Search Results

Search found 38 results on 2 pages for 'maple shaft'.

Page 2/2 | < Previous Page | 1 2 

  • Best of OTN - Week of November 4th

    - by CassandraClark-OTN
    It was another exciting week at OTN!  Lots of GREAT content to share.  If you had a favorite that you don't see listed let us know in the comment section below.  Java Community - JavaOne Sessions Online - We've posted 60 of the JavaOne sessions online, and we'll be rolling out more sessions every few weeks. This content is free, courtesy of Oracle.NetBeans 7.4 Released  - NetBeans 7.4 features HTML5 integration for Java EE and PHP development; support for Apache Cordova and JDK 8 preview features; enhancements to Maven, C/C++, and more.vJUG: Worldwide Virtual JUG Created - London Java Community leader and technical evangelist Simon Maple has created a Meetup called vJUG, with aim toward connecting Java Developers in the virtual world.Tori Wieldt, Java Community Manager Friday Funny: This is what REALLY happens when you give someone your business card ow.ly/q6aKUArchitect Community - Don't forget to register for the free Virtual Developer Day - Harnessing the Power of Oracle WebLogic and Oracle Coherence.  December 3rd, 2013 - Two great tracks, Design & Develop and Build, Deploy & Manage.   Why wait, register now!  Multi-Factor Authentication in Oracle WebLogic - Shailesh K. Mishra - Really good technical article on using multi-factor authentication to protect web applications deployed on Oracle WebLogic.Coherence*Web: Sharing an httpSessions Among Applications in Different Oracle WebLogic Clusters - Jordi VillenaUnderstanding when and how to select session attributes that must be stored in the local storage of the Oracle WebLogic instances and which should be leveraged to an Oracle Coherence distributed cache.  Bob Rhubart, Architect Community Manager Friday Funny - "Be yourself, everyone else is already taken." Oscar Wilde (October 16, 1854 - November 30, 1900) Irish writer and poet.

    Read the article

  • Any benefit of /home Ubuntu partition

    - by nightcrawler
    I want to have dual OS of Win8 & Ubuntu 12.10. Provided that Ubuntu can access ntfs partition of Windows but same can't be said about Windows this leads to a question mark on the significance of having /home partition while installing Ubuntu. As far as I know /swap & / are the two partitions directly used by Ubuntu to store programs, installation & stuff while the documents/media resides in /home. Now because Ubuntu releases are more frequent than Windows & updates needs backup & relate stuff, so I came to decision to not to use /home at all, rather keep all my documents/media in ntfs, which would be untouched while upgrading Ubuntu as Win updates are once in a decade! Is my thinking correct? If yes, what would be the minimum space I should allot to /home plus how much I should allot to / one must know that I plan to use heavy applications like Maple, Matlab & Sagemath on Ubuntu.

    Read the article

  • Migrating to Natty (or any other future versions of ubuntu)

    - by Nik
    I am hoping that this question would help other ubuntu users when migrating to a newer version of ubuntu. This should have all the info that they need. So please when you answer try to phrase them into points for easy understanding. I understand that some questions that I ask might have been asked before by other users. In that case just provide the links to those questions. I am running ubuntu 10.10 Maverick Meerkat in case that is important. I can say for sure that a clean install is definitely better than an upgrade since it gives you an opportunity to clean your system and get a fresh start. However some of us like to retain certain software configuration or files etc. The questions are as follows, How do you save the configuration files of certain application like for instance Thunderbird, firefox, etc...so that you can basically paste in the new version of ubuntu? (Thunderbird for instance has all my mail, so I definitely would like to backup its configuration and then use it the new installation that I do) I have some applications like MATLAB and Maple (Based on JAVA) installed. When I migrate, can I just copy the entire installation folder to the new version of ubuntu? Would it still work as now if I do that? When doing a backup which folders should be backed up? Obviously your personal files would be backup. But other than that, is it necessary to back up stuff in the home folder, /usr/bin etc? I have BURG installed. I am guessing that would be erased when I do a clean install along with the program's configuration and everything. How can I do a backup of it? I am dual booting my ubuntu alongside with Windows 7. When I perform the clean install of ubuntu, would GRUB (bootloader) be removed and in anyway jeopardize my windows installation? Over time I have added a lot of PPA which are of course compatible with my current ubuntu version. How do I make a backup of all my PPA and would they be compatible to the newer version of ubuntu when I restore them? I hope this covers all the questions or doubts that a user might face when thinking about performing a clean install of his system. If I missed anything please mention it as a comment and I will add it to my answer.

    Read the article

  • rotate player based off of joystick

    - by pengume
    Hey everyone I have this game that i am making in android and I have a touch screen joystick that moves the player around based on the joysticks position. I cant figure out how to also get the player to rotate at the same angle of the joystick. so when the joystick is to the left the players bitmap is rotated to the left as well. Maybe someone here has some sample code I could look at here is the joysticks class that I am using. `public class GameControls implements OnTouchListener { public float initx = DroidzActivity.screenWidth - 45; //255; // 320 og 425 public float inity = DroidzActivity.screenHeight - 45;//425; // 480 og 267 public Point _touchingPoint = new Point( DroidzActivity.screenWidth - 45, DroidzActivity.screenHeight - 45); public Point _pointerPosition = new Point(DroidzActivity.screenWidth - 100, DroidzActivity.screenHeight - 100); // ogx 220 ogy 150 private Boolean _dragging = false; private boolean attackMode = false; @Override public boolean onTouch(View v, MotionEvent event) { update(event); return true; } private MotionEvent lastEvent; public boolean ControlDragged; private static double angle; public void update(MotionEvent event) { if (event == null && lastEvent == null) { return; } else if (event == null && lastEvent != null) { event = lastEvent; } else { lastEvent = event; } // drag drop if (event.getAction() == MotionEvent.ACTION_DOWN) { if ((int) event.getX() > 0 && (int) event.getX() < 50 && (int) event.getY() > DroidzActivity.screenHeight - 160 && (int) event.getY() < DroidzActivity.screenHeight - 0) { setAttackMode(true); } else { _dragging = true; } } else if (event.getAction() == MotionEvent.ACTION_UP) { if(isAttackMode()){ setAttackMode(false); } _dragging = false; } if (_dragging) { ControlDragged = true; // get the pos _touchingPoint.x = (int) event.getX(); _touchingPoint.y = (int) event.getY(); // Log.d("GameControls", "x = " + _touchingPoint.x + " y = " //+ _touchingPoint.y); // bound to a box if (_touchingPoint.x < DroidzActivity.screenWidth - 75) { // og 400 _touchingPoint.x = DroidzActivity.screenWidth - 75; } if (_touchingPoint.x > DroidzActivity.screenWidth - 15) {// og 450 _touchingPoint.x = DroidzActivity.screenWidth - 15; } if (_touchingPoint.y < DroidzActivity.screenHeight - 75) {// og 240 _touchingPoint.y = DroidzActivity.screenHeight - 75; } if (_touchingPoint.y > DroidzActivity.screenHeight - 15) {// og 290 _touchingPoint.y = DroidzActivity.screenHeight - 15; } // get the angle setAngle(Math.atan2(_touchingPoint.y - inity, _touchingPoint.x - initx) / (Math.PI / 180)); // Move the ninja in proportion to how far // the joystick is dragged from its center _pointerPosition.y += Math.sin(getAngle() * (Math.PI / 180)) * (_touchingPoint.x / 70); // og 180 70 _pointerPosition.x += Math.cos(getAngle() * (Math.PI / 180)) * (_touchingPoint.x / 70); // make the pointer go thru if (_pointerPosition.x > DroidzActivity.screenWidth) { _pointerPosition.x = 0; } if (_pointerPosition.x < 0) { _pointerPosition.x = DroidzActivity.screenWidth; } if (_pointerPosition.y > DroidzActivity.screenHeight) { _pointerPosition.y = 0; } if (_pointerPosition.y < 0) { _pointerPosition.y = DroidzActivity.screenHeight; } } else if (!_dragging) { ControlDragged = false; // Snap back to center when the joystick is released _touchingPoint.x = (int) initx; _touchingPoint.y = (int) inity; // shaft.alpha = 0; } } public void setAttackMode(boolean attackMode) { this.attackMode = attackMode; } public boolean isAttackMode() { return attackMode; } public void setAngle(double angle) { this.angle = angle; } public static double getAngle() { return angle; } }` I should also note that the player has animations based on when he is moving or attacking.

    Read the article

  • rotate player based off of joystick

    - by pengume
    Hey everyone I have this game that i am making in android and I have a touch screen joystick that moves the player around based on the joysticks position. I cant figure out how to also get the player to rotate at the same angle of the joystick. so when the joystick is to the left the players bitmap is rotated to the left as well. Maybe someone here has some sample code I could look at here is the joysticks class that I am using. `public class GameControls implements OnTouchListener { public float initx = DroidzActivity.screenWidth - 45; //255; // 320 og 425 public float inity = DroidzActivity.screenHeight - 45;//425; // 480 og 267 public Point _touchingPoint = new Point( DroidzActivity.screenWidth - 45, DroidzActivity.screenHeight - 45); public Point _pointerPosition = new Point(DroidzActivity.screenWidth - 100, DroidzActivity.screenHeight - 100); // ogx 220 ogy 150 private Boolean _dragging = false; private boolean attackMode = false; @Override public boolean onTouch(View v, MotionEvent event) { update(event); return true; } private MotionEvent lastEvent; public boolean ControlDragged; private static double angle; public void update(MotionEvent event) { if (event == null && lastEvent == null) { return; } else if (event == null && lastEvent != null) { event = lastEvent; } else { lastEvent = event; } // drag drop if (event.getAction() == MotionEvent.ACTION_DOWN) { if ((int) event.getX() > 0 && (int) event.getX() < 50 && (int) event.getY() > DroidzActivity.screenHeight - 160 && (int) event.getY() < DroidzActivity.screenHeight - 0) { setAttackMode(true); } else { _dragging = true; } } else if (event.getAction() == MotionEvent.ACTION_UP) { if(isAttackMode()){ setAttackMode(false); } _dragging = false; } if (_dragging) { ControlDragged = true; // get the pos _touchingPoint.x = (int) event.getX(); _touchingPoint.y = (int) event.getY(); // Log.d("GameControls", "x = " + _touchingPoint.x + " y = " //+ _touchingPoint.y); // bound to a box if (_touchingPoint.x < DroidzActivity.screenWidth - 75) { // og 400 _touchingPoint.x = DroidzActivity.screenWidth - 75; } if (_touchingPoint.x > DroidzActivity.screenWidth - 15) {// og 450 _touchingPoint.x = DroidzActivity.screenWidth - 15; } if (_touchingPoint.y < DroidzActivity.screenHeight - 75) {// og 240 _touchingPoint.y = DroidzActivity.screenHeight - 75; } if (_touchingPoint.y > DroidzActivity.screenHeight - 15) {// og 290 _touchingPoint.y = DroidzActivity.screenHeight - 15; } // get the angle setAngle(Math.atan2(_touchingPoint.y - inity, _touchingPoint.x - initx) / (Math.PI / 180)); // Move the ninja in proportion to how far // the joystick is dragged from its center _pointerPosition.y += Math.sin(getAngle() * (Math.PI / 180)) * (_touchingPoint.x / 70); // og 180 70 _pointerPosition.x += Math.cos(getAngle() * (Math.PI / 180)) * (_touchingPoint.x / 70); // make the pointer go thru if (_pointerPosition.x > DroidzActivity.screenWidth) { _pointerPosition.x = 0; } if (_pointerPosition.x < 0) { _pointerPosition.x = DroidzActivity.screenWidth; } if (_pointerPosition.y > DroidzActivity.screenHeight) { _pointerPosition.y = 0; } if (_pointerPosition.y < 0) { _pointerPosition.y = DroidzActivity.screenHeight; } } else if (!_dragging) { ControlDragged = false; // Snap back to center when the joystick is released _touchingPoint.x = (int) initx; _touchingPoint.y = (int) inity; // shaft.alpha = 0; } } public void setAttackMode(boolean attackMode) { this.attackMode = attackMode; } public boolean isAttackMode() { return attackMode; } public void setAngle(double angle) { this.angle = angle; } public static double getAngle() { return angle; } }` I should also note that the player has animations based on when he is moving or attacking. EDIT: I got the angle and am rotating the sprite around in the correct angle however it rotates on the wrong spot. My sprite is one giant bitmap that gets cut into four pieces and only one shown at a time to animate walking. here is the code I am using to rotate him right now. ` public void draw(Canvas canvas,int pointerX, int pointerY) { Matrix m; if (setRotation){ // canvas.save(); m = new Matrix(); m.reset(); // spriteWidth and spriteHeight are for just the current frame showed //m.setTranslate(spriteWidth / 2, spriteHeight / 2); //get and set rotation for ninja based off of joystick m.preRotate((float) GameControls.getRotation()); //create the rotated bitmap flipedSprite = Bitmap.createBitmap(bitmap , 0, 0,bitmap.getWidth(),bitmap.getHeight() , m, true); //set new bitmap to rotated ninja setBitmap(flipedSprite); setRotation = false; // canvas.restore(); Log.d("Ninja View", "angle of rotation= " +(float) GameControls.getRotation()); } ` And then the draw method // create the destination rectangle for the ninjas current animation frame // pointerX and pointerY are from the joystick moving the ninja around destRect = new Rect(pointerX, pointerY, pointerX + spriteWidth, pointerY + spriteHeight); canvas.drawBitmap(bitmap, getSourceRect(), destRect, null);

    Read the article

  • Why do I get "Illegal characters in path" while using XmlDiff to compare 2 xml files?

    - by Patryk
    I have a problem trying to compare 2 xml files with the XmlDiff library from Microsoft. I am using an overloaded function which passes 2 xmls as strings : xmldiff = new XmlDiff(XmlDiffOptions.IgnoreChildOrder | XmlDiffOptions.IgnorePrefixes | XmlDiffOptions.IgnoreNamespaces); bool identical = xmldiff.Compare(first, last, false); where first and last look more or less like this : <?xml version="1.0" encoding="ISO-8859-1"?> <breakfast_menu> <food> <name>Belgian Waffles</name> <price>$5.95</price> <description>two of our famous Belgian Waffles with plenty of real maple syrup</description> <calories>650</calories> </food> <food> <name>Strawberry Belgian Waffles</name> <price>$7.95</price> <description>light Belgian waffles covered with strawberries and whipped cream</description> <calories>900</calories> </food> </breakfast_menu> And I get this error

    Read the article

  • Tell me SQL Server Full-Text searcher is crazy, not me.

    - by Ian Boyd
    i have some customers with a particular address that the user is searching for: 123 generic way There are 5 rows in the database that match: ResidentialAddress1 ============================= 123 GENERIC WAY 123 GENERIC WAY 123 GENERIC WAY 123 GENERIC WAY 123 GENERIC WAY i run a FT query to look for these rows. i'll show you each step as i add more criteria to the search: SELECT ResidentialAddress1 FROM Patrons WHERE CONTAINS(Patrons.ResidentialAddress1, '"123*"') ResidentialAddress1 ========================= 123 MAPLE STREET 12345 TEST 123 MINE STREET 123 GENERIC WAY 123 FAKE STREET ... (30 row(s) affected) Okay, so far so good, now adding the word "generic": SELECT ResidentialAddress1 FROM Patrons WHERE CONTAINS(Patrons.ResidentialAddress1, '"123*"') AND CONTAINS(Patrons.ResidentialAddress1, '"generic*"') ResidentialAddress1 ============================= 123 GENERIC WAY 123 GENERIC WAY 123 GENERIC WAY 123 GENERIC WAY 123 GENERIC WAY (5 row(s) affected) Excellent. And now i'l add the final keyword that the user wants to make sure exists: SELECT ResidentialAddress1 FROM Patrons WHERE CONTAINS(Patrons.ResidentialAddress1, '"123*"') AND CONTAINS(Patrons.ResidentialAddress1, '"generic*"') AND CONTAINS(Patrons.ResidentialAddress1, '"way*"') ResidentialAddress1 ------------------------------ (0 row(s) affected) Huh? No rows? What if i query for just "way*": SELECT ResidentialAddress1 FROM Patrons WHERE CONTAINS(Patrons.ResidentialAddress1, '"way*"') ResidentialAddress1 ------------------------------ (0 row(s) affected) At first i thought that perhaps it's because of the *, and it's requiring that the root way have more characters after it. But that's not true: Searching for "123*" matches "123" Searching for "generic*" matches "generic" Books online says, The asterisk matches zero, one, or more characters What if i remove the * just for s&g: SELECT ResidentialAddress1 FROM Patrons WHERE CONTAINS(Patrons.ResidentialAddress1, '"way"') Server: Msg 7619, Level 16, State 1, Line 1 A clause of the query contained only ignored words. So one might think that you are just not allowed to even search for way, either alone, or as a root. But this isn't true either: SELECT * FROM Patrons WHERE CONTAINS(Patrons.*, '"way*"') AccountNumber FirstName Lastname ------------- --------- -------- 33589 JOHN WAYNE So sum up, the user is searching for rows that contain all the words: 123 generic way Which i, correctly, translate into the WHERE clauses: SELECT * FROM Patrons WHERE CONTAINS(Patrons.*, '"123*"') AND CONTAINS(Patrons.*, '"generic*"') AND CONTAINS(Patrons.*, '"way*"') which returns no rows. Tell me this just isn't going to work, that it's not my fault, and SQL Server is crazy. Note: i've emptied the FT index and rebuilt it.

    Read the article

  • Generic applet style system for publishing mathematics demonstrations?

    - by Alex
    Anyone who's tried to study mathematics using online resources will have come across these Java applets that demonstrate a particular mathematical idea. Examples: http://www.math.ucla.edu/~tao/java/Mobius.html http://www.mathcs.org/java/programs/FFT/index.html I love the idea of this interactive approach because I believe it is very helpful in conveying mathematical principles. I'd like to create a system for visually designing and publishing these 'mathlets' such that they can be created by teachers with little programming experience. So in order to create this app, i'll need a GUI and a 'math engine'. I'll probably be working with .NET because thats what I know best and i'd like to start experimenting with F#. Silverlight appeals to me as a presentation framework for this project (im not worried about interoperability right now). So my questions are: does anything like this exist already in full form? are there any GUI frameworks for displaying mathematical objects such as graphs & equations? are there decent open source libraries that exposes a mathematical framework (Math.NET looks good, just wondering if there is anything else out there) is there any existing work on taking mathematical models/demos built with maple/matlab/octave/mathematica etc and publishing them to the web?

    Read the article

  • Explanation of converting exporting an XML document as a relational database using XSLT

    - by Yaaqov
    I would like to better understand the basic steps needed to a take an XML document like this Breakfast Menu... <?xml version="1.0" encoding="ISO-8859-1"?> <breakfast_menu> <food> <name>Belgian Waffles</name> <price>$5.95</price> <description>two of our famous Belgian Waffles with plenty of real maple syrup</description> <calories>650</calories> </food> <food> <name>Strawberry Belgian Waffles</name> <price>$7.95</price> <description>light Belgian waffles covered with strawberries and whipped cream</description> <calories>900</calories> </food> <food> <name>Berry-Berry Belgian Waffles</name> <price>$8.95</price> <description>light Belgian waffles covered with an assortment of fresh berries and whipped cream</description> <calories>900</calories> </food> <food> <name>French Toast</name> <price>$4.50</price> <description>thick slices made from our homemade sourdough bread</description> <calories>600</calories> </food> <food> <name>Homestyle Breakfast</name> <price>$6.95</price> <description>two eggs, bacon or sausage, toast, and our ever-popular hash browns</description> <calories>950</calories> </food> </breakfast_menu> And "export" it to say, an Access or MySQL database using XSLT, creating two joined tables: Table: breakfast_menu Field: menu_item_id Field: food_id Table: food Field: food_id Field: name Field: price Field: description Field: calories If there are online tutorials on this that you know of, I'd be interesting in learning more, as well. Thanks.

    Read the article

  • How to read XML parent node tag value

    - by kaibuki
    HI Guys, I have a java code to read XML nodes, I want to add in the addition and want to read the parent node value also. my XML file sample is below: <breakfast_menu><food id=1><name> Belgian Waffles </name><price> $5.95 </price><description> two of our famous Belgian Waffles with plenty of real maple syrup </description><calories> 650 </calories></food><food id=2><name>Strawberry Belgian waffles</name><price>$7.95</price><description>light Belgian waffles covered with strawberries and whipped cream</description><calories>900</calories></food></breakfast_menu> and my code for parsing xml is : public static String getProductItem(String pid, String item) { try { url = new URL(""); urlConnection = url.openConnection(); } catch (MalformedURLException e) { e.printStackTrace(); } catch (IOException e) { } try { dBuilder = dbFactory.newDocumentBuilder(); } catch (ParserConfigurationException e) { } try { doc = dBuilder.parse(urlConnection.getInputStream()); } catch (SAXException e) { } catch (IOException e) { } doc.getDocumentElement().normalize(); NodeList nList = doc.getElementsByTagName("food"); for (int temp = 0; temp < nList.getLength(); temp++) { Node nNode = nList.item(temp); if (nNode.getNodeType() == Node.ELEMENT_NODE) { Element eElement = (Element) nNode; data = getTagValue(item, eElement); } } doc = null; dBuilder = null; return data; } private static String getTagValue(String sTag, Element eElement) { NodeList nlList = eElement.getElementsByTagName(sTag).item(0) .getChildNodes(); Node nValue = (Node) nlList.item(0); return nValue.getNodeValue(); } What I want to do is to read the "id" value of food, so if if I am searching for a food, it only checks those food nodes, whose id matched the food node id. thanks in advance. cheers.. kai

    Read the article

  • CodePlex Daily Summary for Thursday, March 11, 2010

    CodePlex Daily Summary for Thursday, March 11, 2010New ProjectsASP.NET Wiki Control: This ASP.NET user control allows you to embed a very useful wiki directly into your already existing ASP.NET website taking advantage of the popula...BabyLog: Log baby daily activity.buddyHome: buddyHome is a project that can make your home smarter. as good as your buddy. Cloud Community: Cloud Community makes it easier for organizations to have a simple to use community platform. Our mission is to create an easy to use community pl...Community Connectors for Microsoft CRM 4.0: Community Connectors for Microsoft CRM 4.0 allows Microsoft CRM 4.0 customers and partners to monitor and analyze customers’ interaction from their...Console Highlighter: Hightlights Microsoft Windows Command prompt (cmd.exe) by outputting ANSI VT100 Control sequences to color the output. These sequences are not hand...Cornell Store: This is IN NO WAY officially affiliated or related to the Cornell University store. Instead, this is a project that I am doing for a class. Ther...DevUtilities: This project is for creating some utility tools, and they will be useful during the development.DotNetNuke® Skin Maple: A DotNetNuke Design Challenge skin package submitted to the "Personal" category by DyNNamite.co.uk. The package includes 4 color variations and sev...HRNet: HRNetIIS Web Site Monitoring: A software for monitor a particular web site on IIS, even if its IP is sharing between different web site.Iowa Code Camp: The source code for the Iowa Code Camp website.Leonidas: Leonidas is a virtual tutorLunch 'n Learn: The Lunch 'n Learn web application is an open source ASP.NET MVC application that allows you to setup lunch 'n learn presentations for your team, c...MNT Cryptography: A very simple cryptography classMooiNooi MVC2LINQ2SQL Web Databinder: mvc2linq2sql is a databinder for ASP.NET MVC that make able developer to clean bind object from HTML FORMS to Linq entities. Even 1 to N relations ...MoqBot: MoqBot is an auto mocking library for Moq and Ninject.mtExperience1: hoiMvcPager: MvcPager is a free paging component for ASP.NET MVC web application, it exposes a series of extension methods for using in ASP.NET MVC applications...OCal: OCal is based on object calisthenics to identify code smellsPex Custom Arithmetic Solver: Pex Custom Arithmetic Solver contains a collection of meta-heuristic search algorithms. The goal is to improve Pex's code coverage for code involvi...SetControls: Расширеные контролы для ASP.NET приложений. Полная информация ближе к релизу...shadowrage1597: CTC 195 Game Design classSharePoint Team-Mailer: A SharePoint 2007 solution that defines a generic CustomList for sending e-mails to SharePoint Groups.Sql Share: SQL Share is a collaboration tool used within the science to allow database engineers to work tightly with domain scientists.TechCalendar: Tech Events Calendar ASP.NET project.ZLYScript: A very simple script language compiler.New ReleasesALGLIB: ALGLIB 2.4.0: New ALGLIB release contains: improved versions of several linear algebra algorithms: QR decomposition, matrix inversion, condition number estimatio...AmiBroker Plug-Ins with C#: AmiBroker Plug-Ins v0.0.2: Source codes and a binaryAppFabric Caching UI Admin Tool: AppFabric Caching Beta 2 UI Admin Tool: System Requirements:.NET 4.0 RC AppFabric Caching Beta2 Test On:Win 7 (64x)Autodocs - WCF REST Automatic API Documentation Generator: Autodocs.ServiceModel.Web: This archive contains the reference DLL, instructions and license.Compact Plugs & Compact Injection: Compact Injection and Compact Plugs 1.1 Beta: First release of Compact Plugs (CP). The solution includes a simple example project of CP, called "TestCompactPlugs1". Also some fixes where made ...Console Highlighter: Console Highlighter 0.9 (preview release): Preliminary release.Encrypted Notes: Encrypted Notes 1.3: This is the latest version of Encrypted Notes (1.3). It has an installer - it will create a directory 'CPascoe' in My Documents. The last one was ...Family Tree Analyzer: Version 1.0.2: Family Tree Analyzer Version 1.0.2 This early beta version implements loading a gedcom file and displaying some basic reports. These reports inclu...FRC1103 - FRC Dashboard viewer: 2010 Documentation v0.1: This is my current version of the control system documentation for 2010. It isn't complete, but it has the information required for a custom dashbo...jQuery.cssLess: jQuery.cssLess 0.5 (Even less release): NEW - support for nested special CSS classes (like :hover) MAIN RELEASE This release, code "Even less", is the one that will interpret cssLess wit...MooiNooi MVC2LINQ2SQL Web Databinder: MooiNooi MVC2LINQ2SQL DataBinder: I didn't try this... I just took it off from my project. Please, tell me any problem implementing in your own development and I'll be pleased to h...MvcPager: MvcPager 1.2 for ASP.NET MVC 1.0: MvcPager 1.2 for ASP.NET MVC 1.0Mytrip.Mvc: Mytrip 1.0 preview 1: Article Manager Blog Manager L2S Membership(.NET Framework 3.5) EF Membership(.NET Framework 4) User Manager File Manager Localization Captcha ...NodeXL: Network Overview, Discovery and Exploration for Excel: NodeXL Excel 2007 Template, version 1.0.1.117: The NodeXL Excel 2007 template displays a network graph using edge and vertex lists stored in an Excel 2007 workbook. What's NewThis version adds ...Pex Custom Arithmetic Solver: PexCustomArithmeticSolver: This is the alpha release containing the Alternating Variable Method and Evolution Strategies to try and solve constraints over floating point vari...Scrum Sprint Monitor: v1.0.0.44877: What is new in this release? Major performance increase in animations (up to 50 fps from 2 fps) by replacing DropShadow effect with png bitmaps; ...sELedit: sELedit v1.0b: + Added support for empty strings / wstrings + Fixed: critical bug in configuration files (list 53)sPWadmin: pwAdmin v0.9_nightly: + Fixed: XML editor can now open and save character templates + Added: PWI item name database + Added: Plugin SupportTechCalendar: Events Calendar v.1.0: Initial release.The Silverlight Hyper Video Player [http://slhvp.com]: Beta 2: Beta 2.0 Some fixes from Beta 1, and a couple small enhancements. Intensive testing continues, and I will continue to update the code at least ever...ThreadSafe.Caching: 2010.03.10.1: Updates to the scavanging behaviour since last release. Scavenging will now occur every 30 seconds by default and all objects in the cache will be ...VCC: Latest build, v2.1.30310.0: Automatic drop of latest buildVisual Studio DSite: Email Sender (C++): The same Email Sender program that I but made in visual c plus plus 2008 instead of visual basic 2008.Web Forms MVP: Web Forms MVP CTP7: The release can be considered stable, and is in use behind several high traffic, public websites. It has been marked as a CTP release as it is not ...White Tiger: 0.0.3.1: Now you can load or create files with whatever root element you want *check f or sets file permisionsMost Popular ProjectsMetaSharpWBFS ManagerRawrAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)ASP.NETMicrosoft SQL Server Community & SamplesASP.NET Ajax LibraryMost Active ProjectsUmbraco CMSRawrSDS: Scientific DataSet library and toolsN2 CMSFasterflect - A Fast and Simple Reflection APIjQuery Library for SharePoint Web ServicesBlogEngine.NETFarseer Physics Enginepatterns & practices – Enterprise LibraryCaliburn: An Application Framework for WPF and Silverlight

    Read the article

  • Flow-Design Cheat Sheet &ndash; Part I, Notation

    - by Ralf Westphal
    You want to avoid the pitfalls of object oriented design? Then this is the right place to start. Use Flow-Oriented Analysis (FOA) and –Design (FOD or just FD for Flow-Design) to understand a problem domain and design a software solution. Flow-Orientation as described here is related to Flow-Based Programming, Event-Based Programming, Business Process Modelling, and even Event-Driven Architectures. But even though “thinking in flows” is not new, I found it helpful to deviate from those precursors for several reasons. Some aim at too big systems for the average programmer, some are concerned with only asynchronous processing, some are even not very much concerned with programming at all. What I was looking for was a design method to help in software projects of any size, be they large or tiny, involing synchronous or asynchronous processing, being local or distributed, running on the web or on the desktop or on a smartphone. That´s why I took ideas from all of the above sources and some additional and came up with Event-Based Components which later got repositioned and renamed to Flow-Design. In the meantime this has generated some discussion (in the German developer community) and several teams have started to work with Flow-Design. Also I´ve conducted quite some trainings using Flow-Orientation for design. The results are very promising. Developers find it much easier to design software using Flow-Orientation than OOAD-based object orientation. Since Flow-Orientation is moving fast and is not covered completely by a single source like a book, demand has increased for at least an overview of the current state of its notation. This page is trying to answer this demand by briefly introducing/describing every notational element as well as their translation into C# source code. Take this as a cheat sheet to put next to your whiteboard when designing software. However, please do not expect any explanation as to the reasons behind Flow-Design elements. Details on why Flow-Design at all and why in this specific way you´ll find in the literature covering the topic. Here´s a resource page on Flow-Design/Event-Based Components, if you´re able to read German. Notation Connected Functional Units The basic element of any FOD are functional units (FU): Think of FUs as some kind of software code block processing data. For the moment forget about classes, methods, “components”, assemblies or whatever. See a FU as an abstract piece of code. Software then consists of just collaborating FUs. I´m using circles/ellipses to draw FUs. But if you like, use rectangles. Whatever suites your whiteboard needs best.   The purpose of FUs is to process input and produce output. FUs are transformational. However, FUs are not called and do not call other FUs. There is no dependency between FUs. Data just flows into a FU (input) and out of it (output). From where and where to is of no concern to a FU.   This way FUs can be concatenated in arbitrary ways:   Each FU can accept input from many sources and produce output for many sinks:   Flows Connected FUs form a flow with a start and an end. Data is entering a flow at a source, and it´s leaving it through a sink. Think of sources and sinks as special FUs which conntect wires to the environment of a network of FUs.   Wiring Details Data is flowing into/out of FUs through wires. This is to allude to electrical engineering which since long has been working with composable parts. Wires are attached to FUs usings pins. They are the entry/exit points for the data flowing along the wires. Input-/output pins currently need not be drawn explicitly. This is to keep designing on a whiteboard simple and quick.   Data flowing is of some type, so wires have a type attached to them. And pins have names. If there is only one input pin and output pin on a FU, though, you don´t need to mention them. The default is Process for a single input pin, and Result for a single output pin. But you´re free to give even single pins different names.   There is a shortcut in use to address a certain pin on a destination FU:   The type of the wire is put in parantheses for two reasons. 1. This way a “no-type” wire can be easily denoted, 2. this is a natural way to describe tuples of data.   To describe how much data is flowing, a star can be put next to the wire type:   Nesting – Boards and Parts If more than 5 to 10 FUs need to be put in a flow a FD starts to become hard to understand. To keep diagrams clutter free they can be nested. You can turn any FU into a flow: This leads to Flow-Designs with different levels of abstraction. A in the above illustration is a high level functional unit, A.1 and A.2 are lower level functional units. One of the purposes of Flow-Design is to be able to describe systems on different levels of abstraction and thus make it easier to understand them. Humans use abstraction/decomposition to get a grip on complexity. Flow-Design strives to support this and make levels of abstraction first class citizens for programming. You can read the above illustration like this: Functional units A.1 and A.2 detail what A is supposed to do. The whole of A´s responsibility is decomposed into smaller responsibilities A.1 and A.2. FU A thus does not do anything itself anymore! All A is responsible for is actually accomplished by the collaboration between A.1 and A.2. Since A now is not doing anything anymore except containing A.1 and A.2 functional units are devided into two categories: boards and parts. Boards are just containing other functional units; their sole responsibility is to wire them up. A is a board. Boards thus depend on the functional units nested within them. This dependency is not of a functional nature, though. Boards are not dependent on services provided by nested functional units. They are just concerned with their interface to be able to plug them together. Parts are the workhorses of flows. They contain the real domain logic. They actually transform input into output. However, they do not depend on other functional units. Please note the usage of source and sink in boards. They correspond to input-pins and output-pins of the board.   Implicit Dependencies Nesting functional units leads to a dependency tree. Boards depend on nested functional units, they are the inner nodes of the tree. Parts are independent, they are the leafs: Even though dependencies are the bane of software development, Flow-Design does not usually draw these dependencies. They are implicitly created by visually nesting functional units. And they are harmless. Boards are so simple in their functionality, they are little affected by changes in functional units they are depending on. But functional units are implicitly dependent on more than nested functional units. They are also dependent on the data types of the wires attached to them: This is also natural and thus does not need to be made explicit. And it pertains mainly to parts being dependent. Since boards don´t do anything with regard to a problem domain, they don´t care much about data types. Their infrastructural purpose just needs types of input/output-pins to match.   Explicit Dependencies You could say, Flow-Orientation is about tackling complexity at its root cause: that´s dependencies. “Natural” dependencies are depicted naturally, i.e. implicitly. And whereever possible dependencies are not even created. Functional units don´t know their collaborators within a flow. This is core to Flow-Orientation. That makes for high composability of functional units. A part is as independent of other functional units as a motor is from the rest of the car. And a board is as dependend on nested functional units as a motor is on a spark plug or a crank shaft. With Flow-Design software development moves closer to how hardware is constructed. Implicit dependencies are not enough, though. Sometimes explicit dependencies make designs easier – as counterintuitive this might sound. So FD notation needs a ways to denote explicit dependencies: Data flows along wires. But data does not flow along dependency relations. Instead dependency relations represent service calls. Functional unit C is depending on/calling services on functional unit S. If you want to be more specific, name the services next to the dependency relation: Although you should try to stay clear of explicit dependencies, they are fundamentally ok. See them as a way to add another dimension to a flow. Usually the functionality of the independent FU (“Customer repository” above) is orthogonal to the domain of the flow it is referenced by. If you like emphasize this by using different shapes for dependent and independent FUs like above. Such dependencies can be used to link in resources like databases or shared in-memory state. FUs can not only produce output but also can have side effects. A common pattern for using such explizit dependencies is to hook a GUI into a flow as the source and/or the sink of data: Which can be shortened to: Treat FUs others depend on as boards (with a special non-FD API the dependent part is connected to), but do not embed them in a flow in the diagram they are depended upon.   Attributes of Functional Units Creation and usage of functional units can be modified with attributes. So far the following have shown to be helpful: Singleton: FUs are by default multitons. FUs in the same of different flows with the same name refer to the same functionality, but to different instances. Think of functional units as objects that get instanciated anew whereever they appear in a design. Sometimes though it´s helpful to reuse the same instance of a functional unit; this is always due to valuable state it holds. Signify this by annotating the FU with a “(S)”. Multiton: FUs on which others depend are singletons by default. This is, because they usually are introduced where shared state comes into play. If you want to change them to be a singletons mark them with a “(M)”. Configurable: Some parts need to be configured before the can do they work in a flow. Annotate them with a “(C)” to have them initialized before any data items to be processed by them arrive. Do not assume any order in which FUs are configured. How such configuration is happening is an implementation detail. Entry point: In each design there needs to be a single part where “it all starts”. That´s the entry point for all processing. It´s like Program.Main() in C# programs. Mark the entry point part with an “(E)”. Quite often this will be the GUI part. How the entry point is started is an implementation detail. Just consider it the first FU to start do its job.   Patterns / Standard Parts If more than a single wire is attached to an output-pin that´s called a split (or fork). The same data is flowing on all of the wires. Remember: Flow-Designs are synchronous by default. So a split does not mean data is processed in parallel afterwards. Processing still happens synchronously and thus one branch after another. Do not assume any specific order of the processing on the different branches after the split.   It is common to do a split and let only parts of the original data flow on through the branches. This effectively means a map is needed after a split. This map can be implicit or explicit.   Although FUs can have multiple input-pins it is preferrable in most cases to combine input data from different branches using an explicit join: The default output of a join is a tuple of its input values. The default behavior of a join is to output a value whenever a new input is received. However, to produce its first output a join needs an input for all its input-pins. Other join behaviors can be: reset all inputs after an output only produce output if data arrives on certain input-pins

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

< Previous Page | 1 2