Search Results

Search found 4685 results on 188 pages for 'queries'.

Page 2/188 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Metro: Understanding CSS Media Queries

    - by Stephen.Walther
    If you are building a Metro style application then your application needs to look great when used on a wide variety of devices. Your application needs to work on tiny little phones, slates, desktop monitors, and the super high resolution displays of the future. Your application also must support portable devices used with different orientations. If someone tilts their phone from portrait to landscape mode then your application must still be usable. Finally, your Metro style application must look great in different states. For example, your Metro application can be in a “snapped state” when it is shrunk so it can share screen real estate with another application. In this blog post, you learn how to use Cascading Style Sheet media queries to support different devices, different device orientations, and different application states. First, you are provided with an overview of the W3C Media Query recommendation and you learn how to detect standard media features. Next, you learn about the Microsoft extensions to media queries which are supported in Metro style applications. For example, you learn how to use the –ms-view-state feature to detect whether an application is in a “snapped state” or “fill state”. Finally, you learn how to programmatically detect the features of a device and the state of an application. You learn how to use the msMatchMedia() method to execute a media query with JavaScript. Using CSS Media Queries Media queries enable you to apply different styles depending on the features of a device. Media queries are not only supported by Metro style applications, most modern web browsers now support media queries including Google Chrome 4+, Mozilla Firefox 3.5+, Apple Safari 4+, and Microsoft Internet Explorer 9+. Loading Different Style Sheets with Media Queries Imagine, for example, that you want to display different content depending on the horizontal resolution of a device. In that case, you can load different style sheets optimized for different sized devices. Consider the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>U.S. Robotics and Mechanical Men</title> <link href="main.css" rel="stylesheet" type="text/css" /> <!-- Less than 1100px --> <link href="medium.css" rel="stylesheet" type="text/css" media="(max-width:1100px)" /> <!-- Less than 800px --> <link href="small.css" rel="stylesheet" type="text/css" media="(max-width:800px)" /> </head> <body> <div id="header"> <h1>U.S. Robotics and Mechanical Men</h1> </div> <!-- Advertisement Column --> <div id="leftColumn"> <img src="advertisement1.gif" alt="advertisement" /> <img src="advertisement2.jpg" alt="advertisement" /> </div> <!-- Product Search Form --> <div id="mainContentColumn"> <label>Search Products</label> <input id="search" /><button>Search</button> </div> <!-- Deal of the Day Column --> <div id="rightColumn"> <h1>Deal of the Day!</h1> <p> Buy two cameras and get a third camera for free! Offer is good for today only. </p> </div> </body> </html> The HTML page above contains three columns: a leftColumn, mainContentColumn, and rightColumn. When the page is displayed on a low resolution device, such as a phone, only the mainContentColumn appears: When the page is displayed in a medium resolution device, such as a slate, both the leftColumn and the mainContentColumns are displayed: Finally, when the page is displayed in a high-resolution device, such as a computer monitor, all three columns are displayed: Different content is displayed with the help of media queries. The page above contains three style sheet links. Two of the style links include a media attribute: <link href="main.css" rel="stylesheet" type="text/css" /> <!-- Less than 1100px --> <link href="medium.css" rel="stylesheet" type="text/css" media="(max-width:1100px)" /> <!-- Less than 800px --> <link href="small.css" rel="stylesheet" type="text/css" media="(max-width:800px)" /> The main.css style sheet contains default styles for the elements in the page. The medium.css style sheet is applied when the page width is less than 1100px. This style sheet hides the rightColumn and changes the page background color to lime: html { background-color: lime; } #rightColumn { display:none; } Finally, the small.css style sheet is loaded when the page width is less than 800px. This style sheet hides the leftColumn and changes the page background color to red: html { background-color: red; } #leftColumn { display:none; } The different style sheets are applied as you stretch and contract your browser window. You don’t need to refresh the page after changing the size of the page for a media query to be applied: Using the @media Rule You don’t need to divide your styles into separate files to take advantage of media queries. You can group styles by using the @media rule. For example, the following HTML page contains one set of styles which are applied when a device’s orientation is portrait and another set of styles when a device’s orientation is landscape: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>Application1</title> <style type="text/css"> html { font-family:'Segoe UI Semilight'; font-size: xx-large; } @media screen and (orientation:landscape) { html { background-color: lime; } p.content { width: 50%; margin: auto; } } @media screen and (orientation:portrait) { html { background-color: red; } p.content { width: 90%; margin: auto; } } </style> </head> <body> <p class="content"> Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </p> </body> </html> When a device has a landscape orientation then the background color is set to the color lime and the text only takes up 50% of the available horizontal space: When the device has a portrait orientation then the background color is red and the text takes up 90% of the available horizontal space: Using Standard CSS Media Features The official list of standard media features is contained in the W3C CSS Media Query recommendation located here: http://www.w3.org/TR/css3-mediaqueries/ Here is the official list of the 13 media features described in the standard: · width – The current width of the viewport · height – The current height of the viewport · device-width – The width of the device · device-height – The height of the device · orientation – The value portrait or landscape · aspect-ratio – The ratio of width to height · device-aspect-ratio – The ratio of device width to device height · color – The number of bits per color supported by the device · color-index – The number of colors in the color lookup table of the device · monochrome – The number of bits in the monochrome frame buffer · resolution – The density of the pixels supported by the device · scan – The values progressive or interlace (used for TVs) · grid – The values 0 or 1 which indicate whether the device supports a grid or a bitmap Many of the media features in the list above support the min- and max- prefix. For example, you can test for the min-width using a query like this: (min-width:800px) You can use the logical and operator with media queries when you need to check whether a device supports more than one feature. For example, the following query returns true only when the width of the device is between 800 and 1,200 pixels: (min-width:800px) and (max-width:1200px) Finally, you can use the different media types – all, braille, embossed, handheld, print, projection, screen, speech, tty, tv — with a media query. For example, the following media query only applies to a page when a page is being printed in color: print and (color) If you don’t specify a media type then media type all is assumed. Using Metro Style Media Features Microsoft has extended the standard list of media features which you can include in a media query with two custom media features: · -ms-high-contrast – The values any, black-white, white-black · -ms-view-state – The values full-screen, fill, snapped, device-portrait You can take advantage of the –ms-high-contrast media feature to make your web application more accessible to individuals with disabilities. In high contrast mode, you should make your application easier to use for individuals with vision disabilities. The –ms-view-state media feature enables you to detect the state of an application. For example, when an application is snapped, the application only occupies part of the available screen real estate. The snapped application appears on the left or right side of the screen and the rest of the screen real estate is dominated by the fill application (Metro style applications can only be snapped on devices with a horizontal resolution of greater than 1,366 pixels). Here is a page which contains style rules for an application in both a snap and fill application state: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>MyWinWebApp</title> <style type="text/css"> html { font-family:'Segoe UI Semilight'; font-size: xx-large; } @media screen and (-ms-view-state:snapped) { html { background-color: lime; } } @media screen and (-ms-view-state:fill) { html { background-color: red; } } </style> </head> <body> <p class="content"> Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </p> </body> </html> When the application is snapped, the application appears with a lime background color: When the application state is fill then the background color changes to red: When the application takes up the entire screen real estate – it is not in snapped or fill state – then no special style rules apply and the application appears with a white background color. Querying Media Features with JavaScript You can perform media queries using JavaScript by taking advantage of the window.msMatchMedia() method. This method returns a MSMediaQueryList which has a matches method that represents success or failure. For example, the following code checks whether the current device is in portrait mode: if (window.msMatchMedia("(orientation:portrait)").matches) { console.log("portrait"); } else { console.log("landscape"); } If the matches property returns true, then the device is in portrait mode and the message “portrait” is written to the Visual Studio JavaScript Console window. Otherwise, the message “landscape” is written to the JavaScript Console window. You can create an event listener which triggers code whenever the results of a media query changes. For example, the following code writes a message to the JavaScript Console whenever the current device is switched into or out of Portrait mode: window.msMatchMedia("(orientation:portrait)").addListener(function (mql) { if (mql.matches) { console.log("Switched to portrait"); } }); Be aware that the event listener is triggered whenever the result of the media query changes. So the event listener is triggered both when you switch from landscape to portrait and when you switch from portrait to landscape. For this reason, you need to verify that the matches property has the value true before writing the message. Summary The goal of this blog entry was to explain how CSS media queries work in the context of a Metro style application written with JavaScript. First, you were provided with an overview of the W3C CSS Media Query recommendation. You learned about the standard media features which you can query such as width and orientation. Next, we focused on the Microsoft extensions to media queries. You learned how to use –ms-view-state to detect whether a Metro style application is in “snapped” or “fill” state. You also learned how to use the msMatchMedia() method to perform a media query from JavaScript.

    Read the article

  • Django Foreign key queries

    - by Hulk
    In the following model: class header(models.Model): title = models.CharField(max_length = 255) created_by = models.CharField(max_length = 255) def __unicode__(self): return self.id() class criteria(models.Model): details = models.CharField(max_length = 255) headerid = models.ForeignKey(header) def __unicode__(self): return self.id() class options(models.Model): opt_details = models.CharField(max_length = 255) headerid = models.ForeignKey(header) def __unicode__(self): return self.id() If there is a row in the database for table header as Id=1, title=value-mart , createdby=CEO How do i query criteria and options tables to get all the values related to header table id=1 Also can some one please suggest a good link for queries examples, Thanks..

    Read the article

  • Are Hibernate named HQL queries (in annotations) optimised?

    - by Graham Lea
    A new colleague has just suggested using named HQL queries in Hibernate with annotations (i.e. @NamedQuery) instead of embedding HQL in our XxxxRepository classes. What I'd like to know is whether using the annotation provides any advantage except for centralising quueries? In particular, is there some performances gain, for instance because the query is only parsed once when the class is loaded rather than every time the Repository method is executed?

    Read the article

  • Linking indivuidal queries in a unbound listbox in ACCESS 2007

    - by Jeremy
    I have created a unbound listbox. I have the box showing a list of queries i want the use to be able to select. My problem is I don't understand how to get the submit button to select the currently selected query and run it. So how do I link the submit button to the listbox and have each item in the box submit it's own query.

    Read the article

  • Linking individual queries in a unbound listbox in ACCESS 2007

    - by Jeremy
    I have created a unbound listbox. I have the box showing a list of queries I want the use to be able to select. My problem is I don't understand how to get the submit button to select the currently selected query and run it. So how do I link the submit button to the listbox and have each item in the box submit its own query.

    Read the article

  • Djangoo Foreign key queries

    - by Hulk
    In the following model: class header(models.Model): title = models.CharField(max_length = 255) created_by = models.CharField(max_length = 255) def __unicode__(self): return self.id() class criteria(models.Model): details = models.CharField(max_length = 255) headerid = models.ForeignKey(header) def __unicode__(self): return self.id() class options(models.Model): opt_details = models.CharField(max_length = 255) headerid = models.ForeignKey(header) def __unicode__(self): return self.id() If there is a row in the database for table header as Id=1, title=value-mart , createdby=CEO How do i query criteria and options tables to get all the values related to header table id=1 Also can some one please suggest a good link for queries examples, Thanks..

    Read the article

  • CodeIgniter Active Record Queries W/ Sub Queries

    - by Mike
    Question: I really am trying to stick to using ActiveRecord and not using straight SQL.. can someone help me convert this to activerecord? Trying to get the email address and contact name from another table. map_userfields table is a one to many, multiple rows per p.id. one row per p.id per uf.fieldid. see this screenshot for a reference to the map_userfields table: Current Non active record query SELECT p.id, (SELECT uf.fieldvalue FROM map_userfields uf WHERE uf.pointid = p.id AND uf.fieldid = 20) As ContactName, (SELECT uf.fieldvalue FROM map_userfields uf WHERE uf.pointid = p.id AND uf.fieldid = 31) As ContactEmail FROM map_points p WHERE /** $pointCategory is an array of categories to look for **/ p.type IN($pointCategory) Note: I am using CodeIgniter 2.1.x, MySQL 5.x, php 5.3

    Read the article

  • @media queries - one rule overrides another?

    - by John
    I have multiple @media queries all working fine but as soon as i put in a higher max screen-width than 1024px the rules for the higher width gets applied to everything. @media screen and (max-width: 1400px) { #wrap { width: 72%; } } @media screen and (max-width: 1024px) { #slider h2 { width: 100%; } #slider img { margin: 60px 0.83333333333333% 0 2.08333333333333%; } .recent { width: 45.82%; margin: 10px 2.08333333333334% 0 1.875%; } } as you can see 1024px (and also the 800px max-width query) do not change the #wrap width and work fine. As soon as i add the 1400px max-width query it changes them to 72% for ALL sizes and does the same for any element - for instance if i set #slider img to have a margin of 40px it will show at ALL sizes even though it is only in the max-width of 1400px. Am i missing something really obvious? Been trying to work this out for the past 2 days! Thanks, John

    Read the article

  • join two oracle queries

    - by coder247
    I've to query from two tables and want one result.. how can i join these two queries? First query is querying from two tables and the second one is only from one. select pt.id,pt.promorow,pt.promocolumn,pt.type,pt.image,pt.style,pt.quota_allowed,ptc.text,pq.quota_left from promotables pt,promogroups pg ,promotablecontents ptc ,promoquotas pq where pt.id_promogroup = 1 and ptc.country ='049' and ptc.id_promotable = pt.id and pt.id_promogroup = pg.id and pq.id_promotable = pt.id order by pt.promorow,pt.promocolumn select pt.id,pt.promorow,pt.promocolumn,pt.type,pt.image,pt.style,pt.quota_allowed from promotables pt where pt.type='heading'

    Read the article

  • Building Queries Systematically

    - by Jeremy Smyth
    The SQL language is a bit like a toolkit for data. It consists of lots of little fiddly bits of syntax that, taken together, allow you to build complex edifices and return powerful results. For the uninitiated, the many tools can be quite confusing, and it's sometimes difficult to decide how to go about the process of building non-trivial queries, that is, queries that are more than a simple SELECT a, b FROM c; A System for Building Queries When you're building queries, you could use a system like the following:  Decide which fields contain the values you want to use in our output, and how you wish to alias those fields Values you want to see in your output Values you want to use in calculations . For example, to calculate margin on a product, you could calculate price - cost and give it the alias margin. Values you want to filter with. For example, you might only want to see products that weigh more than 2Kg or that are blue. The weight or colour columns could contain that information. Values you want to order by. For example you might want the most expensive products first, and the least last. You could use the price column in descending order to achieve that. Assuming the fields you've picked in point 1 are in multiple tables, find the connections between those tables Look for relationships between tables and identify the columns that implement those relationships. For example, The Orders table could have a CustomerID field referencing the same column in the Customers table. Sometimes the problem doesn't use relationships but rests on a different field; sometimes the query is looking for a coincidence of fact rather than a foreign key constraint. For example you might have sales representatives who live in the same state as a customer; this information is normally not used in relationships, but if your query is for organizing events where sales representatives meet customers, it's useful in that query. In such a case you would record the names of columns at either end of such a connection. Sometimes relationships require a bridge, a junction table that wasn't identified in point 1 above but is needed to connect tables you need; these are used in "many-to-many relationships". In these cases you need to record the columns in each table that connect to similar columns in other tables. Construct a join or series of joins using the fields and tables identified in point 2 above. This becomes your FROM clause. Filter using some of the fields in point 1 above. This becomes your WHERE clause. Construct an ORDER BY clause using values from point 1 above that are relevant to the desired order of the output rows. Project the result using the remainder of the fields in point 1 above. This becomes your SELECT clause. A Worked Example   Let's say you want to query the world database to find a list of countries (with their capitals) and the change in GNP, using the difference between the GNP and GNPOld columns, and that you only want to see results for countries with a population greater than 100,000,000. Using the system described above, we could do the following:  The Country.Name and City.Name columns contain the name of the country and city respectively.  The change in GNP comes from the calculation GNP - GNPOld. Both those columns are in the Country table. This calculation is also used to order the output, in descending order To see only countries with a population greater than 100,000,000, you need the Population field of the Country table. There is also a Population field in the City table, so you'll need to specify the table name to disambiguate. You can also represent a number like 100 million as 100e6 instead of 100000000 to make it easier to read. Because the fields come from the Country and City tables, you'll need to join them. There are two relationships between these tables: Each city is hosted within a country, and the city's CountryCode column identifies that country. Also, each country has a capital city, whose ID is contained within the country's Capital column. This latter relationship is the one to use, so the relevant columns and the condition that uses them is represented by the following FROM clause:  FROM Country JOIN City ON Country.Capital = City.ID The statement should only return countries with a population greater than 100,000,000. Country.Population is the relevant column, so the WHERE clause becomes:  WHERE Country.Population > 100e6  To sort the result set in reverse order of difference in GNP, you could use either the calculation, or the position in the output (it's the third column): ORDER BY GNP - GNPOld or ORDER BY 3 Finally, project the columns you wish to see by constructing the SELECT clause: SELECT Country.Name AS Country, City.Name AS Capital,        GNP - GNPOld AS `Difference in GNP`  The whole statement ends up looking like this:  mysql> SELECT Country.Name AS Country, City.Name AS Capital, -> GNP - GNPOld AS `Difference in GNP` -> FROM Country JOIN City ON Country.Capital = City.ID -> WHERE Country.Population > 100e6 -> ORDER BY 3 DESC; +--------------------+------------+-------------------+ | Country            | Capital    | Difference in GNP | +--------------------+------------+-------------------+ | United States | Washington | 399800.00 | | China | Peking | 64549.00 | | India | New Delhi | 16542.00 | | Nigeria | Abuja | 7084.00 | | Pakistan | Islamabad | 2740.00 | | Bangladesh | Dhaka | 886.00 | | Brazil | Brasília | -27369.00 | | Indonesia | Jakarta | -130020.00 | | Russian Federation | Moscow | -166381.00 | | Japan | Tokyo | -405596.00 | +--------------------+------------+-------------------+ 10 rows in set (0.00 sec) Queries with Aggregates and GROUP BY While this system might work well for many queries, it doesn't cater for situations where you have complex summaries and aggregation. For aggregation, you'd start with choosing which columns to view in the output, but this time you'd construct them as aggregate expressions. For example, you could look at the average population, or the count of distinct regions.You could also perform more complex aggregations, such as the average of GNP per head of population calculated as AVG(GNP/Population). Having chosen the values to appear in the output, you must choose how to aggregate those values. A useful way to think about this is that every aggregate query is of the form X, Y per Z. The SELECT clause contains the expressions for X and Y, as already described, and Z becomes your GROUP BY clause. Ordinarily you would also include Z in the query so you see how you are grouping, so the output becomes Z, X, Y per Z.  As an example, consider the following, which shows a count of  countries and the average population per continent:  mysql> SELECT Continent, COUNT(Name), AVG(Population)     -> FROM Country     -> GROUP BY Continent; +---------------+-------------+-----------------+ | Continent     | COUNT(Name) | AVG(Population) | +---------------+-------------+-----------------+ | Asia          |          51 |   72647562.7451 | | Europe        |          46 |   15871186.9565 | | North America |          37 |   13053864.8649 | | Africa        |          58 |   13525431.0345 | | Oceania       |          28 |    1085755.3571 | | Antarctica    |           5 |          0.0000 | | South America |          14 |   24698571.4286 | +---------------+-------------+-----------------+ 7 rows in set (0.00 sec) In this case, X is the number of countries, Y is the average population, and Z is the continent. Of course, you could have more fields in the SELECT clause, and  more fields in the GROUP BY clause as you require. You would also normally alias columns to make the output more suited to your requirements. More Complex Queries  Queries can get considerably more interesting than this. You could also add joins and other expressions to your aggregate query, as in the earlier part of this post. You could have more complex conditions in the WHERE clause. Similarly, you could use queries such as these in subqueries of yet more complex super-queries. Each technique becomes another tool in your toolbox, until before you know it you're writing queries across 15 tables that take two pages to write out. But that's for another day...

    Read the article

  • Django many to many queries

    - by Hulk
    In the following, How to get designation when querying Emp sc=Emp.objects.filter(pk=profile.emp.id)[0] sc.desg //this gives an error class Emp(models.Model): name = models.CharField(max_length=255, unique=True) address1 = models.CharField(max_length=255) city = models.CharField(max_length=48) state = models.CharField(max_length=48) country = models.CharField(max_length=48) desg = models.ManyToManyField(Designation) class Designation(models.Model): description = models.TextField() title = models.TextField() def __unicode__(self): return self.board

    Read the article

  • Help writing database queries for derby?

    - by outsyncof
    I have a database containing multiple tables (Person, Parents, etc) Person table has certain attributes particularly ssn, countryofbirth and currentcountry. Parents table has ssn, and fathersbirthcountry I'm trying to output the SSNs of all people who have the same countryofbirth as their fathersbirthcountry and also have same currentcountry as fathersbirthcountry. SELECT Person.ssn FROM Person, Parents WHERE fathersbirthcountry = countryofbirth AND currentcountry = fathersbirthcountry; the above doesn't seem to be working, could anyone please help me out?

    Read the article

  • Django queries Especial Caracters

    - by Jorge Machado
    Hi, I Working on location from google maps and using django to. My question is: I have a String in request.GET['descricao'] lets say it contains "Via rapida". In my database i have store = "Via Rápida" i'm doing : local = Local.objects.filter(name__icontains=request.GET['descricao']) with that i can get everthing fine like "Via Rapida" but the result that have "Via rápida" never get match in the query (ASCI caracter may be ?) what must i do given a string "Via rapida" match "via rápida" and "via rapida" ? Regular Expressions ? how ? Thanks

    Read the article

  • SQL SERVER – Identify Most Resource Intensive Queries – SQL in Sixty Seconds #028 – Video

    - by pinaldave
    During performance tuning conversation the very first question people often ask is what are the queries offending the server or in another word let us identify the queries which are the most resource intensive. The resources are often described as either Memory, CPU or IO. When we talk about the queries the same is applicable for them as well. The query which is doing lots of reads or writes are for sure resource intensive as well query which are taking maximum CPU time. Performance tuning is a very deep subject and we all have our own preference regarding what should be the first step to tuning and what should be looked with the salt of grain. Though there is no denying that a query which uses more resources than what it should be using for sure require tuning. There are many ways to do identify query using intense resources (e.g. Extended events etc) but in this one we will go by simple DMV. There is a small gotcha we all have to remember about usage of DMV is that it only brings back results from existing cache. So if you have a query which is very resource intensive but is not cached or if you have explicitly removed the query from the cache it will be not part of the result returned by this DMV. It is quite possible that a query is aged and removed from the cache if your cache is not huge. If your cache is large you may want to be careful in running this query during business hours as this query itself can be resource intensive. Get Script to identify resource intensive query from Here Related Tips in SQL in Sixty Seconds: SQL SERVER – Find Most Expensive Queries Using DMV Simple Example to Configure Resource Governor – Introduction to Resource Governor SQL SERVER – DMV – sys.dm_exec_query_optimizer_info – Statistics of Optimizer SQL SERVER – Wait Stats – Wait Types – Wait Queues – Day 0 of 28 Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video Tagged: Excel

    Read the article

  • C# - How to store and reuse queries

    - by Jason Holland
    I'm learning C# by programming a real monstrosity of an application for personal use. Part of my application uses several SPARQL queries like so: const string ArtistByRdfsLabel = @" PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> SELECT DISTINCT ?artist WHERE {{ {{ ?artist rdf:type <http://dbpedia.org/ontology/MusicalArtist> . ?artist rdfs:label ?rdfsLabel . }} UNION {{ ?artist rdf:type <http://dbpedia.org/ontology/Band> . ?artist rdfs:label ?rdfsLabel . }} FILTER ( str(?rdfsLabel) = '{0}' ) }}"; string Query = String.Format(ArtistByRdfsLabel, Artist); I don't like the idea of keeping all these queries in the same class that I'm using them in so I thought I would just move them into their own dedicated class to remove clutter in my RestClient class. I'm used to working with SQL Server and just wrapping every query in a stored procedure but since this is not SQL Server I'm scratching my head on what would be the best for these SPARQL queries. Are there any better approaches to storing these queries using any special C# language features (or general, non C# specific, approaches) that I may not already know about?

    Read the article

  • Using Queries with Coherence Read-Through Caches

    - by jpurdy
    Applications that rely on partial caches of databases, and use read-through to maintain those caches, have some trade-offs if queries are required. Coherence does not support push-down queries, so queries will apply only to data that currently exists in the cache. This is technically consistent with "read committed" semantics, but the potential absence of data may make the results so unintuitive as to be useless for most use cases (depending on how much of the database is held in cache). Alternatively, the application itself may manually "push down" queries to the database, either retrieving results equivalent to querying the cache directly, or may query the database for a key set and read the values from the cache (relying on read-through to handle any missing values). Obviously, if the result set is too large, reading through the cache may cause significant thrashing. It's also worth pointing out that if the cache is asynchronously synchronized with the database (perhaps via database change listener), that an application may commit a transaction to the database, then generate a key set from the database via a query, then read cache entries through the cache, possibly resulting in a race condition where the application sees older data than it had previously committed. In theory this is not problematic but in practice it is very unintuitive. For this reason it often makes sense to invalidate the cache when updating the database, forcing the next read-through to update the cache.

    Read the article

  • Joins in single-table queries

    - by Rob Farley
    Tables are only metadata. They don’t store data. I’ve written something about this before, but I want to take a viewpoint of this idea around the topic of joins, especially since it’s the topic for T-SQL Tuesday this month. Hosted this time by Sebastian Meine (@sqlity), who has a whole series on joins this month. Good for him – it’s a great topic. In that last post I discussed the fact that we write queries against tables, but that the engine turns it into a plan against indexes. My point wasn’t simply that a table is actually just a Clustered Index (or heap, which I consider just a special type of index), but that data access always happens against indexes – never tables – and we should be thinking about the indexes (specifically the non-clustered ones) when we write our queries. I described the scenario of looking up phone numbers, and how it never really occurs to us that there is a master list of phone numbers, because we think in terms of the useful non-clustered indexes that the phone companies provide us, but anyway – that’s not the point of this post. So a table is metadata. It stores information about the names of columns and their data types. Nullability, default values, constraints, triggers – these are all things that define the table, but the data isn’t stored in the table. The data that a table describes is stored in a heap or clustered index, but it goes further than this. All the useful data is going to live in non-clustered indexes. Remember this. It’s important. Stop thinking about tables, and start thinking about indexes. So let’s think about tables as indexes. This applies even in a world created by someone else, who doesn’t have the best indexes in mind for you. I’m sure you don’t need me to explain Covering Index bit – the fact that if you don’t have sufficient columns “included” in your index, your query plan will either have to do a Lookup, or else it’ll give up using your index and use one that does have everything it needs (even if that means scanning it). If you haven’t seen that before, drop me a line and I’ll run through it with you. Or go and read a post I did a long while ago about the maths involved in that decision. So – what I’m going to tell you is that a Lookup is a join. When I run SELECT CustomerID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 285; against the AdventureWorks2012 get the following plan: I’m sure you can see the join. Don’t look in the query, it’s not there. But you should be able to see the join in the plan. It’s an Inner Join, implemented by a Nested Loop. It’s pulling data in from the Index Seek, and joining that to the results of a Key Lookup. It clearly is – the QO wouldn’t call it that if it wasn’t really one. It behaves exactly like any other Nested Loop (Inner Join) operator, pulling rows from one side and putting a request in from the other. You wouldn’t have a problem accepting it as a join if the query were slightly different, such as SELECT sod.OrderQty FROM Sales.SalesOrderHeader AS soh JOIN Sales.SalesOrderDetail as sod on sod.SalesOrderID = soh.SalesOrderID WHERE soh.SalesPersonID = 285; Amazingly similar, of course. This one is an explicit join, the first example was just as much a join, even thought you didn’t actually ask for one. You need to consider this when you’re thinking about your queries. But it gets more interesting. Consider this query: SELECT SalesOrderID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 276 AND CustomerID = 29522; It doesn’t look like there’s a join here either, but look at the plan. That’s not some Lookup in action – that’s a proper Merge Join. The Query Optimizer has worked out that it can get the data it needs by looking in two separate indexes and then doing a Merge Join on the data that it gets. Both indexes used are ordered by the column that’s indexed (one on SalesPersonID, one on CustomerID), and then by the CIX key SalesOrderID. Just like when you seek in the phone book to Farley, the Farleys you have are ordered by FirstName, these seek operations return the data ordered by the next field. This order is SalesOrderID, even though you didn’t explicitly put that column in the index definition. The result is two datasets that are ordered by SalesOrderID, making them very mergeable. Another example is the simple query SELECT CustomerID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 276; This one prefers a Hash Match to a standard lookup even! This isn’t just ordinary index intersection, this is something else again! Just like before, we could imagine it better with two whole tables, but we shouldn’t try to distinguish between joining two tables and joining two indexes. The Query Optimizer can see (using basic maths) that it’s worth doing these particular operations using these two less-than-ideal indexes (because of course, the best indexese would be on both columns – a composite such as (SalesPersonID, CustomerID – and it would have the SalesOrderID column as part of it as the CIX key still). You need to think like this too. Not in terms of excusing single-column indexes like the ones in AdventureWorks2012, but in terms of having a picture about how you’d like your queries to run. If you start to think about what data you need, where it’s coming from, and how it’s going to be used, then you will almost certainly write better queries. …and yes, this would include when you’re dealing with regular joins across multiples, not just against joins within single table queries.

    Read the article

  • Check/Monitor Amount of SQL Queries per Hour

    - by deathlock
    My website is hosted on a shared hosting and I'd like to know how much SQL queries it is using per hour. I tried to navigate through cPanel and I find nothing to check or monitor the amount of SQL queries per hour. I tried to ask my host and they said it is not possible to do manually. However I found this http://forum.powweb.com/archive/index.php/t-49937.html and another one on Stackoverflow: http://stackoverflow.com/questions/9842094/sql-how-can-i-get-the-number-of-executed-queries-per-database-or-hour-or And since this exists, I assume that it is actually possible. Problem is I can't execute that in my phpmyAdmin. Can someone here guide me through the process?

    Read the article

  • MYSQL - Selecting a specific date range to get "current" popular screensavers.

    - by Joe
    Let's say I have a screensaver website. I want to display the CURRENT top 100 screensavers on the front page of the website. What I mean is, "RECENT" top 100 screensavers. What would be an example query to do this? My current one is: SELECT * FROM tbl_screensavers WHERE WEEK(tbl_screensavers.DateAdded) = WEEK('".date("Y-m-d H:i:s",strtotime("-1 week"))."') ORDER BY tbl_screensavers.ViewsCount, tbl_screensavers.DateAdded This will select the most viewed ("tbl_screensavers.ViewsCount") screensavers that were added ("tbl_screensavers.DateAdded") in the last week. However, in some cases there are no screensavers, or less than 100 screensavers, submitted in that week. So, how can I perform a query which would select "RECENT" top 100 screensavers? Hopefully you have an idea of what I'm try to accomplish when I say "RECENT" or "CURRENT" top screensavers. -- aka. the most viewed, recently - not the most viewed, all-time.

    Read the article

  • LINQ to Twitter Queries with LINQPad

    - by Joe Mayo
    LINQPad is a popular utility for .NET developers who use LINQ a lot.  In addition to standard SQL queries, LINQPad also supports other types of LINQ providers, including LINQ to Twitter.  The following sections explain how to set up LINQPad for making queries with LINQ to Twitter. LINQPad comes in a couple versions and this example uses LINQPad4, which runs on the .NET Framework 4.0. 1. The first thing you'll need to do is set up a reference to the LinqToTwitter.dll. From the Query menu, select query properties. Click the Browse button and find the LinqToTwitter.dll binary. You should see something similar to the Query Properties window below. 2. While you have the query properties window open, add the namespace for the LINQ to Twitter types.  Click the Additional Namespace Imports tab and type in LinqToTwitter. The results are shown below: 3. The default query type, when you first start LINQPad, is C# Expression, but you'll need to change this to support multiple statements.  Change the Language dropdown, on the Main window, to C# Statements. 4. To query LINQ to Twitter, instantiate a TwitterContext, by typing the following into the LINQPad Query window: var ctx = new TwitterContext(); Note: If you're getting syntax errors, go back and make sure you did steps #2 and #3 properly. 5. Next, add a query, but don't materialize it, like this: var tweets = from tweet in ctx.Status where tweet.Type == StatusType.Public select new { tweet.Text, tweet.Geo, tweet.User }; 6. Next, you want the output to be displayed in the LINQPad grid, so do a Dump, like this: tweets.Dump(); The following image shows the final results:   That was an unauthenticated query, but you can also perform authenticated queries with LINQ to Twitter's support of OAuth.  Here's an example that uses the PinAuthorizer (type this into the LINQPad Query window): var auth = new PinAuthorizer { Credentials = new InMemoryCredentials { ConsumerKey = "", ConsumerSecret = "" }, UseCompression = true, GoToTwitterAuthorization = pageLink => Process.Start(pageLink), GetPin = () => { // this executes after user authorizes, which begins with the call to auth.Authorize() below. Console.WriteLine("\nAfter you authorize this application, Twitter will give you a 7-digit PIN Number.\n"); Console.Write("Enter the PIN number here: "); return Console.ReadLine(); } }; // start the authorization process (launches Twitter authorization page). auth.Authorize(); var ctx = new TwitterContext(auth, "https://api.twitter.com/1/", "https://search.twitter.com/"); var tweets = from tweet in ctx.Status where tweet.Type == StatusType.Public select new { tweet.Text, tweet.Geo, tweet.User }; tweets.Dump(); This code is very similar to what you'll find in the LINQ to Twitter downloadable source code solution, in the LinqToTwitterDemo project.  For obvious reasons, I changed the value assigned to ConsumerKey and ConsumerSecret, which you'll have to obtain by visiting http://dev.twitter.com and registering your application. One tip, you'll probably want to make this easier on yourself by creating your own DLL that encapsulates all of the OAuth logic and then call a method or property on you custom class that returns a fully functioning TwitterContext.  This will help avoid adding all this code every time you want to make a query. Now, you know how to set up LINQPad for LINQ to Twitter, perform unauthenticated queries, and perform queries with OAuth. Joe

    Read the article

  • Design by Contract with Microsoft .Net Code Contract

    - by Fredrik N
    I have done some talks on different events and summits about Defensive Programming and Design by Contract, last time was at Cornerstone’s Developer Summit 2010. Next time will be at SweNug (Sweden .Net User Group). I decided to write a blog post about of some stuffs I was talking about. Users are a terrible thing! Protect your self from them ”Human users have a gift for doing the worst possible thing at the worst possible time.” – Michael T. Nygard, Release It! The kind of users Michael T. Nygard are talking about is the users of a system. We also have users that uses our code, the users I’m going to focus on is the users of our code. Me and you and another developers. “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler Good programmers also writes code that humans know how to use, good programmers also make sure software behave in a predictable manner despise inputs or user actions. Design by Contract   Design by Contract (DbC) is a way for us to make a contract between us (the code writer) and the users of our code. It’s about “If you give me this, I promise to give you this”. It’s not about business validations, that is something completely different that should be part of the domain model. DbC is to make sure the users of our code uses it in a correct way, and that we can rely on the contract and write code in a way where we know that the users will follow the contract. It will make it much easier for us to write code with a contract specified. Something like the following code is something we may see often: public void DoSomething(Object value) { value.DoIKnowThatICanDoThis(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Where “value” can be uses directly or passed to other methods and later be used. What some of us can easily forget here is that the “value” can be “null”. We will probably not passing a null value, but someone else that uses our code maybe will do it. I think most of you (including me) have passed “null” into a method because you don’t know if the argument need to be specified to a valid value etc. I bet most of you also have got the “Null reference exception”. Sometimes this “Null reference exception” can be hard and take time to fix, because we need to search among our code to see where the “null” value was passed in etc. Wouldn’t it be much better if we can as early as possible specify that the value can’t not be null, so the users of our code also know it when the users starts to use our code, and before run time execution of the code? This is where DbC comes into the picture. We can use DbC to specify what we need, and by doing so we can rely on the contract when we write our code. So the code above can actually use the DoIKnowThatICanDoThis() method on the value object without being worried that the “value” can be null. The contract between the users of the code and us writing the code, says that the “value” can’t be null.   Pre- and Postconditions   When working with DbC we are specifying pre- and postconditions.  Precondition is a condition that should be met before a query or command is executed. An example of a precondition is: “The Value argument of the method can’t be null”, and we make sure the “value” isn’t null before the method is called. Postcondition is a condition that should be met when a command or query is completed, a postcondition will make sure the result is correct. An example of a postconditon is “The method will return a list with at least 1 item”. Commands an Quires When using DbC, we need to know what a Command and a Query is, because some principles that can be good to follow are based on commands and queries. A Command is something that will not return anything, like the SQL’s CREATE, UPDATE and DELETE. There are two kinds of Commands when using DbC, the Creation commands (for example a Constructor), and Others. Others can for example be a Command to add a value to a list, remove or update a value etc. //Creation commands public Stack(int size) //Other commands public void Push(object value); public void Remove(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   A Query, is something that will return something, for example an Attribute, Property or a Function, like the SQL’s SELECT.   There are two kinds of Queries, the Basic Queries  (Quires that aren’t based on another queries), and the Derived Queries, queries that is based on another queries. Here is an example of queries of a Stack: //Basic Queries public int Count; public object this[int index] { get; } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To understand about some principles that are good to follow when using DbC, we need to know about the Commands and different Queries. The 6 Principles When working with DbC, it’s advisable to follow some principles to make it easier to define and use contracts. The following DbC principles are: Separate commands and queries. Separate basic queries from derived queries. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries. For each command, write a postcondition that specifies the value of every basic query. For every query and command, decide on a suitable precondition. Write invariants to define unchanging properties of objects. Before I will write about each of them I want you to now that I’m going to use .Net 4.0 Code Contract. I will in the rest of the post uses a simple Stack (Yes I know, .Net already have a Stack class) to give you the basic understanding about using DbC. A Stack is a data structure where the first item in, will be the first item out. Here is a basic implementation of a Stack where not contract is specified yet: public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } //Is related to Count and this[] Query public object Top() { return this[Count]; } //Creation commands public Stack(uint size) { Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { this[++Count] = value; } public void Remove() { this[Count] = null; Count--; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The Stack is implemented in a way to demonstrate the use of Code Contract in a simple way, the implementation may not look like how you would implement it, so don’t think this is the perfect Stack implementation, only used for demonstration.   Before I will go deeper into the principles I will simply mention how we can use the .Net Code Contract. I mention before about pre- and postcondition, is about “Require” something and to “Ensure” something. When using Code Contract, we will use a static class called “Contract” and is located in he “System.Diagnostics.Contracts” namespace. The contract must be specified at the top or our member statement block. To specify a precondition with Code Contract we uses the Contract.Requires method, and to specify a postcondition, we uses the Contract.Ensure method. Here is an example where both a pre- and postcondition are used: public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The contract above requires that the Count is greater than 0, if not we can’t get the item at the Top of a Stack. We also Ensures that the results (By using the Contract.Result method, we can specify a postcondition that will check if the value returned from a method is correct) of the Top query is equal to this[Count].   1. Separate Commands and Queries   When working with DbC, it’s important to separate Command and Quires. A method should either be a command that performs an Action, or returning information to the caller, not both. By asking a question the answer shouldn’t be changed. The following is an example of a Command and a Query of a Stack: public void Push(object value) public object Top() .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The Push is a command and will not return anything, just add a value to the Stack, the Top is a query to get the item at the top of the stack.   2. Separate basic queries from derived queries There are two different kinds of queries,  the basic queries that doesn’t rely on another queries, and derived queries that uses a basic query. The “Separate basic queries from derived queries” principle is about about that derived queries can be specified in terms of basic queries. So this principles is more about recognizing that a query is a derived query or a basic query. It will then make is much easier to follow the other principles. The following code shows a basic query and a derived query: //Basic Queries public uint Count; //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   We can see that IsEmpty will use the Count query, and that makes the IsEmpty a Derived query.   3. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries.   When the derived query is recognize we can follow the 3ed principle. For each derived query, we can create a postcondition that specifies what result our derived query will return in terms of one or more basic queries. Remember that DbC is about contracts between the users of the code and us writing the code. So we can’t use demand that the users will pass in a valid value, we must also ensure that we will give the users what the users wants, when the user is following our contract. The IsEmpty query of the Stack will use a Count query and that will make the IsEmpty a Derived query, so we should now write a postcondition that specified what results will be returned, in terms of using a basic query and in this case the Count query, //Basic Queries public uint Count; //Derived Queries public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } The Contract.Ensures is used to create a postcondition. The above code will make sure that the results of the IsEmpty (by using the Contract.Result to get the result of the IsEmpty method) is correct, that will say that the IsEmpty will be either true or false based on Count is equal to 0 or not. The postcondition are using a basic query, so the IsEmpty is now following the 3ed principle. We also have another Derived Query, the Top query, it will also need a postcondition and it uses all basic queries. The Result of the Top method must be the same value as the this[] query returns. //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count and this[] Query public object Top() { Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   4. For each command, write a postcondition that specifies the value of every basic query.   For each command we will create a postconditon that specifies the value of basic queries. If we look at the Stack implementation we will have three Commands, one Creation command, the Constructor, and two others commands, Push and Remove. Those commands need a postcondition and they should include basic query to follow the 4th principle. //Creation commands public Stack(uint size) { Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   As you can see the Create command will Ensures that Count will be 0 when the Stack is created, when a Stack is created there shouldn’t be any items in the stack. The Push command will take a value and put it into the Stack, when an item is pushed into the Stack, the Count need to be increased to know the number of items added to the Stack, and we must also make sure the item is really added to the Stack. The postconditon of the Push method will make sure the that old value of the Count (by using the Contract.OldValue we can get the value a Query has before the method is called)  plus 1 will be equal to the Count query, this is the way we can ensure that the Push will increase the Count with one. We also make sure the this[] query will now contain the item we pushed into the Stack. The Remove method must make sure the Count is decreased by one when the top item is removed from the Stack. The Commands is now following the 4th principle, where each command now have a postcondition that used the value of basic queries. Note: The principle says every basic Query, the Remove only used one Query the Count, it’s because this command can’t use the this[] query because an item is removed, so the only way to make sure an item is removed is to just use the Count query, so the Remove will still follow the principle.   5. For every query and command, decide on a suitable precondition.   We have now focused only on postcondition, now time for some preconditons. The 5th principle is about deciding a suitable preconditon for every query and command. If we starts to look at one of our basic queries (will not go through all Queries and commands here, just some of them) the this[] query, we can’t pass an index that is lower then 1 (.Net arrays and list are zero based, but not the stack in this blog post ;)) and the index can’t be lesser than the number of items in the stack. So here we will need a preconditon. public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Think about the Contract as an documentation about how to use the code in a correct way, so if the contract could be specified elsewhere (not part of the method body), we could simply write “return _array[index]” and there is no need to check if index is greater or lesser than Count, because that is specified in a “contract”. The implementation of Code Contract, requires that the contract is specified in the code. As a developer I would rather have this contract elsewhere (Like Spec#) or implemented in a way Eiffel uses it as part of the language. Now when we have looked at one Query, we can also look at one command, the Remove command (You can see the whole implementation of the Stack at the end of this blog post, where precondition is added to more queries and commands then what I’m going to show in this section). We can only Remove an item if the Count is greater than 0. So we can write a precondition that will require that Count must be greater than 0. public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   6. Write invariants to define unchanging properties of objects.   The last principle is about making sure the object are feeling great! This is done by using invariants. When using Code Contract we can specify invariants by adding a method with the attribute ContractInvariantMethod, the method must be private or public and can only contains calls to Contract.Invariant. To make sure the Stack feels great, the Stack must have 0 or more items, the Count can’t never be a negative value to make sure each command and queries can be used of the Stack. Here is our invariant for the Stack object: [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The ObjectInvariant method will be called every time after a Query or Commands is called. Here is the full example using Code Contract:   public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } set { Contract.Requires(index >= 1); Contract.Requires(index <= Count); _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } //Is related to Count and this[] Query public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } //Creation commands public Stack(uint size) { Contract.Requires(size > 0); Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Requires(value != null); Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Summary By using Design By Contract we can make sure the users are using our code in a correct way, and we must also make sure the users will get the expected results when they uses our code. This can be done by specifying contracts. To make it easy to use Design By Contract, some principles may be good to follow like the separation of commands an queries. With .Net 4.0 we can use the Code Contract feature to specify contracts.

    Read the article

  • Precompiling LINQ Queries

    Did you know that by precompiling LINQ queries you might actually be degrading your app’s performance if you’re not careful? Julie Lerman explains how to ensure you’re not re-precompiling queries each time and losing the expected performance benefits across post-backs, short-lived service operations and other code where critical instances are going out of scope.

    Read the article

  • Should experienced programmers know database queries?

    - by Shamim Hafiz
    There are so many programmers out there who are also an expert at Query writing and Database design. Should this be a core requirement to be an expert programmer or software engineer? Though there are lots of similarities in the way queries and codes are developed, my personal opinion is, Queries seem to have a different Structure than Code and it can be tough to Master both simultaneously due to the different approaches.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >