Search Results

Search found 5119 results on 205 pages for 'genetic algorithm'.

Page 2/205 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • The best algorithm enhancing alpha-beta?

    - by Risa
    I'm studying AI. My teacher gave us source code of a chess-like game and asked us to enhance it. My exercise is to improve the alpha/beta algorithm implementing in that game. The programmer already uses transposition tables, MTD(f) with alpha/beta+memory (MTD(f) is the best algorithm I know by far). So is there any better algorithm to enhance alpha-beta search or a good way to implement MTD(f) in coding a game?

    Read the article

  • Suggested GA operators for a TSP problem?

    - by Mark
    I'm building a genetic algorithm to tackle the traveling salesman problem. Unfortunately, I hit peaks that can sustain for over a thousand generations before mutating out of them and getting better results. What crossover and mutation operators generally do well in this case?

    Read the article

  • cool project to use a genetic algorithm for?

    - by Ryan
    I'm looking for a practical application to use a genetic algorithm for. Some things that have thought of are: Website interface optimization Vehicle optimization with a physics simulator Genetic programming Automatic test case generation But none have really popped out at me. So if you had some free time (a few months) to spend on a genetic algorithms project, what would you choose to tackle?

    Read the article

  • Evolutionary Algorithms: Optimal Repopulation Breakdowns

    - by Brian MacKay
    It's really all in the title, but here's a breakdown for anyone who is interested in Evolutionary Algorithms: In an EA, the basic premise is that you randomly generate a certain number of organisms (which are really just sets of parameters), run them against a problem, and then let the top performers survive. You then repopulate with a combination of crossbreeds of the survivors, mutations of the survivors, and also a certain number of new random organisms. Do that several thousand times, and efficient organisms arise. Some people also do things like introduce multiple "islands" of organisms, which are seperate populations that are allowed to crossbreed once in awhile. So, my question is: what are the optimal repopulation percentages? I have been keeping the top 10% performers, and repopulating with 30% crossbreeds and 30% mutations. The remaining 30% is for new organisms. I have also tried out the multiple island theory, and I'm interested in your results on that as well. It is not lost on me that this is exactly the type of problem an EA could solve. Are you aware of anyone trying that? Thanks in advance!

    Read the article

  • Matchmaking algorithm with a set of filters

    - by Yuriy Pogrebnyak
    I'm looking for matchmaking algorithm for 1x1 online game. Players must be matched not by their skill or level, as usual, but by some specific filters. Each player sends request, where he specifies some set of parameters (generally, 2-4 parameters). If some parameter is specified, player can be matched only with those who has sent this parameter with exactly the same value, or those who hasn't specified this parameter. I need this algorithm to be thread-safe and preferably fast. It would be great if it'll work for 3-4 or even more parameters, but also I'm looking for algorithm that works with only one parameter (in my case it's game bet). Also I'd appreciate ideas on how to implement or improve this algorithm on my server platform - ASP.NET. One more problem I'm facing is that finding match can't be executed right after user sends request, because if other user sends request before matching for previous is finished, they won't be matched even is they possibly could. So it seems that match finding should be started on schedule, and I need help on how to optimize it and how to choose time interval for starting new match finding. P.S. I've also posted this question on stackoverflow

    Read the article

  • Control diamond square algorithm to generate islands/pangea.

    - by Gabriel A. Zorrilla
    I generated a height map with the diamond square algorithm. The thing is i do not manage to create islands, this is, restrict the height other than water level range to a certain value in the center of the map. I manualy seeded a circle in the middle of the map but the rest of the map still receives heights over the water level. I dont fully understand the Perlin noise algorithm so i'd like to work with my current implementation of the diamond square algorithm which took me 3 days to interpret and code in PHP. :P

    Read the article

  • algorithm to combine data for linear fit?

    - by BoldlyBold
    I'm not sure if this is the best place to ask this, but you guys have been helpful with plenty of my CS homework in the past so I figure I'll give it a shot. I'm looking for an algorithm to blindly combine several dependent variables into an index that produces the best linear fit with an external variable. Basically, it would combine the dependent variables using different mathematical operators, include or not include each one, etc. until an index is developed that best correlates with my external variable. Has anyone seen/heard of something like this before? Even if you could point me in the right direction or to the right place to ask, I would appreciate it. Thanks.

    Read the article

  • word disambiguation algorithm (Lesk algorithm)

    - by anyssnordin
    Hii.. Can anybody help me to find an algorithm in Java code to find synonyms of a search word based on the context and I want to implement the algorithm with WordNet database. For example, "I am running a Java program". From the context, I want to find the synonyms for the word "running", but the synonyms must be suitable according to a context.

    Read the article

  • Hopcroft–Karp algorithm in Python

    - by Simon
    I am trying to implement the Hopcroft Karp algorithm in Python using networkx as graph representation. Currently I am as far as this: #Algorithms for bipartite graphs import networkx as nx import collections class HopcroftKarp(object): INFINITY = -1 def __init__(self, G): self.G = G def match(self): self.N1, self.N2 = self.partition() self.pair = {} self.dist = {} self.q = collections.deque() #init for v in self.G: self.pair[v] = None self.dist[v] = HopcroftKarp.INFINITY matching = 0 while self.bfs(): for v in self.N1: if self.pair[v] and self.dfs(v): matching = matching + 1 return matching def dfs(self, v): if v != None: for u in self.G.neighbors_iter(v): if self.dist[ self.pair[u] ] == self.dist[v] + 1 and self.dfs(self.pair[u]): self.pair[u] = v self.pair[v] = u return True self.dist[v] = HopcroftKarp.INFINITY return False return True def bfs(self): for v in self.N1: if self.pair[v] == None: self.dist[v] = 0 self.q.append(v) else: self.dist[v] = HopcroftKarp.INFINITY self.dist[None] = HopcroftKarp.INFINITY while len(self.q) > 0: v = self.q.pop() if v != None: for u in self.G.neighbors_iter(v): if self.dist[ self.pair[u] ] == HopcroftKarp.INFINITY: self.dist[ self.pair[u] ] = self.dist[v] + 1 self.q.append(self.pair[u]) return self.dist[None] != HopcroftKarp.INFINITY def partition(self): return nx.bipartite_sets(self.G) The algorithm is taken from http://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm However it does not work. I use the following test code G = nx.Graph([ (1,"a"), (1,"c"), (2,"a"), (2,"b"), (3,"a"), (3,"c"), (4,"d"), (4,"e"),(4,"f"),(4,"g"), (5,"b"), (5,"c"), (6,"c"), (6,"d") ]) matching = HopcroftKarp(G).match() print matching Unfortunately this does not work, I end up in an endless loop :(. Can someone spot the error, I am out of ideas and I must admit that I have not yet fully understand the algorithm, so it is mostly an implementation of the pseudo code on wikipedia

    Read the article

  • Space partitioning algorithm

    - by Karol Kolenda
    I have a set of points which are contained within the rectangle. I'd like to split the rectangles into subrectangles based on point density (giving a number of subrectangles or desired density, whichever is easiest). The partitioning doesn't have to be exact (almost any approximation better than regular grid would do), but the algorithm have to cope with the large number of points - approx. 200 millions. The desired number of subrectangles however is substantially lower (around 1000). Does anyone knows any algorithm which may help me with this particular task?

    Read the article

  • Polygonal Triangulation - algorithm with O(n log n) complexity

    - by Arthur Wulf White
    I wish to triangulate a polygon I only have the outline of (p0, p1, p2 ... pn) like described in this question: polygon triangulation algorithm and this webpage: http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Ian/algorithm2.html I do not wish to learn the subject and have a deep understanding of it at the moment. I only want to see an effective algorithm that can be used out of the box. The one described in the site seems to be of somewhat high complexity O(n) for finding one ear. I heard this could be done in O(n log n) time. Is there any well known easy to use algorithm that I can translate port to use in my engine that runs with somewhat reasonable complexity? The reason I need to triangulate is that I wish to feel out a 2d-outline and render it 3d. Much like we fill out a 2d-outline in paint. I could use sprites. This would not serve cause I am planning to play with the resulting model on the z-axis, giving it different heights in the different areas. I would love to try the books that were mentioned, although I suspect that is not the answer most readers are hoping for when they read this Q & A format. Mostly I like to see a code snippet I can cut and paste with some modifications and start running.

    Read the article

  • How to choose a integer linear programming solver ?

    - by Cassie
    Hi all, I am newbie for integer linear programming. I plan to use a integer linear programming solver to solve my combinational optimization problem. I am more familiar with C++/object oriented programming on an IDE. Now I am using NetBeans with Cygwin to write my applications most of time. May I ask if there is an easy use ILP solver for me? Or does it depend on the problem I want to solve ? I am trying to do some resources mapping optimization. please let me know if any further information is required. Thank you very much, Cassie.

    Read the article

  • Traveling Salesman - Nearest Neighbor vs Genetic DEATHMATCH

    - by EvilTeach
    Over the last few days I have noted a few web sites that demonstrated TS solution using genetic algorithms. I am looking for your opinion which is better for this particular problem. Heuristics vs Genetic. By better, I mean will yield a shorter/lower cost path. Explain why you feel the way that you do. Examples, and off-site links are welcome.

    Read the article

  • Non-perfect maze generation algorithm

    - by Shylux
    I want to generate a maze with the following properties: The maze is non-perfect. Means it has loops and multiple ways to reach the exit. The maze should be random. The algorithm should output different mazes for different input parameters The maze doesn't have to be braided. Means dead-ends are allowed and appreciated. I just can't find the right resources on google. The closest i found was this description of the different types of algorithms: http://www.astrolog.org/labyrnth/algrithm.htm. All other algorithms were for perfect mazes. Can anyone give me a website where i can look this up or maybe an algorithm directly?

    Read the article

  • Quick 2D sight area calculation algorithm?

    - by Rogach
    I have a matrix of tiles, on some of that tiles there are objects. I want to calculate which tiles are visible to player, and which are not, and I need to do it quite efficiently (so it would compute fast enough even when I have a big matrices (100x100) and lots of objects). I tried to do it with Besenham's algorithm, but it was slow. Also, it gave me some errors: ----XXX- ----X**- ----XXX- -@------ -@------ -@------ ----XXX- ----X**- ----XXX- (raw version) (Besenham) (correct, since tunnel walls are still visible at distance) (@ is the player, X is obstacle, * is invisible, - is visible) I'm sure this can be done - after all, we have NetHack, Zangband, and they all dealt with this problem somehow :) What algorithm can you recommend for this? EDIT: Definition of visible (in my opinion): tile is visible when at least a part (e.g. corner) of the tile can be connected to center of player tile with a straight line which does not intersect any of obstacles.

    Read the article

  • Dijkstra's Bankers Algorithm

    - by idea_
    Could somebody please provide a step-through approach to solving the following problem using the Banker's Algorithm? How do I determine whether a "safe-state" exists? What is meant when a process can "run to completion"? In this example, I have four processes and 10 instances of the same resource. Resources Allocated | Resources Needed Process A 1 6 Process B 1 5 Process C 2 4 Process D 4 7

    Read the article

  • Infinite loop during A* algorithm

    - by Tashu
    The A* algorithm is used by enemies to have a path to the goal. It's working but when sometimes I placed a tower in a grid (randomly) it produces a stack overflow error. The A* algorithm would iterate the enemy and find its path and pass the list to the enemy's path. I added debug logs and the list that I'm getting it looks like it would arrive from start cell to goal cell. Here's the log - 06-19 19:26:41.982: DEBUG/findEnemyPath, enemy X:Y(4281): X2.8256836:Y3.5 06-19 19:26:41.990: DEBUG/findEnemyPath, grid X:Y(4281): X3:Y2 06-19 19:26:41.990: DEBUG/START CELL ID:(4281): 38 06-19 19:26:41.990: DEBUG/GOAL CELL ID:(4281): 47 06-19 19:26:41.990: DEBUG/Best : 38(4281): passThrough:0.0 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 38 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 38 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 38 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 38 06-19 19:26:41.990: DEBUG/Best : 39(4281): passThrough:8.875 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 39 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 39 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 39 06-19 19:26:41.990: DEBUG/Best : 40(4281): passThrough:7.9375 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 40 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 40 06-19 19:26:41.990: DEBUG/Best : 52(4281): passThrough:8.9375 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 52 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 52 06-19 19:26:41.990: DEBUG/Best : 53(4281): passThrough:7.96875 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 53 06-19 19:26:41.990: DEBUG/Best : 28(4281): passThrough:8.9375 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 28 06-19 19:26:41.990: DEBUG/Best : 65(4281): passThrough:8.984375 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 65 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 65 06-19 19:26:41.990: DEBUG/Best : 66(4281): passThrough:7.9921875 06-19 19:26:41.990: DEBUG/Neighbor's Parent:(4281): 66 06-19 19:26:42.000: DEBUG/Best : 78(4281): passThrough:8.99609375 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 78 06-19 19:26:42.000: DEBUG/Best : 79(4281): passThrough:7.998046875 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 79 06-19 19:26:42.000: DEBUG/Best : 80(4281): passThrough:6.9990234375 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 80 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 80 06-19 19:26:42.000: DEBUG/Best : 81(4281): passThrough:5.99951171875 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 81 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 81 06-19 19:26:42.000: DEBUG/Best : 82(4281): passThrough:4.999755859375 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 82 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 82 06-19 19:26:42.000: DEBUG/Best : 83(4281): passThrough:3.9998779296875 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 83 06-19 19:26:42.000: DEBUG/Best : 71(4281): passThrough:2.99993896484375 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 71 06-19 19:26:42.000: DEBUG/Best : 59(4281): passThrough:1.99951171875 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 59 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 59 06-19 19:26:42.000: DEBUG/Neighbor's Parent:(4281): 59 06-19 19:26:42.000: DEBUG/Best : 47(4281): passThrough:0.99951171875 Then, the goal cell would be iterating its parent till start cell to break off the loop. private void populateBestList(Cell cell, List<Cell> bestList) { bestList.add(cell); if (cell.parent.start == false) { Log.d("ID:", ""+cell.id); Log.d("ParentID:", ""+cell.parent.id); populateBestList(cell.parent, bestList); } return; } The log with error above would show like this - 06-19 19:26:42.010: DEBUG/ID:(4281): 47 06-19 19:26:42.010: DEBUG/ParentID:(4281): 59 06-19 19:26:42.010: DEBUG/ID:(4281): 59 06-19 19:26:42.010: DEBUG/ParentID:(4281): 71 06-19 19:26:42.010: DEBUG/ID:(4281): 71 06-19 19:26:42.010: DEBUG/ParentID:(4281): 59 06-19 19:26:42.010: DEBUG/ID:(4281): 59 06-19 19:26:42.010: DEBUG/ParentID:(4281): 71 06-19 19:26:42.010: DEBUG/ID:(4281): 71 71 and 59 would switch over and goes on. I thought the grid is the issue due to the fact that enemies are using the single grid so I make the parent, start, and goal clear before starting the A* algorithm for an enemy. for(int i = 0; i < GRID_HEIGHT; i++) { for(int j = 0; j < GRID_WIDTH; j++) { grid[i][j].parent = null; grid[i][j].start = false; grid[i][j].goal = false; } } That didn't work. I thought it might be something related to this code, but not sure if I'm on right track - neighbor.parent = best; openList.remove(neighbor); closedList.remove(neighbor); openList.add(0, neighbor); Here's the code of the A* algorithm - private List<Cell> findEnemyPath(Enemy enemy) { for(int i = 0; i < GRID_HEIGHT; i++) { for(int j = 0; j < GRID_WIDTH; j++) { grid[i][j].parent = null; grid[i][j].start = false; grid[i][j].goal = false; } } List<Cell> openList = new ArrayList<Cell>(); List<Cell> closedList = new ArrayList<Cell>(); List<Cell> bestList = new ArrayList<Cell>(); int width = (int)Math.floor(enemy.position.x); int height = (int)Math.floor(enemy.position.y); width = (width < 0) ? 0 : width; height = (height < 0) ? 0 : height; Log.d("findEnemyPath, enemy X:Y", "X"+enemy.position.x+":"+"Y"+enemy.position.y); Log.d("findEnemyPath, grid X:Y", "X"+height+":"+"Y"+width); Cell start = grid[height][width]; Cell goal = grid[ENEMY_GOAL_HEIGHT][ENEMY_GOAL_WIDTH]; if(start.id != goal.id) { Log.d("START CELL ID: ", ""+start.id); Log.d("GOAL CELL ID: ", ""+goal.id); //Log.d("findEnemyPath, grid X:Y", "X"+start.position.x+":"+"Y"+start.position.y); start.start = true; goal.goal = true; openList.add(start); while(openList.size() > 0) { Cell best = findBestPassThrough(openList, goal); //Log.d("ID:", ""+best.id); openList.remove(best); closedList.add(best); if (best.goal) { System.out.println("Found Goal"); System.out.println(bestList.size()); populateBestList(goal, bestList); /* for(Cell cell : bestList) { Log.d("ID:", ""+cell.id); Log.d("ParentID:", ""+cell.parent.id); } */ Collections.reverse(bestList); Cell exit = new Cell(13.5f, 3.5f, 1, 1); exit.isExit = true; bestList.add(exit); //Log.d("PathList", "Enemy ID : " + enemy.id); return bestList; } else { List<Cell> neighbors = getNeighbors(best); for (Cell neighbor : neighbors) { if(neighbor.isTower) { continue; } if (openList.contains(neighbor)) { Cell tmpCell = new Cell(neighbor.position.x, neighbor.position.y, 1, 1); tmpCell.parent = best; if (tmpCell.getPassThrough(goal) >= neighbor.getPassThrough(goal)) { continue; } } if (closedList.contains(neighbor)) { Cell tmpCell = new Cell(neighbor.position.x, neighbor.position.y, 1, 1); tmpCell.parent = best; if (tmpCell.getPassThrough(goal) >= neighbor.getPassThrough(goal)) { continue; } } Log.d("Neighbor's Parent: ", ""+best.id); neighbor.parent = best; openList.remove(neighbor); closedList.remove(neighbor); openList.add(0, neighbor); } } } } Log.d("Cannot find a path", ""); return null; }

    Read the article

  • Disk Search / Sort Algorithm

    - by AlgoMan
    Given a Range of numbers say 1 to 10,000, Input is in random order. Constraint: At any point only 1000 numbers can be loaded to memory. Assumption: Assuming unique numbers. I propose the following efficient , "When-Required-sort Algorithm". We write the numbers into files which are designated to hold particular range of numbers. For example, File1 will have 0 - 999 , File2 will have 1000 - 1999 and so on in random order. If a particular number which is say "2535" is being searched for then we know that the number is in the file3 (Binary search over range to find the file). Then file3 is loaded to memory and sorted using say Quick sort (which is optimized to add insertion sort when the array size is small ) and then we search the number in this sorted array using Binary search. And when search is done we write back the sorted file. So in long run all the numbers will be sorted. Please comment on this proposal.

    Read the article

  • Help with Algorithm chinese auction

    - by sam munkes
    Hi, i am designing a Chinese auction website. Tickets ($5, $10 & $20) are sold either individually, or via packages to receive discounts. There are various Ticket packages for example: 5-$5 tickets = receive 10% off 5-$10 tickets = receive 10% off 5-$20 tickets = receive 10% off 5-$5 tickets + 5-$10 tickets + 5-$20 tickets = receive 15% off When users add tickets to their cart, i need to figure out the cheapest package(s) to give them. the trick is that if a user adds 4-$5 tickets + 5-$10 tickets + 5-$20 tickets, it should still give him package #3 since that would be the cheapest for him. Any help in figuring out a algorithm to solve this, or any tips would be greatly appreciate it. thanks

    Read the article

  • Algorithm to price bulk discounts

    - by sam munkes
    Hi, i am designing a Chinese auction website. Tickets ($5, $10 & $20) are sold either individually, or via packages to receive discounts. There are various Ticket packages for example: 5-$5 tickets = receive 10% off 5-$10 tickets = receive 10% off 5-$20 tickets = receive 10% off 5-$5 tickets + 5-$10 tickets + 5-$20 tickets = receive 15% off When users add tickets to their cart, i need to figure out the cheapest package(s) to give them. the trick is that if a user adds 4-$5 tickets + 5-$10 tickets + 5-$20 tickets, it should still give him package #4 since that would be the cheapest for him. Any help in figuring out a algorithm to solve this, or any tips would be greatly appreciate it. thanks

    Read the article

  • Suggestion on algorithm to distribute objects of different value

    - by Unknown
    Hello, I have the following problem: Given N objects of different values (N < 30, and the values are multiple of a "k" constant, i.e. k, 2k, 3k, 4k, 6k, 8k, 12k, 16k, 24k and 32k), I need an algorithm that will distribute all items to M players (M <= 6) in such a way that the total value of the objects each player gets is as even as possible (in other words, I want to distribute all objects to all players in the fairest way possible). I don't need (pseudo)code to solve this (also, this is not a homework :) ), but I'll appreciate any ideas or links to algorithms that could solve this. Thanks!

    Read the article

  • help with number calculation algorithm [hw]

    - by sa125
    Hi - I'm working on a hw problem that asks me this: given a finite set of numbers, and a target number, find if the set can be used to calculate the target number using basic math operations (add, sub, mult, div) and using each number in the set exactly once (so I need to exhaust the set). This has to be done with recursion. So, for example, if I have the set {1, 2, 3, 4} and target 10, then I could get to it by using ((3 * 4) - 2)/1 = 10. I'm trying to phrase the algorithm in pseudo-code, but so far haven't gotten too far. I'm thinking graphs are the way to go, but would definitely appreciate help on this. thanks.

    Read the article

  • Understanding and Implementing a Force based graph layout algorithm

    - by zcourts
    I'm trying to implement a force base graph layout algorithm, based on http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing) My first attempt didn't work so I looked at http://blog.ivank.net/force-based-graph-drawing-in-javascript.html and https://github.com/dhotson/springy I changed my implementation based on what I thought I understood from those two but I haven't managed to get it right and I'm hoping someone can help? JavaScript isn't my strong point so be gentle... If you're wondering why write my own. In reality I have no real reason to write my own I'm just trying to understand how the algorithm is implemented. Especially in my first link, that demo is brilliant. This is what I've come up with //support function.bind - https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind#Compatibility if (!Function.prototype.bind) { Function.prototype.bind = function (oThis) { if (typeof this !== "function") { // closest thing possible to the ECMAScript 5 internal IsCallable function throw new TypeError("Function.prototype.bind - what is trying to be bound is not callable"); } var aArgs = Array.prototype.slice.call(arguments, 1), fToBind = this, fNOP = function () {}, fBound = function () { return fToBind.apply(this instanceof fNOP ? this : oThis || window, aArgs.concat(Array.prototype.slice.call(arguments))); }; fNOP.prototype = this.prototype; fBound.prototype = new fNOP(); return fBound; }; } (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); function Graph(o){ this.options=o; this.vertices={}; this.edges={};//form {vertexID:{edgeID:edge}} } /** *Adds an edge to the graph. If the verticies in this edge are not already in the *graph then they are added */ Graph.prototype.addEdge=function(e){ //if vertex1 and vertex2 doesn't exist in this.vertices add them if(typeof(this.vertices[e.vertex1])==='undefined') this.vertices[e.vertex1]=new Vertex(e.vertex1); if(typeof(this.vertices[e.vertex2])==='undefined') this.vertices[e.vertex2]=new Vertex(e.vertex2); //add the edge if(typeof(this.edges[e.vertex1])==='undefined') this.edges[e.vertex1]={}; this.edges[e.vertex1][e.id]=e; } /** * Add a vertex to the graph. If a vertex with the same ID already exists then * the existing vertex's .data property is replaced with the @param v.data */ Graph.prototype.addVertex=function(v){ if(typeof(this.vertices[v.id])==='undefined') this.vertices[v.id]=v; else this.vertices[v.id].data=v.data; } function Vertex(id,data){ this.id=id; this.data=data?data:{}; //initialize to data.[x|y|z] or generate random number for each this.x = this.data.x?this.data.x:-100 + Math.random()*200; this.y = this.data.y?this.data.y:-100 + Math.random()*200; this.z = this.data.y?this.data.y:-100 + Math.random()*200; //set initial velocity to 0 this.velocity = new Point(0, 0, 0); this.mass=this.data.mass?this.data.mass:Math.random(); this.force=new Point(0,0,0); } function Edge(vertex1ID,vertex2ID){ vertex1ID=vertex1ID?vertex1ID:Math.random() vertex2ID=vertex2ID?vertex2ID:Math.random() this.id=vertex1ID+"->"+vertex2ID; this.vertex1=vertex1ID; this.vertex2=vertex2ID; } function Point(x, y, z) { this.x = x; this.y = y; this.z = z; } Point.prototype.plus=function(p){ this.x +=p.x this.y +=p.y this.z +=p.z } function ForceLayout(o){ this.repulsion = o.repulsion?o.repulsion:200; this.attraction = o.attraction?o.attraction:0.06; this.damping = o.damping?o.damping:0.9; this.graph = o.graph?o.graph:new Graph(); this.total_kinetic_energy =0; this.animationID=-1; } ForceLayout.prototype.draw=function(){ //vertex velocities initialized to (0,0,0) when a vertex is created //vertex positions initialized to random position when created cc=0; do{ this.total_kinetic_energy =0; //for each vertex for(var i in this.graph.vertices){ var thisNode=this.graph.vertices[i]; // running sum of total force on this particular node var netForce=new Point(0,0,0) //for each other node for(var j in this.graph.vertices){ if(thisNode!=this.graph.vertices[j]){ //net-force := net-force + Coulomb_repulsion( this_node, other_node ) netForce.plus(this.CoulombRepulsion( thisNode,this.graph.vertices[j])) } } //for each spring connected to this node for(var k in this.graph.edges[thisNode.id]){ //(this node, node its connected to) //pass id of this node and the node its connected to so hookesattraction //can update the force on both vertices and return that force to be //added to the net force this.HookesAttraction(thisNode.id, this.graph.edges[thisNode.id][k].vertex2 ) } // without damping, it moves forever // this_node.velocity := (this_node.velocity + timestep * net-force) * damping thisNode.velocity.x=(thisNode.velocity.x+thisNode.force.x)*this.damping; thisNode.velocity.y=(thisNode.velocity.y+thisNode.force.y)*this.damping; thisNode.velocity.z=(thisNode.velocity.z+thisNode.force.z)*this.damping; //this_node.position := this_node.position + timestep * this_node.velocity thisNode.x=thisNode.velocity.x; thisNode.y=thisNode.velocity.y; thisNode.z=thisNode.velocity.z; //normalize x,y,z??? //total_kinetic_energy := total_kinetic_energy + this_node.mass * (this_node.velocity)^2 this.total_kinetic_energy +=thisNode.mass*((thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)* (thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)) } cc+=1; }while(this.total_kinetic_energy >0.5) console.log(cc,this.total_kinetic_energy,this.graph) this.cancelAnimation(); } ForceLayout.prototype.HookesAttraction=function(v1ID,v2ID){ var a=this.graph.vertices[v1ID] var b=this.graph.vertices[v2ID] var force=new Point(this.attraction*(b.x - a.x),this.attraction*(b.y - a.y),this.attraction*(b.z - a.z)) // hook's attraction a.force.x += force.x; a.force.y += force.y; a.force.z += force.z; b.force.x += this.attraction*(a.x - b.x); b.force.y += this.attraction*(a.y - b.y); b.force.z += this.attraction*(a.z - b.z); return force; } ForceLayout.prototype.CoulombRepulsion=function(vertex1,vertex2){ //http://en.wikipedia.org/wiki/Coulomb's_law // distance squared = ((x1-x2)*(x1-x2)) + ((y1-y2)*(y1-y2)) + ((z1-z2)*(z1-z2)) var distanceSquared = ( (vertex1.x-vertex2.x)*(vertex1.x-vertex2.x)+ (vertex1.y-vertex2.y)*(vertex1.y-vertex2.y)+ (vertex1.z-vertex2.z)*(vertex1.z-vertex2.z) ); if(distanceSquared==0) distanceSquared = 0.001; var coul = this.repulsion / distanceSquared; return new Point(coul * (vertex1.x-vertex2.x),coul * (vertex1.y-vertex2.y), coul * (vertex1.z-vertex2.z)); } ForceLayout.prototype.animate=function(){ if(this.animating) this.animationID=requestAnimationFrame(this.animate.bind(this)); this.draw(); } ForceLayout.prototype.cancelAnimation=function(){ cancelAnimationFrame(this.animationID); this.animating=false; } ForceLayout.prototype.redraw=function(){ this.animating=true; this.animate(); } $(document).ready(function(){ var g= new Graph(); for(var i=0;i<=100;i++){ var v1=new Vertex(Math.random(), {}) var v2=new Vertex(Math.random(), {}) var e1= new Edge(v1.id,v2.id); g.addEdge(e1); } console.log(g); var l=new ForceLayout({ graph:g }); l.redraw(); });

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >