Search Results

Search found 15301 results on 613 pages for 'global assembly cache'.

Page 2/613 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • IIS cache control header settings

    - by a_m0d
    I'm currently working on a website that is accessed over https. We have recently come across a problem where we are unable to view .pdf files or any other type of file that is sent as an attachment (Content-Disposition:attachment). According to Microsoft Knowledge Base this is due to the fact that Cache-Control is set to no-cache. However, we have a requirement that all pages be fully reloaded every time they are visited, so we have disabled caching on all pages (through our ASP code, not through IIS settings). However, I have made a special case of this one page that shows the attachment, and it now returns a header with Cache-Control:private and the expiry set to 1 minute in the future. This works fine when I test it on my local machine, using https. However, when I deploy it to our test server and try it, the response headers still return Cache-Control:no-cache. There is no firewall or anything between me and the server, so IIS itself must be adding these headers and replacing mine. I have no idea why it would do this, and it doesn't really make any sense, but it seems to be the only option at the moment (I haven't yet found any other place in the code that will change the cache headers). Can anyone point me to a possible place where IIS might be setting these header values?

    Read the article

  • Hibernate - query caching/second level cache does not work by value object containing subitems

    - by Zoltan Hamori
    Hi! I have been struggling with the following problem: I have a value object containing different panels. Each panel has a list of fields. Mapping: <class name="com.aviseurope.core.application.RACountryPanels" table="CTRY" schema="DBDEV1A" where="PEARL_CTRY='Y'" lazy="join"> <cache usage="read-only"/> <id name="ctryCode"> <column name="CTRY_CD_ID" sql-type="VARCHAR2(2)" not-null="true"/> </id> <bag name="panelPE" table="RA_COUNTRY_MAPPING" fetch="join" where="MANDATORY_FLAG!='N'"> <key column="COUNTRY_LOCATION_ID"/> <many-to-many class="com.aviseurope.core.application.RAFieldVO" column="RA_FIELD_MID" where="PANEL_ID='PE'"/> </bag> </class> I use the following criteria to get the value object: Session m_Session = HibernateUtil.currentSession(); m_Criteria = m_Session.createCriteria(RACountryPanels.class); m_Criteria.add(Expression.eq("ctryCode", p_Country)); m_Criteria.setCacheable(true); As I see the query cache contains only the main select like select * from CTRY where ctry_cd_id=? Both RACountryPanels and RAFieldVO are second level cached. If I check the 2nd level cache content I can see that it cointains the RAFields and the RACountryPanels as well and I can see the select .. from CTRY where ctry_cd_id=... in query cache region as well. When I call the servlet it seems that it is using the cache, but second time not. If I check the content of the cache using JMX, everything seems to be ok, but when I measure the object access time, it seems that it does not always use the cache. Cheers Zoltan

    Read the article

  • Synchronizing local and remote cache in distributed caching

    - by ltfishie
    With a distributed cache, a subset of the cache is kept locally while the rest is held remotely. In a get operation, if the entry is not available locally, the remote cache will be used and and the entry is added to local cache. In a put operation, both the local cache and remote cache are updated. Other nodes in the cluster also need to be notified to invalidate their local cache as well. What's a simplest way to achieve this if you implemented it yourself, assuming that nodes are not aware of each other. Edit My current implementation goes like this: Each cache entry contains a time stamp. Put operation will update local cache and remote cache Get operation will try local cache then remote cache A background thread on each node will check remote cache periodically for each entry in local cache. If the timestamp on remote is newer overwrite the local. If entry is not found in remote, delete it from local.

    Read the article

  • Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and cach

    - by SeanMcAlinden
    I’ve recently started a project with a few mates to learn the ins and outs of Dependency Injection, AOP and a number of other pretty crucial patterns of development as we’ve all been using these patterns for a while but have relied totally on third part solutions to do the magic. We thought it would be interesting to really get into the details by rolling our own IoC container and hopefully learn a lot on the way, and you never know, we might even create an excellent framework. The open source project is called Rapid IoC and is hosted at http://rapidioc.codeplex.com/ One of the most interesting tasks for me is creating the dynamic proxy generator for enabling Aspect Orientated Programming (AOP). In this series of articles, I’m going to track each step I take for creating the dynamic proxy generator and I’ll try my best to explain what everything means - mainly as I’ll be using Reflection.Emit to emit a fair amount of intermediate language code (IL) to create the proxy types at runtime which can be a little taxing to read. It’s worth noting that building the proxy is without a doubt going to be slightly painful so I imagine there will be plenty of areas I’ll need to change along the way. Anyway lets get started…   Part 1 - Creating the Assembly builder, Module builder and caching mechanism Part 1 is going to be a really nice simple start, I’m just going to start by creating the assembly, module and type caches. The reason we need to create caches for the assembly, module and types is simply to save the overhead of recreating proxy types that have already been generated, this will be one of the important steps to ensure that the framework is fast… kind of important as we’re calling the IoC container ‘Rapid’ – will be a little bit embarrassing if we manage to create the slowest framework. The Assembly builder The assembly builder is what is used to create an assembly at runtime, we’re going to have two overloads, one will be for the actual use of the proxy generator, the other will be mainly for testing purposes as it will also save the assembly so we can use Reflector to examine the code that has been created. Here’s the code: DynamicAssemblyBuilder using System; using System.Reflection; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Assembly {     /// <summary>     /// Class for creating an assembly builder.     /// </summary>     internal static class DynamicAssemblyBuilder     {         #region Create           /// <summary>         /// Creates an assembly builder.         /// </summary>         /// <param name="assemblyName">Name of the assembly.</param>         public static AssemblyBuilder Create(string assemblyName)         {             AssemblyName name = new AssemblyName(assemblyName);               AssemblyBuilder assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(                     name, AssemblyBuilderAccess.Run);               DynamicAssemblyCache.Add(assembly);               return assembly;         }           /// <summary>         /// Creates an assembly builder and saves the assembly to the passed in location.         /// </summary>         /// <param name="assemblyName">Name of the assembly.</param>         /// <param name="filePath">The file path.</param>         public static AssemblyBuilder Create(string assemblyName, string filePath)         {             AssemblyName name = new AssemblyName(assemblyName);               AssemblyBuilder assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(                     name, AssemblyBuilderAccess.RunAndSave, filePath);               DynamicAssemblyCache.Add(assembly);               return assembly;         }           #endregion     } }   So hopefully the above class is fairly explanatory, an AssemblyName is created using the passed in string for the actual name of the assembly. An AssemblyBuilder is then constructed with the current AppDomain and depending on the overload used, it is either just run in the current context or it is set up ready for saving. It is then added to the cache.   DynamicAssemblyCache using System.Reflection.Emit; using Rapid.DynamicProxy.Exceptions; using Rapid.DynamicProxy.Resources.Exceptions;   namespace Rapid.DynamicProxy.Assembly {     /// <summary>     /// Cache for storing the dynamic assembly builder.     /// </summary>     internal static class DynamicAssemblyCache     {         #region Declarations           private static object syncRoot = new object();         internal static AssemblyBuilder Cache = null;           #endregion           #region Adds a dynamic assembly to the cache.           /// <summary>         /// Adds a dynamic assembly builder to the cache.         /// </summary>         /// <param name="assemblyBuilder">The assembly builder.</param>         public static void Add(AssemblyBuilder assemblyBuilder)         {             lock (syncRoot)             {                 Cache = assemblyBuilder;             }         }           #endregion           #region Gets the cached assembly                  /// <summary>         /// Gets the cached assembly builder.         /// </summary>         /// <returns></returns>         public static AssemblyBuilder Get         {             get             {                 lock (syncRoot)                 {                     if (Cache != null)                     {                         return Cache;                     }                 }                   throw new RapidDynamicProxyAssertionException(AssertionResources.NoAssemblyInCache);             }         }           #endregion     } } The cache is simply a static property that will store the AssemblyBuilder (I know it’s a little weird that I’ve made it public, this is for testing purposes, I know that’s a bad excuse but hey…) There are two methods for using the cache – Add and Get, these just provide thread safe access to the cache.   The Module Builder The module builder is required as the create proxy classes will need to live inside a module within the assembly. Here’s the code: DynamicModuleBuilder using System.Reflection.Emit; using Rapid.DynamicProxy.Assembly; namespace Rapid.DynamicProxy.Module {     /// <summary>     /// Class for creating a module builder.     /// </summary>     internal static class DynamicModuleBuilder     {         /// <summary>         /// Creates a module builder using the cached assembly.         /// </summary>         public static ModuleBuilder Create()         {             string assemblyName = DynamicAssemblyCache.Get.GetName().Name;               ModuleBuilder moduleBuilder = DynamicAssemblyCache.Get.DefineDynamicModule                 (assemblyName, string.Format("{0}.dll", assemblyName));               DynamicModuleCache.Add(moduleBuilder);               return moduleBuilder;         }     } } As you can see, the module builder is created on the assembly that lives in the DynamicAssemblyCache, the module is given the assembly name and also a string representing the filename if the assembly is to be saved. It is then added to the DynamicModuleCache. DynamicModuleCache using System.Reflection.Emit; using Rapid.DynamicProxy.Exceptions; using Rapid.DynamicProxy.Resources.Exceptions; namespace Rapid.DynamicProxy.Module {     /// <summary>     /// Class for storing the module builder.     /// </summary>     internal static class DynamicModuleCache     {         #region Declarations           private static object syncRoot = new object();         internal static ModuleBuilder Cache = null;           #endregion           #region Add           /// <summary>         /// Adds a dynamic module builder to the cache.         /// </summary>         /// <param name="moduleBuilder">The module builder.</param>         public static void Add(ModuleBuilder moduleBuilder)         {             lock (syncRoot)             {                 Cache = moduleBuilder;             }         }           #endregion           #region Get           /// <summary>         /// Gets the cached module builder.         /// </summary>         /// <returns></returns>         public static ModuleBuilder Get         {             get             {                 lock (syncRoot)                 {                     if (Cache != null)                     {                         return Cache;                     }                 }                   throw new RapidDynamicProxyAssertionException(AssertionResources.NoModuleInCache);             }         }           #endregion     } }   The DynamicModuleCache is very similar to the assembly cache, it is simply a statically stored module with thread safe Add and Get methods.   The DynamicTypeCache To end off this post, I’m going to create the cache for storing the generated proxy classes. I’ve spent a fair amount of time thinking about the type of collection I should use to store the types and have finally decided that for the time being I’m going to use a generic dictionary. This may change when I can actually performance test the proxy generator but the time being I think it makes good sense in theory, mainly as it pretty much maintains it’s performance with varying numbers of items – almost constant (0)1. Plus I won’t ever need to loop through the items which is not the dictionaries strong point. Here’s the code as it currently stands: DynamicTypeCache using System; using System.Collections.Generic; using System.Security.Cryptography; using System.Text; namespace Rapid.DynamicProxy.Types {     /// <summary>     /// Cache for storing proxy types.     /// </summary>     internal static class DynamicTypeCache     {         #region Declarations           static object syncRoot = new object();         public static Dictionary<string, Type> Cache = new Dictionary<string, Type>();           #endregion           /// <summary>         /// Adds a proxy to the type cache.         /// </summary>         /// <param name="type">The type.</param>         /// <param name="proxy">The proxy.</param>         public static void AddProxyForType(Type type, Type proxy)         {             lock (syncRoot)             {                 Cache.Add(GetHashCode(type.AssemblyQualifiedName), proxy);             }         }           /// <summary>         /// Tries the type of the get proxy for.         /// </summary>         /// <param name="type">The type.</param>         /// <returns></returns>         public static Type TryGetProxyForType(Type type)         {             lock (syncRoot)             {                 Type proxyType;                 Cache.TryGetValue(GetHashCode(type.AssemblyQualifiedName), out proxyType);                 return proxyType;             }         }           #region Private Methods           private static string GetHashCode(string fullName)         {             SHA1CryptoServiceProvider provider = new SHA1CryptoServiceProvider();             Byte[] buffer = Encoding.UTF8.GetBytes(fullName);             Byte[] hash = provider.ComputeHash(buffer, 0, buffer.Length);             return Convert.ToBase64String(hash);         }           #endregion     } } As you can see, there are two public methods, one for adding to the cache and one for getting from the cache. Hopefully they should be clear enough, the Get is a TryGet as I do not want the dictionary to throw an exception if a proxy doesn’t exist within the cache. Other than that I’ve decided to create a key using the SHA1CryptoServiceProvider, this may change but my initial though is the SHA1 algorithm is pretty fast to put together using the provider and it is also very unlikely to have any hashing collisions. (there are some maths behind how unlikely this is – here’s the wiki if you’re interested http://en.wikipedia.org/wiki/SHA_hash_functions)   Anyway, that’s the end of part 1 – although I haven’t started any of the fun stuff (by fun I mean hairpulling, teeth grating Relfection.Emit style fun), I’ve got the basis of the DynamicProxy in place so all we have to worry about now is creating the types, interceptor classes, method invocation information classes and finally a really nice fluent interface that will abstract all of the hard-core craziness away and leave us with a lightning fast, easy to use AOP framework. Hope you find the series interesting. All of the source code can be viewed and/or downloaded at our codeplex site - http://rapidioc.codeplex.com/ Kind Regards, Sean.

    Read the article

  • Maven Assembly Plugin - install the created assembly

    - by Walter White
    I have a project that simply consists of files. I want to package those files into a zip and store them in a maven repository. I have the assembly plugin configured to build the zip file and that part works just fine, but I cannot seem to figure out how to install the zip file? Also, if I want to use this assembly in another artifact, how would I do that? I am intending on calling dependency:unpack, but I don't have an artifact in the repository to unpack. How can I get a zip file to be in my repository so that I may re-use it in another artifact? parent pom <build> <plugins> <plugin> <!--<groupId>org.apache.maven.plugins</groupId>--> <artifactId>maven-assembly-plugin</artifactId> <version>2.2-beta-5</version> <configuration> <filters> <filter></filter> </filters> <descriptors> <descriptor>../packaging.xml</descriptor> </descriptors> </configuration> </plugin> </plugins> </build> Child POM <parent> <groupId>com. ... .virtualHost</groupId> <artifactId>pom</artifactId> <version>0.0.1</version> <relativePath>../pom.xml</relativePath> </parent> <name>Virtual Host - ***</name> <groupId>com. ... .virtualHost</groupId> <artifactId>***</artifactId> <version>0.0.1</version> <packaging>pom</packaging> I filtered the name out. Is this POM correct? I just want to bundle files for a particular virtual host together. Thanks, Walter

    Read the article

  • Generic wrapper for System.Web.Caching.Cache functions

    - by David Neale
    I've created a generic wrapper for using the Cache object: public class Cache<T> where T : class { public Cache Cache {get;set;} public CachedKeys Key {get;set;} public Cache(Cache cache, CachedKeys key){ Cache = cache; Key = key; } public void AddToCache(T obj){ Cache.Add(Key.ToString(), obj, null, DateTime.Now.AddMinutes(5), System.Web.Caching.Cache.NoSlidingExpiration, System.Web.Caching.CacheItemPriority.Normal, null); } public bool TryGetFromCache(out T cachedData) { cachedData = Cache[Key.ToString()] as T; return cachedData != null; } public void RemoveFromCache() { Cache.Remove(Key.ToString()); } } The CachedKeys enumeration is just a list of keys that can be used to cache data. The trouble is, to call it is quite convuluted: var cache = new Cache<MyObject>(Page.Cache, CachedKeys.MyKey); MyObject myObject = null; if(!cache.TryGetFromCache(out myObject)){ //get data... cache.AddToCache(data); //add to cache return data; } return myObject; I only store one instance of each of my objects in the cache. Therefore, is there any way that I can create an extension method that accepts the type of object to Cache and uses (via Reflection) its Name as the cache key? public static Cache<T> GetCache(this Cache cache, Type cacheType){ Cache<cacheType> Cache = new Cache<cacheType>(cache, cacheType.Name); } Of course, there's two errors here: Extension methods must be defined in a non-generic static class The type or namespace name 'cacheType' could not be found This is clearly not the right approach but I thought I'd show my working. Could somebody guide me in the right direction?

    Read the article

  • global variables in php not working as expected

    - by Josh Smeaton
    I'm having trouble with global variables in php. I have a $screen var set in one file, which requires another file that calls an initSession() defined in yet another file. The initSession() declares "global $screen" and then processes $screen further down using the value set in the very first script. How is this possible? To make things more confusing, if you try to set $screen again then call the initSession(), it uses the value first used once again. The following code will describe the process. Could someone have a go at explaining this? $screen = "list1.inc"; // From model.php require "controller.php"; // From model.php initSession(); // From controller.php global $screen; // From Include.Session.inc echo $screen; // prints "list1.inc" // From anywhere $screen = "delete1.inc"; // From model2.php require "controller2.php" initSession(); global $screen; echo $screen; // prints "list1.inc" Update: If I declare $screen global again just before requiring the second model, $screen is updated properly for the initSession() method. Strange.

    Read the article

  • maven: Including module assembly into assembly of parent project

    - by Ilya Izhovkin
    I have a set of projects, each has been configured to build with maven, and each has assembly plugin enabled. So, I have something like that: project1/ target/ lib/ ... project1-1.0.jar start.sh ... project2/ target/ lib/ ... project2-1.0.jar start.sh ... I need to create parent project, and configure assembly for it, which must include all subproject's assemblies. parent_project/ target/ project1/ lib/ ... project1-1.0.jar project2/ lib/ ... project2-1.0.jar start.sh ... How can I achieve this?

    Read the article

  • Anatomy of a .NET Assembly - PE Headers

    - by Simon Cooper
    Today, I'll be starting a look at what exactly is inside a .NET assembly - how the metadata and IL is stored, how Windows knows how to load it, and what all those bytes are actually doing. First of all, we need to understand the PE file format. PE files .NET assemblies are built on top of the PE (Portable Executable) file format that is used for all Windows executables and dlls, which itself is built on top of the MSDOS executable file format. The reason for this is that when .NET 1 was released, it wasn't a built-in part of the operating system like it is nowadays. Prior to Windows XP, .NET executables had to load like any other executable, had to execute native code to start the CLR to read & execute the rest of the file. However, starting with Windows XP, the operating system loader knows natively how to deal with .NET assemblies, rendering most of this legacy code & structure unnecessary. It still is part of the spec, and so is part of every .NET assembly. The result of this is that there are a lot of structure values in the assembly that simply aren't meaningful in a .NET assembly, as they refer to features that aren't needed. These are either set to zero or to certain pre-defined values, specified in the CLR spec. There are also several fields that specify the size of other datastructures in the file, which I will generally be glossing over in this initial post. Structure of a PE file Most of a PE file is split up into separate sections; each section stores different types of data. For instance, the .text section stores all the executable code; .rsrc stores unmanaged resources, .debug contains debugging information, and so on. Each section has a section header associated with it; this specifies whether the section is executable, read-only or read/write, whether it can be cached... When an exe or dll is loaded, each section can be mapped into a different location in memory as the OS loader sees fit. In order to reliably address a particular location within a file, most file offsets are specified using a Relative Virtual Address (RVA). This specifies the offset from the start of each section, rather than the offset within the executable file on disk, so the various sections can be moved around in memory without breaking anything. The mapping from RVA to file offset is done using the section headers, which specify the range of RVAs which are valid within that section. For example, if the .rsrc section header specifies that the base RVA is 0x4000, and the section starts at file offset 0xa00, then an RVA of 0x401d (offset 0x1d within the .rsrc section) corresponds to a file offset of 0xa1d. Because each section has its own base RVA, each valid RVA has a one-to-one mapping with a particular file offset. PE headers As I said above, most of the header information isn't relevant to .NET assemblies. To help show what's going on, I've created a diagram identifying all the various parts of the first 512 bytes of a .NET executable assembly. I've highlighted the relevant bytes that I will refer to in this post: Bear in mind that all numbers are stored in the assembly in little-endian format; the hex number 0x0123 will appear as 23 01 in the diagram. The first 64 bytes of every file is the DOS header. This starts with the magic number 'MZ' (0x4D, 0x5A in hex), identifying this file as an executable file of some sort (an .exe or .dll). Most of the rest of this header is zeroed out. The important part of this header is at offset 0x3C - this contains the file offset of the PE signature (0x80). Between the DOS header & PE signature is the DOS stub - this is a stub program that simply prints out 'This program cannot be run in DOS mode.\r\n' to the console. I will be having a closer look at this stub later on. The PE signature starts at offset 0x80, with the magic number 'PE\0\0' (0x50, 0x45, 0x00, 0x00), identifying this file as a PE executable, followed by the PE file header (also known as the COFF header). The relevant field in this header is in the last two bytes, and it specifies whether the file is an executable or a dll; bit 0x2000 is set for a dll. Next up is the PE standard fields, which start with a magic number of 0x010b for x86 and AnyCPU assemblies, and 0x20b for x64 assemblies. Most of the rest of the fields are to do with the CLR loader stub, which I will be covering in a later post. After the PE standard fields comes the NT-specific fields; again, most of these are not relevant for .NET assemblies. The one that is is the highlighted Subsystem field, and specifies if this is a GUI or console app - 0x20 for a GUI app, 0x30 for a console app. Data directories & section headers After the PE and COFF headers come the data directories; each directory specifies the RVA (first 4 bytes) and size (next 4 bytes) of various important parts of the executable. The only relevant ones are the 2nd (Import table), 13th (Import Address table), and 15th (CLI header). The Import and Import Address table are only used by the startup stub, so we will look at those later on. The 15th points to the CLI header, where the CLR-specific metadata begins. After the data directories comes the section headers; one for each section in the file. Each header starts with the section's ASCII name, null-padded to 8 bytes. Again, most of each header is irrelevant, but I've highlighted the base RVA and file offset in each header. In the diagram, you can see the following sections: .text: base RVA 0x2000, file offset 0x200 .rsrc: base RVA 0x4000, file offset 0xa00 .reloc: base RVA 0x6000, file offset 0x1000 The .text section contains all the CLR metadata and code, and so is by far the largest in .NET assemblies. The .rsrc section contains the data you see in the Details page in the right-click file properties page, but is otherwise unused. The .reloc section contains address relocations, which we will look at when we study the CLR startup stub. What about the CLR? As you can see, most of the first 512 bytes of an assembly are largely irrelevant to the CLR, and only a few bytes specify needed things like the bitness (AnyCPU/x86 or x64), whether this is an exe or dll, and the type of app this is. There are some bytes that I haven't covered that affect the layout of the file (eg. the file alignment, which determines where in a file each section can start). These values are pretty much constant in most .NET assemblies, and don't affect the CLR data directly. Conclusion To summarize, the important data in the first 512 bytes of a file is: DOS header. This contains a pointer to the PE signature. DOS stub, which we'll be looking at in a later post. PE signature PE file header (aka COFF header). This specifies whether the file is an exe or a dll. PE standard fields. This specifies whether the file is AnyCPU/32bit or 64bit. PE NT-specific fields. This specifies what type of app this is, if it is an app. Data directories. The 15th entry (at offset 0x168) contains the RVA and size of the CLI header inside the .text section. Section headers. These are used to map between RVA and file offset. The important one is .text, which is where all the CLR data is stored. In my next post, we'll start looking at the metadata used by the CLR directly, which is all inside the .text section.

    Read the article

  • hibernate query cache specify cache duration

    - by cometta
    below is how i do query cache getHibernateTemplate().setCacheQueries(true); List<IssSection> result = (List<IssSection>) getHibernateTemplate().findByCriteria(crit); getHibernateTemplate().setCacheQueries(false); may i know how to specify duration of maximum time to cache this method? let say i want to clear cache after 5 mins expirated

    Read the article

  • Application_End() cannot access cache through HttpContext.Current.Cache[key]

    - by Carl J.
    I want to be able to maintain certain objects between application restarts. To do that, I want to write specific cached items out to disk in Global.asax Application_End() function and re-load them back on Application_Start(). I currently have a cache helper class, which uses the following method to return the cached value: return HttpContext.Current.Cache[key]; Problem: during Application_End(), HttpContext.Current is null since there is no web request (it's an automated cleanup procedure) - therefore, I cannot access .Cache[] to retrieve any of the items to save to disk. Question: how can I access the cache items during Application_End()?

    Read the article

  • Ubuntu tweak and Mozilla (firefox and thunderbird) cache

    - by Avatar Parto
    I usually use Ubuntu tweak to do cleanup jobs on my PC. This includes apt and program cached data and old kernels. This goes alright for most programs except Mozilla based application - Firefox and Thunderbird. Ubuntu tweak doesn't seem to know where their cache folders are and always returns 'zero packages can be cleaned' even when the cache folder is full. Check screenshot below: I am looking for a way to clean up ALL my cache data and unneeded packages at one point. If someone knows how to change the ubuntu tweak cache folders for Firefox and Thunderbird, that would be perfect. I tried bleachbit last but it crashed my PC to a point I had to re-install Ubuntu. I am using Ubuntu tweak 0.8.6 on Ubuntu 13.04. Thanxs.

    Read the article

  • No cache and Google AdSense performance

    - by Luca
    I'm developing a page where I need to avoid JavaScript caching by browser. I've added this header: <?php header('Cache-Control: no-cache, no-store, must-revalidate'); header('Pragma: no-cache'); header('Expires: 0'); ?> After this, browsers didn't cache more JavaScript sorting out the issue, but in the same time I noticed a drop in Google AdSense RPM. Then I removed the added code and now Google AdSense RPM is reaching again a good value. So, how could I avoid JavaScript caching without meddle with AdSense performance?

    Read the article

  • python global variable trouble

    - by Guanidene
    I am having troubles using global variables in python... In my program, i have declared 2 global variables, global SYNC_DATA and global SYNC_TOTAL_SIZE Now in one of my functions, I am able to use the global variable SYNC_DATA without declaring it as global again in the function; however , I am not able to use the other global variable SYNC_TOTAL_SIZE in the same way. I have to declare the latter as global in the function again to use it. I get this error if i use it without declaring as global in the function - "UnboundLocalError: local variable 'SYNC_TOTAL_SIZE' referenced before assignment" Why is it so that sometimes I can access global variables without declaring them as global in functions and sometimes not? And why Is it that we have to again declare it as global in the function when it is already declared once in the beginning... Why doesn`t the function just check the variable in the global namespace if it does not find it in its namespace directly?

    Read the article

  • Assembly Language being used in Aircraft System

    - by caramel23
    Today my lecturer mentioned the reason why the aircraft system is programmed in assembly language is due to the program being written have less error . Is this statement true ? Because when he asked about our opinion I said assembly can create faster program thus it is a good language for real-time oriented aircraft system program . I search around google but can't seem to find an article clarifying my lecturer's statement .

    Read the article

  • Measuring ASP.NET and SharePoint output cache

    - by DigiMortal
    During ASP.NET output caching week in my local blog I wrote about how to measure ASP.NET output cache. As my posting was based on real work and real-life results then I thought that this posting is maybe interesting to you too. So here you can read what I did, how I did and what was the result. Introduction Caching is not effective without measuring it. As MVP Henn Sarv said in one of his sessions then you will get what you measure. And right he is. Lately I measured caching on local Microsoft community portal to make sure that our caching strategy is good enough in environment where this system lives. In this posting I will show you how to start measuring the cache of your web applications. Although the application measured is built on SharePoint Server publishing infrastructure, all those counters have same meaning as similar counters under pure ASP.NET applications. Measured counters I used Performance Monitor and the following performance counters (their names are similar on ASP.NET and SharePoint WCMS): Total number of objects added – how much objects were added to output cache. Total object discards – how much objects were deleted from output cache. Cache hit count – how many times requests were served by cache. Cache hit ratio – percent of requests served from cache. The first three counters are cumulative while last one is coefficient. You can use also other counters to measure the full effect of caching (memory, processor, disk I/O, network load etc before and after caching). Measuring process The measuring I describe here started from freshly restarted web server. I measured application during 12 hours that covered also time ranges when users are most active. The time range does not include late evening hours and night because there is nothing to measure during these hours. During measuring we performed no maintenance or administrative tasks on server. All tasks performed were related to usual daily content management and content monitoring. Also we had no advertisement campaigns or other promotions running at same time. The results You can see the results on following graphic.   Total number of objects added   Total object discards   Cache hit count   Cache hit ratio You can see that adds and discards are growing in same tempo. It is good because cache expires and not so popular items are not kept in memory. If there are more popular content then the these lines may have bigger distance between them. Cache hit count grows faster and this shows that more and more content is served from cache. In current case it shows that cache is filled optimally and we can do even better if we tune caches more. The site contains also pages that are discarded when some subsite changes (page was added/modified/deleted) and one modification may affect about four or five pages. This may also decrease cache hit count because during day the site gets about 5-10 new pages. Cache hit ratio is currently extremely good. The suggested minimum is about 85% but after some tuning and measuring I achieved 98.7% as a result. This is due to the fact that new pages are most often requested and after new pages are added the older ones are requested only sometimes. So they get discarded from cache and only some of these will return sometimes back to cache. Although this may also indicate the need for additional SEO work the result is very well in technical means. Conclusion Measuring ASP.NET output cache is not complex thing to do and you can start by measuring performance of cache as a start. Later you can move on and measure caching effect to other counters such as disk I/O, network, processors etc. What you have to achieve is optimal cache that is not full of items asked only couple of times per day (you can avoid this by not using too long cache durations). After some tuning you should be able to boost cache hit ratio up to at least 85%.

    Read the article

  • Creating a Hello World library function in assembly and calling it from C#

    - by Filip Ekberg
    Let's say we use NASM as they do in this answer: how to write hellow world in assembly under windows. I got a couple of thoughts and questions regarding assembly combined with c# or any other .net languages for that matter. First of all I want to be able to create a library that has the following function HelloWorld that takes this parameter: Name In C# the method signature would looke like this: void HelloWorld(string name) and it would print out something like Hello World from name I've searched around a bit but can't find that much good and clean material for this to get me started. I know some basic assembly from before mostly gasthough. So any pointers in the right direction is very much apprechiated. To sum it up Create a function in ASM ( NASM ) that takes one or more parameters Compile and create a library of the above functionality Include the library in any .net language Call the included library function Bonus features How does one handle returned values? Is it possible to write the ASM-method inline? When creating libraries in assembly or c, you do follow a certain "pre defined" way, the c calling convetion, correct?

    Read the article

  • Why would I use Assembly.LoadFile in lieu of Assembly.LoadFrom?

    - by Cheeso
    It's my impression that Assembly.LoadFrom uses the ApplicationBase and PrivateBinPath. It also my impression that Assembly.LoadFile does not. Why would anyone want to use LoadFile? In other words, if my understanding is correct, why would anyone want to NOT use the ApplicationBase and PrivateBinPath? I'm working with some existing code, which uses LoadFile, and I don't understand why it would do so. LoadFile apparently does not load dependencies from the same directory. The LoadFrom method does load dependencies (From the doc: The load-from context...allows dependencies on that path to be found and loaded because the path information is maintained by the context.) I'd like to convert it from using LoadFile, to use LoadFrom. What is likely to break, if anything, if I replace LoadFile with LoadFrom? Even if it iss benign, it may be that I cannot do the replacement, just based on project schedules. If I cannot replace LoadFile with LoadFrom, is there a way to convince assemblies loaded with LoadFile to load dependencies? Is there a packaging trick I can use (embedded assembly, ILMerge, an AssemblyResolve event, something like that) that can allow an assembly loaded with LoadFile to also load its dependencies?

    Read the article

  • Fastest inline-assembly spinlock

    - by sigvardsen
    I'm writing a multithreaded application in c++, where performance is critical. I need to use a lot of locking while copying small structures between threads, for this I have chosen to use spinlocks. I have done some research and speed testing on this and I found that most implementations are roughly equally fast: Microsofts CRITICAL_SECTION, with SpinCount set to 1000, scores about 140 time units Implementing this algorithm with Microsofts InterlockedCompareExchange scores about 95 time units Ive also tried to use some inline assembly with __asm {} using something like this code and it scores about 70 time units, but I am not sure that a proper memory barrier has been created. Edit: The times given here are the time it takes for 2 threads to lock and unlock the spinlock 1,000,000 times. I know this isn't a lot of difference but as a spinlock is a heavily used object, one would think that programmers would have agreed on the fastest possible way to make a spinlock. Googling it leads to many different approaches however. I would think this aforementioned method would be the fastest if implemented using inline assembly and using the instruction CMPXCHG8B instead of comparing 32bit registers. Furthermore memory barriers must be taken into account, this could be done by LOCK CMPXHG8B (I think?), which guarantees "exclusive rights" to the shared memory between cores. At last [some suggests] that for busy waits should be accompanied by NOP:REP that would enable Hyper-threading processors to switch to another thread, but I am not sure whether this is true or not? From my performance-test of different spinlocks, it is seen that there is not much difference, but for purely academic purpose I would like to know which one is fastest. However as I have extremely limited experience in the assembly-language and with memory barriers, I would be happy if someone could write the assembly code for the last example I provided with LOCK CMPXCHG8B and proper memory barriers in the following template: __asm { spin_lock: ;locking code. spin_unlock: ;unlocking code. }

    Read the article

  • Store Varnish cache in hard disk

    - by Great Kuma
    Hello, The situation is: Im building PHP application, and need http caching. Varnish is great, and lots of people tell me that Varnish store the cached data in RAM. But I want it cached in hard disk. Is there any way to store the Varnish cached data in hard disk? thanks.

    Read the article

  • 32bit to 64bit inline assembly porting

    - by Simone Margaritelli
    I have a piece of C++ code (compiled with g++ under a GNU/Linux environment) that load a function pointer (how it does that doesn't matter), pushes some arguments onto the stack with some inline assembly and then calls that function, the code is like : unsigned long stack[] = { 1, 23, 33, 43 }; /* save all the registers and the stack pointer */ unsigned long esp; asm __volatile__ ( "pusha" ); asm __volatile__ ( "mov %%esp, %0" :"=m" (esp)); for( i = 0; i < sizeof(stack); i++ ){ unsigned long val = stack[i]; asm __volatile__ ( "push %0" :: "m"(val) ); } unsigned long ret = function_pointer(); /* restore registers and stack pointer */ asm __volatile__ ( "mov %0, %%esp" :: "m" (esp) ); asm __volatile__ ( "popa" ); I'd like to add some sort of #ifdef _LP64 // 64bit inline assembly #else // 32bit version as above example #endif But i don't know inline assembly for 64bit machines, anyone could help me? Thanks

    Read the article

  • Mac OS ? Assembly Language Esoteria

    - by veryfoolish
    I've been playing around with assembly and object files in general on Mac OS ? and was wondering if somebody could provide some edification. Specifically, I'm wondering what the extra code GCC generates when compiling the C file in the following example does. I have a toy C program so I can comprehend the assembly output. int main() { int a = 5; int b = 5; int c = a + b; } Running this through gcc -S creates the following assembly: .text .globl _main _main: LFB2: pushq %rbp LCFI0: movq %rsp, %rbp LCFI1: movl $5, -4(%rbp) movl $5, -8(%rbp) movl -8(%rbp), %eax addl -4(%rbp), %eax movl %eax, -12(%rbp) leave ret LFE2: .section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support EH_frame1: .set L$set$0,LECIE1-LSCIE1 .long L$set$0 LSCIE1: .long 0x0 .byte 0x1 .ascii "zR\0" .byte 0x1 .byte 0x78 .byte 0x10 .byte 0x1 .byte 0x10 .byte 0xc .byte 0x7 .byte 0x8 .byte 0x90 .byte 0x1 .align 3 LECIE1: .globl _main.eh _main.eh: LSFDE1: .set L$set$1,LEFDE1-LASFDE1 .long L$set$1 LASFDE1: .long LASFDE1-EH_frame1 .quad LFB2-. .set L$set$2,LFE2-LFB2 .quad L$set$2 .byte 0x0 .byte 0x4 .set L$set$3,LCFI0-LFB2 .long L$set$3 .byte 0xe .byte 0x10 .byte 0x86 .byte 0x2 .byte 0x4 .set L$set$4,LCFI1-LCFI0 .long L$set$4 .byte 0xd .byte 0x6 .align 3 LEFDE1: .subsections_via_symbols The LCFI1 section seems to contain the actual logic for the program, but I'm not sure what the misc. other stuff is for... also, is there any scheme these labels are following? I'm sorry this is such a vague question. I'd appreciate anything, including being pointed to a resource where I can find out more about this. Thanks!

    Read the article

  • Mac OS ? Assembly Language Esoteria

    - by veryfoolish
    I've been playing around with assembly and object files in general on Mac OS ? and was wondering if somebody could provide some edification. Specifically, I'm wondering what the extra code GCC generates when compiling the C file in the following example does. I have a toy C program so I can comprehend the assembly output. int main() { int a = 5; int b = 5; int c = a + b; } Running this through gcc -S creates the following assembly: .text .globl _main _main: LFB2: pushq %rbp LCFI0: movq %rsp, %rbp LCFI1: movl $5, -4(%rbp) movl $5, -8(%rbp) movl -8(%rbp), %eax addl -4(%rbp), %eax movl %eax, -12(%rbp) leave ret LFE2: .section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support EH_frame1: .set L$set$0,LECIE1-LSCIE1 .long L$set$0 LSCIE1: .long 0x0 .byte 0x1 .ascii "zR\0" .byte 0x1 .byte 0x78 .byte 0x10 .byte 0x1 .byte 0x10 .byte 0xc .byte 0x7 .byte 0x8 .byte 0x90 .byte 0x1 .align 3 LECIE1: .globl _main.eh _main.eh: LSFDE1: .set L$set$1,LEFDE1-LASFDE1 .long L$set$1 LASFDE1: .long LASFDE1-EH_frame1 .quad LFB2-. .set L$set$2,LFE2-LFB2 .quad L$set$2 .byte 0x0 .byte 0x4 .set L$set$3,LCFI0-LFB2 .long L$set$3 .byte 0xe .byte 0x10 .byte 0x86 .byte 0x2 .byte 0x4 .set L$set$4,LCFI1-LCFI0 .long L$set$4 .byte 0xd .byte 0x6 .align 3 LEFDE1: .subsections_via_symbols The LCFI1 section seems to contain the actual logic for the program, but I'm not sure what the misc. other stuff is for... also, is there any scheme these labels are following? I'm sorry this is such a vague question. I'd appreciate anything, including being pointed to a resource where I can find out more about this. Thanks!

    Read the article

  • Locking Cache Key without Locking the entire Cache

    - by Gandalf
    I have servlets that caches user information rather then retrieving it from the user store on every request (shared Ehcache). The issue I have is that if a client is multi-threaded and they make more then one simultaneous request, before they have been authenticated, then I get this in my log: Retrieving User [Bob] Retrieving User [Bob] Retrieving User [Bob] Returned [Bob] ...caching Returned [Bob] ...caching Returned [Bob] ...caching What I would want is that the first request would call the user service, while the other two requests get blocked - and when the first request returns, and then caches the object, the other two requests go through: Retrieving User [Bob] blocking... blocking... Returned [Bob] ...caching [Bob] found in cache [Bob] found in cache I've thought about locking on the String "Bob" (because due to interning it's always the same object right?). Would that work? And if so how do I keep track of the keys that actually exist in the cache and build a locking mechanism around them that would then return the valid object once it's retrieved. Thanks.

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >