Search Results

Search found 1238 results on 50 pages for 'ienumerable'.

Page 2/50 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Passing an empty IEnumerable argument to a method

    - by avance70
    I have this method (simplified): void DoSomething(IEnumerable<int> numbers); And I invoke it like this: DoSomething(condition==true?results:new List<int>()); The variable results is formed with a LINQ select condition (IEnumerable). I was wondering is this List<int>() the best way (the fastest?) to pass an empty collection, or is new int[0] better? Or, something else would be faster, a Collection, etc.? In my example null wouldn't be ok.

    Read the article

  • Error message regarding IEnumerable.GetEnumerator().

    - by Bon_chan
    I get this error message and I can't figure out why! Error 1 'Exo5Chap12.ShortCollection<T>' does not implement interface member 'System.Collections.IEnumerable.GetEnumerator()'. 'Exo5Chap12.ShortCollection<T>.GetEnumerator()' cannot implement 'System.Collections.IEnumerable.GetEnumerator()' because it does not have the matching return type of 'System.Collections.IEnumerator'. E:\MyFolders\Dev\c#\Chapter12\Exo5Chap12\Exo5Chap12\exo5.cs 9 18 Exo5Chap12 Here is the code with an implementation of GetEnumerator(). What is wrong? public class ShortCollection<T> : IList<T> { protected Collection<T> innerCollection; protected int maxSize = 10; public IEnumerator<T> GetEnumerator() { return (innerCollection as IEnumerator<T>).GetEnumerator(); } }

    Read the article

  • How do I implement IEnumerable?

    - by Stacey
    I have a class that contains a static number of objects. This class needs to be frequently 'compared' to other classes that will be simple List objects. public partial class Sheet { public Item X{ get; set; } public Item Y{ get; set; } public Item Z{ get; set; } } the items are obviously not going to be "X" "Y" "Z", those are just generic names for example. The problem is that due to the nature of what needs to be done, a List won't work; even though everything in here is going to be of type Item. It is like a checklist of very specific things that has to be tested against in both code and runtime. This works all fine and well; it isn't my issue. My issue is iterating it. For instance I want to do the following... List<Item> UncheckedItems = // Repository Logic Here. UncheckedItems contains all available items; and the CheckedItems is the Sheet class instance. CheckedItems will contain items that were moved from Unchecked to Checked; however due to the nature of the storage system, items moved to Checked CANNOT be REMOVED from Unchecked. I simply want to iterate through "Checked" and remove anything from the list in Unchecked that is already in "Checked". So naturally, that would go like this with a normal list. foreach(Item item in Unchecked) { if( Checked.Contains(item) ) Unchecked.Remove( item ); } But since "Sheet" is not a 'List', I cannot do that. So I wanted to implement IEnumerable so that I could. Any suggestions? I've never implemented IEnumerable directly before and I'm pretty confused as to where to begin.

    Read the article

  • Problem with LINQ Generated class and IEnumerable to Excel

    - by mehmet6parmak
    Hi all, I wrote a method which exports values to excel file from an IEnumerable parameter. Method worked fine for my little test class and i was happy till i test my method with a LINQ class. Method: public static void IEnumerableToExcel<T>(IEnumerable<T> data, HttpResponse Response) { Response.Clear(); Response.ContentEncoding = System.Text.Encoding.Default; Response.Charset = "windows-1254"; // set MIME type to be Excel file. Response.ContentType = "application/vnd.ms-excel;charset=windows-1254"; // add a header to response to force download (specifying filename) Response.AddHeader("Content-Disposition", "attachment;filename=\"ResultFile.xls\""); Type typeOfT = typeof(T); List<string> result = new List<string>(); FieldInfo[] fields = typeOfT.GetFields(); foreach (FieldInfo info in fields) { result.Add(info.Name); } Response.Write(String.Join("\t", result.ToArray()) + "\n"); foreach (T t in data) { result.Clear(); foreach (FieldInfo f in fields) result.Add((typeOfT).GetField(f.Name).GetValue(t).ToString()); Response.Write(String.Join("\t", result.ToArray()) + "\n"); } Response.End(); } My Little Test Class: public class Mehmet { public string FirstName; public string LastName; } Two Usage: Success: Mehmet newMehmet = new Mehmet(); newMehmet.FirstName = "Mehmet"; newMehmet.LastName = "Altiparmak"; List<Mehmet> list = new List<Mehmet>(); list.Add(newMehmet); DeveloperUtility.Export.IEnumerableToExcel<Mehmet>(list, Response); Fail: ExtranetDataContext db = new ExtranetDataContext(); DeveloperUtility.Export.IEnumerableToExcel<User>(db.Users, Response); Fail Reason: When the code reaches the code block used to get the fields of the template(T), it can not find any field for the LINQ Generated User class. For my weird class it works fine. Why? Thanks...

    Read the article

  • How to go to particular Item in IEnumerable

    - by Subhen
    Hi, I have Ienum which contains number Data inside it. Attached the snapShot of Viual Studio, Enum that Contains Data: Just to brief about the above image, eLevelData is the IEnumerable variable, in which I have my data . Now I want to go to the data at index 4 or 5, but I don't want to use foreach loop. Any suggestions please. Thanks, Subhen

    Read the article

  • C# Custom Dictionary Take - Convert Back From IEnumerable

    - by Goober
    Scenario Having already read a post on this on the same site, which didn't work, I'm feeling a bit stumped but I'm sure I've done this before. I have a Dictionary. I want to take the first 200 values from the Dictionary. CODE Dictionary<int,SomeObject> oldDict = new Dictionary<int,SomeObject>(); //oldDict gets populated somewhere else. Dictionary<int,SomeObject> newDict = new Dictionary<int,SomeObject>(); newDict = oldDict.Take(200).ToDictionary(); OBVIOUSLY, the take returns an IENumerable, so you have to run ToDictionary() to convert it back to a dictionary of the same type. HOWEVER, it just doesn't work, it wants some random key selector thing - or something? I have even tried just casting it but to no avail. Any ideas?

    Read the article

  • An analog of String.Join(string, string[]) for IEnumerable<T>

    - by abatishchev
    class String contains very useful method - String.Join(string, string[]). It creates a string from an array, separating each element of array with a symbol given. But general - it doesn't add a separator after the last element! I uses it for ASP.NET coding for separating with "<br />" or Environment.NewLine. So I want to add an empty row after each row in asp:Table. What method of IEnumerable<TableRow> can I use for the same functionality?

    Read the article

  • Retrieving selected data from DataGrid with IEnumerable<IDictionary> (Silverlight)

    - by RemiX
    I have an application that can dynamically load data into a DataGrid. What's needed is an object of IEnumerable<IDictionary>, and a List<Dictionary<string,object>> is supplied (each Dictionary in the list has exactly the same keys). The data is loaded into the DataGrid and shown, but now I want to retrieve the data the user has clicked on. Using datagrid.SelectedItem, Silverlight complains it cannot evaluate the variable, not even when type-casted. I tried keeping the List<Dictionary<string,object>> and retrieving the right data from it using datagrid.SelectedIndex, but this index changes when the DataGrid is sorted. Does anyone know a solution to this problem?

    Read the article

  • IEnumerable<> to IList<>

    - by nachid
    I am using Linq to query my database and returning a generic IList. Whatever I tried I couldn't convert an IQueryable to an IList. Here is my code. I cannot write simpler than this and I don't understand why it is not working. public IList<IRegion> GetRegionList(string countryCode) { var query = from c in Database.RegionDataSource where (c.CountryCode == countryCode) orderby c.Name select new {c.RegionCode, c.RegionName}; return query.Cast<IRegion>().ToList(); } This returns an list with the right number of items but they are all empty Please help, I am bloqued with this for a couple of days now

    Read the article

  • IEnumerable.Cast<>

    - by Renato Person
    If I can implicitly cast an integer value to a double (and vice versa), like: int a = 4; double b = a; // now b holds 4.0 Why can I not do this: int[] intNumbers = {10, 6, 1, 9}; double[] doubleNumbers2 = intNumbers.Cast<double>().ToArray<double>(); I get an "Specified cast is not valid" error message. Doing the opposite (casting from double to int) results in the same error. What am I doing wrong?

    Read the article

  • Reinventing the Paged IEnumerable, Weigert Style!

    - by adweigert
    I am pretty sure someone else has done this, I've seen variations as PagedList<T>, but this is my style of a paged IEnumerable collection. I just store a reference to the collection and generate the paged data when the enumerator is needed, so you could technically add to a list that I'm referencing and the properties and results would be adjusted accordingly. I don't mind reinventing the wheel when I can add some of my own personal flare ... // Extension method for easy use public static PagedEnumerable AsPaged(this IEnumerable collection, int currentPage = 1, int pageSize = 0) { Contract.Requires(collection != null); Contract.Assume(currentPage >= 1); Contract.Assume(pageSize >= 0); return new PagedEnumerable(collection, currentPage, pageSize); } public class PagedEnumerable : IEnumerable { public PagedEnumerable(IEnumerable collection, int currentPage = 1, int pageSize = 0) { Contract.Requires(collection != null); Contract.Assume(currentPage >= 1); Contract.Assume(pageSize >= 0); this.collection = collection; this.PageSize = pageSize; this.CurrentPage = currentPage; } IEnumerable collection; int currentPage; public int CurrentPage { get { if (this.currentPage > this.TotalPages) { return this.TotalPages; } return this.currentPage; } set { if (value < 1) { this.currentPage = 1; } else if (value > this.TotalPages) { this.currentPage = this.TotalPages; } else { this.currentPage = value; } } } int pageSize; public int PageSize { get { if (this.pageSize == 0) { return this.collection.Count(); } return this.pageSize; } set { this.pageSize = (value < 0) ? 0 : value; } } public int TotalPages { get { return (int)Math.Ceiling(this.collection.Count() / (double)this.PageSize); } } public IEnumerator GetEnumerator() { var pageSize = this.PageSize; var currentPage = this.CurrentPage; var startCount = (currentPage - 1) * pageSize; return this.collection.Skip(startCount).Take(pageSize).GetEnumerator(); } IEnumerator IEnumerable.GetEnumerator() { return this.GetEnumerator(); } }

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Does .NET have a built in IEnumerable for multiple collections?

    - by Bryce Wagner
    I need an easy way to iterate over multiple collections without actually merging them, and I couldn't find anything built into .NET that looks like it does that. It feels like this should be a somewhat common situation. I don't want to reinvent the wheel. Is there anything built in that does something like this: public class MultiCollectionEnumerable<T> : IEnumerable<T> { private MultiCollectionEnumerator<T> enumerator; public MultiCollectionEnumerable(params IEnumerable<T>[] collections) { enumerator = new MultiCollectionEnumerator<T>(collections); } public IEnumerator<T> GetEnumerator() { enumerator.Reset(); return enumerator; } IEnumerator IEnumerable.GetEnumerator() { enumerator.Reset(); return enumerator; } private class MultiCollectionEnumerator<T> : IEnumerator<T> { private IEnumerable<T>[] collections; private int currentIndex; private IEnumerator<T> currentEnumerator; public MultiCollectionEnumerator(IEnumerable<T>[] collections) { this.collections = collections; this.currentIndex = -1; } public T Current { get { if (currentEnumerator != null) return currentEnumerator.Current; else return default(T); } } public void Dispose() { if (currentEnumerator != null) currentEnumerator.Dispose(); } object IEnumerator.Current { get { return Current; } } public bool MoveNext() { if (currentIndex >= collections.Length) return false; if (currentIndex < 0) { currentIndex = 0; if (collections.Length > 0) currentEnumerator = collections[0].GetEnumerator(); else return false; } while (!currentEnumerator.MoveNext()) { currentEnumerator.Dispose(); currentEnumerator = null; currentIndex++; if (currentIndex >= collections.Length) return false; currentEnumerator = collections[currentIndex].GetEnumerator(); } return true; } public void Reset() { if (currentEnumerator != null) { currentEnumerator.Dispose(); currentEnumerator = null; } this.currentIndex = -1; } } }

    Read the article

  • Obtaining positional information in the IEnumerable Select extension method

    - by Kyle Burns
    This blog entry is intended to provide a narrow and brief look into a way to use the Select extension method that I had until recently overlooked. Every developer who is using IEnumerable extension methods to work with data has been exposed to the Select extension method, because it is a pretty critical piece of almost every query over a collection of objects.  The method is defined on type IEnumerable and takes as its argument a function that accepts an item from the collection and returns an object which will be an item within the returned collection.  This allows you to perform transformations on the source collection.  A somewhat contrived example would be the following code that transforms a collection of strings into a collection of anonymous objects: 1: var media = new[] {"book", "cd", "tape"}; 2: var transformed = media.Select( item => 3: { 4: Media = item 5: } ); This code transforms the array of strings into a collection of objects which each have a string property called Media. If every developer using the LINQ extension methods already knows this, why am I blogging about it?  I’m blogging about it because the method has another overload that I hadn’t seen before I needed it a few weeks back and I thought I would share a little about it with whoever happens upon my blog.  In the other overload, the function defined in the first overload as: 1: Func<TSource, TResult> is instead defined as: 1: Func<TSource, int, TResult>   The additional parameter is an integer representing the current element’s position in the enumerable sequence.  I used this information in what I thought was a pretty cool way to compare collections and I’ll probably blog about that sometime in the near future, but for now we’ll continue with the contrived example I’ve already started to keep things simple and show how this works.  The following code sample shows how the positional information could be used in an alternating color scenario.  I’m using a foreach loop because IEnumerable doesn’t have a ForEach extension, but many libraries do add the ForEach extension to IEnumerable so you can update the code if you’re using one of these libraries or have created your own. 1: var media = new[] {"book", "cd", "tape"}; 2: foreach (var result in media.Select( 3: (item, index) => 4: new { Item = item, Index = index })) 5: { 6: Console.ForegroundColor = result.Index % 2 == 0 7: ? ConsoleColor.Blue : ConsoleColor.Yellow; 8: Console.WriteLine(result.Item); 9: }

    Read the article

  • C# How can I tell if an IEnumerable is Mutable?

    - by Logan
    I want a method to update certain entries of an IEnumerable. I found that doing a foreach over the entries and updating the values failed as in the background I was cloning the collection. This was because my IEnumerable was backed by some LINQ-SQL queries. By changing the method to take a List I have changed this behavior, Lists are always mutable and hence the method changes the actual objects in the list. Rather than demand a List is passed is there a Mutable interface I can use? // Will not behave as consistently for all IEnumerables public void UpdateYesterday (IEnumerable<Job> jobs) { foreach (var job : jobs) { if (job.date == Yesterday) { job.done = true; } } }

    Read the article

  • IEnumerable and IEnumerator in the same class, bad idea?

    - by David Rutten
    Is this a bad idea? Private Class GH_DataStructureEnumerator(Of Q As Types.IGH_Goo) Implements IEnumerable(Of Q) Implements IEnumerator(Of Q) .... .... 'Current, MoveNext, Reset etc.' .... .... Public Function GetEnumerator_Generic() As IEnumerator(Of Q) _ Implements IEnumerable(Of Q).GetEnumerator Return Me End Function End Class This class is only visible as an IEnumerable(Of T) readonly property, and it saves me an additional class that wraps IEnumerator(Of T). But somehow it just seems wrong. Is there a better way?

    Read the article

  • Is it possible to implement an infinite IEnumerable without using yield with only C# code?

    - by sinelaw
    Edit: Apparently off topic...moving to Programmers.StackExchange.com. This isn't a practical problem, it's more of a riddle. Problem I'm curious to know if there's a way to implement something equivalent to the following, but without using yield: IEnumerable<T> Infinite<T>() { while (true) { yield return default(T); } } Rules You can't use the yield keyword Use only C# itself directly - no IL code, no constructing dynamic assemblies etc. You can only use the basic .NET lib (only mscorlib.dll, System.Core.dll? not sure what else to include). However if you find a solution with some of the other .NET assemblies (WPF?!), I'm also interested. Don't implement IEnumerable or IEnumerator. Notes The closest I've come yet: IEnumerable<int> infinite = null; infinite = new int[1].SelectMany(x => new int[1].Concat(infinite)); This is "correct" but hits a StackOverflowException after 14399 iterations through the enumerable (not quite infinite). I'm thinking there might be no way to do this due to the CLR's lack of tail recursion optimization. A proof would be nice :)

    Read the article

  • The performance implications of IEnumerable vs. IQueryable

    It all started innocently enough. I was implementing a "Older Posts/Newer Posts" feature for my new web site and was writing code like this:IEnumerable<Post> FilterByCategory(IEnumerable<Post> posts, string category) {  if( !string.IsNullOrEmpty(category) ) { return posts.Where(p => p.Category.Contains(category)); }}...  var posts = FilterByCategory(db.Posts, category);  int count = posts.Count();... The "db" was an EF object context object, but it could just as...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • The performance implications of IEnumerable vs. IQueryable

    It all started innocently enough. I was implementing a "Older Posts/Newer Posts" feature for my new web site and was writing code like this:IEnumerable<Post> FilterByCategory(IEnumerable<Post> posts, string category) {  if( !string.IsNullOrEmpty(category) ) { return posts.Where(p => p.Category.Contains(category)); }}...  var posts = FilterByCategory(db.Posts, category);  int count = posts.Count();... The "db" was an EF object context object, but it could just as...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >