Search Results

Search found 15833 results on 634 pages for 'member objects'.

Page 2/634 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Disable raid member check upon mount to mount damaged nvidia raid1 member

    - by Halfgaar
    Hi, A friend of mine destroyed his Nvidia RAID1 array somehow and in trying to fix it, he ended up with a non-working array. Because of the RAID metadata, the actual disk data was stored at an offset from the beginning. I was able to identify this offset with dd and a hexeditor and then I used losetup to create a loop device with the proper offset, so that I could mount the partition. It was then that I ran into problems, namely that mount says: "mount: unknown filesystem type 'nvidia_raid_member'". I also had this when trying to mount a Linux MD component the other day, and because I can remember that doing that in the past worked, I surmised that it may be some kind of protection. I therefore booted an old Sysrescue CD and tried it there, which worked (because of the older version of mount/libc/kernel/whatever). I still need to try to get more data, and because I don't want to keep using that SysrecueCD, I'd like to be able to mount the disk on my normal system. So, my question is: can the check for a disk being a raid member be disabled? I guess I could also zero out blocks that look like the raid block, but I'd rather not... I made an image of the disk with par2 data, so it's revertable, but still...

    Read the article

  • Best way to store a large amount of game objects and update the ones onscreen

    - by user3002473
    Good afternoon guys! I'm a young beginner game developer working on my first large scale game project and I've run into a situation where I'm not quite sure what the best solution may be (if there is a lone solution). The question may be vague (if anyone can think of a better title after having read the question, please edit it) or broad but I'm not quite sure what to do and I thought it would help just to discuss the problem with people more educated in the field. Before we get started, here are some of the questions I've looked at for help in the past: Best way to keep track of game objects Elegant way to simulate large amounts of entities within a game world What is the most efficient container to store dynamic game objects in? I've also read articles about different data structures commonly used in games to store game objects such as this one about slot maps, but none of them are really what I'm looking for. Also, if it helps at all I'm using Python 3 to design the game. It has to be Python 3, if I could I would use C++ or Unityscript or something else, but I'm restricted to having to use Python 3. My game will be a form of side scroller shooter game. In said game the player will traverse large rooms with large amounts of enemies and other game objects to update (think some of the larger areas in Cave Story or Iji). The player obviously can't see the entire room all at once, so there is a viewport that follows the player around and renders only a selection of the room and the game objects that it contains. This is not a foreign concept. The part that's getting me confused has to do with how certain game objects are updated. Some of them are to be updated constantly, regardless of whether or not they can be seen. Other objects however are only to be updated when they are onscreen (for example, an enemy would only be updated to react to the player when it is onscreen or when it is in a certain range of the screen). Another problem is that game objects have to be easily referable by other game objects; something that happens in the player's update() method may affect another object in the world. Collision detection in games is always a serious problem. I need a way of containing the game objects such that it minimizes the number of cases when testing for collisions against one another. The final problem is that of creating and destroying game objects. I think this problem is pretty self explanatory. To store the game objects then I've considered a number of different methods. The original method I had was to simply store all the objects in a hash table by an id. This method was simple, and decently fast as it allows all the objects to be looked up in O(1) complexity, and also allows them to be deleted fairly easily. Hash collisions would not be a major problem; I wasn't originally planning on using computer generated ids to store the game objects I was going to rely on them all using ids given to them by the game designer (such names would be strings like 'Player' or 'EnemyWeapon4'), and even if I did use computer generated ids, if I used a decent hashing algorithm then the chances of collisions would be around 1 in 4 billion. The problem with using a hash table however is that it is inefficient in checking to see what objects are in range of the viewport. Considering the fact that certain game objects move (as well as the viewport itself), the only solution I could think of in order to only update objects that are in the viewport would be to iterate through every object in the hash table and check if it is in the viewport or not, updating only the ones that are in the valid area. This would be incredibly slow in scenarios where the amount of game objects exceeds 500, or even 200. The second solution was to store everything in a 2-d list. The world is partitioned up into cells (a tilemap essentially), where each cell or tile is the same size and is square. Each cell would contain a list of the game objects that are currently occupying it (each game object would be inserted into a cell depending on the center of the object's collision mask). A 2-d list would allow me to take the top-left and bottom-right corners of the viewport and easily grab a rectangular area of the grid containing only the cells containing entities that are in valid range to be updated. This method also solves the problem of collision detection; when I take an entity I can find the cell that it is currently in, then check only against entities in it's cell and the 8 cells around it. One problem with this system however is that it prohibits easy lookup of game objects. One solution I had would be to simultaneously keep a hash table that would contain all the positions of the objects in the 2-d list indexed by the id of said object. The major problem with a 2-d list is that it would need to be rebuilt every single game frame (along with the hash table of object positions), which may be a serious detriment to game speed. Both systems have ups and downs and seem to solve some of each other's problems, however using them both together doesn't seem like the best solution either. If anyone has any thoughts, ideas, suggestions, comments, opinions or solutions on new data structures or better implementations of the existing data structures I have in mind, please post, any and all criticism and help is welcome. Thanks in advance! EDIT: Please don't close the question because it has a bad title, I'm just bad with names!

    Read the article

  • Level and Player objects - which should contain which?

    - by Thane Brimhall
    I've been working on a several simple games, and I've always come to a decision point where I have to choose whether to have the Level object as an attribute of the Player class or the Player as an attribute of the Level class. I can see arguments for both: The Level should contain the player because it also contains every other entity. In fact it just makes sense this way: "John is in the room." It makes it a bit more difficult to move the player to a new level, however, because then each level has to pass its player object to an upcoming level. On the other hand, it makes programming sense to me to leave the player as the top-level object that is persistent between levels, and the environment changes because the player decides to change his level and location. It becomes very easy to change levels, because all I have to do is replace the level variable on the player. What's the most common practice here? Or better yet, is there a "right" way to architecture this relationship?

    Read the article

  • The Stub Proto: Not Just For Stub Objects Anymore

    - by user9154181
    One of the great pleasures of programming is to invent something for a narrow purpose, and then to realize that it is a general solution to a broader problem. In hindsight, these things seem perfectly natural and obvious. The stub proto area used to build the core Solaris consolidation has turned out to be one of those things. As discussed in an earlier article, the stub proto area was invented as part of the effort to use stub objects to build the core ON consolidation. Its purpose was merely as a place to hold stub objects. However, we keep finding other uses for it. It turns out that the stub proto should be more properly thought of as an auxiliary place to put things that we would like to put into the proto to help us build the product, but which we do not wish to package or deliver to the end user. Stub objects are one example, but private lint libraries, header files, archives, and relocatable objects, are all examples of things that might profitably go into the stub proto. Without a stub proto, these items were handled in a variety of ad hoc ways: If one part of the workspace needed private header files, libraries, or other such items, it might modify its Makefile to reach up and over to the place in the workspace where those things live and use them from there. There are several problems with this: Each component invents its own approach, meaning that programmers maintaining the system have to invest extra effort to understand what things mean. In the past, this has created makefile ghettos in which only the person who wrote the makefiles feels confident to modify them, while everyone else ignores them. This causes many difficulties and benefits no one. These interdependencies are not obvious to the make, utility, and can lead to races. They are not obvious to the human reader, who may therefore not realize that they exist, and break them. Our policy in ON is not to deliver files into the proto unless those files are intended to be packaged and delivered to the end user. However, sometimes non-shipping files were copied into the proto anyway, causing a different set of problems: It requires a long list of exceptions to silence our normal unused proto item error checking. In the past, we have accidentally shipped files that we did not intend to deliver to the end user. Mixing cruft with valuable items makes it hard to discern which is which. The stub proto area offers a convenient and robust solution. Files needed to build the workspace that are not delivered to the end user can instead be installed into the stub proto. No special exceptions or custom make rules are needed, and the intent is always clear. We are already accessing some private lint libraries and compilation symlinks in this manner. Ultimately, I'd like to see all of the files in the proto that have a packaging exception delivered to the stub proto instead, and for the elimination of all existing special case makefile rules. This would include shared objects, header files, and lint libraries. I don't expect this to happen overnight — it will be a long term case by case project, but the overall trend is clear. The Stub Proto, -z assert_deflib, And The End Of Accidental System Object Linking We recently used the stub proto to solve an annoying build issue that goes back to the earliest days of Solaris: How to ensure that we're linking to the OS bits we're building instead of to those from the running system. The Solaris product is made up of objects and files from a number of different consolidations, each of which is built separately from the others from an independent code base called a gate. The core Solaris OS consolidation is ON, which stands for "Operating System and Networking". You will frequently also see ON called the OSnet. There are consolidations for X11 graphics, the desktop environment, open source utilities, compilers and development tools, and many others. The collection of consolidations that make up Solaris is known as the "Wad Of Stuff", usually referred to simply as the WOS. None of these consolidations is self contained. Even the core ON consolidation has some dependencies on libraries that come from other consolidations. The build server used to build the OSnet must be running a relatively recent version of Solaris, which means that its objects will be very similar to the new ones being built. However, it is necessarily true that the build system objects will always be a little behind, and that incompatible differences may exist. The objects built by the OSnet link to other objects. Some of these dependencies come from the OSnet, while others come from other consolidations. The objects from other consolidations are provided by the standard library directories on the build system (/lib, /usr/lib). The objects from the OSnet itself are supposed to come from the proto areas in the workspace, and not from the build server. In order to achieve this, we make use of the -L command line option to the link-editor. The link-editor finds dependencies by looking in the directories specified by the caller using the -L command line option. If the desired dependency is not found in one of these locations, ld will then fall back to looking at the default locations (/lib, /usr/lib). In order to use OSnet objects from the workspace instead of the system, while still accessing non-OSnet objects from the system, our Makefiles set -L link-editor options that point at the workspace proto areas. In general, this works well and dependencies are found in the right places. However, there have always been failures: Building objects in the wrong order might mean that an OSnet dependency hasn't been built before an object that needs it. If so, the dependency will not be seen in the proto, and the link-editor will silently fall back to the one on the build server. Errors in the makefiles can wipe out the -L options that our top level makefiles establish to cause ld to look at the workspace proto first. In this case, all objects will be found on the build server. These failures were rarely if ever caught. As I mentioned earlier, the objects on the build server are generally quite close to the objects built in the workspace. If they offer compatible linking interfaces, then the objects that link to them will behave properly, and no issue will ever be seen. However, if they do not offer compatible linking interfaces, the failure modes can be puzzling and hard to pin down. Either way, there won't be a compile-time warning or error. The advent of the stub proto eliminated the first type of failure. With stub objects, there is no dependency ordering, and the necessary stub object dependency will always be in place for any OSnet object that needs it. However, makefile errors do still occur, and so, the second form of error was still possible. While working on the stub object project, we realized that the stub proto was also the key to solving the second form of failure caused by makefile errors: Due to the way we set the -L options to point at our workspace proto areas, any valid object from the OSnet should be found via a path specified by -L, and not from the default locations (/lib, /usr/lib). Any OSnet object found via the default locations means that we've linked to the build server, which is an error we'd like to catch. Non-OSnet objects don't exist in the proto areas, and so are found via the default paths. However, if we were to create a symlink in the stub proto pointing at each non-OSnet dependency that we require, then the non-OSnet objects would also be found via the paths specified by -L, and not from the link-editor defaults. Given the above, we should not find any dependency objects from the link-editor defaults. Any dependency found via the link-editor defaults means that we have a Makefile error, and that we are linking to the build server inappropriately. All we need to make use of this fact is a linker option to produce a warning when it happens. Although warnings are nice, we in the OSnet have a zero tolerance policy for build noise. The -z fatal-warnings option that was recently introduced with -z guidance can be used to turn the warnings into fatal build errors, forcing the programmer to fix them. This was too easy to resist. I integrated 7021198 ld option to warn when link accesses a library via default path PSARC/2011/068 ld -z assert-deflib option into snv_161 (February 2011), shortly after the stub proto was introduced into ON. This putback introduced the -z assert-deflib option to the link-editor: -z assert-deflib=[libname] Enables warning messages for libraries specified with the -l command line option that are found by examining the default search paths provided by the link-editor. If a libname value is provided, the default library warning feature is enabled, and the specified library is added to a list of libraries for which no warnings will be issued. Multiple -z assert-deflib options can be specified in order to specify multiple libraries for which warnings should not be issued. The libname value should be the name of the library file, as found by the link-editor, without any path components. For example, the following enables default library warnings, and excludes the standard C library. ld ... -z assert-deflib=libc.so ... -z assert-deflib is a specialized option, primarily of interest in build environments where multiple objects with the same name exist and tight control over the library used is required. If is not intended for general use. Note that the definition of -z assert-deflib allows for exceptions to be specified as arguments to the option. In general, the idea of using a symlink from the stub proto is superior because it does not clutter up the link command with a long list of objects. When building the OSnet, we usually use the plain from of -z deflib, and make symlinks for the non-OSnet dependencies. The exception to this are dependencies supplied by the compiler itself, which are usually found at whatever arbitrary location the compiler happens to be installed at. To handle these special cases, the command line version works better. Following the integration of the link-editor change, I made use of -z assert-deflib in OSnet builds with 7021896 Prevent OSnet from accidentally linking to build system which integrated into snv_162 (March 2011). Turning on -z assert-deflib exposed between 10 and 20 existing errors in our Makefiles, which were all fixed in the same putback. The errors we found in our Makefiles underscore how difficult they can be prevent without an automatic system in place to catch them. Conclusions The stub proto is proving to be a generally useful construct for ON builds that goes beyond serving as a place to hold stub objects. Although invented to hold stub objects, it has already allowed us to simplify a number of previously difficult situations in our makefiles and builds. I expect that we'll find uses for it beyond those described here as we go forward.

    Read the article

  • C++: calling non-member functions with the same syntax of member ones

    - by peoro
    One thing I'd like to do in C++ is to call non-member functions with the same syntax you call member functions: class A { }; void f( A & this ) { /* ... */ } // ... A a; a.f(); // this is the same as f(a); Of course this could only work as long as f is not virtual (since it cannot appear in A's virtual table. f doesn't need to access A's non-public members. f doesn't conflict with a function declared in A (A::f). I'd like such a syntax because in my opinion it would be quite comfortable and would push good habits: calling str.strip() on a std::string (where strip is a function defined by the user) would sound a lot better than calling strip( str );. most of the times (always?) classes provide some member functions which don't require to be member (ie: are not virtual and don't use non-public members). This breaks encapsulation, but is the most practical thing to do (due to point 1). My question here is: what do you think of such feature? Do you think it would be something nice, or something that would introduce more issues than the ones it aims to solve? Could it make sense to propose such a feature to the next standard (the one after C++0x)? Of course this is just a brief description of this idea; it is not complete; we'd probably need to explicitly mark a function with a special keyword to let it work like this and many other stuff.

    Read the article

  • Architecture for a business objects / database access layer

    - by gregmac
    For various reasons, we are writing a new business objects/data storage library. One of the requirements of this layer is to separate the logic of the business rules, and the actual data storage layer. It is possible to have multiple data storage layers that implement access to the same object - for example, a main "database" data storage source that implements most objects, and another "ldap" source that implements a User object. In this scenario, User can optionally come from an LDAP source, perhaps with slightly different functionality (eg, not possible to save/update the User object), but otherwise it is used by the application the same way. Another data storage type might be a web service, or an external database. There are two main ways we are looking at implementing this, and me and a co-worker disagree on a fundamental level which is correct. I'd like some advice on which one is the best to use. I'll try to keep my descriptions of each as neutral as possible, as I'm looking for some objective view points here. Business objects are base classes, and data storage objects inherit business objects. Client code deals with data storage objects. In this case, common business rules are inherited by each data storage object, and it is the data storage objects that are directly used by the client code. This has the implication that client code determines which data storage method to use for a given object, because it has to explicitly declare an instance to that type of object. Client code needs to explicitly know connection information for each data storage type it is using. If a data storage layer implements different functionality for a given object, client code explicitly knows about it at compile time because the object looks different. If the data storage method is changed, client code has to be updated. Business objects encapsulate data storage objects. In this case, business objects are directly used by client application. Client application passes along base connection information to business layer. Decision about which data storage method a given object uses is made by business object code. Connection information would be a chunk of data taken from a config file (client app does not really know/care about details of it), which may be a single connection string for a database, or several pieces connection strings for various data storage types. Additional data storage connection types could also be read from another spot - eg, a configuration table in a database that specifies URLs to various web services. The benefit here is that if a new data storage method is added to an existing object, a configuration setting can be set at runtime to determine which method to use, and it is completely transparent to the client applications. Client apps do not need to be modified if data storage method for a given object changes. Business objects are base classes, data source objects inherit from business objects. Client code deals primarily with base classes. This is similar to the first method, but client code declares variables of the base business object types, and Load()/Create()/etc static methods on the business objects return the appropriate data source-typed objects. The architecture of this solution is similar to the first method, but the main difference is the decision about which data storage object to use for a given business object is made by the business layer, not the client code. I know there are already existing ORM libraries that provide some of this functionality, but please discount those for now (there is the possibility that a data storage layer is implemented with one of these ORM libraries) - also note I'm deliberately not telling you what language is being used here, other than that it is strongly typed. I'm looking for some general advice here on which method is better to use (or feel free to suggest something else), and why.

    Read the article

  • Get pointer to member function from within member function in C++

    - by Eli
    Currently in the program I am attempting to write I need to be able to get a pointer to a member function within a member function of the same class. The pointer needs to be passed to a function as a void (*)(). Example: //CallFunc takes a void (*)() argument class testClass { public: void aFunc2; void aFunc1; } void testClass:aFunc2(){ callFunc(this.*aFunc1); // How should this be done? } void testClass:aFunc1(){ int someVariable = 1; } I'm trying to do this in GCC 4.0.1. Also, the member function being called can't be static because it references non-static variables in the class that it is part of.

    Read the article

  • What is a good strategy for binding view objects to model objects in C++?

    - by B.J.
    Imagine I have a rich data model that is represented by a hierarchy of objects. I also have a view hierarchy with views that can extract required data from model objects and display the data (and allow the user to manipulate the data). Actually, there could be multiple view hierarchies that can represent and manipulate the model (e.g. an overview-detail view and a direct manipulation view). My current approach for this is for the controller layer to store a reference to the underlying model object in the View object. The view object can then get the current data from the model for display, and can send the model object messages to update the data. View objects are effectively observers of the model objects and the model objects broadcast notifications when properties change. This approach allows all the views to update simultaneously when any view changes the model. Implemented carefully, this all works. However, it does require a lot of work to ensure that no view or model objects hold any stale references to model objects. The user can delete model objects or sub-hierarchies of the model at any time. Ensuring that all the view objects that hold references to the model objects that have been deleted is time-consuming and difficult. It feels like the approach I have been taking is not especially clean; while I don't want to have to have explicit code in the controller layer for mediating the communication between the views and the model, it seems like there must be a better (implicit) approach for establishing bindings between the view and the model and between related model objects. In particular, I am looking for an approach (in C++) that understands two key points: There is a many to one relationship between view and model objects If the underlying model object is destroyed, all the dependent view objects must be cleaned up so that no stale references exist While shared_ptr and weak_ptr can be used to manage the lifetimes of the underlying model objects and allows for weak references from the view to the model, they don't provide for notification of the destruction of the underlying object (they do in the sense that the use of a stale weak_ptr allows for notification), but I need an approach that notifies the dependent objects that their weak reference is going away. Can anyone suggest a good strategy to manage this?

    Read the article

  • Can't save data for a member in a data form

    - by RahulS
    Implied sharing is an old thing everyone knows the reasons and solutions of that, still little theory about that: With Essbase implied sharing, some members are shared even if you do not explicitly set them as shared. These members are implied shared members. When an implied share relationship is created, each implied member assumes the other member’s value. Essbase assumes (or implies) a shared member relationship in these situations: 1. A parent has only one child 2. A parent has only one child that consolidates to the parent In a Planning form that contains members with an implied sharing relationship, when a value is added for the parent, the child assumes the same value after the form is saved. Likewise, if a value is added for the child, the parent usually assumes the same value after a form is saved.For example, when a calculation script or load rule populates an implied share member, the other implied share member assumes the value of the member populated by the calculation script or load rule. The last value calculated or imported takes precedence. The result is the same whether you refer to the parent or the child as a variable in a calculation script. For more information have a look at: http://docs.oracle.com/cd/E17236_01/epm.1112/hp_admin_11122/ch14s11.html Now the issue which we are going to talk about is We loose data on save even when the parent is dynamic calc and has a single child. A dynamic calc parent to a single child:  If we design the form with following selection: In the data form we will find parent below the member and this is by design whenever you make a selection using commands to select all the member below parent, always children will appear before the parent: Lets try to enter data, Save it Now, try to change the way we selected members Here we go: Now the question again why this behavior: 1. Data from Planning data form passes to Essbase row by row, 2. Because in data form the child member appears before the parent, 3. First, data goes to Essbase for child (SingleStoreChild), 4. Then when Planning passes the data for parent there was #Missing or No data,  5. Over writes the data to #missing. PS: As we know that dynamic calc members are calculated on the fly they are not allocated with any memory in the Essbase, here the parent was dynamic calc and it was pointing to same memory as child in the background, when Planning was passing data to Essbase for second row it has updated the child with missing data.(Little confusing, let me know if you need more explanation) 6. As one of the solutions just change the order of appearance of parent and child. Cheers..!!! Rahul S. https://www.facebook.com/pages/HyperionPlanning/117320818374228

    Read the article

  • Question about member function pointers in a heirarchy

    - by Jesse Beder
    I'm using a library that defines an interface: template<class desttype> void connect(desttype* pclass, void (desttype::*pmemfun)()); and I have a small heirarchy class base { void foo(); }; class derived: public base { ... }; In a member function of derived, I want to call connect(this, &derived::foo); but it seems that &derived::foo is actually a member function pointer of base; gcc spits out error: no matching function for call to ‘connect(derived* const&, void (base::* const&)())’ I can get around this by explicitly casting this to base *; but why can't the compiler match the call with desttype = base (since derived * can be implicitly cast to base *)? Also, why is &derived::foo not a member function pointer of derived?

    Read the article

  • C++ inheritance and member function pointers

    - by smh
    In C++, can member function pointers be used to point to derived (or even base) class members? EDIT: Perhaps an example will help. Suppose we have a hierarchy of three classes X, Y, Z in order of inheritance. Y therefore has a base class X and a derived class Z. Now we can define a member function pointer p for class Y. This is written as: void (Y::*p)(); (For simplicity, I'll assume we're only interested in functions with the signature void f() ) This pointer p can now be used to point to member functions of class Y. This question (two questions, really) is then: Can p be used to point to a function in the derived class Z? Can p be used to point to a function in the base class X?

    Read the article

  • cannot override a concrete member without a third member that's overridden by both

    - by huynhjl
    What does the following error message mean? cannot override a concrete member without a third member that's overridden by both (this rule is designed to prevent ``accidental overrides''); I was trying to do stackable trait modifications. It's a little bit after the fact since I already have a hierarchy in place and I'm trying to modify the behavior without having to rewrite a lot of code. I have a base class called AbstractProcessor that defines an abstract method sort of like this: class AbstractProcessor { def onPush(i:Info): Unit } I have a couple existing traits, to implement different onPush behaviors. trait Pass1 { def onPush(i:Info): Unit = { ... } } trait Pass2 { def onPush(i:Info): Unit = { ... } } So that allows me to use new AbstractProcessor with Pass1 or new AbstractProcessor with Pass2. Now I would like to do some processing before and after the onPush call in Pass1 and Pass2 while minimizing code changes to AbstractProcessor and Pass1 and Pass2. I thought of creating a trait that does something like this: trait Custom extends AbstractProcessor { abstract override def onPush(i:Info): Unit = { // do stuff before super.onPush(i) // do stuff after } And using it with new AbstractProcessor with Pass1 with Custom and I got that error message.

    Read the article

  • Static member function pointer to hold non static member function

    - by user1425406
    This has defeated me. I want to have a static class variable which is a pointer to a (non-static) member function. I've tried all sorts of ways, but with no luck (including using typedefs, which just seemed to give me a different set of errors). In the code below I have the static class function pointer funcptr, and I can call it successfully from outside the class, but not from within the member function CallFuncptr - which is what I want to do. Any suggestions? #include <stdio.h> class A { public: static int (A::*funcptr)(); int Four() { return 4;}; int CallFuncptr() { return (this->*funcptr)(); } // doesn't link - undefined reference to `A::funcptr' }; int (A::*funcptr)() = &A::Four; int main() { A fred; printf("four? %d\n", (fred.*funcptr)()); // This works printf("four? %d\n", fred.CallFuncptr()); // But this is the way I want to call it }

    Read the article

  • Get default value of class member ( C# )

    - by Ruben Aster
    Let's assume I have a class ClassWithMember class ClassWithMember { int myIntMember = 10; } How do I get the default value 10 of the myIntMember member by System.Type? I'm currently struggling around with reflections by all I retreive is the default value of int (0) not the classes default member (10)..

    Read the article

  • C++ shared objects

    - by Klaus
    Hello, I have got four classes A, B, C and D. Class A has a member b of class B. Class B has a member c of class C. A has a member D* dpointer; This hierarchy has to be preserved (in fact this is a GUI with app, window, panel as A, B and C). Now B and C must use a method from *dpointer. Is there something more elegant than giving dpointer as a member of B and C ? Is it bad ?

    Read the article

  • c# binarysearch a list<T> by a member of T

    - by Pygmy
    I have a baseclass Event with a DateTime member TimeStamp. Lots of other event-classes will derive from this. I want to be able to search a list of events (that can contain events with duplicate timestamps) fast, so I'd like to use a binary search. So I started out writing something like this : public class EventList<T> : List<T> where T : Event { private IComparer<T> comparer = (x, y) => Comparer<DateTime>.Default.Compare(x.TimeStamp, y.TimeStamp); public IEnumerable<T> EventsBetween(DateTime inFromTime, DateTime inToTime) { // Find the index for the beginning. int index = this.BinarySearch(inFromTime, comparer); // BLAH REST OF IMPLEMENTATION } } The problem is that the BinarySearch only accepts T (so - an Event type) as parameter, while I want to search based on a member of T - the TimeStamp. What would be a good way to approach this ?

    Read the article

  • c++ class member functions selected by traits

    - by Jive Dadson
    I am reluctant to say I can't figure this out, but I can't figure this out. I've googled and searched stackoverflow, and come up empty. The abstract, and possibly overly vague form of the question is, how can I use the traits-pattern to instantiate non-virtual member functions? The question came up while modernizing a set of multivariate function optimizers that I wrote more than 10 years ago. The optimizers all operate by selecting a straight-line path through the parameter space away from the current best point (the "update"), then finding a better point on that line (the "line search"), then testing for the "done" condition, and if not done, iterating. There are different methods for doing the update, the line-search, and conceivably for the done test, and other things. Mix and match. Different update formulae require different state-variable data. For example, the LMQN update requires a vector, and the BFGS update requires a matrix. If evaluating gradients is cheap, the line-search should do so. If not, it should use function evaluations only. Some methods require more accurate line-searches than others. Those are just some examples. The original version instatiates several of the combinations by means of virtual functions. Some traits are selected by setting mode bits. Yuck. It would be trivial to define the traits with #define's and the member functions with #ifdef's and macros. But that's so twenty years ago. It bugs me that I cannot figure out a whiz-bang modern way. If there were only one trait that varied, I could use the curiously recurring template pattern. But I see no way to extend that to arbitrary combinations of traits. I tried doing it using boost::enable_if, etc.. The specialized state info was easy. I managed to get the functions done, but only by resorting to non-friend external functions that have the this-pointer as a parameter. I never even figured out how to make the functions friends, much less member functions. Perhaps tag-dispatch is the key. I haven't gotten very deeply into that. Surely it's possible, right? If so, what is best practice?

    Read the article

  • Caching for a Custom Repositiory Adapter for WebSphere Portal Virtual Member Manager

    - by Spike Williams
    I'm looking at writing a custom repository adapter to interact with Virtual Member Manager on WebSphere Portal 6.1. Basically, its a layer that takes a request in the form of a commonj.sco.DataObject and passes that on to an external web service, to get various information on our logged in users that is not otherwise available in LDAP. I'm concerned about the performance hit of going to a service every time we want to pull some permission from the back end. My question is, can the Virtual Member Manager handle caching of data going in and out of the custom repository adapters, or is that something I'm going to have to build into the adapter myself?

    Read the article

  • c++ defining a static member of a template class with type inner class pointer

    - by Jack
    I have a template class like here (in a header) with a inner class and a static member of type pointer to inner class template <class t> class outer { class inner { int a; }; static inner *m; }; template <class t> outer <t>::inner *outer <t>::m; when i want to define that static member i says "error: expected constructor, destructor, or type conversion before '*' token" on the last line (mingw32-g++ 3.4.5)

    Read the article

  • c++ class member functions instatiated by traits

    - by Jive Dadson
    I am reluctant to say I can't figure this out, but I can't figure this out. I've googled and searched stackoverflow, and come up empty. The abstract, and possibly overly vague form of the question is, how can I use the traits-pattern to instantiate non-virtual member functions? The question came up while modernizing a set of multivariate function optimizers that I wrote more than 10 years ago. The optimizers all operate by selecting a straight-line path through the parameter space away from the current best point (the "update"), then finding a better point on that line (the "line search"), then testing for the "done" condition, and if not done, iterating. There are different methods for doing the update, the line-search, and conceivably for the done test, and other things. Mix and match. Different update formulae require different state-variable data. For example, the LMQN update requires a vector, and the BFGS update requires a matrix. If evaluating gradients is cheap, the line-search should do so. If not, it should use function evaluations only. Some methods require more accurate line-searches than others. Those are just some examples. The original version instantiates several of the combinations by means of virtual functions. Some traits are selected by setting mode bits that are tested at runtime. Yuck. It would be trivial to define the traits with #define's and the member functions with #ifdef's and macros. But that's so twenty years ago. It bugs me that I cannot figure out a whiz-bang modern way. If there were only one trait that varied, I could use the curiously recurring template pattern. But I see no way to extend that to arbitrary combinations of traits. I tried doing it using boost::enable_if, etc.. The specialized state info was easy. I managed to get the functions done, but only by resorting to non-friend external functions that have the this-pointer as a parameter. I never even figured out how to make the functions friends, much less member functions. The compiler (vc++ 2008) always complained that things didn't match. I would yell, "SFINAE, you moron!" but the moron is probably me. Perhaps tag-dispatch is the key. I haven't gotten very deeply into that. Surely it's possible, right? If so, what is best practice?

    Read the article

  • C++ class member functions instantiated by traits

    - by Jive Dadson
    I am reluctant to say I can't figure this out, but I can't figure this out. I've googled and searched Stack Overflow, and come up empty. The abstract, and possibly overly vague form of the question is, how can I use the traits-pattern to instantiate non-virtual member functions? The question came up while modernizing a set of multivariate function optimizers that I wrote more than 10 years ago. The optimizers all operate by selecting a straight-line path through the parameter space away from the current best point (the "update"), then finding a better point on that line (the "line search"), then testing for the "done" condition, and if not done, iterating. There are different methods for doing the update, the line-search, and conceivably for the done test, and other things. Mix and match. Different update formulae require different state-variable data. For example, the LMQN update requires a vector, and the BFGS update requires a matrix. If evaluating gradients is cheap, the line-search should do so. If not, it should use function evaluations only. Some methods require more accurate line-searches than others. Those are just some examples. The original version instantiates several of the combinations by means of virtual functions. Some traits are selected by setting mode bits that are tested at runtime. Yuck. It would be trivial to define the traits with #define's and the member functions with #ifdef's and macros. But that's so twenty years ago. It bugs me that I cannot figure out a whiz-bang modern way. If there were only one trait that varied, I could use the curiously recurring template pattern. But I see no way to extend that to arbitrary combinations of traits. I tried doing it using boost::enable_if, etc.. The specialized state information was easy. I managed to get the functions done, but only by resorting to non-friend external functions that have the this-pointer as a parameter. I never even figured out how to make the functions friends, much less member functions. The compiler (VC++ 2008) always complained that things didn't match. I would yell, "SFINAE, you moron!" but the moron is probably me. Perhaps tag-dispatch is the key. I haven't gotten very deeply into that. Surely it's possible, right? If so, what is best practice?

    Read the article

  • android app does not show up on my device or the emulator in eclipse

    - by Sam
    hey everyone, I have no errors in my app-code what so ever, but when i try to run in on either my cell or my emulator/the avd in eclipse i can't run it because it doesn't show up on either one. this is my console output: [2011-02-04 08:14:58 - Versuch] Uploading Versuch.apk onto device 'CB511L2WTB' [2011-02-04 08:14:58 - Versuch] Installing Versuch.apk... [2011-02-04 08:15:01 - Versuch] Success! [2011-02-04 08:15:01 - Versuch] \Versuch\bin\Versuch.apk installed on device [2011-02-04 08:15:01 - Versuch] Done! and this is my LogCat output, which tells me nothing, but you are the experts ;) 02-04 08:18:10.020: DEBUG/dalvikvm(22167): GC freed 2576 objects / 559120 bytes in 37ms 02-04 08:18:10.700: DEBUG/dalvikvm(6709): GC freed 7692 objects / 478912 bytes in 41ms 02-04 08:18:11.170: DEBUG/dalvikvm(31774): GC freed 3367 objects / 163464 bytes in 122ms 02-04 08:18:13.230: DEBUG/dalvikvm(22167): GC freed 2790 objects / 552328 bytes in 38ms 02-04 08:18:14.650: DEBUG/dalvikvm(6709): GC freed 8443 objects / 540440 bytes in 39ms 02-04 08:18:16.260: DEBUG/dalvikvm(31921): GC freed 214 objects / 9824 bytes in 216ms 02-04 08:18:16.670: DEBUG/dalvikvm(22167): GC freed 3232 objects / 561256 bytes in 40ms 02-04 08:18:18.600: DEBUG/dalvikvm(6709): GC freed 7718 objects / 481952 bytes in 39ms 02-04 08:18:19.210: DEBUG/dalvikvm(1129): GC freed 6898 objects / 275328 bytes in 109ms 02-04 08:18:19.690: DEBUG/dalvikvm(22167): GC freed 2968 objects / 571232 bytes in 39ms 02-04 08:18:21.440: DEBUG/dalvikvm(1212): GC freed 1020 objects / 49328 bytes in 395ms 02-04 08:18:22.570: DEBUG/dalvikvm(6709): GC freed 7893 objects / 495616 bytes in 40ms 02-04 08:18:23.060: DEBUG/dalvikvm(22167): GC freed 3117 objects / 561912 bytes in 41ms 02-04 08:18:25.860: DEBUG/dalvikvm(22167): GC freed 2924 objects / 558448 bytes in 36ms 02-04 08:18:26.350: DEBUG/dalvikvm(32098): GC freed 4662 objects / 495496 bytes in 290ms 02-04 08:18:26.410: DEBUG/dalvikvm(22167): GC freed 1077 objects / 130680 bytes in 33ms 02-04 08:18:27.080: DEBUG/dalvikvm(6709): GC freed 7912 objects / 485368 bytes in 40ms 02-04 08:18:28.190: DEBUG/dalvikvm(22167): GC freed 953 objects / 767272 bytes in 33ms 02-04 08:18:29.500: DEBUG/dalvikvm(1129): GC freed 6756 objects / 270480 bytes in 105ms 02-04 08:18:30.500: WARN/System.err(22536): java.lang.Exception: You must call com.mercuryintermedia.productconfiguration.initialize() first 02-04 08:18:30.670: WARN/System.err(22536): at com.mercuryintermedia.ProductConfiguration.getProductName(ProductConfiguration.java:136) 02-04 08:18:30.670: WARN/System.err(22536): at com.mercuryintermedia.api.rest.Item.getPublishingContainersItems(Item.java:15) 02-04 08:18:30.670: WARN/System.err(22536): at com.mercuryintermedia.mflow.ContainerHelper.getContainerFromServer(ContainerHelper.java:68) 02-04 08:18:30.670: WARN/System.err(22536): at com.mercuryintermedia.mflow.ContainerHelper.run(ContainerHelper.java:46) 02-04 08:18:31.090: DEBUG/dalvikvm(6709): GC freed 10545 objects / 682480 bytes in 49ms 02-04 08:18:31.120: DEBUG/dalvikvm(1813): GC freed 5970 objects / 310912 bytes in 60ms 02-04 08:18:31.320: DEBUG/dalvikvm(22167): GC freed 2468 objects / 539520 bytes in 39ms 02-04 08:18:34.110: DEBUG/dalvikvm(22167): GC freed 2879 objects / 569008 bytes in 35ms 02-04 08:18:34.920: DEBUG/dalvikvm(6709): GC freed 7029 objects / 424632 bytes in 35ms 02-04 08:18:36.150: DEBUG/dalvikvm(9060): GC freed 564 objects / 27840 bytes in 89ms 02-04 08:18:36.630: DEBUG/dalvikvm(22167): GC freed 2437 objects / 554000 bytes in 35ms 02-04 08:18:38.760: DEBUG/dalvikvm(6709): GC freed 8309 objects / 545032 bytes in 36ms 02-04 08:18:39.270: DEBUG/dalvikvm(1129): GC freed 6958 objects / 278352 bytes in 107ms 02-04 08:18:39.970: DEBUG/dalvikvm(22167): GC freed 2915 objects / 560312 bytes in 38ms 02-04 08:18:41.260: DEBUG/dalvikvm(6184): GC freed 373 objects / 26152 bytes in 205ms 02-04 08:18:42.780: DEBUG/dalvikvm(6709): GC freed 7212 objects / 447696 bytes in 36ms 02-04 08:18:43.160: DEBUG/dalvikvm(22167): GC freed 3106 objects / 561824 bytes in 39ms 02-04 08:18:46.310: DEBUG/dalvikvm(22167): GC freed 3110 objects / 564080 bytes in 45ms 02-04 08:18:46.650: DEBUG/dalvikvm(6709): GC freed 7508 objects / 468832 bytes in 36ms 02-04 08:18:48.820: DEBUG/dalvikvm(31712): GC freed 13795 objects / 828232 bytes in 203ms 02-04 08:18:49.040: DEBUG/dalvikvm(1129): GC freed 6918 objects / 276224 bytes in 109ms 02-04 08:18:49.640: DEBUG/dalvikvm(22167): GC freed 2952 objects / 562168 bytes in 37ms 02-04 08:18:50.630: DEBUG/dalvikvm(6709): GC freed 8332 objects / 549680 bytes in 35ms 02-04 08:18:52.770: DEBUG/dalvikvm(22167): GC freed 3108 objects / 563192 bytes in 37ms 02-04 08:18:54.400: DEBUG/dalvikvm(6709): GC freed 7509 objects / 469016 bytes in 35ms 02-04 08:18:55.900: DEBUG/dalvikvm(22167): GC freed 3121 objects / 572920 bytes in 38ms 02-04 08:18:58.150: DEBUG/dalvikvm(6709): GC freed 7408 objects / 465456 bytes in 35ms 02-04 08:18:58.710: DEBUG/dalvikvm(1129): GC freed 6908 objects / 276440 bytes in 107ms 02-04 08:18:59.190: DEBUG/dalvikvm(22167): GC freed 3160 objects / 563144 bytes in 38ms 02-04 08:19:02.080: DEBUG/dalvikvm(6709): GC freed 7436 objects / 468040 bytes in 36ms 02-04 08:19:02.380: DEBUG/dalvikvm(22167): GC freed 3104 objects / 557600 bytes in 39ms 02-04 08:19:05.050: DEBUG/dalvikvm(22167): GC freed 2860 objects / 570072 bytes in 35ms 02-04 08:19:05.810: DEBUG/dalvikvm(6709): GC freed 7508 objects / 469080 bytes in 35ms 02-04 08:19:06.500: DEBUG/skia(22167): --- decoder->decode returned false 02-04 08:19:07.960: DEBUG/dalvikvm(22167): GC freed 2747 objects / 520008 bytes in 36ms 02-04 08:19:08.180: DEBUG/dalvikvm(1129): GC freed 7866 objects / 317304 bytes in 107ms 02-04 08:19:09.540: DEBUG/dalvikvm(6709): GC freed 8220 objects / 539688 bytes in 36ms 02-04 08:19:10.810: DEBUG/dalvikvm(22167): GC freed 2898 objects / 596824 bytes in 37ms 02-04 08:19:13.360: DEBUG/dalvikvm(22167): GC freed 2503 objects / 398936 bytes in 35ms 02-04 08:19:13.370: INFO/dalvikvm-heap(22167): Grow heap (frag case) to 5.029MB for 570264-byte allocation 02-04 08:19:13.400: DEBUG/dalvikvm(22167): GC freed 702 objects / 24976 bytes in 31ms 02-04 08:19:13.400: DEBUG/skia(22167): --- decoder->decode returned false 02-04 08:19:13.540: DEBUG/dalvikvm(6709): GC freed 7481 objects / 466544 bytes in 36ms 02-04 08:19:15.600: DEBUG/WifiService(1129): got ACTION_DEVICE_IDLE 02-04 08:19:15.960: INFO/wpa_supplicant(2522): CTRL-EVENT-DRIVER-STATE STOPPED 02-04 08:19:15.960: VERBOSE/WifiMonitor(1129): Event [CTRL-EVENT-DRIVER-STATE STOPPED] 02-04 08:19:17.270: DEBUG/dalvikvm(22167): GC freed 2372 objects / 1266992 bytes in 36ms 02-04 08:19:17.520: DEBUG/dalvikvm(6709): GC freed 7996 objects / 519128 bytes in 37ms 02-04 08:19:18.150: DEBUG/dalvikvm(1129): GC freed 7110 objects / 285032 bytes in 108ms 02-04 08:19:20.460: DEBUG/dalvikvm(22167): GC freed 3327 objects / 565264 bytes in 36ms 02-04 08:19:21.250: DEBUG/dalvikvm(6709): GC freed 7632 objects / 486024 bytes in 37ms 02-04 08:19:26.470: DEBUG/dalvikvm(31774): GC freed 345 objects / 16160 bytes in 96ms 02-04 08:19:30.423: WARN/System.err(22536): java.lang.Exception: You must call com.mercuryintermedia.productconfiguration.initialize() first 02-04 08:19:30.423: WARN/System.err(22536): at com.mercuryintermedia.ProductConfiguration.getProductName(ProductConfiguration.java:136) 02-04 08:19:30.423: WARN/System.err(22536): at com.mercuryintermedia.api.rest.Item.getPublishingContainersItems(Item.java:15) 02-04 08:19:30.423: WARN/System.err(22536): at com.mercuryintermedia.mflow.ContainerHelper.getContainerFromServer(ContainerHelper.java:68) 02-04 08:19:30.423: WARN/System.err(22536): at com.mercuryintermedia.mflow.ContainerHelper.run(ContainerHelper.java:46) 02-04 08:20:05.280: DEBUG/dalvikvm(1813): GC freed 741 objects / 36840 bytes in 91ms 02-04 08:20:23.580: DEBUG/WifiService(1129): ACTION_BATTERY_CHANGED pluggedType: 2 02-04 08:20:30.423: WARN/System.err(22536): java.lang.Exception: You must call com.mercuryintermedia.productconfiguration.initialize() first 02-04 08:20:30.423: WARN/System.err(22536): at com.mercuryintermedia.ProductConfiguration.getProductName(ProductConfiguration.java:136) 02-04 08:20:30.423: WARN/System.err(22536): at com.mercuryintermedia.api.rest.Item.getPublishingContainersItems(Item.java:15) 02-04 08:20:30.423: WARN/System.err(22536): at com.mercuryintermedia.mflow.ContainerHelper.getContainerFromServer(ContainerHelper.java:68) 02-04 08:20:30.423: WARN/System.err(22536): at com.mercuryintermedia.mflow.ContainerHelper.run(ContainerHelper.java:46) 02-04 08:20:53.970: INFO/FastDormancyManager(1129): Fast Dormant executed. ExecuteCount:2683 NonExecuteCount:25773 I really hope you can help me.

    Read the article

  • How to ensure that a member variable is initialized before calling a class method

    - by Omkar Ekbote
    There's a class with a parametrized constructor that initializes a member variable. All public methods of the class then use this member variable to do something. I want to ensure that the caller always creates an object using the parametrized constructor (there is also a setter for this member variable) and then call that object's methods. In essence, it should be impossible for the caller to call any method without setting a value to the member variable (either by using the parametrized constructor or the setter). Currently, a caller can simply make an object using the default constructor and then call that object's method - I want to avoid checking whether or not the member variable is set in each and every one of the 20-odd methods of the class (and throw an exception if it is not). Though a runtime solution is acceptable (better than the one I mentioned above); a compile-time solution is preferable so that any developer will not be allowed to make that mistake and then waste hours debuggging it!

    Read the article

  • Static Member Variables of the Same Class in C++

    - by helixed
    I'm trying to create a class which contains a static pointer to an instance of itself. Here's an example: A.h: #include <iostream> #ifndef _A_H #define _A_H class A { static A * a; }; A * a = NULL; #endif However, when I include A.h in another file, such as: #include "A.h" class B { }; I get the following error: ld: duplicate symbol _a in /Users/helixed/Desktop/Example/build/Example.build/Debug/Example.build/Objects-normal/x86_64/B.o and /Users/helixed/Desktop/Example/build/Example.build/Debug/Examplebuild/Objects-normal/x86_64/A.o I'm using the Xcode default compiler on Mac OS X Snow Leopard. Thanks, helixed

    Read the article

  • Access reading error when using class member variable

    - by bsg
    Hi, I have a class with private member variables declared in a header file. In my constructor, I pass in some filenames and create other objects using those names. This works fine. When I try to add another member variable, however, and initialize it in the constructor, I get an access reading violation. I sent the code to someone else and it works fine on his computer. Any idea what could be wrong? Here is the offending code: The .h file: class QUERYMANAGER { INDEXCACHE *cache; URLTABLE *table; SNIPPET *snip; int* iquery[MAX_QUERY_LENGTH]; int* metapointers[MAX_QUERY_LENGTH]; int blockpointers[MAX_QUERY_LENGTH]; int docpositions[MAX_QUERY_LENGTH]; int numberdocs[MAX_QUERY_LENGTH]; int frequencies[MAX_QUERY_LENGTH]; int docarrays[MAX_QUERY_LENGTH][256]; int qsize; public: QUERYMANAGER(); QUERYMANAGER(char *indexfname, char *btfname, char *urltablefname, char *snippetfname, char *snippetbtfname); ~QUERYMANAGER(); This is the .cpp file: #include "querymanagernew.h" #include "snippet.h" using namespace std; QUERYMANAGER::QUERYMANAGER(char *indexfname, char *btfname, char *urltablefname, char *snippetfname, char *snippetbtfname){ cache = new INDEXCACHE(indexfname, btfname); table = new URLTABLE(urltablefname); snip = new SNIPPET(snippetfname, snippetbtfname); //this is where the error occurs qsize = 0; } I am totally at a loss as to what is causing this - any ideas? Thanks, bsg

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >