to execute by means of a class model; also a good choice for dynamic querying; Query Over offers a similar API to Criteria, but using strongly-typed LINQ expressions instead of strings; for this, although more refactor-friendlier that Criteria, it is also less suited for dynamic queries; SQL, including stored procedures, can also be used; Integration with Lucene.NET indexer is available. As for Entity Framework: LINQ to Entities is fully supported, and its implementation is considered very complete; it is the API of choice for most developers; Entity-SQL, HQL’s counterpart, is also an object-oriented, database-independent querying language that can be used for dynamic queries; SQL, of course, is also supported. Caching Both NHibernate and Entity Framework, of course, feature first-level cache. NHibernate also supports a second-level cache, that can be used among multiple ISessionFactorys, even in different processes/machines: Hashtable (in-memory); SysCache (uses ASP.NET as the cache provider); SysCache2 (same as above but with support for SQL Server SQL Dependencies); Prevalence; SharedCache; Memcached; Redis; NCache; Appfabric Caching. Out of the box, Entity Framework does not have any second-level cache mechanism, however, there are some public samples that show how we can add this. ID Generators NHibernate supports different ID generation strategies, coming from the database and otherwise: Identity (for SQL Server, MySQL, and databases who support identity columns); Sequence (for Oracle, PostgreSQL, and others who support sequences); Trigger-based; HiLo; Sequence HiLo (for databases that support sequences); Several GUID flavors, both in GUID as well as in string format; Increment (for single-user uses); Assigned (must know what you’re doing); Sequence-style (either uses an actual sequence or a single-column table); Table of ids; Pooled (similar to HiLo but stores high values in a table); Native (uses whatever mechanism the current database supports, identity or sequence). Entity Framework only supports: Identity generation; GUIDs; Assigned values. Properties NHibernate supports properties of entity types (one to one or many to one), collections (one to many or many to many) as well as scalars and enumerations. It offers a mechanism for having complex property types generated from the database, which even include support for querying. It also supports properties originated from SQL formulas. Entity Framework only supports scalars, entity types and collections. Enumerations support will come in the next version. Events and Interception NHibernate has a very rich event model, that exposes more than 20 events, either for synchronous pre-execution or asynchronous post-execution, including: Pre/Post-Load; Pre/Post-Delete; Pre/Post-Insert; Pre/Post-Update; Pre/Post-Flush. It also features interception of class instancing and SQL generation. As for Entity Framework, only two events exist: ObjectMaterialized (after loading an entity from the database); SavingChanges (before saving changes, which include deleting, inserting and updating). Tracking Changes For NHibernate as well as Entity Framework, all changes are tracked by their respective Unit of Work implementation. Entities can be attached and detached to it, Entity Framework does, however, also support self-tracking entities. Optimistic Concurrency Control NHibernate supports all of the imaginable scenarios: SQL Server’s ROWVERSION; Oracle’s ORA_ROWSCN; A column containing date and time; A column containing a version number; All/dirty columns comparison. Entity Framework is more focused on Entity Framework, so it only supports: SQL Server’s ROWVERSION; Comparing all/some columns. Batching NHibernate has full support for insertion batching, but only if the ID generator in use is not database-based (for example, it cannot be used with Identity), whereas Entity Framework has no batching at all. Cascading Both support cascading for collections and associations: when an entity is deleted, their conceptual children are also deleted. NHibernate also offers the possibility to set the foreign key column on children to NULL instead of removing them. Flushing Changes NHibernate’s ISession has a FlushMode property that can have the following values: Auto: changes are sent to the database when necessary, for example, if there are dirty instances of an entity type, and a query is performed against this entity type, or if the ISession is being disposed; Commit: changes are sent when committing the current transaction; Never: changes are only sent when explicitly calling Flush(). As for Entity Framework, changes have to be explicitly sent through a call to AcceptAllChanges()/SaveChanges(). Lazy Loading NHibernate supports lazy loading for Associated entities (one to one, many to one); Collections (one to many, many to many); Scalar properties (thing of BLOBs or CLOBs). Entity Framework only supports lazy loading for: Associated entities; Collections. Generating and Updating the Database Both NHibernate and Entity Framework Code First (with the Migrations API) allow creating the database model from the mapping and updating it if the mapping changes. Extensibility As you can guess, NHibernate is far more extensible than Entity Framework. Basically, everything can be extended, from ID generation, to LINQ to SQL transformation, HQL native SQL support, custom column types, custom association collections, SQL generation, supported databases, etc. With Entity Framework your options are more limited, at least, because practically no information exists as to what can be extended/changed. It features a provider model that can be extended to support any database. Integration With Other Microsoft APIs and Tools When it comes to integration with Microsoft technologies, it will come as no surprise that Entity Framework offers the best support. For example, the following technologies are fully supported: ASP.NET (through the EntityDataSource); ASP.NET Dynamic Data; WCF Data Services; WCF RIA Services; Visual Studio (through the integrated designer). Documentation This is another point where Entity Framework is superior: NHibernate lacks, for starters, an up to date API reference synchronized with its current version. It does have a community mailing list, blogs and wikis, although not much used. Entity Framework has a number of resources on MSDN and, of course, several forums and discussion groups exist. Conclusion Like I said, this is a personal list. I may come as a surprise to some that Entity Framework is so behind NHibernate in so many aspects, but it is true that NHibernate is much older and, due to its open-source nature, is not tied to product-specific timeframes and can thus evolve much more rapidly. I do like both, and I chose whichever is best for the job I have at hands. I am looking forward to the changes in EF5 which will add significant value to an already interesting product. So, what do you think? Did I forget anything important or is there anything else worth talking about? Looking forward for your comments!

    Read the article

  • What is .Net Framework 4 extended?

    - by Click Ok
    For testing purposes, I installed .Net Framework 4 Client Profile. My tests ended and I was to uninstall it, in order to install .Net Framework 4 full. The uninstaller told me to uninstall .Net Framework 4 extended first. I've already found it and uninstalled, but the question remains: What is .Net Framework 4 extended?

    Read the article

  • Should universities put more emphasis on teaching their students about design patterns?

    - by gablin
    While I've heard about design patterns being mentioned in a few courses at uni, I know of only a single course which actually teaches design patterns. In almost all other areas (algorithms, parallelism, architecture, dynamic languages, paradigms, etc), there are several, often a basic course and an advanced course. Should universities put more emphasis about teaching their students about design patterns and provide more courses in design patters? Are lack of knowledge about design patterns common in just-graduated junior developers?

    Read the article

  • Which design pattern to use when using ORM?

    - by RPK
    I am writing a small ASP.NET Web Forms application. In my solution explorer, I added various class library projects to define layers, viz: Model Repository Presentation WebUI Someone suggested me that this layered approach is not of much sense if I am using ORM tool like PetaPoco, which itself takes care of separation of data access layer. I want to use PetaPoco micro-ORM and want to know which design pattern is suitable with ORM tools. Do I still need several class library projects to separate the concerns?

    Read the article

  • Pluggable Rules for Entity Framework Code First

    - by Ricardo Peres
    Suppose you want a system that lets you plug custom validation rules on your Entity Framework context. The rules would control whether an entity can be saved, updated or deleted, and would be implemented in plain .NET. Yes, I know I already talked about plugable validation in Entity Framework Code First, but this is a different approach. An example API is in order, first, a ruleset, which will hold the collection of rules: 1: public interface IRuleset : IDisposable 2: { 3: void AddRule<T>(IRule<T> rule); 4: IEnumerable<IRule<T>> GetRules<T>(); 5: } Next, a rule: 1: public interface IRule<T> 2: { 3: Boolean CanSave(T entity, DbContext ctx); 4: Boolean CanUpdate(T entity, DbContext ctx); 5: Boolean CanDelete(T entity, DbContext ctx); 6: String Name 7: { 8: get; 9: } 10: } Let’s analyze what we have, starting with the ruleset: Only has methods for adding a rule, specific to an entity type, and to list all rules of this entity type; By implementing IDisposable, we allow it to be cancelled, by disposing of it when we no longer want its rules to be applied. A rule, on the other hand: Has discrete methods for checking if a given entity can be saved, updated or deleted, which receive as parameters the entity itself and a pointer to the DbContext to which the ruleset was applied; Has a name property for helping us identifying what failed. A ruleset really doesn’t need a public implementation, all we need is its interface. The private (internal) implementation might look like this: 1: sealed class Ruleset : IRuleset 2: { 3: private readonly IDictionary<Type, HashSet<Object>> rules = new Dictionary<Type, HashSet<Object>>(); 4: private ObjectContext octx = null; 5:  6: internal Ruleset(ObjectContext octx) 7: { 8: this.octx = octx; 9: } 10:  11: public void AddRule<T>(IRule<T> rule) 12: { 13: if (this.rules.ContainsKey(typeof(T)) == false) 14: { 15: this.rules[typeof(T)] = new HashSet<Object>(); 16: } 17:  18: this.rules[typeof(T)].Add(rule); 19: } 20:  21: public IEnumerable<IRule<T>> GetRules<T>() 22: { 23: if (this.rules.ContainsKey(typeof(T)) == true) 24: { 25: foreach (IRule<T> rule in this.rules[typeof(T)]) 26: { 27: yield return (rule); 28: } 29: } 30: } 31:  32: public void Dispose() 33: { 34: this.octx.SavingChanges -= RulesExtensions.OnSaving; 35: RulesExtensions.rulesets.Remove(this.octx); 36: this.octx = null; 37:  38: this.rules.Clear(); 39: } 40: } Basically, this implementation: Stores the ObjectContext of the DbContext to which it was created for, this is so that later we can remove the association; Has a collection - a set, actually, which does not allow duplication - of rules indexed by the real Type of an entity (because of proxying, an entity may be of a type that inherits from the class that we declared); Has generic methods for adding and enumerating rules of a given type; Has a Dispose method for cancelling the enforcement of the rules. A (really dumb) rule applied to Product might look like this: 1: class ProductRule : IRule<Product> 2: { 3: #region IRule<Product> Members 4:  5: public String Name 6: { 7: get 8: { 9: return ("Rule 1"); 10: } 11: } 12:  13: public Boolean CanSave(Product entity, DbContext ctx) 14: { 15: return (entity.Price > 10000); 16: } 17:  18: public Boolean CanUpdate(Product entity, DbContext ctx) 19: { 20: return (true); 21: } 22:  23: public Boolean CanDelete(Product entity, DbContext ctx) 24: { 25: return (true); 26: } 27:  28: #endregion 29: } The DbContext is there because we may need to check something else in the database before deciding whether to allow an operation or not. And here’s how to apply this mechanism to any DbContext, without requiring the usage of a subclass, by means of an extension method: 1: public static class RulesExtensions 2: { 3: private static readonly MethodInfo getRulesMethod = typeof(IRuleset).GetMethod("GetRules"); 4: internal static readonly IDictionary<ObjectContext, Tuple<IRuleset, DbContext>> rulesets = new Dictionary<ObjectContext, Tuple<IRuleset, DbContext>>(); 5:  6: private static Type GetRealType(Object entity) 7: { 8: return (entity.GetType().Assembly.IsDynamic == true ? entity.GetType().BaseType : entity.GetType()); 9: } 10:  11: internal static void OnSaving(Object sender, EventArgs e) 12: { 13: ObjectContext octx = sender as ObjectContext; 14: IRuleset ruleset = rulesets[octx].Item1; 15: DbContext ctx = rulesets[octx].Item2; 16:  17: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Added)) 18: { 19: Object entity = entry.Entity; 20: Type realType = GetRealType(entity); 21:  22: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 23: { 24: if (rule.CanSave(entity, ctx) == false) 25: { 26: throw (new Exception(String.Format("Cannot save entity {0} due to rule {1}", entity, rule.Name))); 27: } 28: } 29: } 30:  31: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Deleted)) 32: { 33: Object entity = entry.Entity; 34: Type realType = GetRealType(entity); 35:  36: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 37: { 38: if (rule.CanDelete(entity, ctx) == false) 39: { 40: throw (new Exception(String.Format("Cannot delete entity {0} due to rule {1}", entity, rule.Name))); 41: } 42: } 43: } 44:  45: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Modified)) 46: { 47: Object entity = entry.Entity; 48: Type realType = GetRealType(entity); 49:  50: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 51: { 52: if (rule.CanUpdate(entity, ctx) == false) 53: { 54: throw (new Exception(String.Format("Cannot update entity {0} due to rule {1}", entity, rule.Name))); 55: } 56: } 57: } 58: } 59:  60: public static IRuleset CreateRuleset(this DbContext context) 61: { 62: Tuple<IRuleset, DbContext> ruleset = null; 63: ObjectContext octx = (context as IObjectContextAdapter).ObjectContext; 64:  65: if (rulesets.TryGetValue(octx, out ruleset) == false) 66: { 67: ruleset = rulesets[octx] = new Tuple<IRuleset, DbContext>(new Ruleset(octx), context); 68: 69: octx.SavingChanges += OnSaving; 70: } 71:  72: return (ruleset.Item1); 73: } 74: } It relies on the SavingChanges event of the ObjectContext to intercept the saving operations before they are actually issued. Yes, it uses a bit of dynamic magic! Very handy, by the way! So, let’s put it all together: 1: using (MyContext ctx = new MyContext()) 2: { 3: IRuleset rules = ctx.CreateRuleset(); 4: rules.AddRule(new ProductRule()); 5:  6: ctx.Products.Add(new Product() { Name = "xyz", Price = 50000 }); 7:  8: ctx.SaveChanges(); //an exception is fired here 9:  10: //when we no longer need to apply the rules 11: rules.Dispose(); 12: } Feel free to use it and extend it any way you like, and do give me your feedback! As a final note, this can be easily changed to support plain old Entity Framework (not Code First, that is), if that is what you are using.

    Read the article

  • Good Video Game User Interface Design Books/Websites?

    - by Tucker Morgan
    I having been programming games for some time, but while my teachers say that my code is good and advanced, my friends say that the interface is hard to understand and not the easiest to navigate. I want to learn how to design good user interfaces so that I can program better games, and people will have a easier time getting around. Does anyone know of any good books or websites about designing video game interfaces?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >