Search Results

Search found 672 results on 27 pages for 'gc'.

Page 2/27 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Why does GC not clear the Dialog references?

    - by Pavel
    I have a dialog. Every time I create it and then dispose, it stays in memory. It seems to be a memory leak somewhere, but I can't figure it out. Do you have any ideas? See the screenshot of heap dump for more information. Thanks in advance. http://img441.imageshack.us/img441/5764/leak.png

    Read the article

  • The JRockit Performance Counters

    - by Marcus Hirt
    Every now and then I get a question regarding what the attributes in the PerfCounters dynamic MBean represent. Now, all the MBeans under the oracle.jrockit.management (bea.jrockit.management pre R28) domain are part of what we call JMXMAPI (the JRockit JMX based Management API), which is unsupported. Therefore there is no official documentation for the API. I did however write a bit about JMXMAPI in my recent JRockit book, Oracle JRockit: The Definitive Guide. The information in the table below is from that book: Counter Description java.cls.loadedClasses The number of classes loaded since the start of the JVM. java.cls.unloadedClasses The number of classes unloaded since the start of the JVM. java.property.java.class.path The class path of the JVM. java.property.java.endorsed.dirs The endorsed dirs. See the Endorsed Standards Override Mechanism. java.property.java.ext.dirs The ext dirs, which are searched for jars that should be automatically put on the classpath. See the Java documentation for java.ext.dirs. java.property.java.home The root of the JDK or JRE installation. java.property.java.library.path The library path used to find user libraries. java.property.java.vm.version The JRockit version. java.rt.vmArgs The list of VM arguments. java.threads.daemon The number of running daemon threads. java.threads.live The total number of running threads. java.threads.livePeak The peak number of threads that has been running since JRockit was started. java.threads.nonDaemon The number of non-daemon threads running. java.threads.started The total number of threads started since the start of JRockit. jrockit.gc.latest.heapSize The current heap size in bytes. jrockit.gc.latest.nurserySize The current nursery size in bytes. jrockit.gc.latest.oc.compaction.time How long, in ticks, the last compaction lasted. Reset to 0 if compaction is skipped. jrockit.gc.latest.oc.heapUsedAfter Used heap at the end of the last OC, in bytes. jrockit.gc.latest.oc.heapUsedBefore Used heap at the start of the last OC, in bytes. jrockit.gc.latest.oc.number The number of OCs that have occurred so far. jrockit.gc.latest.oc.sumOfPauses The paused time for the last OC, in ticks. jrockit.gc.latest.oc.time The time the last OC took, in ticks. jrockit.gc.latest.yc.sumOfPauses The paused time for the last YC, in ticks. jrockit.gc.latest.yc.time The time the last YC took, in ticks. jrockit.gc.max.oc.individualPause The longest OC pause so far, in ticks. jrockit.gc.max.yc.individualPause The longest YC pause so far, in ticks. jrockit.gc.total.oc.compaction.externalAborted Number of aborted external compactions so far. jrockit.gc.total.oc.compaction.internalAborted Number of aborted internal compactions so far. jrockit.gc.total.oc.compaction.internalSkipped Number of skipped internal compactions so far. jrockit.gc.total.oc.compaction.time The total time spent doing compaction so far, in ticks. jrockit.gc.total.oc.ompaction.externalSkipped Number of skipped external compactions so far. jrockit.gc.total.oc.pauseTime The sum of all OC pause times so far, in ticks. jrockit.gc.total.oc.time The total time spent doing OC so far, in ticks. jrockit.gc.total.pageFaults The number of page faults that have occurred during GC so far. jrockit.gc.total.yc.pauseTime The sum of all YC pause times, in ticks. jrockit.gc.total.yc.promotedObjects The number of objects that all YCs have promoted. jrockit.gc.total.yc.promotedSize The total number of bytes that all YCs have promoted, in bytes. jrockit.gc.total.yc.time The total time spent doing YC, in ticks. oracle.ci.jit.count The number of methods JIT compiled. oracle.ci.jit.timeTotal The total time spent JIT compiling, in ticks. oracle.ci.opt.count The number of methods optimized. oracle.ci.opt.timeTotal The total time spent optimizing, in ticks. oracle.rt.counterFrequency Used to convert ticks values to seconds. Note that many of these counters are excellent choices for attributes to plot in the Management Console. Also note that many values are in ticks – to convert them to seconds, divide by the value in the oracle.rt.counterFrequency counter.

    Read the article

  • How do I swap two objects in a GC language without triggering GC?

    - by TenFour04
    I have two array lists. that I want to swap each frame. My question is, does the variable 'temp' need to be a member variable to avoid triggering GC, assuming this method is called on dozens of objects each frame? I'm not creating a new object, just a new reference to an object. public void LateUpdate(){ ArrayList<int> temp = previousFrameCollisions; previousFrameCollisions = currentFrameCollisions; currentFrameCollisions = temp; currentFrameCollisions.clear(); } I've been told there's no reason to make a primitive into a member variable just to avoid GC, so my best guess is that this also applies to object references.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • How should I account for the GC when building games with Unity?

    - by Eonil
    *As far as I know, Unity3D for iOS is based on the Mono runtime and Mono has only generational mark & sweep GC. This GC system can't avoid GC time which stops game system. Instance pooling can reduce this but not completely, because we can't control instantiation happens in the CLR's base class library. Those hidden small and frequent instances will raise un-deterministic GC time eventually. Forcing complete GC periodically will degrade performance greatly (can Mono force complete GC, actually?) So, how can I avoid this GC time when using Unity3D without huge performance degrade?

    Read the article

  • Windows 7 Seems to break SWT Control.print(GC)

    - by GreenKiwi
    A bug has been filed and fixed (super quickly) in SWT: https://bugs.eclipse.org/bugs/show_bug.cgi?id=305294 Just to preface this, my goal here is to print the two images into a canvas so that I can animate the canvas sliding across the screen (think iPhone), sliding the controls themselves was too CPU intensive, so this was a good alternative until I tested it on Win7. I'm open to anything that will help me solve my original problem, it doesn't have to be fixing the problem below. Does anyone know how to get "Control.print(GC)" to work with Windows 7 Aero? I have code that works just fine in Windows XP and in Windows 7, when Aero is disabled, but the command: control.print(GC) causes a non-top control to be effectively erased from the screen. GC gc = new GC(image); try { // As soon as this code is called, calling "layout" on the controls // causes them to disappear. control.print(gc); } finally { gc.dispose(); } I have stacked controls and would like to print the images from the current and next controls such that I can "slide" them off the screen. However, upon printing the non-top control, it is never redrawn again. Here is some example code. (Interesting code bits are at the top and it will require pointing at SWT in order to work.) Thanks for any and all help. As a work around, I'm thinking about swapping controls between prints to see if that helps, but I'd rather not. import org.eclipse.swt.SWT; import org.eclipse.swt.custom.StackLayout; import org.eclipse.swt.events.SelectionAdapter; import org.eclipse.swt.events.SelectionEvent; import org.eclipse.swt.graphics.GC; import org.eclipse.swt.graphics.Image; import org.eclipse.swt.graphics.Point; import org.eclipse.swt.layout.GridData; import org.eclipse.swt.layout.GridLayout; import org.eclipse.swt.widgets.Button; import org.eclipse.swt.widgets.Composite; import org.eclipse.swt.widgets.Control; import org.eclipse.swt.widgets.Display; import org.eclipse.swt.widgets.Label; import org.eclipse.swt.widgets.Shell; public class SWTImagePrintTest { private Composite stack; private StackLayout layout; private Label lblFlip; private Label lblFlop; private boolean flip = true; private Button buttonFlop; private Button buttonPrint; /** * Prints the control into an image * * @param control */ protected void print(Control control) { Image image = new Image(control.getDisplay(), control.getBounds()); GC gc = new GC(image); try { // As soon as this code is called, calling "layout" on the controls // causes them to disappear. control.print(gc); } finally { gc.dispose(); } } /** * Swaps the controls in the stack */ private void flipFlop() { if (flip) { flip = false; layout.topControl = lblFlop; buttonFlop.setText("flop"); stack.layout(); } else { flip = true; layout.topControl = lblFlip; buttonFlop.setText("flip"); stack.layout(); } } private void createContents(Shell shell) { shell.setLayout(new GridLayout(2, true)); stack = new Composite(shell, SWT.NONE); GridData gdStack = new GridData(GridData.FILL_BOTH); gdStack.horizontalSpan = 2; stack.setLayoutData(gdStack); layout = new StackLayout(); stack.setLayout(layout); lblFlip = new Label(stack, SWT.BOLD); lblFlip.setBackground(Display.getCurrent().getSystemColor( SWT.COLOR_CYAN)); lblFlip.setText("FlIp"); lblFlop = new Label(stack, SWT.NONE); lblFlop.setBackground(Display.getCurrent().getSystemColor( SWT.COLOR_BLUE)); lblFlop.setText("fLoP"); layout.topControl = lblFlip; stack.layout(); buttonFlop = new Button(shell, SWT.FLAT); buttonFlop.setText("Flip"); GridData gdFlip = new GridData(); gdFlip.horizontalAlignment = SWT.RIGHT; buttonFlop.setLayoutData(gdFlip); buttonFlop.addSelectionListener(new SelectionAdapter() { @Override public void widgetSelected(SelectionEvent e) { flipFlop(); } }); buttonPrint = new Button(shell, SWT.FLAT); buttonPrint.setText("Print"); GridData gdPrint = new GridData(); gdPrint.horizontalAlignment = SWT.LEFT; buttonPrint.setLayoutData(gdPrint); buttonPrint.addSelectionListener(new SelectionAdapter() { @Override public void widgetSelected(SelectionEvent e) { print(lblFlip); print(lblFlop); } }); } /** * @param args */ public static void main(String[] args) { Shell shell = new Shell(); shell.setText("Slider Test"); shell.setSize(new Point(800, 600)); shell.setLayout(new GridLayout()); SWTImagePrintTest tt = new SWTImagePrintTest(); tt.createContents(shell); shell.open(); Display display = Display.getDefault(); while (shell.isDisposed() == false) { if (display.readAndDispatch() == false) { display.sleep(); } } display.dispose(); } }

    Read the article

  • Problems with my Intel HD GC

    - by Stevan Hranisavljevic
    I'm running Ubuntu and I have an Intel HD graphic card, I installed Counter Strike 1.6 and I cannot launch wide screen display mode, parts from the both side of my screen are black. Also when I am playing some clips on YouTube, both sides on the screen are black and I don't see the whole picture. When I click on "About this computer" I'm getting this: Intel® Sandybridge Mobile x86/MMX/SSE2 But I can't find the driver for my Intel GC. I have this driver installed: X.Org X server -- Intel i8xx, i9xx

    Read the article

  • What is GC holes?

    - by tianyi
    I wrote a long TCP connection socket server in C#. Spike in memory in my server happens. I used dotNet Memory Profiler(a tool) to detect where the memory leaks. Memory Profiler indicates the private heap is huge, and the memory is something like below(the number is not real,what I want to show is the GC0 and GC2's Holes are very very huge, the data size is normal): Managed heaps - 1,500,000KB Normal heap - 1400,000KB Generation #0 - 600,000KB Data - 100,000KB "Holes" - 500,000KB Generation #1 - xxKB Data - 0KB "Holes" - xKB Generation #2 - xxxxxxxxxxxxxKB Data - 100,000KB "Holes" - 700,000KB Large heap - 131072KB Large heap - 83KB Overhead/unused - 130989KB Overhead - 0KB Howerver, what is GC hole? I read an article about the hole: http://kaushalp.blogspot.com/2007/04/what-is-gc-hole-and-how-to-create-gc.html The author said : The code snippet below is the simplest way to introduce a GC hole into the system. //OBJECTREF is a typedef for Object*. { PointerTable *pTBL = o_pObjectClass->GetPointerTable(); OBJECTREF aObj = AllocateObjectMemory(pTBL); OBJECTREF bObj = AllocateObjectMemory(pTBL); //WRONG!!! “aObj” may point to garbage if the second //“AllocateObjectMemory” triggered a GC. DoSomething (aOb, bObj); } All it does is allocate two managed objects, and then does something with them both. This code compiles fine, and if you run simple pre-checkin tests, it will probably “work.” But this code will crash eventually. Why? If the second call to “AllocateObjectMemory” triggers a GC, that GC discards the object instance you just assigned to “aObj”. This code, like all C++ code inside the CLR, is compiled by a non-managed compiler and the GC cannot know that “aObj” holds a root reference to an object you want kept live. ======================================================================== I can't understand what he explained. Does the sample mean aObj becomes a wild pointer after GC? Is it mean { aObj = (*aObj)malloc(sizeof(object)); free(aObj); function(aObj);? } ? I hope somebody can explain it.

    Read the article

  • Lock statement vs Monitor.Enter method.

    - by Vokinneberg
    I suppose it is an interesting code example. We have a class, let's call it Test with Finalize method. In Main method here is two code blocks where i am using lock statement and Monitor.Enter call. Also i have two instances of class Test here. The experiment is pretty simple - nulling Test variable within locking block and try to collect it manually with GC.Collect method call. So, to see the Finilaze call i am calling GC.WaitForPendingFinalizers method. Everything is very simple as you can see. By defenition of lock statement it's opens by compiler to try{...}finally{..} block with Minitor.Enter call inside of try block and Monitor.Exit in finally block. I've tryed to implement try-finally block manually. I've expected the same behaviour in both cases. in case of using lock and in case of unsing Monitor.Enter. But, surprize, surprize - it is different as you can see below. public class Test : IDisposable { private string name; public Test(string name) { this.name = name; } ~Test() { Console.WriteLine(string.Format("Finalizing class name {0}.", name)); } } class Program { static void Main(string[] args) { var test1 = new Test("Test1"); var test2 = new Test("Tesst2"); lock (test1) { test1 = null; Console.WriteLine("Manual collect 1."); GC.Collect(); GC.WaitForPendingFinalizers(); Console.WriteLine("Manual collect 2."); GC.Collect(); } var lockTaken = false; System.Threading.Monitor.Enter(test2, ref lockTaken); try { test2 = null; Console.WriteLine("Manual collect 3."); GC.Collect(); GC.WaitForPendingFinalizers(); Console.WriteLine("Manual collect 4."); GC.Collect(); } finally { System.Threading.Monitor.Exit(test2); } Console.ReadLine(); } } Output of this example is Manual collect 1. Manual collect 2. Manual collect 3. Finalizing class name Test2. Manual collect 4. And null reference exception in last finally block because test2 is null reference. I've was surprised and disasembly my code into IL. So, here is IL dump of Main method. .entrypoint .maxstack 2 .locals init ( [0] class ConsoleApplication2.Test test1, [1] class ConsoleApplication2.Test test2, [2] bool lockTaken, [3] bool <>s__LockTaken0, [4] class ConsoleApplication2.Test CS$2$0000, [5] bool CS$4$0001) L_0000: nop L_0001: ldstr "Test1" L_0006: newobj instance void ConsoleApplication2.Test::.ctor(string) L_000b: stloc.0 L_000c: ldstr "Tesst2" L_0011: newobj instance void ConsoleApplication2.Test::.ctor(string) L_0016: stloc.1 L_0017: ldc.i4.0 L_0018: stloc.3 L_0019: ldloc.0 L_001a: dup L_001b: stloc.s CS$2$0000 L_001d: ldloca.s <>s__LockTaken0 L_001f: call void [mscorlib]System.Threading.Monitor::Enter(object, bool&) L_0024: nop L_0025: nop L_0026: ldnull L_0027: stloc.0 L_0028: ldstr "Manual collect." L_002d: call void [mscorlib]System.Console::WriteLine(string) L_0032: nop L_0033: call void [mscorlib]System.GC::Collect() L_0038: nop L_0039: call void [mscorlib]System.GC::WaitForPendingFinalizers() L_003e: nop L_003f: ldstr "Manual collect." L_0044: call void [mscorlib]System.Console::WriteLine(string) L_0049: nop L_004a: call void [mscorlib]System.GC::Collect() L_004f: nop L_0050: nop L_0051: leave.s L_0066 L_0053: ldloc.3 L_0054: ldc.i4.0 L_0055: ceq L_0057: stloc.s CS$4$0001 L_0059: ldloc.s CS$4$0001 L_005b: brtrue.s L_0065 L_005d: ldloc.s CS$2$0000 L_005f: call void [mscorlib]System.Threading.Monitor::Exit(object) L_0064: nop L_0065: endfinally L_0066: nop L_0067: ldc.i4.0 L_0068: stloc.2 L_0069: ldloc.1 L_006a: ldloca.s lockTaken L_006c: call void [mscorlib]System.Threading.Monitor::Enter(object, bool&) L_0071: nop L_0072: nop L_0073: ldnull L_0074: stloc.1 L_0075: ldstr "Manual collect." L_007a: call void [mscorlib]System.Console::WriteLine(string) L_007f: nop L_0080: call void [mscorlib]System.GC::Collect() L_0085: nop L_0086: call void [mscorlib]System.GC::WaitForPendingFinalizers() L_008b: nop L_008c: ldstr "Manual collect." L_0091: call void [mscorlib]System.Console::WriteLine(string) L_0096: nop L_0097: call void [mscorlib]System.GC::Collect() L_009c: nop L_009d: nop L_009e: leave.s L_00aa L_00a0: nop L_00a1: ldloc.1 L_00a2: call void [mscorlib]System.Threading.Monitor::Exit(object) L_00a7: nop L_00a8: nop L_00a9: endfinally L_00aa: nop L_00ab: call string [mscorlib]System.Console::ReadLine() L_00b0: pop L_00b1: ret .try L_0019 to L_0053 finally handler L_0053 to L_0066 .try L_0072 to L_00a0 finally handler L_00a0 to L_00aa I does not see any difference between lock statement and Monitor.Enter call. So, why i steel have a reference to the instance of test1 in case of lock, and object is not collected by GC, but in case of using Monitor.Enter it is collected and finilized?

    Read the article

  • Is it possible to implement a GC.GetAliveInstancesOf<T>() (for use in debugging)?

    - by Omer Raviv
    Hi, I know this was answered before, but I'd like to pose a somewhat different question. Is there any conceivable way to implement GC.GetAliveInstancesOf(), that can be evaluated in Visual Studio Debug Watch window? Sasha Goldstein shows one solution in this article, but it requires every class you want to query inherit from a specific base class. I'll emphasize that I only want to use this method during debugging, so I don't care that the GC may change an object's address in memory during runtime. One idea might be to somehow harness the !dumpheap –type command of SOS, and do some magic trick to create a temporary variable and have it point out to the memory address printed by SOS. Does anyone have a solution that works?

    Read the article

  • Frequent occurence of FULL GC.

    - by Viji
    Hi, There is a frequent occurence of FULL GC in our system. We are using Java application running on Tomcat server. Our application is running using internal load balancer setup. We are seeing lot of Full GC's in the server logs due to which the application is hung and Proxy errors are occured. The Java parameter values we are using are: Webapp wrapper: wrapper.java.additional.4=-Xms382M wrapper.java.additional.5=-Xmx1024M Backapp wrapper: wrapper.java.additional.4=-Xms382M wrapper.java.additional.5=-Xmx1024M The error found in webapp wrapper logs: INFO | jvm 1 | 2010/11/26 09:33:19 | [PSYoungGen: 1398460K-140291K(1514624K)] 4623364K-3491394K(5009920K), 0.7285303 secs] [Times: user=1.42 sys=0.00, real=0.72 secs] INFO | jvm 1 | 2010/11/26 09:33:19 | 68539.126: [Full GC DEBUG | wrapperp | 2010/11/26 09:33:19 | send a packet PING : ping Tried to change the JVM values to increase the heap size. But of no use. I suspect that there could be some other reason other than these parameters which is causing the issue. Can anyone please help me on this?

    Read the article

  • GC output clarification

    - by elec
    I'm running a java application with the following settings: -XX:+CMSParallelRemarkEnabled -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCApplicationConcurrentTime -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:+PrintHeapAtGC -XX:+PrintTenuringDistribution I'm not sure how to interpret the related gc logs(below). In particular: Heap after GC invocations=31 (full 3): does this mean there were 31 minor GCs, and 3 full GCs ? What triggers the several consecutive lines of Total time for which the application threads were stopped and Application Time ? Is it possible to get the time stamps associated with each of these lines ? GC logs: Total time for which application threads were stopped: 0.0046910 seconds Application time: 0.7946670 seconds Total time for which application threads were stopped: 0.0002900 seconds Application time: 1.0153640 seconds Total time for which application threads were stopped: 0.0002780 seconds Application time: 1.0161890 seconds Total time for which application threads were stopped: 0.0002760 seconds Application time: 1.0145990 seconds Total time for which application threads were stopped: 0.0002950 seconds Application time: 0.9999800 seconds Total time for which application threads were stopped: 0.0002770 seconds Application time: 1.0151640 seconds Total time for which application threads were stopped: 0.0002730 seconds Application time: 0.9996590 seconds Total time for which application threads were stopped: 0.0002880 seconds Application time: 0.9624290 seconds {Heap before GC invocations=30 (full 3): par new generation total 131008K, used 130944K [0x00000000eac00000, 0x00000000f2c00000, 0x00000000f2c00000) eden space 130944K, 100% used [0x00000000eac00000, 0x00000000f2be0000, 0x00000000f2be0000) from space 64K, 0% used [0x00000000f2bf0000, 0x00000000f2bf0000, 0x00000000f2c00000) to space 64K, 0% used [0x00000000f2be0000, 0x00000000f2be0000, 0x00000000f2bf0000) concurrent mark-sweep generation total 131072K, used 48348K [0x00000000f2c00000, 0x00000000fac00000, 0x00000000fac00000) concurrent-mark-sweep perm gen total 30000K, used 19518K [0x00000000fac00000, 0x00000000fc94c000, 0x0000000100000000) 2010-05-11T09:30:13.888+0100: 384.955: [GC 384.955: [ParNew Desired survivor size 32768 bytes, new threshold 0 (max 0) : 130944K-0K(131008K), 0.0052470 secs] 179292K-48549K(262080K), 0.0053030 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] Heap after GC invocations=31 (full 3): par new generation total 131008K, used 0K [0x00000000eac00000, 0x00000000f2c00000, 0x00000000f2c00000) eden space 130944K, 0% used [0x00000000eac00000, 0x00000000eac00000, 0x00000000f2be0000) from space 64K, 0% used [0x00000000f2be0000, 0x00000000f2be0000, 0x00000000f2bf0000) to space 64K, 0% used [0x00000000f2bf0000, 0x00000000f2bf0000, 0x00000000f2c00000) concurrent mark-sweep generation total 131072K, used 48549K [0x00000000f2c00000, 0x00000000fac00000, 0x00000000fac00000) concurrent-mark-sweep perm gen total 30000K, used 19518K [0x00000000fac00000, 0x00000000fc94c000, 0x0000000100000000) } Total time for which application threads were stopped: 0.0056410 seconds Application time: 0.0475220 seconds Total time for which application threads were stopped: 0.0001800 seconds Application time: 1.0174830 seconds Total time for which application threads were stopped: 0.0003820 seconds Application time: 1.0126350 seconds Total time for which application threads were stopped: 0.0002750 seconds Application time: 1.0155910 seconds Total time for which application threads were stopped: 0.0002680 seconds Application time: 1.0155580 seconds Total time for which application threads were stopped: 0.0002880 seconds Application time: 1.0155480 seconds Total time for which application threads were stopped: 0.0002970 seconds Application time: 0.9896810 seconds

    Read the article

  • Full GC real time is much more that user+sys times

    - by Stas
    Hi. We have a Web Java based application running on JBoss with allowed maximum heap size of about 1.2 GB (total machine physical memory is 2 GB). At some point the application stops responding (to clients) for several minutes. After some analysis we found out that the culprit is the Full GC. Here's an excerpt from the verbose GC log: 74477.402: [Full GC [PSYoungGen: 3648K-0K(332160K)] [PSOldGen: 778476K-589497K(819200K)] 782124K-589497K(1151360K) [PSPermGen: 102671K-102671K(171328K)], 646.1546860 secs] [Times: user=3.84 sys=3.72, real=646.17 secs] What I don't understand is how is it possible that the real time spent on Full GC is about 11 minutes (646 seconds), while user+sys times are just 7.5 seconds. 7.5 seconds sound to me much more logical time to spend for cleaning <200 MB from the old generation. Where does all the other time go? Thanks a lot.

    Read the article

  • GC generation 3 appearing in windbg

    - by Johnv2020
    I've a dump file of a process I'm running (trying to find a memory leak) One thing I've noticed is that when I dump the bigger objects via !do windbg tells me that they are GC generation 3 ?? All of these are byte arrays so when I look at all the byte arrays in the dump I can see GC generations 0, 1, 2 & 3. Could someone explain whats going on here as I thought there was only 3 generations of GC.

    Read the article

  • odd problem with jni interacting with dll's - not sure why a change to gc ergonomics fixes it

    - by jim hale
    We were having a problem with our Tomcat jvm blowing up and giving us an hs_* dump at random times but always in the same spot, that wasn't very informative other than saying we had an EXCEPTION_ACCESS_VIOLATION Commenting out various parts of the java that called particular jni functions just made it blow consistently in another spot. By changing our jvm options from: set PAF_OPTS=-Xms1024m -Xmx32000m -server -XX:+UseParallelGC -XX:+UseParallelOldGC -XX:+DisableExplicitGC -XX:+UseCompressedOops -Djava.library.path="%CATALINA_HOME%"\jni -Dcom.sun.management.jmxremote TO set PAF_OPTS=-Xms1024m -Xmx32000m -server -XX:+DisableExplicitGC -XX:+UseCompressedOops -Djava.library.path="%CATALINA_HOME%"\jni -Dcom.sun.management.jmxremote The problem went away. The solution does not give me a warm and fuzzy however and am wondering anyone might understand what's going on under the covers here. Environment: jdk1.6, 64 bit OS and Java, Tomcat, Windows

    Read the article

  • Ruby 1.9 GarbageCollector, GC.disable/enable

    - by seb
    I'm developing a Rails 2.3, Ruby 1.9.1 webapplication that does quite a bunch of calculation before each request. For every request it has to calculate a graph with 300 nodes and ~1000 edges. The graph and all its nodes, edges and other objects are initialized for every request (~2000 objects) - actually they are cloned from an uncalculated cached graph using Marshal.load(Marshal.dump()). Performance is quite an issue here. Right now the whole request takes in average 150ms. I then saw that during a request, parts of the calculation randomly take longer. Assuming, that this might be the GarbageCollector kicking in, I wrapped the request in GC.disable and GC.enable, so that the request waits with garbagecollecting until calculating and rendering have finished. def query GC.disable calculate respond_to do |format| format.html {render} end GC.enable end The average request now takes about 100ms (50 ms less). But I'm unsure if this is a good/stable solution, I assume there must be drawbacks doing that. Does anybody has experience with a similar problem or sees problems with the above code?

    Read the article

  • android Emulator always stop at "waiting for Home..."

    - by wuwupp
    hi,there, I freshed install Eclipse, jdk, android sdk 1.5 in winxp. but when I run the "hello world" app, the emulator always stop at "andorid" loading message. In eclipse console, it shows "waiting for HOME..." and in DDMS LogCat, it shows following msg: there are some error and warning. So, what's wrong with my case? I have googled lots of results, but no one can help me. Please help me. Many thx 06-13 00:07:54.323: INFO/DEBUG(551): debuggerd: Jun 30 2009 17:00:51 06-13 00:07:54.383: INFO/vold(550): Android Volume Daemon version 2.0 06-13 00:07:54.724: ERROR/flash_image(556): can't find recovery partition 06-13 00:07:55.223: DEBUG/qemud(558): entering main loop 06-13 00:07:55.323: DEBUG/qemud(558): multiplexer_handle_control: unknown control message (18 bytes): 'ko:unknown command' 06-13 00:07:55.493: INFO/vold(550): New MMC card 'SU02G' (serial 1012966) added @ /devices/platform/goldfish_mmc.0/mmc_host/mmc0/mmc0:e118 06-13 00:07:55.773: INFO/vold(550): Disk (blkdev 179:0), 262144 secs (128 MB) 0 partitions 06-13 00:07:55.773: INFO/vold(550): New blkdev 179.0 on media SU02G, media path /devices/platform/goldfish_mmc.0/mmc_host/mmc0/mmc0:e118, Dpp 0 06-13 00:07:55.814: INFO/vold(550): Evaluating dev '/devices/platform/goldfish_mmc.0/mmc_host/mmc0/mmc0:e118/block/mmcblk0' for mountable filesystems for '/sdcard' 06-13 00:07:56.014: ERROR/vold(550): Error opening switch name path '/sys/class/switch/test2' (No such file or directory) 06-13 00:07:56.014: ERROR/vold(550): Error bootstrapping switch '/sys/class/switch/test2' (m) 06-13 00:07:56.073: ERROR/vold(550): Error opening switch name path '/sys/class/switch/test' (No such file or directory) 06-13 00:07:56.073: ERROR/vold(550): Error bootstrapping switch '/sys/class/switch/test' (m) 06-13 00:07:56.073: DEBUG/vold(550): Bootstrapping complete 06-13 00:07:56.743: INFO//system/bin/dosfsck(550): dosfsck 3.0.1 (23 Nov 2008) 06-13 00:07:56.753: INFO//system/bin/dosfsck(550): dosfsck 3.0.1, 23 Nov 2008, FAT32, LFN 06-13 00:07:56.783: INFO//system/bin/dosfsck(550): Checking we can access the last sector of the filesystem 06-13 00:07:56.893: INFO//system/bin/dosfsck(550): Boot sector contents: 06-13 00:07:56.924: INFO//system/bin/dosfsck(550): System ID "MSWIN4.1" 06-13 00:07:56.934: INFO//system/bin/dosfsck(550): Media byte 0xf8 (hard disk) 06-13 00:07:56.953: INFO//system/bin/dosfsck(550): 512 bytes per logical sector 06-13 00:07:56.974: INFO//system/bin/dosfsck(550): 512 bytes per cluster 06-13 00:07:57.005: INFO//system/bin/dosfsck(550): 32 reserved sectors 06-13 00:07:57.013: INFO//system/bin/dosfsck(550): First FAT starts at byte 16384 (sector 32) 06-13 00:07:57.013: INFO//system/bin/dosfsck(550): 2 FATs, 32 bit entries 06-13 00:07:57.023: INFO//system/bin/dosfsck(550): 1040384 bytes per FAT (= 2032 sectors) 06-13 00:07:57.043: INFO//system/bin/dosfsck(550): Root directory start at cluster 2 (arbitrary size) 06-13 00:07:57.043: INFO//system/bin/dosfsck(550): Data area starts at byte 2097152 (sector 4096) 06-13 00:07:57.043: INFO//system/bin/dosfsck(550): 258048 data clusters (132120576 bytes) 06-13 00:07:57.103: INFO//system/bin/dosfsck(550): 9 sectors/track, 2 heads 06-13 00:07:57.103: INFO//system/bin/dosfsck(550): 0 hidden sectors 06-13 00:07:57.123: INFO//system/bin/dosfsck(550): 262144 sectors total 06-13 00:07:57.313: DEBUG/qemud(558): fdhandler_accept_event: accepting on fd 10 06-13 00:07:57.313: DEBUG/qemud(558): created client 0xe078 listening on fd 8 06-13 00:07:57.313: DEBUG/qemud(558): fdhandler_event: disconnect on fd 8 06-13 00:07:57.623: DEBUG/qemud(558): fdhandler_accept_event: accepting on fd 10 06-13 00:07:57.623: DEBUG/qemud(558): created client 0xf028 listening on fd 8 06-13 00:07:57.643: DEBUG/qemud(558): client_fd_receive: attempting registration for service 'gsm' 06-13 00:07:57.763: DEBUG/qemud(558): client_fd_receive: - received channel id 1 06-13 00:08:12.553: INFO//system/bin/dosfsck(550): Checking for unused clusters. 06-13 00:08:13.483: INFO//system/bin/dosfsck(550): Checking free cluster summary. 06-13 00:08:13.643: DEBUG/AndroidRuntime(553): AndroidRuntime START <<<<<<<<<<<<<< 06-13 00:08:13.705: DEBUG/AndroidRuntime(553): CheckJNI is ON 06-13 00:08:13.793: INFO//system/bin/dosfsck(550): /dev/block//vold/179:0: 0 files, 1/258048 clusters 06-13 00:08:14.063: INFO/logwrapper(550): /system/bin/dosfsck terminated by exit(0) 06-13 00:08:14.143: DEBUG/vold(550): Filesystem check completed OK 06-13 00:08:14.683: INFO/vold(550): Sucessfully mounted vfat filesystem 179:0 on /sdcard (safe-mode on) 06-13 00:08:17.023: INFO/(554): ServiceManager: 0xac38 06-13 00:08:17.883: INFO/AudioFlinger(554): AudioFlinger's thread ready to run for output 0 06-13 00:08:18.163: INFO/CameraService(554): CameraService started: pid=554 06-13 00:08:21.824: DEBUG/AndroidRuntime(553): --- registering native functions --- 06-13 00:08:27.813: INFO/Zygote(553): Preloading classes... 06-13 00:08:27.994: DEBUG/dalvikvm(553): GC freed 764 objects / 42216 bytes in 88ms 06-13 00:08:30.234: DEBUG/dalvikvm(553): GC freed 278 objects / 17160 bytes in 48ms 06-13 00:08:33.094: DEBUG/dalvikvm(553): GC freed 208 objects / 12696 bytes in 44ms 06-13 00:08:34.343: DEBUG/dalvikvm(553): Trying to load lib /system/lib/libmedia_jni.so 0x0 06-13 00:08:35.803: DEBUG/dalvikvm(553): Added shared lib /system/lib/libmedia_jni.so 0x0 06-13 00:08:35.903: DEBUG/dalvikvm(553): Trying to load lib /system/lib/libmedia_jni.so 0x0 06-13 00:08:35.903: DEBUG/dalvikvm(553): Shared lib '/system/lib/libmedia_jni.so' already loaded in same CL 0x0 06-13 00:08:36.003: DEBUG/dalvikvm(553): Trying to load lib /system/lib/libmedia_jni.so 0x0 06-13 00:08:36.003: DEBUG/dalvikvm(553): Shared lib '/system/lib/libmedia_jni.so' already loaded in same CL 0x0 06-13 00:08:36.215: DEBUG/dalvikvm(553): Trying to load lib /system/lib/libmedia_jni.so 0x0 06-13 00:08:36.244: DEBUG/dalvikvm(553): Shared lib '/system/lib/libmedia_jni.so' already loaded in same CL 0x0 06-13 00:08:36.455: DEBUG/dalvikvm(553): GC freed 462 objects / 29144 bytes in 70ms 06-13 00:08:44.123: DEBUG/dalvikvm(553): GC freed 3584 objects / 171648 bytes in 125ms 06-13 00:09:10.473: DEBUG/dalvikvm(553): GC freed 11329 objects / 400856 bytes in 196ms 06-13 00:09:17.373: DEBUG/dalvikvm(553): GC freed 10472 objects / 438272 bytes in 199ms 06-13 00:09:24.563: DEBUG/dalvikvm(553): GC freed 10975 objects / 459800 bytes in 202ms 06-13 00:09:46.403: DEBUG/dalvikvm(553): GC freed 14372 objects / 506896 bytes in 252ms 06-13 00:09:53.793: DEBUG/dalvikvm(553): GC freed 11314 objects / 481360 bytes in 215ms 06-13 00:09:57.743: DEBUG/dalvikvm(553): GC freed 5928 objects / 248640 bytes in 195ms 06-13 00:10:01.324: DEBUG/dalvikvm(553): GC freed 349 objects / 37032 bytes in 190ms 06-13 00:10:05.253: DEBUG/dalvikvm(553): GC freed 778 objects / 48376 bytes in 217ms 06-13 00:10:06.564: DEBUG/dalvikvm(553): GC freed 321 objects / 37288 bytes in 219ms 06-13 00:10:08.194: DEBUG/dalvikvm(553): GC freed 477 objects / 29584 bytes in 212ms 06-13 00:10:08.663: DEBUG/dalvikvm(553): Trying to load lib /system/lib/libwebcore.so 0x0 06-13 00:10:09.743: DEBUG/dalvikvm(553): Added shared lib /system/lib/libwebcore.so 0x0 06-13 00:10:11.634: DEBUG/dalvikvm(553): GC freed 441 objects / 26224 bytes in 236ms 06-13 00:10:12.893: DEBUG/dalvikvm(553): GC freed 506 objects / 41464 bytes in 235ms 06-13 00:10:14.153: DEBUG/dalvikvm(553): GC freed 537 objects / 38832 bytes in 239ms 06-13 00:10:15.883: DEBUG/dalvikvm(553): GC freed 342 objects / 22552 bytes in 248ms 06-13 00:10:17.124: DEBUG/dalvikvm(553): GC freed 338 objects / 18736 bytes in 264ms 06-13 00:10:18.523: DEBUG/dalvikvm(553): GC freed 629 objects / 32136 bytes in 260ms 06-13 00:10:38.933: DEBUG/dalvikvm(553): GC freed 14257 objects / 497280 bytes in 368ms 06-13 00:10:46.453: DEBUG/dalvikvm(553): GC freed 11164 objects / 469576 bytes in 360ms 06-13 00:10:52.973: DEBUG/dalvikvm(553): GC freed 7134 objects / 311432 bytes in 339ms 06-13 00:10:55.595: DEBUG/dalvikvm(553): GC freed 752 objects / 43224 bytes in 520ms 06-13 00:10:56.863: DEBUG/dalvikvm(553): GC freed 598 objects / 31496 bytes in 307ms 06-13 00:10:58.543: DEBUG/dalvikvm(553): GC freed 413 objects / 26336 bytes in 355ms 06-13 00:10:59.263: INFO/Zygote(553): ...preloaded 1166 classes in 151403ms. 06-13 00:10:59.683: DEBUG/dalvikvm(553): GC freed 313 objects / 19952 bytes in 343ms 06-13 00:10:59.793: INFO/Zygote(553): Preloading resources... 06-13 00:11:00.683: DEBUG/dalvikvm(553): GC freed 54 objects / 11248 bytes in 340ms 06-13 00:11:05.723: DEBUG/dalvikvm(553): GC freed 337 objects / 15008 bytes in 317ms 06-13 00:11:08.703: DEBUG/dalvikvm(553): GC freed 280 objects / 11768 bytes in 312ms 06-13 00:11:09.303: INFO/Zygote(553): ...preloaded 48 resources in 9513ms. 06-13 00:11:09.795: INFO/Zygote(553): ...preloaded 15 resources in 454ms. 06-13 00:11:10.303: DEBUG/dalvikvm(553): GC freed 118 objects / 8616 bytes in 420ms 06-13 00:11:10.913: DEBUG/dalvikvm(553): GC freed 205 objects / 8104 bytes in 308ms 06-13 00:11:11.344: DEBUG/dalvikvm(553): GC freed 36 objects / 1400 bytes in 320ms 06-13 00:11:11.543: INFO/dalvikvm(553): Splitting out new zygote heap 06-13 00:11:12.973: INFO/dalvikvm(553): System server process 585 has been created 06-13 00:11:13.336: INFO/Zygote(553): Accepting command socket connections 06-13 00:11:14.963: INFO/jdwp(585): received file descriptor 10 from ADB 06-13 00:11:16.843: WARN/System.err(585): Can't dispatch DDM chunk 46454154: no handler defined 06-13 00:11:16.953: WARN/System.err(585): Can't dispatch DDM chunk 4d505251: no handler defined 06-13 00:11:17.763: DEBUG/dalvikvm(585): Trying to load lib /system/lib/libandroid_servers.so 0x0 06-13 00:11:19.714: DEBUG/dalvikvm(585): Added shared lib /system/lib/libandroid_servers.so 0x0 06-13 00:11:20.123: INFO/sysproc(585): Entered system_init() 06-13 00:11:20.223: INFO/sysproc(585): ServiceManager: 0x1017b8 06-13 00:11:20.359: INFO/SurfaceFlinger(585): SurfaceFlinger is starting 06-13 00:11:20.493: INFO/SurfaceFlinger(585): SurfaceFlinger's main thread ready to run. Initializing graphics H/W... 06-13 00:11:20.634: ERROR/MemoryHeapBase(585): error opening /dev/pmem: No such file or directory 06-13 00:11:20.704: ERROR/SurfaceFlinger(585): Couldn't open /sys/power/wait_for_fb_sleep or /sys/power/wait_for_fb_wake 06-13 00:11:22.013: ERROR/GLLogger(585): couldn't load library (Cannot find library) 06-13 00:11:22.103: INFO/SurfaceFlinger(585): EGL informations: 06-13 00:11:22.113: INFO/SurfaceFlinger(585): # of configs : 6 06-13 00:11:22.123: INFO/SurfaceFlinger(585): vendor : Android 06-13 00:11:22.123: INFO/SurfaceFlinger(585): version : 1.31 Android META-EGL 06-13 00:11:22.134: INFO/SurfaceFlinger(585): extensions: 06-13 00:11:22.134: INFO/SurfaceFlinger(585): Client API: OpenGL ES 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): using (fd=22) 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): id = 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): xres = 320 px 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): yres = 480 px 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): xres_virtual = 320 px 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): yres_virtual = 960 px 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): bpp = 16 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): r = 11:5 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): g = 5:6 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): b = 0:5 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): width = 49 mm (165.877548 dpi) 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): height = 74 mm (164.756760 dpi) 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): refresh rate = 60.00 Hz 06-13 00:11:22.533: WARN/HAL(585): load: module=/system/lib/hw/copybit.goldfish.so error=Cannot find library 06-13 00:11:22.543: WARN/HAL(585): load: module=/system/lib/hw/copybit.default.so error=Cannot find library 06-13 00:11:22.553: WARN/SurfaceFlinger(585): ro.sf.lcd_density not defined, using 160 dpi by default. 06-13 00:11:22.644: INFO/SurfaceFlinger(585): OpenGL informations: 06-13 00:11:22.654: INFO/SurfaceFlinger(585): vendor : Android 06-13 00:11:22.654: INFO/SurfaceFlinger(585): renderer : Android PixelFlinger 1.0 06-13 00:11:22.654: INFO/SurfaceFlinger(585): version : OpenGL ES-CM 1.0 06-13 00:11:22.654: INFO/SurfaceFlinger(585): extensions: GL_OES_byte_coordinates GL_OES_fixed_point GL_OES_single_precision GL_OES_read_format GL_OES_compressed_paletted_texture GL_OES_draw_texture GL_OES_matrix_get GL_OES_query_matrix GL_ARB_texture_compression GL_ARB_texture_non_power_of_two GL_ANDROID_direct_texture GL_ANDROID_user_clip_plane GL_ANDROID_vertex_buffer_object GL_ANDROID_generate_mipmap 06-13 00:11:22.673: WARN/HAL(585): load: module=/system/lib/hw/copybit.goldfish.so error=Cannot find library 06-13 00:11:22.683: WARN/HAL(585): load: module=/system/lib/hw/copybit.default.so error=Cannot find library 06-13 00:11:22.703: WARN/HAL(585): load: module=/system/lib/hw/overlay.goldfish.so error=Cannot find library 06-13 00:11:22.713: WARN/HAL(585): load: module=/system/lib/hw/overlay.default.so error=Cannot find library 06-13 00:11:23.663: INFO/sysproc(585): System server: starting Android runtime. 06-13 00:11:23.733: INFO/sysproc(585): System server: starting Android services. 06-13 00:11:23.953: INFO/SystemServer(585): Entered the Android system server! 06-13 00:11:24.303: INFO/sysproc(585): System server: entering thread pool. 06-13 00:11:24.763: ERROR/GLLogger(585): couldn't load library (Cannot find library) 06-13 00:11:25.893: INFO/ARMAssembler(585): generated scanline__00000077:03545404_00000A01_00000000 [ 30 ipp] (51 ins) at [0x18f708:0x18f7d4] in 72796961 ns 06-13 00:11:26.193: INFO/SystemServer(585): Starting Power Manager. 06-13 00:11:26.953: INFO/SystemServer(585): Starting Activity Manager. 06-13 00:11:31.733: INFO/SystemServer(585): Starting telephony registry 06-13 00:11:32.054: INFO/SystemServer(585): Starting Package Manager. 06-13 00:11:32.553: INFO/Installer(585): connecting... 06-13 00:11:32.914: INFO/installd(555): new connection 06-13 00:11:35.193: INFO/PackageManager(585): Got library android.awt in /system/framework/android.awt.jar 06-13 00:11:35.313: INFO/PackageManager(585): Got library android.test.runner in /system/framework/android.test.runner.jar 06-13 00:11:35.324: INFO/PackageManager(585): Got library com.android.im.plugin in /system/framework/com.android.im.plugin.jar 06-13 00:11:44.643: DEBUG/PackageManager(585): Scanning app dir /system/framework 06-13 00:11:49.513: DEBUG/PackageManager(585): Scanning app dir /system/app 06-13 00:11:51.493: DEBUG/dalvikvm(585): GC freed 6088 objects / 251280 bytes in 1237ms 06-13 00:12:27.497: DEBUG/dalvikvm(585): GC freed 3435 objects / 216088 bytes in 792ms 06-13 00:12:29.213: DEBUG/PackageManager(585): Scanning app dir /data/app 06-13 00:12:30.223: DEBUG/PackageManager(585): Scanning app dir /data/app-private 06-13 00:12:30.425: INFO/PackageManager(585): Time to scan packages: 47.319 seconds 06-13 00:12:30.703: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH in package com.android.providers.contacts 06-13 00:12:30.803: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH.cp in package com.android.providers.contacts 06-13 00:12:30.853: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH in package com.android.development 06-13 00:12:30.913: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH.ALL_SERVICES in package com.android.development 06-13 00:12:31.133: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH.YouTubeUser in package com.android.development 06-13 00:12:31.143: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.ACCESS_GOOGLE_PASSWORD in package com.android.development 06-13 00:12:31.234: WARN/PackageManager(585): Unknown permission com.google.android.providers.gmail.permission.WRITE_GMAIL in package com.android.settings 06-13 00:12:31.254: WARN/PackageManager(585): Unknown permission com.google.android.providers.gmail.permission.READ_GMAIL in package com.android.settings 06-13 00:12:31.303: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH in package com.android.settings 06-13 00:12:31.683: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH in package com.android.browser 06-13 00:12:31.803: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH.mail in package com.android.contacts 06-13 00:12:34.603: DEBUG/dalvikvm(585): GC freed 2851 objects / 161304 bytes in 845ms 06-13 00:12:35.403: INFO/SystemServer(585): Starting Content Manager. 06-13 00:12:39.954: WARN/ActivityManager(585): Unable to start service Intent { action=android.accounts.IAccountsService comp={com.google.android.googleapps/com.google.android.googleapps.GoogleLoginService} }: not found 06-13 00:12:40.063: WARN/AccountMonitor(585): Couldn't connect to Intent { action=android.accounts.IAccountsService comp={com.google.android.googleapps/com.google.android.googleapps.GoogleLoginService} } (Missing service?) 06-13 00:12:40.253: INFO/SystemServer(585): Starting System Content Providers. 06-13 00:12:40.553: INFO/ActivityThread(585): Publishing provider settings: com.android.providers.settings.SettingsProvider 06-13 00:12:41.433: INFO/ActivityThread(585): Publishing provider sync: android.content.SyncProvider 06-13 00:12:41.683: INFO/SystemServer(585): Starting Battery Service. 06-13 00:12:42.293: ERROR/BatteryService(585): Could not open '/sys/class/power_supply/usb/online' 06-13 00:12:42.433: ERROR/BatteryService(585): Could not open '/sys/class/power_supply/battery/batt_vol' 06-13 00:12:42.543: ERROR/BatteryService(585): Could not open '/sys/class/power_supply/battery/batt_temp' 06-13 00:12:42.933: INFO/SystemServer(585): Starting Hardware Service. 06-13 00:12:43.398: DEBUG/qemud(558): fdhandler_accept_event: accepting on fd 10 06-13 00:12:43.623: DEBUG/qemud(558): created client 0x10fd8 listening on fd 11 06-13 00:12:43.743: DEBUG/qemud(558): client_fd_receive: attempting registration for service 'hw-control' 06-13 00:12:43.873: DEBUG/qemud(558): client_fd_receive: - received channel id 2 06-13 00:15:20.695: WARN/SurfaceFlinger(585): executeScheduledBroadcasts() skipped, contention on the client. We'll try again later...

    Read the article

  • WITH_OBJECT_HEADERS enabled GC from Dalvik?

    - by Wonil
    Hello, As I know Dalvik VM does not support generational GC as default. But, I found "WITH_OBJECT_HEADERS" compilation flag which could be related with generational GC from HeapInternal.h file. typedef struct DvmHeapChunk { #if WITH_OBJECT_HEADERS u4 header; const Object *parent; const Object *parentOld; const Object *markFinger; const Object *markFingerOld; u2 birthGeneration; u2 markCount; u2 scanCount; u2 oldMarkGeneration; u2 markGeneration; u2 oldScanGeneration; u2 scanGeneration; #endif Does anyone try to build Dalvik with this option enabled? Do you know anything about generational GC support from Dalvik? Regards, Wonil.

    Read the article

  • What GC parameters is a JVM running with?

    - by skaffman
    I'm still investigating issues I have with GC tuning (see prior question), which involves lots of reading and experimentation. Sun Java5+ JVMs attempt to automatically select the optimal GC strategy and parameters based on their environment, which is great, but I can't figure out how to query the running JVM to find out what those parameters are. Ideally, I'd like to see what values of the various GC-related -XX options are being used, as selected automatically by the VM. If I had that, I could have a baseline to begin tweaking. Anyone know to recover these values from a running VM?

    Read the article

  • Why did the team at LMAX use Java and design the architecture to avoid GC at all cost?

    - by kadaj
    Why did the team at LMAX design the LMAX Disruptor in Java but all their design points to minimizing GC use? If one does not want to have GC run then why use a garbage collected language? Their optimizations, the level of hardware knowledge and the thought they put are just awesome but why Java? I'm not against Java or anything, but why a GC language? Why not use something like D or any other language without GC but allows efficient code? Is it that the team is most familiar with Java or does Java possess some unique advantage that I am not seeing? Say they develop it using D with manual memory management, what would be the difference? They would have to think low level (which they already are), but they can squeeze the best performance out of the system as it's native.

    Read the article

  • Flex 4 - What makes a GC root?

    - by Michael Brewer-Davis
    What are the rules for something to be a GC root in Flash? I'm using the Flash Builder 4 profiler, and I'm finding odd things are labeled as GC roots in the object reference details (e.g., an Image control that is no longer in the display list, nor static).

    Read the article

  • Tomcat memory usage grows until crash with no GC run

    - by Phil
    I'm administrating a server running Tomcat that is getting a lot of traffic lately. If I monitor memory usage in Task Manager I can see the memory usage growing and eventually tomcat crashes around the 1GB mark. Here's the memory relevent bits I've set in Tomcat Properties (this is a Windows Server): Intial memory pool: 1024 MB Maximum memory pool: 1024 MB -XX:MaxPermSize=256M The weird thing is since these problems arose I've deployed Lambda Probe to the Tomcat instance and the memory usage values I see there are much lower, for example Task Manager might show 467MB used while the "Total" used in Probe is 212 MB. Also, the Maximum Total listed in Probe is 1.29GB, when I would have expected 1GB, the maximum memory set above. If I force the garbage collector to run using Probe, I can keep Tomcat from crashing for a while (indefinitely, AFAIK). So why doesn't the GC run automatically and stop Tomcat from crashing? Thanks.

    Read the article

  • problem disposing class in Dictionary it is Still in the heap memory although using GC.Collect

    - by Bahgat Mashaly
    Hello i have a problem disposing class in Dictionary this is my code private Dictionary<string, MyProcessor> Processors = new Dictionary<string, MyProcessor>(); private void button1_Click(object sender, EventArgs e) { if (!Processors.ContainsKey(textBox1.Text)) { Processors.Add(textBox1.Text, new MyProcessor()); } } private void button2_Click(object sender, EventArgs e) { MyProcessor currnt_processor = Processors[textBox1.Text]; Processors.Remove(textBox2.Text); currnt_processor.Dispose(); currnt_processor = null; GC.Collect(); } public class MyProcessor: IDisposable { private bool isDisposed = false; string x = ""; public MyProcessor() { for (int i = 0; i < 20000; i++) { //this line only to increase the memory usage to know if the class is dispose or not x = x + "gggggggggggg"; } this.Dispose(); GC.SuppressFinalize(this); } public void Dispose() { this.Dispose(true); GC.SuppressFinalize(this); } public void Dispose(bool disposing) { if (!this.isDisposed) { isDisposed = true; this.Dispose(); } } ~MyProcessor() { Dispose(false); } } i use "ANTS Memory Profiler" to monitor heap memory the disposing work only when i remove all keys from dictionary how can i destroy the class from heap memory ? thanks in advance

    Read the article

  • Avoiding GC thrashing with WSE 3.0 MTOM service

    - by Leon Breedt
    For historical reasons, I have some WSE 3.0 web services that I cannot upgrade to WCF on the server side yet (it is also a substantial amount of work to do so). These web services are being used for file transfers from client to server, using MTOM encoding. This can also not be changed in the short term, for reasons of compatibility. Secondly, they are being called from both Java and .NET, and therefore need to be cross-platform, hence MTOM. How it works is that an "upload" WebMethod is called by the client, sending up a chunk of data at a time, since files being transferred could potentially be gigabytes in size. However, due to not being able to control parts of the stack before the WebMethod is invoked, I cannot control the memory usage patterns of the web service. The problem I am running into is for file sizes from 50MB or so onwards, performance is absolutely killed because of GC, since it appears that WSE 3.0 buffers each chunk received from the client in a new byte[] array, and by the time we've done 50MB we're spending 20-30% of time doing GC. I've played with various chunk sizes, from 16k to 2MB, with no real great difference in results. Smaller chunks are killed by the latency involved with round-tripping, and larger chunks just postpone the slowdown until GC kicks in. Any bright ideas on cutting down on the garbage created by WSE? Can I plug into the pipeline somehow and jury-rig something that has access to the client's request stream and streams it to the WebMethod? I'm aware that it is possible to "stream" responses to the client using WSE (albeit very ugly), but this problem is with requests from the client.

    Read the article

  • Divide and conquer of large objects for GC performance

    - by Aperion
    At my work we're discussing different approaches to cleaning up a large amount of managed ~50-100MB memory.There are two approaches on the table (read: two senior devs can't agree) and not having the experience the rest of the team is unsure of what approach is more desirable, performance or maintainability. The data being collected is many small items, ~30000 which in turn contains other items, all objects are managed. There is a lot of references between these objects including event handlers but not to outside objects. We'll call this large group of objects and references as a single entity called a blob. Approach #1: Make sure all references to objects in the blob are severed and let the GC handle the blob and all the connections. Approach #2: Implement IDisposable on these objects then call dispose on these objects and set references to Nothing and remove handlers. The theory behind the second approach is since the large longer lived objects take longer to cleanup in the GC. So, by cutting the large objects into smaller bite size morsels the garbage collector will processes them faster, thus a performance gain. So I think the basic question is this: Does breaking apart large groups of interconnected objects optimize data for garbage collection or is better to keep them together and rely on the garbage collection algorithms to processes the data for you? I feel this is a case of pre-optimization, but I do not know enough of the GC to know what does help or hinder it.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >