Search Results

Search found 20040 results on 802 pages for 'part'.

Page 2/802 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Developing custom MBeans to manage J2EE Applications (Part III)

    - by philippe Le Mouel
    This is the third and final part in a series of blogs, that demonstrate how to add management capability to your own application using JMX MBeans. In Part I we saw: How to implement a custom MBean to manage configuration associated with an application. How to package the resulting code and configuration as part of the application's ear file. How to register MBeans upon application startup, and unregistered them upon application stop (or undeployment). How to use generic JMX clients such as JConsole to browse and edit our application's MBean. In Part II we saw: How to add localized descriptions to our MBean, MBean attributes, MBean operations and MBean operation parameters. How to specify meaningful name to our MBean operation parameters. We also touched on future enhancements that will simplify how we can implement localized MBeans. In this third and last part, we will re-write our MBean to simplify how we added localized descriptions. To do so we will take advantage of the functionality we already described in part II and that is now part of WebLogic 10.3.3.0. We will show how to take advantage of WebLogic's localization support to localize our MBeans based on the client's Locale independently of the server's Locale. Each client will see MBean descriptions localized based on his/her own Locale. We will show how to achieve this using JConsole, and also using a sample programmatic JMX Java client. The complete code sample and associated build files for part III are available as a zip file. The code has been tested against WebLogic Server 10.3.3.0 and JDK6. To build and deploy our sample application, please follow the instruction provided in Part I, as they also apply to part III's code and associated zip file. Providing custom descriptions take II In part II we localized our MBean descriptions by extending the StandardMBean class and overriding its many getDescription methods. WebLogic 10.3.3.0 similarly to JDK 7 can automatically localize MBean descriptions as long as those are specified according to the following conventions: Descriptions resource bundle keys are named according to: MBean description: <MBeanInterfaceClass>.mbean MBean attribute description: <MBeanInterfaceClass>.attribute.<AttributeName> MBean operation description: <MBeanInterfaceClass>.operation.<OperationName> MBean operation parameter description: <MBeanInterfaceClass>.operation.<OperationName>.<ParameterName> MBean constructor description: <MBeanInterfaceClass>.constructor.<ConstructorName> MBean constructor parameter description: <MBeanInterfaceClass>.constructor.<ConstructorName>.<ParameterName> We also purposely named our resource bundle class MBeanDescriptions and included it as part of the same package as our MBean. We already followed the above conventions when creating our resource bundle in part II, and our default resource bundle class with English descriptions looks like: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "MBean used to manage persistent application properties"}, {"PropertyConfigMXBean.attribute.Properties", "Properties associated with the running application"}, {"PropertyConfigMXBean.operation.setProperty", "Create a new property, or change the value of an existing property"}, {"PropertyConfigMXBean.operation.setProperty.key", "Name that identify the property to set."}, {"PropertyConfigMXBean.operation.setProperty.value", "Value for the property being set"}, {"PropertyConfigMXBean.operation.getProperty", "Get the value for an existing property"}, {"PropertyConfigMXBean.operation.getProperty.key", "Name that identify the property to be retrieved"} }; } } We have now also added a resource bundle with French localized descriptions: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions_fr extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "Manage proprietes sauvegarde dans un fichier disque."}, {"PropertyConfigMXBean.attribute.Properties", "Proprietes associee avec l'application en cour d'execution"}, {"PropertyConfigMXBean.operation.setProperty", "Construit une nouvelle proprietee, ou change la valeur d'une proprietee existante."}, {"PropertyConfigMXBean.operation.setProperty.key", "Nom de la propriete dont la valeur est change."}, {"PropertyConfigMXBean.operation.setProperty.value", "Nouvelle valeur"}, {"PropertyConfigMXBean.operation.getProperty", "Retourne la valeur d'une propriete existante."}, {"PropertyConfigMXBean.operation.getProperty.key", "Nom de la propriete a retrouver."} }; } } So now we can just remove the many getDescriptions methods from our MBean code, and have a much cleaner: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Map; import java.util.HashMap; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig extends StandardMBean implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; private static Map operationsParamNames_ = null; static { operationsParamNames_ = new HashMap(); operationsParamNames_.put("setProperty", new String[] {"key", "value"}); operationsParamNames_.put("getProperty", new String[] {"key"}); } public PropertyConfig(String relativePath) throws Exception { super(PropertyConfigMXBean.class , true); props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} protected String getParameterName(MBeanOperationInfo op, MBeanParameterInfo param, int sequence) { return operationsParamNames_.get(op.getName())[sequence]; } } The only reason we are still extending the StandardMBean class, is to override the default values for our operations parameters name. If this isn't a concern, then one could just write the following code: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; public PropertyConfig(String relativePath) throws Exception { props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} } Note: The above would also require changing the operations parameters name in the resource bundle classes. For instance: PropertyConfigMXBean.operation.setProperty.key would become: PropertyConfigMXBean.operation.setProperty.p0 Client based localization When accessing our MBean using JConsole started with the following command line: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -debug We see that our MBean descriptions are localized according to the WebLogic's server Locale. English in this case: Note: Consult Part I for information on how to use JConsole to browse/edit our MBean. Now if we specify the client's Locale as part of the JConsole command line as follow: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -J-Dweblogic.management.remote.locale=fr-FR -debug We see that our MBean descriptions are now localized according to the specified client's Locale. French in this case: We use the weblogic.management.remote.locale system property to specify the Locale that should be associated with the cient's JMX connections. The value is composed of the client's language code and its country code separated by the - character. The country code is not required, and can be omitted. For instance: -Dweblogic.management.remote.locale=fr We can also specify the client's Locale using a programmatic client as demonstrated below: package blog.wls.jmx.appmbean.client; import javax.management.MBeanServerConnection; import javax.management.ObjectName; import javax.management.MBeanInfo; import javax.management.remote.JMXConnector; import javax.management.remote.JMXServiceURL; import javax.management.remote.JMXConnectorFactory; import java.util.Hashtable; import java.util.Set; import java.util.Locale; public class JMXClient { public static void main(String[] args) throws Exception { JMXConnector jmxCon = null; try { JMXServiceURL serviceUrl = new JMXServiceURL( "service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime"); System.out.println("Connecting to: " + serviceUrl); // properties associated with the connection Hashtable env = new Hashtable(); env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote"); String[] credentials = new String[2]; credentials[0] = "weblogic"; credentials[1] = "weblogic"; env.put(JMXConnector.CREDENTIALS, credentials); // specifies the client's Locale env.put("weblogic.management.remote.locale", Locale.FRENCH); jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env); jmxCon.connect(); MBeanServerConnection con = jmxCon.getMBeanServerConnection(); Set mbeans = con.queryNames( new ObjectName( "blog.wls.jmx.appmbean:name=myAppProperties,type=PropertyConfig,*"), null); for (ObjectName mbeanName : mbeans) { System.out.println("\n\nMBEAN: " + mbeanName); MBeanInfo minfo = con.getMBeanInfo(mbeanName); System.out.println("MBean Description: "+minfo.getDescription()); System.out.println("\n"); } } finally { // release the connection if (jmxCon != null) jmxCon.close(); } } } The above client code is part of the zip file associated with this blog, and can be run using the provided client.sh script. The resulting output is shown below: $ ./client.sh Connecting to: service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime MBEAN: blog.wls.jmx.appmbean:type=PropertyConfig,name=myAppProperties MBean Description: Manage proprietes sauvegarde dans un fichier disque. $ Miscellaneous Using Description annotation to specify MBean descriptions Earlier we have seen how to name our MBean descriptions resource keys, so that WebLogic 10.3.3.0 automatically uses them to localize our MBean. In some cases we might want to implicitly specify the resource key, and resource bundle. For instance when operations are overloaded, and the operation name is no longer sufficient to uniquely identify a single operation. In this case we can use the Description annotation provided by WebLogic as follow: import weblogic.management.utils.Description; @Description(resourceKey="myapp.resources.TestMXBean.description", resourceBundleBaseName="myapp.resources.MBeanResources") public interface TestMXBean { @Description(resourceKey="myapp.resources.TestMXBean.threshold.description", resourceBundleBaseName="myapp.resources.MBeanResources" ) public int getthreshold(); @Description(resourceKey="myapp.resources.TestMXBean.reset.description", resourceBundleBaseName="myapp.resources.MBeanResources") public int reset( @Description(resourceKey="myapp.resources.TestMXBean.reset.id.description", resourceBundleBaseName="myapp.resources.MBeanResources", displayNameKey= "myapp.resources.TestMXBean.reset.id.displayName.description") int id); } The Description annotation should be applied to the MBean interface. It can be used to specify MBean, MBean attributes, MBean operations, and MBean operation parameters descriptions as demonstrated above. Retrieving the Locale associated with a JMX operation from the MBean code There are several cases where it is necessary to retrieve the Locale associated with a JMX call from the MBean implementation. For instance this can be useful when localizing exception messages. This can be done as follow: import weblogic.management.mbeanservers.JMXContextUtil; ...... // some MBean method implementation public String setProperty(String key, String value) throws IOException { Locale callersLocale = JMXContextUtil.getLocale(); // use callersLocale to localize Exception messages or // potentially some return values such a Date .... } Conclusion With this last part we conclude our three part series on how to write MBeans to manage J2EE applications. We are far from having exhausted this particular topic, but we have gone a long way and are now capable to take advantage of the latest functionality provided by WebLogic's application server to write user friendly MBeans.

    Read the article

  • How to efficiently protect part of an application with a license

    - by Patrick
    I am working on an application that has many functional parts. When a customer buys the application, he buys the standard functionality, but he can also buy some additional elements of the application for an additional price. All of the elements are part of the same application executable. A license key is used to indicate which of the elements should be accessible in the application. Some of the elements can be easily disabled if the user didn't pay for it. These are typically the modules that you can access via the application's menu. However, some elements give more problems: What if a part of the data model is related to an optional part? Do I build up these data structures in my application so the rest of my application can just assume they're always there? Or do I don't build them, and add checks in the rest of may application? What if some optional part is still useful to perform some internal tasks, but I don't want to expose it to the user externally? What if the marketing responsible wants to make a standard part now an optional part? In all of my application I assume that that part is present, but if it becomes optional, I should add checks on it everywhere in the application. I have some ideas on how to solve some of the problems (e.g. interfaces with dual implementations: one working implementation, and one that is activated if the optional part is not activated). Do you know of any patterns that can be used to solve this kind of problem? Or do you have any suggestions on how to handle this licensing problem? Thanks.

    Read the article

  • Virtualization at Oracle - Six Part Series

    - by Monica Kumar
    Oracle's Matthias Pfuetzner and Detlef Drewanz have written a series of blog articles that go through virtualization technologies that can be used with the Oracle stack. I highly recommend them for anyone interested in learning about what Oracle has to offer in Server Virtualization. The series includes: Part 1: Overview Part 2:  Oracle VM Server for SPARC Part 3: Oracle VM Server for x86 Part 4: Oracle Solaris Zones and Linux Containers Part 5: Resource Management as Enabling Technology for Virtualization Part 6: Network Virtualization and Network Resource Management These articles give a good technical overview of the concepts of virtualization as well as the Oracle's server virtualization solutions spanning both SPARC and x86 architectures. Happy Reading!

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer

    - by Elton Stoneman
    This is the second in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Part 2 is nice and easy. From Part 1 we exposed our service over the Azure Service Bus Relay using the netTcpRelayBinding and verified we could set up our network to listen for relayed messages. Assuming we want to consume that service in .NET from an environment which is fairly unrestricted for us, but quite restricted for attackers, we can use netTcpRelay and shared secret authentication. Pattern applicability This is a good fit for scenarios where: the consumer can run .NET in full trust the environment does not restrict use of external DLLs the runtime environment is secure enough to keep shared secrets the service does not need to know who is consuming it the service does not need to know who the end-user is So for example, the consumer is an ASP.NET website sitting in a cloud VM or Azure worker role, where we can keep the shared secret in web.config and we don't need to flow any identity through to the on-premise service. The service doesn't care who the consumer or end-user is - say it's a reference data service that provides a list of vehicle manufacturers. Provided you can authenticate with ACS and have access to Service Bus endpoint, you can use the service and it doesn't care who you are. In this post, we’ll consume the service from Part 1 in ASP.NET using netTcpRelay. The code for Part 2 (+ Part 1) is on GitHub here: IPASBR Part 2 Authenticating and authorizing with ACS In this scenario the consumer is a server in a controlled environment, so we can use a shared secret to authenticate with ACS, assuming that there is governance around the environment and the codebase which will prevent the identity being compromised. From the provider's side, we will create a dedicated service identity for this consumer, so we can lock down their permissions. The provider controls the identity, so the consumer's rights can be revoked. We'll add a new service identity for the namespace in ACS , just as we did for the serviceProvider identity in Part 1. I've named the identity fullTrustConsumer. We then need to add a rule to map the incoming identity claim to an outgoing authorization claim that allows the identity to send messages to Service Bus (see Part 1 for a walkthrough creating Service Idenitities): Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: fullTrustConsumer Output claim type: net.windows.servicebus.action Output claim value: Send This sets up a service identity which can send messages into Service Bus, but cannot register itself as a listener, or manage the namespace. Adding a Service Reference The Part 2 sample client code is ready to go, but if you want to replicate the steps, you’re going to add a WSDL reference, add a reference to Microsoft.ServiceBus and sort out the ServiceModel config. In Part 1 we exposed metadata for our service, so we can browse to the WSDL locally at: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc?wsdl If you add a Service Reference to that in a new project you'll get a confused config section with a customBinding, and a set of unrecognized policy assertions in the namespace http://schemas.microsoft.com/netservices/2009/05/servicebus/connect. If you NuGet the ASB package (“windowsazure.servicebus”) first and add the service reference - you'll get the same messy config. Either way, the WSDL should have downloaded and you should have the proxy code generated. You can delete the customBinding entries and copy your config from the service's web.config (this is already done in the sample project in Sixeyed.Ipasbr.NetTcpClient), specifying details for the client:     <client>       <endpoint address="sb://sixeyed-ipasbr.servicebus.windows.net/net"                 behaviorConfiguration="SharedSecret"                 binding="netTcpRelayBinding"                 contract="FormatService.IFormatService" />     </client>     <behaviors>       <endpointBehaviors>         <behavior name="SharedSecret">           <transportClientEndpointBehavior credentialType="SharedSecret">             <clientCredentials>               <sharedSecret issuerName="fullTrustConsumer"                             issuerSecret="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/>             </clientCredentials>           </transportClientEndpointBehavior>         </behavior>       </endpointBehaviors>     </behaviors>   The proxy is straight WCF territory, and the same client can run against Azure Service Bus through any relay binding, or directly to the local network service using any WCF binding - the contract is exactly the same. The code is simple, standard WCF stuff: using (var client = new FormatService.FormatServiceClient()) { outputString = client.ReverseString(inputString); } Running the sample First, update Solution Items\AzureConnectionDetails.xml with your service bus namespace, and your service identity credentials for the netTcpClient and the provider:   <!-- ACS credentials for the full trust consumer (Part2): -->   <netTcpClient identityName="fullTrustConsumer"                 symmetricKey="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/> Then rebuild the solution and verify the unit tests work. If they’re green, your service is listening through Azure. Check out the client by navigating to http://localhost:53835/Sixeyed.Ipasbr.NetTcpClient. Enter a string and hit Go! - your string will be reversed by your on-premise service, routed through Azure: Using shared secret client credentials in this way means ACS is the identity provider for your service, and the claim which allows Send access to Service Bus is consumed by Service Bus. None of the authentication details make it through to your service, so your service is not aware who the consumer is (MSDN calls this "anonymous authentication").

    Read the article

  • Visio drawing in SharePoint 2007

    - by MartinIsti
    Yesterday I decided to improve a SharePoint site a bit by replacing the very basic navigation web part ( content editor web part with a 5x4 table that contains only text with hyperlinks and very far from being pretty) with something fancier. I decided to use Visio for that. I created a quite simple chart: Simple I admit, but much better than this one: Do you agree? ;o) I think I will make the visio drawing a bit fancier but the main point of this blog is how to publish it into a SharePoint site?...(read more)

    Read the article

  • Where can I find some software development freelance/contract positions? [closed]

    - by m-y
    I currently have a full time job as a Microsoft.NET developer, but I'd like to supplement my income by doing some part-time freelance development work. Are there any websites (or other sources) out there that specialize in this? While the website (or other source) does not have to be geared specifically for part-time work or Microsoft.NET development, if it is than that would be just wonderful. The only thing I could find close to this was www.vworker.com which is not that great.

    Read the article

  • Using LogParser - part 3

    - by fatherjack
    This is the third part in a series of articles about using LogParser, specifically from a DBA point of view but there are many uses that any system administrator could put LogParser to in order to make their life easier. In Part 1 we downloaded, installed the software and ran a very basic query. In Part 2 we ran some queries and filtered in/out specific rows according to our requirements. In this part we will be looking at how to collect data from more than one location and from different sources...(read more)

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 3: Anonymous partial-trust consumer

    - by Elton Stoneman
    This is the third in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer As the patterns get further from the simple .NET full-trust consumer, all that changes is the communication protocol and the authentication mechanism. In Part 3 the scenario is that we still have a secure .NET environment consuming our service, so we can store shared keys securely, but the runtime environment is locked down so we can't use Microsoft.ServiceBus to get the nice WCF relay bindings. To support this we will expose a RESTful endpoint through the Azure Service Bus, and require the consumer to send a security token with each HTTP service request. Pattern applicability This is a good fit for scenarios where: the runtime environment is secure enough to keep shared secrets the consumer can execute custom code, including building HTTP requests with custom headers the consumer cannot use the Azure SDK assemblies the service may need to know who is consuming it the service does not need to know who the end-user is Note there isn't actually a .NET requirement here. By exposing the service in a REST endpoint, anything that can talk HTTP can be a consumer. We'll authenticate through ACS which also gives us REST endpoints, so the service is still accessed securely. Our real-world example would be a hosted cloud app, where we we have enough room in the app's customisation to keep the shared secret somewhere safe and to hook in some HTTP calls. We will be flowing an identity through to the on-premise service now, but it will be the service identity given to the consuming app - the end user's identity isn't flown through yet. In this post, we’ll consume the service from Part 1 in ASP.NET using the WebHttpRelayBinding. The code for Part 3 (+ Part 1) is on GitHub here: IPASBR Part 3. Authenticating and authorizing with ACS We'll follow the previous examples and add a new service identity for the namespace in ACS, so we can separate permissions for different consumers (see walkthrough in Part 1). I've named the identity partialTrustConsumer. We’ll be authenticating against ACS with an explicit HTTP call, so we need a password credential rather than a symmetric key – for a nice secure option, generate a symmetric key, copy to the clipboard, then change type to password and paste in the key: We then need to do the same as in Part 2 , add a rule to map the incoming identity claim to an outgoing authorization claim that allows the identity to send messages to Service Bus: Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: partialTrustConsumer Output claim type: net.windows.servicebus.action Output claim value: Send As with Part 2, this sets up a service identity which can send messages into Service Bus, but cannot register itself as a listener, or manage the namespace. RESTfully exposing the on-premise service through Azure Service Bus Relay The part 3 sample code is ready to go, just put your Azure details into Solution Items\AzureConnectionDetails.xml and “Run Custom Tool” on the .tt files.  But to do it yourself is very simple. We already have a WebGet attribute in the service for locally making REST calls, so we are just going to add a new endpoint which uses the WebHttpRelayBinding to relay that service through Azure. It's as easy as adding this endpoint to Web.config for the service:         <endpoint address="https://sixeyed-ipasbr.servicebus.windows.net/rest"                   binding="webHttpRelayBinding"                    contract="Sixeyed.Ipasbr.Services.IFormatService"                   behaviorConfiguration="SharedSecret">         </endpoint> - and adding the webHttp attribute in your endpoint behavior:           <behavior name="SharedSecret">             <webHttp/>             <transportClientEndpointBehavior credentialType="SharedSecret">               <clientCredentials>                 <sharedSecret issuerName="serviceProvider"                               issuerSecret="gl0xaVmlebKKJUAnpripKhr8YnLf9Neaf6LR53N8uGs="/>               </clientCredentials>             </transportClientEndpointBehavior>           </behavior> Where's my WSDL? The metadata story for REST is a bit less automated. In our local webHttp endpoint we've enabled WCF's built-in help, so if you navigate to: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc/rest/help - you'll see the uri format for making a GET request to the service. The format is the same over Azure, so this is where you'll be connecting: https://[your-namespace].servicebus.windows.net/rest/reverse?string=abc123 Build the service with the new endpoint, open that in a browser and you'll get an XML version of an HTTP status code - a 401 with an error message stating that you haven’t provided an authorization header: <?xml version="1.0"?><Error><Code>401</Code><Detail>MissingToken: The request contains no authorization header..TrackingId:4cb53408-646b-4163-87b9-bc2b20cdfb75_5,TimeStamp:10/3/2012 8:34:07 PM</Detail></Error> By default, the setup of your Service Bus endpoint as a relying party in ACS expects a Simple Web Token to be presented with each service request, and in the browser we're not passing one, so we can't access the service. Note that this request doesn't get anywhere near your on-premise service, Service Bus only relays requests once they've got the necessary approval from ACS. Why didn't the consumer need to get ACS authorization in Part 2? It did, but it was all done behind the scenes in the NetTcpRelayBinding. By specifying our Shared Secret credentials in the consumer, the service call is preceded by a check on ACS to see that the identity provided is a) valid, and b) allowed access to our Service Bus endpoint. By making manual HTTP requests, we need to take care of that ACS check ourselves now. We do that with a simple WebClient call to the ACS endpoint of our service; passing the shared secret credentials, we will get back an SWT: var values = new System.Collections.Specialized.NameValueCollection(); values.Add("wrap_name", "partialTrustConsumer"); //service identity name values.Add("wrap_password", "suCei7AzdXY9toVH+S47C4TVyXO/UUFzu0zZiSCp64Y="); //service identity password values.Add("wrap_scope", "http://sixeyed-ipasbr.servicebus.windows.net/"); //this is the realm of the RP in ACS var acsClient = new WebClient(); var responseBytes = acsClient.UploadValues("https://sixeyed-ipasbr-sb.accesscontrol.windows.net/WRAPv0.9/", "POST", values); rawToken = System.Text.Encoding.UTF8.GetString(responseBytes); With a little manipulation, we then attach the SWT to subsequent REST calls in the authorization header; the token contains the Send claim returned from ACS, so we will be authorized to send messages into Service Bus. Running the sample Navigate to http://localhost:2028/Sixeyed.Ipasbr.WebHttpClient/Default.cshtml, enter a string and hit Go! - your string will be reversed by your on-premise service, routed through Azure: Using shared secret client credentials in this way means ACS is the identity provider for your service, and the claim which allows Send access to Service Bus is consumed by Service Bus. None of the authentication details make it through to your service, so your service is not aware who the consumer is (MSDN calls this "anonymous authentication").

    Read the article

  • Make part of layout invisible and the other part visible

    - by JonF
    I would like to make a LinearLayout that was created from xml invisible, and another LinearLayout visible to replace it. The replacement layout starts out as invisible. When I make the originally visible layout invisible, it still leaves space for it on the screen. How can I refresh the screen so that space is gone?

    Read the article

  • Clustered index - multi-part vs single-part index and effects of inserts/deletes

    - by Anssssss
    This question is about what happens with the reorganizing of data in a clustered index when an insert is done. I assume that it should be more expensive to do inserts on a table which has a clustered index than one that does not because reorganizing the data in a clustered index involves changing the physical layout of the data on the disk. I'm not sure how to phrase my question except through an example I came across at work. Assume there is a table (Junk) and there are two queries that are done on the table, the first query searches by Name and the second query searches by Name and Something. As I'm working on the database I discovered that the table has been created with two indexes, one to support each query, like so: --drop table Junk1 CREATE TABLE Junk1 ( Name char(5), Something char(5), WhoCares int ) CREATE CLUSTERED INDEX IX_Name ON Junk1 ( Name ) CREATE NONCLUSTERED INDEX IX_Name_Something ON Junk1 ( Name, Something ) Now when I looked at the two indexes, it seems that IX_Name is redundant since IX_Name_Something can be used by any query that desires to search by Name. So I would eliminate IX_Name and make IX_Name_Something the clustered index instead: --drop table Junk2 CREATE TABLE Junk2 ( Name char(5), Something char(5), WhoCares int ) CREATE CLUSTERED INDEX IX_Name_Something ON Junk2 ( Name, Something ) Someone suggested that the first indexing scheme should be kept since it would result in more efficient inserts/deletes (assume that there is no need to worry about updates for Name and Something). Would that make sense? I think the second indexing method would be better since it means one less index needs to be maintained. I would appreciate any insight into this specific example or directing me to more info on maintenance of clustered indexes.

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 3.5: Node.js relay

    - by Elton Stoneman
    This is an extension to Part 3 in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer Integration Patterns with Azure Service Bus Relay, Part 3: Anonymous partial-trust consumer In Part 3 I said “there isn't actually a .NET requirement here”, and this post just follows up on that statement. In Part 3 we had an ASP.NET MVC Website making a REST call to an Azure Service Bus service; to show that the REST stuff is really interoperable, in this version we use Node.js to make the secure service call. The code is on GitHub here: IPASBR Part 3.5. The sample code is simpler than Part 3 - rather than code up a UI in Node.js, the sample just relays the REST service call out to Azure. The steps are the same as Part 3: REST call to ACS with the service identity credentials, which returns an SWT; REST call to Azure Service Bus Relay, presenting the SWT; request gets relayed to the on-premise service. In Node.js the authentication step looks like this: var options = { host: acs.namespace() + '-sb.accesscontrol.windows.net', path: '/WRAPv0.9/', method: 'POST' }; var values = { wrap_name: acs.issuerName(), wrap_password: acs.issuerSecret(), wrap_scope: 'http://' + acs.namespace() + '.servicebus.windows.net/' }; var req = https.request(options, function (res) { console.log("statusCode: ", res.statusCode); console.log("headers: ", res.headers); res.on('data', function (d) { var token = qs.parse(d.toString('utf8')); callback(token.wrap_access_token); }); }); req.write(qs.stringify(values)); req.end(); Once we have the token, we can wrap it up into an Authorization header and pass it to the Service Bus call: token = 'WRAP access_token=\"' + swt + '\"'; //... var reqHeaders = { Authorization: token }; var options = { host: acs.namespace() + '.servicebus.windows.net', path: '/rest/reverse?string=' + requestUrl.query.string, headers: reqHeaders }; var req = https.request(options, function (res) { console.log("statusCode: ", res.statusCode); console.log("headers: ", res.headers); response.writeHead(res.statusCode, res.headers); res.on('data', function (d) { var reversed = d.toString('utf8') console.log('svc returned: ' + d.toString('utf8')); response.end(reversed); }); }); req.end(); Running the sample Usual routine to add your own Azure details into Solution Items\AzureConnectionDetails.xml and “Run Custom Tool” on the .tt files. Build and you should be able to navigate to the on-premise service at http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc/rest/reverse?string=abc123 and get a string response, going to the service direct. Install Node.js (v0.8.14 at time of writing), run FormatServiceRelay.cmd, navigate to http://localhost:8013/reverse?string=abc123, and you should get exactly the same response but through Node.js, via Azure Service Bus Relay to your on-premise service. The console logs the WRAP token returned from ACS and the response from Azure Service Bus Relay which it forwards:

    Read the article

  • How to use html and JavaScript in Content Editor web part in SharePoint2010

    - by ybbest
    Here are the steps you need to take to use html and JavaScript in content editor web part. 1. Edit a site page and add a content editor web part on the page. 2. After the content editor is added to the page, it will display on the page like shown below 3. Next, upload your html and JavaScript content as a text file to a document library inside your SharePoint site. Here is the content in the document <script type="text/javascript"> alert("Hello World"); </script> 4. Edit the content editor web part and reference the file you just uploaded. 5. Save the page and you will see the hello world prompt. References: http://stackoverflow.com/questions/5020573/sharepoint-2010-content-editor-web-part-duplicating-entries http://sharepointadam.com/2010/08/31/insert-javascript-into-a-content-editor-web-part-cewp/

    Read the article

  • Why does my sharepoint web part event handler lose the sender value on postback?

    - by vishal shah
    I have a web part which is going to be a part of pair of connected web parts. For simplicity, I am just describing the consumer web part. This web part has 10 link buttons on it. And they are rendered in the Render method instead ofCreateChildControls as this webpart will be receiving values based on input from the provider web part. Each Link Button has a text which is decided dynamically based on the input from provider web part. When I click on any of the Link Buttons, the event handler is triggered but the text on the Link Button shows up as the one set in CreateChildControls. When I trace the code, I see that the CreateChildControls gets called before the event handler (and i think that resets my Link Buttons). How do I get the event handler to show me the dynamic text instead? Here is the code... public class consWebPart : Microsoft.SharePoint.WebPartPages.WebPart { private bool _error = false; private LinkButton[] lkDocument = null; public consWebPart() { this.ExportMode = WebPartExportMode.All; } protected override void CreateChildControls() { if (!_error) { try { base.CreateChildControls(); lkDocument = new LinkButton[101]; for (int i = 0; i < 10; i++) { lkDocument[i] = new LinkButton(); lkDocument[i].ID = "lkDocument" + i; lkDocument[i].Text = "Initial Text"; lkDocument[i].Style.Add("margin", "10 10 10 10px"); this.Controls.Add(lkDocument[i]); lkDocument[i].Click += new EventHandler(lkDocument_Click); } } catch (Exception ex) { HandleException(ex); } } } protected override void Render(HtmlTextWriter writer) { writer.Write("<table><tr>"); for (int i = 0; i < 10; i++) { writer.Write("<tr>"); lkDocument[i].Text = "LinkButton" + i; writer.Write("<td>"); lkDocument[i].RenderControl(writer); writer.Write("</td>"); writer.Write("</tr>"); } writer.Write("</table>"); } protected void lkDocument_Click(object sender, EventArgs e) { string strsender = sender.ToString(); LinkButton lk = (LinkButton)sender; } protected override void OnLoad(EventArgs e) { if (!_error) { try { base.OnLoad(e); this.EnsureChildControls(); } catch (Exception ex) { HandleException(ex); } } } private void HandleException(Exception ex) { this._error = true; this.Controls.Clear(); this.Controls.Add(new LiteralControl(ex.Message)); } }

    Read the article

  • Building a Store Locator ASP.NET Application Using Google Maps API (Part 3)

    Over the past two weeks I've showed how to build a store locator application using ASP.NET and the free Google Maps API and Google's geocoding service. Part 1 looked at creating the database to record the store locations. This database contains a table named Stores with columns capturing each store's address and latitude and longitude coordinates. Part 1 also showed how to use Google's geocoding service to translate a user-entered address into latitude and longitude coordinates, which could then be used to retrieve and display those stores within (roughly) a 15 mile area. At the end of Part 1, the results page listed the nearby stores in a grid. In Part 2 we used the Google Maps API to add an interactive map to the search results page, with each nearby store displayed on the map as a marker. The map added in Part 2 certainly improves the search results page, but the way the nearby stores are displayed on the map leaves a bit to be desired. For starters, each nearby store is displayed on the map using the same marker icon, namely a red pushpin. This makes it difficult to match up the nearby stores listed in the grid with those displayed on the map. Hovering the mouse over a marker on the map displays the store number in a tooltip, but ideally a user could click a marker to see more detailed information about the store, such as its address, phone number, a photo of the storefront, and so forth. This third and final installment shows how to enhance the map created in Part 2. Specifically, we'll see how to customize the marker icons displayed in the map to make it easier to identify which marker corresponds to which nearby store location. We'll also look at adding rich popup windows to each marker, which includes detailed store information and can be updated further to include pictures and other HTML content. Read on to learn more! Read More >

    Read the article

  • Building a Store Locator ASP.NET Application Using Google Maps API (Part 3)

    Over the past two weeks I've showed how to build a store locator application using ASP.NET and the free Google Maps API and Google's geocoding service. Part 1 looked at creating the database to record the store locations. This database contains a table named Stores with columns capturing each store's address and latitude and longitude coordinates. Part 1 also showed how to use Google's geocoding service to translate a user-entered address into latitude and longitude coordinates, which could then be used to retrieve and display those stores within (roughly) a 15 mile area. At the end of Part 1, the results page listed the nearby stores in a grid. In Part 2 we used the Google Maps API to add an interactive map to the search results page, with each nearby store displayed on the map as a marker. The map added in Part 2 certainly improves the search results page, but the way the nearby stores are displayed on the map leaves a bit to be desired. For starters, each nearby store is displayed on the map using the same marker icon, namely a red pushpin. This makes it difficult to match up the nearby stores listed in the grid with those displayed on the map. Hovering the mouse over a marker on the map displays the store number in a tooltip, but ideally a user could click a marker to see more detailed information about the store, such as its address, phone number, a photo of the storefront, and so forth. This third and final installment shows how to enhance the map created in Part 2. Specifically, we'll see how to customize the marker icons displayed in the map to make it easier to identify which marker corresponds to which nearby store location. We'll also look at adding rich popup windows to each marker, which includes detailed store information and can be updated further to include pictures and other HTML content. Read on to learn more! Read More >Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • SQL SERVER – DMV to Identify Incremental Statistics – Performance improvements in SQL Server 2014 – Part 3

    - by Pinal Dave
    This is the third part of the series Incremental Statistics. Here is the index of the complete series. What is Incremental Statistics? – Performance improvements in SQL Server 2014 – Part 1 Simple Example of Incremental Statistics – Performance improvements in SQL Server 2014 – Part 2 DMV to Identify Incremental Statistics – Performance improvements in SQL Server 2014 – Part 3 In earlier two parts we have seen what is incremental statistics and its simple example. In this blog post we will be discussing about DMV, which will list all the statistics which are enabled for Incremental Updates. SELECT  OBJECT_NAME(sys.stats.OBJECT_ID) AS TableName, sys.columns.name AS ColumnName, sys.stats.name AS StatisticsName FROM   sys.stats INNER JOIN sys.stats_columns ON sys.stats.OBJECT_ID = sys.stats_columns.OBJECT_ID AND sys.stats.stats_id = sys.stats_columns.stats_id INNER JOIN sys.columns ON sys.stats.OBJECT_ID = sys.columns.OBJECT_ID AND sys.stats_columns.column_id = sys.columns.column_id WHERE   sys.stats.is_incremental = 1 If you run above script in the example displayed, in part 1 and part 2 you will get resultset as following. When you execute the above script, it will list all the statistics in your database which are enabled for Incremental Update. The script is very simple and effective. If you have any further improved script, I request you to post in the comment section and I will post that on blog with due credit. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: SQL Statistics, Statistics

    Read the article

  • SharePoint 2013 Developer Ramp-Up - Part 1

    Today I had a little spare time during the morning hours and I decided that after checking MVA that I'm going to query the available course material over at Pluralsight. Wow, thanks to fantastic corporations and acquisitions there are lots of courses available. Nicely split by SharePoint version as well as particular interest group. Additionally, I found a couple of online blogs and community sites that I'm going to visit regularly during the next couple of weeks. Today's resource(s) Of course, I'm "all in" for the latest developer resources: SharePoint 2013 Developer Ramp-Up - Part 1 - Understanding the Platform and Developer Experience SharePoint 2013 Developer Ramp-Up - Part 2 SharePoint 2013 Developer Ramp-Up - Part 3 SharePoint 2013 Developer Ramp-Up - Part 4 SharePoint 2013 Developer Ramp-Up - Part 5 SharePoint 2013 Developer Ramp-Up - Part 6 I guess, I'm going to stick to the Pluralsight library until the end of this week. We'll see... Anyway, apart from the video material I came across a couple of other websites which I'd like to list here, too. That's mainly for personal reference instead of bookmarking in the browser, I'll use my own blog for that purpose. Atkinson's SharePoint Blog Düsseldorfer Jung Doerflers SharePoint Blog SharePoint Community Absolute SharePoint The links are in no preferential order and I added them as soon as I found them. Most probably, I'm going to report about specific articles from those resources during this challenge. So, stay tuned and I try to provide more details on certain topics. Takeaway First contact with the 'real stuff' in order to get an idea about software development in Microsoft SharePoint and beyond. Unfortunately and as already expected, the marketing department over at Microsoft seemed to have nothing better to do than to invent new names and baptise literally the same product with every release. Luckily, the release cycles between versions have been three years (roughly) - 2007, 2010, and 2013. Nonetheless, there will be a lot of version-specfic issues to tackle during this learning phase. Especially, when it's about historical expressions like 'WSS'* like I had it yesterday... It's going to be exciting and demanding to catch up with roughly 6-7 years of development and changes. Okay, let's face it. * WSS stands for Windows SharePoint Services 3.0 which forms the 'core engine' of SharePoint 2007. Part 1 of Andrew Connell's series on SharePoint 2013 for developers provides a brief history and overview of the various product names and their relation to the actual SharePoint version. I guess, I might create a cheat-sheet or something comparable in order to reduce the level of confusion while reading through other material: SharePoint 2007 (aka SharePoint v3 aka SharePoint 12) Windows SharePoint Services (WSS) 3.0 Microsoft Office SharePoint Server (MOSS) 2007 .NET Framework 3.0, 32-bit or 64-bit OS SharePoint 2010 (aka SharePoint v4 aka SharePoint 14) Microsoft SharePoint Foundation (SPF) 2010 Microsoft SharePoint Server (SPS) 2010 .NET Framework 3.5 SP1, 64-bit OS only SharePoint 2013 Microsoft SharePoint Foundation (SPF) 2013 Microsoft SharePoint Server (SPS) 2013 .NET Framework 4.5, 64-bit OS only After this quick excursion it is getting more interesting. SharePoint 2013 has a number of Development Practices and Techniques under the hood, and it will be quite a decision process depending on the task requirements to choose the correct path to go. At the moment, the following two options seem to be my future fields of operation: Client-Side Object Model (CSOM) REST API and OData syntax As part of my job assignment, I see myself developing within Visual Studio 2012/2013. Most probably the client development in C# will be using CSOM but of course I'll keep an eye on the REST API, too. JavaScript has quite a momentum since a while and it would a shame to ignore this type of opportunity and possibilities.

    Read the article

  • ASP.NET Web API - Screencast series Part 3: Delete and Update

    - by Jon Galloway
    We're continuing a six part series on ASP.NET Web API that accompanies the getting started screencast series. This is an introductory screencast series that walks through from File / New Project to some more advanced scenarios like Custom Validation and Authorization. The screencast videos are all short (3-5 minutes) and the sample code for the series is both available for download and browsable online. I did the screencasts, but the samples were written by the ASP.NET Web API team. In Part 1 we looked at what ASP.NET Web API is, why you'd care, did the File / New Project thing, and did some basic HTTP testing using browser F12 developer tools. In Part 2 we started to build up a sample that returns data from a repository in JSON format via GET methods. In Part 3, we'll start to modify data on the server using DELETE and POST methods. So far we've been looking at GET requests, and the difference between standard browsing in a web browser and navigating an HTTP API isn't quite as clear. Delete is where the difference becomes more obvious. With a "traditional" web page, to delete something'd probably have a form that POSTs a request back to a controller that needs to know that it's really supposed to be deleting something even though POST was really designed to create things, so it does the work and then returns some HTML back to the client that says whether or not the delete succeeded. There's a good amount of plumbing involved in communicating between client and server. That gets a lot easier when we just work with the standard HTTP DELETE verb. Here's how the server side code works: public Comment DeleteComment(int id) { Comment comment; if (!repository.TryGet(id, out comment)) throw new HttpResponseException(HttpStatusCode.NotFound); repository.Delete(id); return comment; } If you look back at the GET /api/comments code in Part 2, you'll see that they start the exact same because the use cases are kind of similar - we're looking up an item by id and either displaying it or deleting it. So the only difference is that this method deletes the comment once it finds it. We don't need to do anything special to handle cases where the id isn't found, as the same HTTP 404 handling works fine here, too. Pretty much all "traditional" browsing uses just two HTTP verbs: GET and POST, so you might not be all that used to DELETE requests and think they're hard. Not so! Here's the jQuery method that calls the /api/comments with the DELETE verb: $(function() { $("a.delete").live('click', function () { var id = $(this).data('comment-id'); $.ajax({ url: "/api/comments/" + id, type: 'DELETE', cache: false, statusCode: { 200: function(data) { viewModel.comments.remove( function(comment) { return comment.ID == data.ID; } ); } } }); return false; }); }); So in order to use the DELETE verb instead of GET, we're just using $.ajax() and setting the type to DELETE. Not hard. But what's that statusCode business? Well, an HTTP status code of 200 is an OK response. Unless our Web API method sets another status (such as by throwing the Not Found exception we saw earlier), the default response status code is HTTP 200 - OK. That makes the jQuery code pretty simple - it calls the Delete action, and if it gets back an HTTP 200, the server-side delete was successful so the comment can be deleted. Adding a new comment uses the POST verb. It starts out looking like an MVC controller action, using model binding to get the new comment from JSON data into a c# model object to add to repository, but there are some interesting differences. public HttpResponseMessage<Comment> PostComment(Comment comment) { comment = repository.Add(comment); var response = new HttpResponseMessage<Comment>(comment, HttpStatusCode.Created); response.Headers.Location = new Uri(Request.RequestUri, "/api/comments/" + comment.ID.ToString()); return response; } First off, the POST method is returning an HttpResponseMessage<Comment>. In the GET methods earlier, we were just returning a JSON payload with an HTTP 200 OK, so we could just return the  model object and Web API would wrap it up in an HttpResponseMessage with that HTTP 200 for us (much as ASP.NET MVC controller actions can return strings, and they'll be automatically wrapped in a ContentResult). When we're creating a new comment, though, we want to follow standard REST practices and return the URL that points to the newly created comment in the Location header, and we can do that by explicitly creating that HttpResposeMessage and then setting the header information. And here's a key point - by using HTTP standard status codes and headers, our response payload doesn't need to explain any context - the client can see from the status code that the POST succeeded, the location header tells it where to get it, and all it needs in the JSON payload is the actual content. Note: This is a simplified sample. Among other things, you'll need to consider security and authorization in your Web API's, and especially in methods that allow creating or deleting data. We'll look at authorization in Part 6. As for security, you'll want to consider things like mass assignment if binding directly to model objects, etc. In Part 4, we'll extend on our simple querying methods form Part 2, adding in support for paging and querying.

    Read the article

  • ASP.NET Web API - Screencast series Part 4: Paging and Querying

    - by Jon Galloway
    We're continuing a six part series on ASP.NET Web API that accompanies the getting started screencast series. This is an introductory screencast series that walks through from File / New Project to some more advanced scenarios like Custom Validation and Authorization. The screencast videos are all short (3-5 minutes) and the sample code for the series is both available for download and browsable online. I did the screencasts, but the samples were written by the ASP.NET Web API team. In Part 1 we looked at what ASP.NET Web API is, why you'd care, did the File / New Project thing, and did some basic HTTP testing using browser F12 developer tools. In Part 2 we started to build up a sample that returns data from a repository in JSON format via GET methods. In Part 3, we modified data on the server using DELETE and POST methods. In Part 4, we'll extend on our simple querying methods form Part 2, adding in support for paging and querying. This part shows two approaches to querying data (paging really just being a specific querying case) - you can do it yourself using parameters passed in via querystring (as well as headers, other route parameters, cookies, etc.). You're welcome to do that if you'd like. What I think is more interesting here is that Web API actions that return IQueryable automatically support OData query syntax, making it really easy to support some common query use cases like paging and filtering. A few important things to note: This is just support for OData query syntax - you're not getting back data in OData format. The screencast demonstrates this by showing the GET methods are continuing to return the same JSON they did previously. So you don't have to "buy in" to the whole OData thing, you're just able to use the query syntax if you'd like. This isn't full OData query support - full OData query syntax includes a lot of operations and features - but it is a pretty good subset: filter, orderby, skip, and top. All you have to do to enable this OData query syntax is return an IQueryable rather than an IEnumerable. Often, that could be as simple as using the AsQueryable() extension method on your IEnumerable. Query composition support lets you layer queries intelligently. If, for instance, you had an action that showed products by category using a query in your repository, you could also support paging on top of that. The result is an expression tree that's evaluated on-demand and includes both the Web API query and the underlying query. So with all those bullet points and big words, you'd think this would be hard to hook up. Nope, all I did was change the return type from IEnumerable<Comment> to IQueryable<Comment> and convert the Get() method's IEnumerable result using the .AsQueryable() extension method. public IQueryable<Comment> GetComments() { return repository.Get().AsQueryable(); } You still need to build up the query to provide the $top and $skip on the client, but you'd need to do that regardless. Here's how that looks: $(function () { //--------------------------------------------------------- // Using Queryable to page //--------------------------------------------------------- $("#getCommentsQueryable").click(function () { viewModel.comments([]); var pageSize = $('#pageSize').val(); var pageIndex = $('#pageIndex').val(); var url = "/api/comments?$top=" + pageSize + '&$skip=' + (pageIndex * pageSize); $.getJSON(url, function (data) { // Update the Knockout model (and thus the UI) with the comments received back // from the Web API call. viewModel.comments(data); }); return false; }); }); And the neat thing is that - without any modification to our server-side code - we can modify the above jQuery call to request the comments be sorted by author: $(function () { //--------------------------------------------------------- // Using Queryable to page //--------------------------------------------------------- $("#getCommentsQueryable").click(function () { viewModel.comments([]); var pageSize = $('#pageSize').val(); var pageIndex = $('#pageIndex').val(); var url = "/api/comments?$top=" + pageSize + '&$skip=' + (pageIndex * pageSize) + '&$orderby=Author'; $.getJSON(url, function (data) { // Update the Knockout model (and thus the UI) with the comments received back // from the Web API call. viewModel.comments(data); }); return false; }); }); So if you want to make use of OData query syntax, you can. If you don't like it, you're free to hook up your filtering and paging however you think is best. Neat. In Part 5, we'll add on support for Data Annotation based validation using an Action Filter.

    Read the article

  • Creating Wizard in ASP.NET MVC (Part 3 - jQuery)

    - by bipinjoshi
    In Part 1 and Part 2 of this article series you developed a wizard in an ASP.NET MVC application using full page postback and Ajax helper respectively. In this final part of this series you will develop a client side wizard using jQuery. The navigation between various wizard steps (Next, Previous) happens without any postback (neither full nor partial). The only step that causes form submission to the server is clicking on the Finish wizard button.http://www.binaryintellect.net/articles/d278e8aa-3f37-40c5-92a2-74e65b1b5653.aspx 

    Read the article

  • Creating Wizard in ASP.NET MVC (Part 2)

    - by bipinjoshi
    In Part 1 of this article series you developed a wizard in an ASP.NET MVC application. Although the wizard developed in Part 1 works as expected it has one shortcoming. It causes full page postback whenever you click on Previous or Next button. This behavior may not pose much problem if a wizard has only a few steps. However, if a wizard has many steps and each step accepts many entries then full page postback can deteriorate the user experience. To overcome this shortcoming you can add Ajax to the wizard so that only the form is posted to the server. In this part of the series you will convert the application developed in Part 1 to use Ajax.http://www.binaryintellect.net/articles/8e278bfa-7244-4e3e-b5aa-2954a91331da.aspx 

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >