Search Results

Search found 450 results on 18 pages for 'mujahid ali'.

Page 2/18 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • how to send the value of "text box" even if it is grayed out/disabled in HTML?

    - by mujahid
    I m doing like this in java script : document.getElementById(XYZ).value = '32768'; document.getElementById(ABC).value = '32768 '; document.getElementById(XYZ).disabled = true; document.getElementById(ABC).disabled = true; when i m pressing submit it gives "0" as value. BUT i want to retrieve above values. @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ readOnly is an option but it changes the FONT COLOUR from gray to black, but i want gray colored text in readOnly textbox any help!!!! thanx !!!

    Read the article

  • apache htaccess rewrite rules make redirection loop

    - by Ali
    Hi guys, Have a very strange problem with Apache .htaccess URL Rewriting and Redirection. Here's my setup: I have a zend application with a single point of entry (index.php) directly under my apache document root (call this the "public" folder). I also have all other public files (images, js, css, etc.) under the public folder. Here, I also have a wordpress blog under the "blog" folder. There's an empty test folder too The Problem When I go to mydomain.com/blog, I get redirected to http://www.theredpin.com/blog (correctly), then to http://www.theredpin.com/blog/ (just with an extra / at end), finally to http://theredpin.com/blog/ -- and we're back where we started. The loop continues. What I don't understand is why would wordpress try to remove the www? I'm guessing it's wordpress because my empty test folder acts just fine! PLEASE HELP. I"M REALLY DESPERATE :( Thank you very much Other things that happen: When I go to mydomain.com, i correctly get redirected to www.mydomain.com When I go to www.mydomain.com, i correctly stay where I am When I go to www.mydomain.com/test or mydomain.com/test, behaviour is correct. Setup So my .htaccess file does the following: If there's no www., then add it and do a 301 redirect. Here's the code I use RewriteCond %{HTTP_HOST} ^mydomain.com [NC] RewriteRule ^(.*)$ http://www.mydomain.com/$1 [L,R=301] If the request is NOT for a resource (image, etc.), or the blog, then load zend application by rewriting to index.php RewriteRule !((^blog(/)?.*$)|(.(js|ico|gif|jpg|jpeg|png|css|cur|JPG|html|txt))$) index.php Thanks again for all your help!!! Ali

    Read the article

  • JQuery Thickbox - Can't get it to display

    - by Ali
    Hi All, I am using JQuery for the first time today. I can't make it to work (It simple doesnt show up). I want to display inline content using Thickbox (Eventually I will be displaying a PDF in an iframe). I have included all the javascript and css files etc. and referenced them as in code below. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs" Inherits="JQueryLearning._Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title>Untitled Page</title> <script src="Scripts/thickbox.js" type="text/javascript"></script> <script src="Scripts/thickbox-compressed.js" type="text/javascript"></script> <script src="Scripts/jquery-1.4.2.min.js" type="text/javascript"></script> <link href="App_Themes/Theme/Css/thickbox.css" rel="stylesheet" type="text/css" /> </head> <body> <form id="form1" runat="server"> <div> <a href="#TB_inline?height=50&width=300&inlineId=hiddenModalContent" title="Simple Demo" class="thickbox">Show hidden content.</a> <div id="hiddenModalContent" style="display: none;"> <div style="text-align: center;"> Hello ThickBox!</div> </div> </div> </form> </body> </html> Am I missing something? Thanks, Ali

    Read the article

  • Cannot cause $(this).find("a").click(); to fire using JQuery

    - by Ali
    Hi Everyone, I have a small question which should be very easy for the jquery experts out there. I am trying to follow http://aspdotnetcodebook.blogspot.com/2010/01/page-languagec-autoeventwireuptrue.html to be able to perform an action on gridview row double click. I can redirect to another page fine (as shown in the example) but I cannot cause the $(this).find("a").click(); to fire. Below is my GridView markup. <asp:GridView ID="gvCustomers" runat="server" DataSourceID="odsCustomers" CssClass="datagrid" GridLines="None" AutoGenerateColumns="False" DataKeyNames="Customer_ID" PageSize="3" AllowPaging="True" AllowSorting="True" OnRowCommand="gvCustomers_RowCommand" OnRowDataBound="gvCustomers_RowDataBound"> <Columns> <asp:BoundField DataField="Customer_ID" HeaderText="ID" ReadOnly="true" Visible="false" /> <asp:BoundField DataField="Customer_FirstName" HeaderText="First Name" ReadOnly="true" /> <asp:BoundField DataField="Customer_LastName" HeaderText="Last Name" ReadOnly="true" /> <asp:BoundField DataField="Customer_Email" HeaderText="Email" ReadOnly="true" /> <asp:BoundField DataField="Customer_Mobile" HeaderText="Mobile" ReadOnly="true" /> <asp:TemplateField> <ItemTemplate> <asp:LinkButton ID="lnkButton" runat="server" CommandName="showVehicles" CommandArgument='<%# Eval("Customer_ID") %>' ></asp:LinkButton> </ItemTemplate> </asp:TemplateField> </Columns> <EmptyDataTemplate> Sorry No Record Found. </EmptyDataTemplate> </asp:GridView> I just cant make it work as the author has suggested: /* or you could have a hidden LinkButton in the row (Text="" or not set) that you could trigger. Make sure you set the CommandName="Something" and CommandArgument="RecordId" */ on the OnCommand of linkButton, I have my server side method which I would like to fire. Any ideas will be most apprecited. Thanks, Ali

    Read the article

  • how to combine widget webapp framework with SEO-friendly CSS and JS files

    - by Ali
    Hi guys, I'm writing a webapp using Zend framework and a homebrew widget system. Every widget has a controller and can choose to render one of many views if it chooses. This really helps us modularize and reconfigure and reuse the widgets anywhere on the site. The Problem is that the views of each widget contain their own JS and CSS code, which leads to very messy HTML code when the whole page is put together. You get pockets of style and script tags everywhere. This is bad for a lot of different reasons as I'm sure you know, but it has a profound effect on our SEO as well. Several solutions that I've been able to come up with: Separate the CSS and JS of every view of every widget into its own file - this has serious drawbacks for load times (many more resources have to be loaded separately) and it makes coding very difficult as now you have to have 3-4 files open just to edit a widget. combine the all the widget CSS into a single file (same with JS) - would also lead to a massive load when someone enters the site, mixes up the CSS and the JS for all widgets so it's harder to keep track of them, and other problems that I'm sure you can think of. Create a system that uses method 1 (separate CSS and JS for every widget), when delivering the page, stitches all CSS and JS together. This obviously needs more processing time and of course the creation of such a system, etc. My Question is what you guys think of these solutions or if there are pre-existing solutions that you know of (or any tech that might help) solve this problem. I really appreciate all of your thoughts and comments!! Thanks guys, Ali

    Read the article

  • Scala programming language for beginners, is it a legend?

    - by ali
    Hi every one, I am Ali from Saudi Arabia. undoubtedly, Scala is one of the best programming language for any programmer to learn, but there is "good" problems that is faced especially by beginners, and what seems frustrating that these problems won't solve soon, so as a beginner and on behalf of beginners let me raise these "objective" questions: 1- why scala has no effective and stable development platform, in fact, it suffers many problems with Eclipse, Netbeat, and Intellij. 2- although I have looked for a clear,easy, and understandable explanation of how to get started with Scala, but fortunately, there was no article or guide that deserves to spend the time I have spent to read it. nobody could tell you clear steps that fit you as a beginner who wants to start his"HELLO WORLD" with Scala, while all other languages have its "HELLO WORLD" guides and books. thank you for your time, be sure that you read notes below. 1- I have no experience in programming language before. 2- don't tell me "not to begin with scala", simply, because I will do. 3- OS is windows vista home premium. 4- I hate excuses, such as Scala is new language......etc

    Read the article

  • Creating a top-down spaceship

    - by Ali
    I'm creating a top-down 2D space game in LIBGDX for android. When spaceship is going forward it will look like this: when it goes upward I want to change it's direction with a nice animation so it seems like a real spaceship. A between frame would be like this: I have rendered the spaceship in different Z axis degrees from ship0 to ship90. Calculating rotation on XY plane wouldn't be so hard, but I don't know how to calculate the rotation on Z axis so I can choose the right sprite to use.

    Read the article

  • Returning Identity Value in SQL Server: @@IDENTITY Vs SCOPE_IDENTITY Vs IDENT_CURRENT

    - by Arefin Ali
    We have some common misconceptions on returning the last inserted identity value from tables. To return the last inserted identity value we have options to use @@IDENTITY or SCOPE_IDENTITY or IDENT_CURRENT function depending on the requirement but it will be a real mess if anybody uses anyone of these functions without knowing exact purpose. So here I want to share my thoughts on this. @@IDENTITY, SCOPE_IDENTITY and IDENT_CURRENT are almost similar functions in terms of returning identity value. They all return values that are inserted into an identity column. Earlier in SQL Server 7 we used to use @@IDENTITY to return the last inserted identity value because those days we don’t have functions like SCOPE_IDENTITY or IDENT_CURRENT but now we have these three functions. So let’s check out which one responsible for what. IDENT_CURRENT returns the last inserted identity value in a particular table. It never depends on a connection or the scope of the insert statement. IDENT_CURRENT function takes a table name as parameter. Here is the syntax to get the last inserted identity value in a particular table using IDENT_CURRENT function. SELECT IDENT_CURRENT('Employee') Both the @@IDENTITY and SCOPE_IDENTITY return the last inserted identity value created in any table in the current session. But there is little difference between these two i.e. SCOPE_IDENTITY returns value inserted only within the current scope whereas @@IDENTITY is not limited to any particular scope. Here are the syntaxes to get the last inserted identity value using these functions SELECT @@IDENTITY SELECT SCOPE_IDENTITY() Now let’s have a look at the following example. Suppose I have two tables called Employee and EmployeeLog. CREATE TABLE Employee ( EmpId NUMERIC(18, 0) IDENTITY(1,1) NOT NULL, EmpName VARCHAR(100) NOT NULL, EmpSal FLOAT NOT NULL, DateOfJoining DATETIME NOT NULL DEFAULT(GETDATE()) ) CREATE TABLE EmployeeLog ( EmpId NUMERIC(18, 0) IDENTITY(1,1) NOT NULL, EmpName VARCHAR(100) NOT NULL, EmpSal FLOAT NOT NULL, DateOfJoining DATETIME NOT NULL DEFAULT(GETDATE()) ) I have an insert trigger defined on the table Employee which inserts a new record in the EmployeeLog whenever a record insert in the Employee table. So Suppose I insert a new record in the Employee table using following statement: INSERT INTO Employee (EmpName,EmpSal) VALUES ('Arefin','1') The trigger will be fired automatically and insert a record in EmployeeLog. Here the scope of the insert statement and the trigger are different. In this situation if I retrieve last inserted identity value using @@IDENTITY, it will simply return the identity value from the EmployeeLog because it’s not limited to a particular scope. Now if I want to get the Employee table’s identity value then I need to use SCOPE_IDENTITY in this scenario. So the moral is always use SCOPE_IDENTITY to return the identity value of a recently created record in a sql statement or stored procedure. It’s safe and ensures bug free code.

    Read the article

  • Returning Identity Value in SQL Server: @@IDENTITY Vs SCOPE_IDENTITY Vs IDENT_CURRENT

    - by Arefin Ali
    We have some common misconceptions on returning the last inserted identity value from tables. To return the last inserted identity value we have options to use @@IDENTITY or SCOPE_IDENTITY or IDENT_CURRENT function depending on the requirement but it will be a real mess if anybody uses anyone of these functions without knowing exact purpose. So here I want to share my thoughts on this. @@IDENTITY, SCOPE_IDENTITY and IDENT_CURRENT are almost similar functions in terms of returning identity value. They all return values that are inserted into an identity column. Earlier in SQL Server 7 we used to use @@IDENTITY to return the last inserted identity value because those days we don’t have functions like SCOPE_IDENTITY or IDENT_CURRENT but now we have these three functions. So let’s check out which one responsible for what. IDENT_CURRENT returns the last inserted identity value in a particular table. It never depends on a connection or the scope of the insert statement. IDENT_CURRENT function takes a table name as parameter. Here is the syntax to get the last inserted identity value in a particular table using IDENT_CURRENT function. SELECT IDENT_CURRENT('Employee') Both the @@IDENTITY and SCOPE_IDENTITY return the last inserted identity value created in any table in the current session. But there is little difference between these two i.e. SCOPE_IDENTITY returns value inserted only within the current scope whereas @@IDENTITY is not limited to any particular scope. Here are the syntaxes to get the last inserted identity value using these functions SELECT @@IDENTITYSELECT SCOPE_IDENTITY() Now let’s have a look at the following example. Suppose I have two tables called Employee and EmployeeLog. CREATE TABLE Employee( EmpId NUMERIC(18, 0) IDENTITY(1,1) NOT NULL, EmpName VARCHAR(100) NOT NULL, EmpSal FLOAT NOT NULL, DateOfJoining DATETIME NOT NULL DEFAULT(GETDATE()))CREATE TABLE EmployeeLog( EmpId NUMERIC(18, 0) IDENTITY(1,1) NOT NULL, EmpName VARCHAR(100) NOT NULL, EmpSal FLOAT NOT NULL, DateOfJoining DATETIME NOT NULL DEFAULT(GETDATE())) I have an insert trigger defined on the table Employee which inserts a new record in the EmployeeLog whenever a record insert in the Employee table. So Suppose I insert a new record in the Employee table using following statement: INSERT INTO Employee (EmpName,EmpSal) VALUES ('Arefin','1') The trigger will be fired automatically and insert a record in EmployeeLog. Here the scope of the insert statement and the trigger are different. In this situation if I retrieve last inserted identity value using @@IDENTITY, it will simply return the identity value from the EmployeeLog because it’s not limited to a particular scope. Now if I want to get the Employee table’s identity value then I need to use SCOPE_IDENTITY in this scenario. So the moral is always use SCOPE_IDENTITY to return the identity value of a recently created record in a sql statement or stored procedure. It’s safe and ensures bug free code.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Parent Objects

    - by Ali Bahrami
    Support for Parent Objects was added in Solaris 11 Update 1. The following material is adapted from the PSARC arc case, and the Solaris Linker and Libraries Manual. A "plugin" is a shared object, usually loaded via dlopen(), that is used by a program in order to allow the end user to add functionality to the program. Examples of plugins include those used by web browsers (flash, acrobat, etc), as well as mdb and elfedit modules. The object that loads the plugin at runtime is called the "parent object". Unlike most object dependencies, the parent is not identified by name, but by its status as the object doing the load. Historically, building a good plugin is has been more complicated than it should be: A parent and its plugin usually share a 2-way dependency: The plugin provides one or more routines for the parent to call, and the parent supplies support routines for use by the plugin for things like memory allocation and error reporting. It is a best practice to build all objects, including plugins, with the -z defs option, in order to ensure that the object specifies all of its dependencies, and is self contained. However: The parent is usually an executable, which cannot be linked to via the usual library mechanisms provided by the link editor. Even if the parent is a shared object, which could be a normal library dependency to the plugin, it may be desirable to build plugins that can be used by more than one parent, in which case embedding a dependency NEEDED entry for one of the parents is undesirable. The usual way to build a high quality plugin with -z defs uses a special mapfile provided by the parent. This mapfile defines the parent routines, specifying the PARENT attribute (see example below). This works, but is inconvenient, and error prone. The symbol table in the parent already describes what it makes available to plugins — ideally the plugin would obtain that information directly rather than from a separate mapfile. The new -z parent option to ld allows a plugin to link to the parent and access the parent symbol table. This differs from a typical dependency: No NEEDED record is created. The relationship is recorded as a logical connection to the parent, rather than as an explicit object name However, it operates in the same manner as any other dependency in terms of making symbols available to the plugin. When the -z parent option is used, the link-editor records the basename of the parent object in the dynamic section, using the new tag DT_SUNW_PARENT. This is an informational tag, which is not used by the runtime linker to locate the parent, but which is available for diagnostic purposes. The ld(1) manpage documentation for the -z parent option is: -z parent=object Specifies a "parent object", which can be an executable or shared object, against which to link the output object. This option is typically used when creating "plugin" shared objects intended to be loaded by an executable at runtime via the dlopen() function. The symbol table from the parent object is used to satisfy references from the plugin object. The use of the -z parent option makes symbols from the object calling dlopen() available to the plugin. Example For this example, we use a main program, and a plugin. The parent provides a function named parent_callback() for the plugin to call. The plugin provides a function named plugin_func() to the parent: % cat main.c #include <stdio.h> #include <dlfcn.h> #include <link.h> void parent_callback(void) { printf("plugin_func() has called parent_callback()\n"); } int main(int argc, char **argv) { typedef void plugin_func_t(void); void *hdl; plugin_func_t *plugin_func; if (argc != 2) { fprintf(stderr, "usage: main plugin\n"); return (1); } if ((hdl = dlopen(argv[1], RTLD_LAZY)) == NULL) { fprintf(stderr, "unable to load plugin: %s\n", dlerror()); return (1); } plugin_func = (plugin_func_t *) dlsym(hdl, "plugin_func"); if (plugin_func == NULL) { fprintf(stderr, "unable to find plugin_func: %s\n", dlerror()); return (1); } (*plugin_func)(); return (0); } % cat plugin.c #include <stdio.h> extern void parent_callback(void); void plugin_func(void) { printf("parent has called plugin_func() from plugin.so\n"); parent_callback(); } Building this in the traditional manner, without -zdefs: % cc -o main main.c % cc -G -o plugin.so plugin.c % ./main ./plugin.so parent has called plugin_func() from plugin.so plugin_func() has called parent_callback() As noted above, when building any shared object, the -z defs option is recommended, in order to ensure that the object is self contained and specifies all of its dependencies. However, the use of -z defs prevents the plugin object from linking due to the unsatisfied symbol from the parent object: % cc -zdefs -G -o plugin.so plugin.c Undefined first referenced symbol in file parent_callback plugin.o ld: fatal: symbol referencing errors. No output written to plugin.so A mapfile can be used to specify to ld that the parent_callback symbol is supplied by the parent object. % cat plugin.mapfile $mapfile_version 2 SYMBOL_SCOPE { global: parent_callback { FLAGS = PARENT }; }; % cc -zdefs -Mplugin.mapfile -G -o plugin.so plugin.c However, the -z parent option to ld is the most direct solution to this problem, allowing the plugin to actually link against the parent object, and obtain the available symbols from it. An added benefit of using -z parent instead of a mapfile, is that the name of the parent object is recorded in the dynamic section of the plugin, and can be displayed by the file utility: % cc -zdefs -zparent=main -G -o plugin.so plugin.c % elfdump -d plugin.so | grep PARENT [0] SUNW_PARENT 0xcc main % file plugin.so plugin.so: ELF 32-bit LSB dynamic lib 80386 Version 1, parent main, dynamically linked, not stripped % ./main ./plugin.so parent has called plugin_func() from plugin.so plugin_func() has called parent_callback() We can also observe this in elfedit plugins on Solaris systems running Solaris 11 Update 1 or newer: % file /usr/lib/elfedit/dyn.so /usr/lib/elfedit/dyn.so: ELF 32-bit LSB dynamic lib 80386 Version 1, parent elfedit, dynamically linked, not stripped, no debugging information available Related Other Work The GNU ld has an option named --just-symbols that can be used in a similar manner: --just-symbols=filename Read symbol names and their addresses from filename, but do not relocate it or include it in the output. This allows your output file to refer symbolically to absolute locations of memory defined in other programs. You may use this option more than once. -z parent is a higher level operation aimed specifically at simplifying the construction of high quality plugins. Although it employs the same operation, it differs from --just symbols in 2 significant ways: There can only be one parent. The parent is recorded in the created object, and can be displayed by 'file', or other similar tools.

    Read the article

  • Tower defense game: Poison tower in fieldrunners dynamics

    - by Syed Ali Haider Abidi
    I had made a 2d tower defense game in unity3d. Done all the pathfinder, tower upgrading, cash stuff. Now the dynamics. Can one help me in making the dynamics of the paint tower.. Please remember as its a 2d game so I am working on spritesheets. This tower is more like the poison tower in fieldrunners. Fow now I have only one image which follows the enemy but it remains the same. But in fieldrunners it's more realistic -- it changes its direction when the enemies are on different angles.

    Read the article

  • Web Application Tasks Estimation

    - by Ali
    I know the answer depends on the exact project and its requirements but i am asking on the avarage % of the total time goes into the tasks of the web application development statistically from your own experiance. While developing a web application (database driven) How much % of time does each of the following activities usually takes: -- database creation & all related stored procedures -- server side development -- client side development -- layout settings and designing I know there are lots of great web application developers around here and each one of you have done fair amount of web development and as a result there could be an almost fixed percentage of time going to each of the above activities of web developments for standard projects Update : I am not expecting someone to tell me number of hours i am asking about the average percentage of time that goes on each of the activities as per your experience i.e. server side dev 50%, client side development 20% ,,,,, I repeat there will be lots of cases that differs from the standard depending on the exact requirments of each web application project but here i am asking about Avarage for standard (no special requirment) web project

    Read the article

  • How to turn on/off code modules?

    - by Safran Ali
    I am trying to run multiple sites using single code base and code base consist of the following module (i.e. classes) User module Q & A module Faq module and each class works on MVC pattern i.e. it consist of Entity class Helper class (i.e. static class) View (i.e. pages and controls) and let's say I have 2 sites site1.com and site2.com. And I am trying to achieve following functionality site1.com can have User, Q & A and Faq module up and running site2.com can have User and Q & A module live while Faq module is switched off but it can be turned-on if needed, so my query here is what is the best way to achieve such functionality Do I introduce a flag bit that I check on every page and control belonging to that module? It's more like CMS where you can turn on/off different features. I am trying to get my head around it, please provide me with an example or point out if I am taking the wrong approach.

    Read the article

  • How to install suggested packages in apt-get

    - by Alaa Ali
    EDIT: I solved my issue. I will answer my own question, but in 5 hours because I don't have permission now. I know the question has been asked before, but please hear me out. So I wanted to install screenlets. I ran sudo apt-get install screenlets, and this is what I got: The following extra packages will be installed: libart-2.0-2 libbonobo2-0 libbonobo2-common libbonoboui2-0 libbonoboui2-common libgnome2-0 libgnomecanvas2-0 libgnomecanvas2-common libgnomeui-0 libgnomeui-common libtidy-0.99-0 python-beautifulsoup python-evolution python-feedparser python-gmenu python-gnome2 python-numpy python-pyorbit python-rsvg python-tz python-utidylib screenlets-pack-basic Suggested packages: libbonobo2-bin python-gnome2-doc python-numpy-doc python-numpy-dbg python-nose python-dev gfortran python-pyorbit-dbg screenlets-pack-all python-dcop Recommended packages: python-numeric python-gnome2-extras The following NEW packages will be installed: libart-2.0-2 libbonobo2-0 libbonobo2-common libbonoboui2-0 libbonoboui2-common libgnome2-0 libgnomecanvas2-0 libgnomecanvas2-common libgnomeui-0 libgnomeui-common libtidy-0.99-0 python-beautifulsoup python-evolution python-feedparser python-gmenu python-gnome2 python-numpy python-pyorbit python-rsvg python-tz python-utidylib screenlets screenlets-pack-basic 0 upgraded, 23 newly installed, 0 to remove and 2 not upgraded. People say that Recommended packages are installed by default, but they are clearly not included in the NEW packages that will be installed above. I also decided to include the Suggested packages in the installation, so I ran sudo apt-get --install-suggests install screenlets instead, but I got a HUGE list of NEW packages that will be installed; that number is precisely 0 upgraded, 944 newly installed, 0 to remove and 2 not upgraded. Should'nt I be getting only around 10 extra packages?

    Read the article

  • Tower defence game poison tower in fieldrunners dynamics

    - by Syed Ali Haider Abidi
    I had made a 2d tower defence game in unity3d.done all the pathfinder tower upgrading cash stuff.now the dynamics. can one help me in making the dynamics of the paint tower..please remember as its a 2d game so i am working on spritesheets. This tower is more likely poison tower in fieldrunners.fow now i have only one image which follows the enemy but it remains the same but in fieldrunners its more realistic.it changes its direction when the enemies are on different angles.

    Read the article

  • How do I compile lbflow 1.1?

    - by Ali.A
    After using "sh ./configure" command, I encountered another error during lbflow package installation (a scientific one). The sequence of operations is here with error: ./configure --disable-gts sudo make [sudo] password for alireza: make all-recursive make[1]: Entering directory `/home/alireza/lbflow-1.1' Making all in src make[2]: Entering directory `/home/alireza/lbflow-1.1/src' source='lbflow.cpp' object='lbflow-lbflow.o' libtool=no \ DEPDIR=.deps depmode=none /bin/bash ../depcomp \ g++ -DHAVE_CONFIG_H -I. -I. -I.. -c -o lbflow-lbflow.o `test -f 'lbflow.cpp' || echo './'`lbflow.cpp **../depcomp: line 432: exec: g++: not found** **make[2]: *** [lbflow-lbflow.o] Error 127 make[2]: Leaving directory `/home/alireza/lbflow-1.1/src' make[1]: *** [all-recursive] Error 1 make[1]: Leaving directory `/home/alireza/lbflow-1.1' make: *** [all] Error 2** Do you have any idea to troubleshoot this problem? (And please notice that i have installed both g++ and gcc. it says g++: not found, but i have installed g++ from Ubuntu Software Center!)

    Read the article

  • Website development from scratch v/s web framework [duplicate]

    - by Ali
    This question already has an answer here: What should every programmer know about web development? 1 answer Do people develop websites from scratch when there are no particular requirements or they just pick up an existing web framework like Drupal, Joomla, WordPress, etc. The requirements are almost similar in most cases; if personal, it will be a blog or image gallery; if corporate, it will be information pages that can be updated dynamically along with news section. And similarly, there are other requirements which can be fulfilled by WordPress, Joomla or Drupal. So, Is it advisable to develop a website from scratch and why ? Update: to explain more as got commentt from @Raynos (thanks for comment and helping me clearify the question), the question is about: Should web sites be developed and designed fully from scratch? Should they be done by using framework like Spring, Zend, CakePHP? Should they be done using CMS like Joomla, WordPress, Drupal (people in east are using these as frameworks)?

    Read the article

  • Getting bank account information from a bank and displaying on a website [closed]

    - by Ali Syed
    Hello I am looking for a way to get bank account information (transactions and balance) from a financial institution and display it on a website. The question is vague intentionally.... Everything is open. I haven't chosen a bank, serverside technology or front end technology. The idea is to have a script run automatically periodically (once or twice a day) and get the latest account information from the bank server automatically. Probably something in the direction of OFX (Open financial exchange), HBCI (home banking c.. interface), fnts or something like it. Even working over a closed source API is not out of question: Wesabe or Mint or something. Paypal is not an option because it won't work in India or Pakistan. cheers *Explanation: I have an exclusive small club. My members make irregular payments. These transactions should be online for all MEMBERS (with login) to see *

    Read the article

  • Need help understanding a recursion example in Python

    - by Ali Mustafa
    Python is my first programming language, and I'm learning it from "How to Think Like a Computer Scientist". In Chapter 5 the author gives the following example on recursion: def factorial(n): if n == 0: return 1 else: recurse = factorial(n-1) result = n * recurse return result I understand that if n = 3, then the function will execute the second branch. But what I don't understand is what happens when the function enters the second branch. Can someone explain it to me?

    Read the article

  • Which programming language for text editing?

    - by Ali
    I need a programming language for text editing and processing (replace, formatting, regex, string comparison, word processing, text analysis, etc). Which programming language is more powerful and has more functions for this purpose? Since I work PHP for my web projects, I currently use PHP; but the fact is that PHP is a scripting language for web applications, my current project is offline. I am curious if other programming languages such as Perl, Python, C, C++, Java, etc have more functionality for this purpose, and worth of shifting the project?

    Read the article

  • How to write a very basic compiler [closed]

    - by Ali
    Possible Duplicate: Best Online resources to learn about Compilers? What would be the best way to learn about compilers, and executable formats? Advanced compilers like gcc compile codes into machine readable files according to the language in which the code has been written (e.g. C, C++, etc). In fact, they interpret the meaning of each codes according to library and functions of the corresponding languages. Correct me if I'm wrong. I wish to better understand compilers by writing a very basic compiler (probably in C) to compile a static file (e.g. Hello World in a text file). I tried some tutorials and books, but all of them are for practical cases. They deal with compiling dynamic codes with meanings connected with the corresponding language. How can I write a basic compiler to convert a static text into a machine readable file? The next step will be introducing variables into the compiler; imagine that we want to write a compiler which compile only some functions of a language. Introducing practical tutorials and resources is highly appreciated :-)

    Read the article

  • How to create a Remote Desktop Server on Ubuntu Server per user

    - by Ali Akdurak
    I want to create an old style server - thinclient/terminal kind of work with ubuntu server 12.04. I was trying to use x11vnc to serve remote desktops to users but from what I have understood [after couple of hours] it directly serves the x display of only one user. I want to have something like windows 2008 login where every user connects and logins to his own desktop and has his own working environment. Is it possible with ubuntu server ? Thank you

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >