Search Results

Search found 340 results on 14 pages for 'rational rose'.

Page 2/14 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Rational Application Developer (RAD) 7.5+ and websphere runtime will not pick up jars from projects

    - by Berlin Brown
    With RAD Version: 7.5.3, Java 1.5. I have a couple of different projects. I needed to break out the java code and turn the *.class files into a jar. So basically, same *.class files I just removed the code and then jarred the class files into a jar. I broke the classes into a jar and then included the jar in the project. And I also did an order/export on the jar so that other projects can see the jar. At this point, ideally my project should not have changed because I am using class files in a jar instead of the java code. When I visit my web application in websphere, I get class not found errors on the classes that are now in the jar. Project Structure: A. Project earApp -- will need the webapp B. Project webapp -- will need the project (no jar files or *.java files are found in this project) C. Project javasrc -- the java source and the NEW JAR file are found here. I don't think websphere is acknowledging the jar. Here is the error: java.lang.NoClassDefFoundError: com.MyApp at java.lang.ClassLoader.defineClassImpl(Native Method) at java.lang.ClassLoader.defineClass(ClassLoader.java:258) at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:151) at com.ibm.ws.classloader.CompoundClassLoader._defineClass(CompoundClassLoader.java:675) at com.ibm.ws.classloader.CompoundClassLoader.findClass(CompoundClassLoader.java:614) at com.ibm.ws.classloader.CompoundClassLoader.loadClass(CompoundClassLoader.java:431) at java.lang.ClassLoader.loadClass(ClassLoader.java:597) at java.lang.Class.getDeclaredMethodsImpl(Native Method) at java.lang.Class.getDeclaredMethods(Class.java:664) at com.ibm.ws.webcontainer.annotation.data.ScannedAnnotationData.collectMethodAnnotations(ScannedAnnotationData.java:130) at com.ibm.ws.webcontainer.annotation.data.ScannedAnnotationData.<init>(ScannedAnnotationData.java:47) at com.ibm.ws.webcontainer.annotation.AnnotationScanner.scanClass(AnnotationScanner.java:61) at com.ibm.ws.wswebcontainer.webapp.WebApp.processRuntimeAnnotationHelpers(WebApp.java:711) at com.ibm.ws.wswebcontainer.webapp.WebApp.populateJavaNameSpace(WebApp.java:624) at com.ibm.ws.wswebcontainer.webapp.WebApp.initialize(WebApp.java:289) at com.ibm.ws.wswebcontainer.webapp.WebGroup.addWebApplication(WebGroup.java:93) at com.ibm.ws.wswebcontainer.VirtualHost.addWebApplication(VirtualHost.java:162) at com.ibm.ws.wswebcontainer.WebContainer.addWebApp(WebContainer.java:671) at com.ibm.ws.wswebcontainer.WebContainer.addWebApplication(WebContainer.java:624) at com.ibm.ws.webcontainer.component.WebContainerImpl.install(WebContainerImpl.java:395) at com.ibm.ws.webcontainer.component.WebContainerImpl.start(WebContainerImpl.java:611) at com.ibm.ws.runtime.component.ApplicationMgrImpl.start(ApplicationMgrImpl.java:1274) at com.ibm.ws.runtime.component.DeployedApplicationImpl.fireDeployedObjectStart(DeployedApplicationImpl.java:1165) at com.ibm.ws.runtime.component.DeployedModuleImpl.start(DeployedModuleImpl.java:587) at com.ibm.ws.runtime.component.DeployedApplicationImpl.start(DeployedApplicationImpl.java:832) at com.ibm.ws.runtime.component.ApplicationMgrImpl.startApplication(ApplicationMgrImpl.java:921) at com.ibm.ws.runtime.component.ApplicationMgrImpl$AppInitializer.run(ApplicationMgrImpl.java:2124) at com.ibm.wsspi.runtime.component.WsComponentImpl$_AsynchInitializer.run(WsComponentImpl.java:342) at com.ibm.ws.util.ThreadPool$Worker.run(ThreadPool.java:1497) What do you think I need to do?

    Read the article

  • Unable to deploy WAR file to Websphere using IBM Rational Application Developer

    - by Matt1776
    Hello - I am using the IBM RAD IDE and building a dynamic web project. When I build the project and attempt to add it to the server by selecting 'add or remove projects' I get the response that there are no projects to add or remove. Does this mean I will have to create a EAR file (J2EE Project) and add my web project to it in order to deploy to the local WAS? Might I be missing some essential configuration?

    Read the article

  • Analysing Group & Individual Member Performance -RUP

    - by user23871
    I am writing a report which requires the analysis of performance of each individual team member. This is for a software development project developed using the Unified Process (UP). I was just wondering if there are any existing group & individual appraisal metrics used so I don't have to reinvent the wheel... EDIT This is by no means correct but something like: Individual Contribution (IC) = time spent (individual) / time spent (total) = Performance = ? (should use individual contribution (IC) combined with something to gain a measure of overall performance).... Maybe I am talking complete hash and I know generally its really difficult to analyse performance with numbers but any mathematicians out there that can lend a hand or know a somewhat more accurate method of analysing performance than arbitrary marking (e.g. 8 out 10)

    Read the article

  • Is there a rational reason to wait for the release date to download, install or update to the next version of Ubuntu?

    - by badp
    Today, October 6th 2010, Ubuntu 10.10 is in Feature Definition Freeze, Debian Import Freeze, Feature Freeze, User Interface Freeze, Beta Freeze, Documentation String Freeze, Final Freeze, Kernel Freeze and past the Translation Deadlines in both the non-language pack and language pack editions as the release schedule details. Basically, except for last minute bugfixes, the version of Ubuntu 10.10 you can download today is identical to the version of Ubuntu 10.10 you can download on the 10th when it gets released. If you downloaded and installed Ubuntu 10.10 today, you would: help find glaring issues for last minute fixing help defray the network load on October 10th see Ubuntu 10.10 in action without waiting Those sound like pretty strong arguments... to me, and indeed I've been using Ubuntu 10.10 for a month now roughly. However, most people prefer to make the jump with everybody else on release day. What are the rational reasons for that?

    Read the article

  • Is installing Rational Developer for Power Systems on Ubuntu recommended?

    - by ZS6JCE
    I am interested in installing Rational Developer for Power 8.0.3 (RDPi) on Ubuntu 12.04. I would like to know if other Ubuntu users have run into issues? Is it recommended or should I just stick to using RDPi in Windows 7 in VirtualBox? I have done some research, but could not divine a solution. From IBM's Developerworks website: Ubuntu clients are obviously missing from the list. While not officially supported, we have had some success in running ... on Ubuntu 10.04 LTS and later. Detailed installation instructions for the supported operation systems can be found here.

    Read the article

  • Open Folder within ClearCase Remote Client using Windows Explorer

    - by sammy
    Is there a way to open the folder location of a file from within CCRC? While I know I can open/copy from directly within CCRC, it is often useful to work directly with the file from within Windows Explorer. I am looking for something like "open file location" or "open in windows explorer". The folder within CCRC does not appear to allow opening it directly as the double-mouse-click action just expands the tree listing. The path is listed/copyable within the "ClearCase Details" tab, but I am trying to take my laziness to a whole new level by being able to open the folder with a single click. Any ideas if this is a feature available and where I can find it? Thanks. Info: Rational ClearCase Remote Client 7.1.1 Windows 7

    Read the article

  • Using Essential Use Cases to design a UI-centric Application

    - by Bruno Brant
    Hello all, I'm begging a new project (oh, how I love the fresh taste of a new project!) and we are just starting to design it. In short: The application is a UI that will enable users to model an execution flow (a Visio like drag & drop interface). So our greatest concern is usability and features that will help the users model fast and clearly the execution flow. Our established methodology makes extensive use of Use Cases in order to create a harmonious view of the application between the programmers and users. This is a business concern, really: I'd prefer to use an Agile Method with User Stories rather than User Cases, but we need to define a clear scope to sell the product to our clients. However, Use Cases have a number of flaws, most of which are related to the fact that they include technical details, like UI, etc, as can be seem here. But, since we can't use User Stories and a fully interactive design, I've decided that we compromise: I will be using Essential Use Cases in order to hide those details. Now I have another problem: it's essential (no pun intended) to have a clear description of UI interaction, so, how should I document it? In other words, how do I specify a application through the use of Essential Use Cases where the UI interaction is vital to it? I can see some alternatives: Abandon the use of Use Cases since they don't correctly represent the problem Do not include interface descriptions in the use case, but create another documentation (Story Boards) and link then to the Essential Use Cases Include UI interaction description to the Essential Use Cases, since they are part of the business rules in the perspective of the users and the application itself

    Read the article

  • Counting number of children in hierarchical SQL data

    - by moontear
    Hello, for a simple data structure such as so: ID parentID Text Price 1 Root 2 1 Flowers 3 1 Electro 4 2 Rose 10 5 2 Violet 5 6 4 Red Rose 12 7 3 Television 100 8 3 Radio 70 9 8 Webradio 90 For reference, the hierarchy tree looks like this: ID Text Price 1 Root |2 Flowers |-4 Rose 10 | |-6 Red Rose 12 |-5 Violet 5 |3 Electro |-7 Television 100 |-8 Radio 70 |-9 Webradio 90 I'd like to count the number of children per level. So I would get a new column "NoOfChildren" like so: ID parentID Text Price NoOfChildren 1 Root 8 2 1 Flowers 3 3 1 Electro 3 4 2 Rose 10 1 5 2 Violet 5 0 6 4 Red Rose 12 0 7 3 Television 100 0 8 3 Radio 70 1 9 8 Webradio 90 0 I read a few things about hierarchical data, but I somehow get stuck on the multiple inner joins on the parentIDs. Maybe someone could help me out here. moon

    Read the article

  • How to integrate Purify into Hudson CI?

    - by Martin
    Hello everybody! I have a Hudson CI system set up and for the moment it is used for building a project and running some unit tests. My next step is to integrate the memory leak detector Purify into the build cycle. Now I want to start the unit tests also inside purify and for this I have created a new batch task which runs following command: purify.exe /SaveTextData MyExecutable.exe --test TestLibrary.dll --output xml As I read in the Purify documentation the /SaveTextData option is used in order to run purify not in GUI mode. If I run this command on my local workstation in the command line it works perfectly. But in case it is started by Hudson, nothing happens. Unfortunetly there are no logs of purify... Has someone ever tried to start purify either by Hudson or any other CI system? Thanks in advance. Best regards Martin EDIT: I forgot to tell you, that I have Hudson running as master and slave on different computers. On the master I have configured a task which should start the unit tests within purify on the slave. I am running the slave via JNLP. EDIT 18.03.2010: Ok, so finally I am a bit closer the source of the problem. I have discovered, that running my unit tests in purify locally the log file EngineCmdLine.log contains three commands. I am starting purify with following command: purify.exe /SaveTextData TestRunnerConsoleWD.exe --test TestDemoWD.dll Output of EngineCmdLine.log when starting purify manually: File: D:\workspace\hudson\workspace\Purify_TestFW_CommonsCoreTest_Cpp_msvs9\TestRunnerConsoleWD.exe File: C:\WINDOWS\system32\ws2_32.dll File: D:\workspace\hudson\workspace\Purify_TestFW_CommonsCoreTest_Cpp_msvs9\TestDemoWD.dll Output when starting via Hudson: File: D:\workspace\hudson\workspace\Purify_TestFW_CommonsCoreTest_Cpp_msvs9\TestRunnerConsoleWD.exe File: C:\WINDOWS\system32\ws2_32.dll File: D:\workspace\hudson\workspace\Purify_TestFW_CommonsCoreTest_Cpp_msvs9\TestDemoWD.dll File: D:\workspace\hudson\workspace\Purify_TestFW_CommonsCoreTest_Cpp_msvs9\TestDemoWD.dll The error output of purify: Instrumenting: BtcTestDemoWD.dll 313856 bytes Purify: While processing file D:\workspace\hudson\workspace\Purify_TestFW_CommonsCoreTest_Cpp_msvs9\TESTFWWD.DLL: Error: Cannot replace file c:\Programme\IBM\RationalPurifyPlus\PurifyPlus\cache\BTCTESTFWWD$Purify_D_workspace_hudson_workspace_Purify_TestFW_CommonsCoreTest_Cpp_msvs9.DLL. Is it in use? TESTFWWD.DLL 505344 bytes Unable to instrument D:\workspace\hudson\workspace\Purify_TestFW_CommonsCoreTest_Cpp_msvs9\TestDemoWD.dll (0x1) Question is, why is purify starting twice a command with the TestDemoWD.dll library?

    Read the article

  • Counting number of children in hierarchical SQL data

    - by moontear
    for a simple data structure such as so: ID parentID Text Price 1 Root 2 1 Flowers 3 1 Electro 4 2 Rose 10 5 2 Violet 5 6 4 Red Rose 12 7 3 Television 100 8 3 Radio 70 9 8 Webradio 90 For reference, the hierarchy tree looks like this: ID Text Price 1 Root |2 Flowers |-4 Rose 10 | |-6 Red Rose 12 |-5 Violet 5 |3 Electro |-7 Television 100 |-8 Radio 70 |-9 Webradio 90 I'd like to count the number of children per level. So I would get a new column "NoOfChildren" like so: ID parentID Text Price NoOfChildren 1 Root 8 2 1 Flowers 3 3 1 Electro 3 4 2 Rose 10 1 5 2 Violet 5 0 6 4 Red Rose 12 0 7 3 Television 100 0 8 3 Radio 70 1 9 8 Webradio 90 0 I read a few things about hierarchical data, but I somehow get stuck on the multiple inner joins on the parentIDs. Maybe someone could help me out here. moon

    Read the article

  • clearcase option for view movement from one host path to another

    - by wrapperm
    Hi all, I have created a clearcase dynamic view for my development by name "view1". I have mistakenly selected the view storage location as a local PC in my network, that was made sharable by the PC owner. I was suppose to select the view storage location to be a server. Now, the issue is that I have done lot of development with the view that I have created and have plenty of view DO's and view private files in it. So I'm ruling out the option of deleting the view from the PC local storage (host path) and then creating another view in the server with the same config spec. Please, let me know if there is any method of editing the view properties (or doing something else) by which I could be able to move the view to the server (with all the DO's and view private files retained) Thanks in advance, Rahamath

    Read the article

  • Arrrg! MovieClip object refuses to moved in any rational way in as3?

    - by Aaron H.
    I have a MovieClip object, which is exported for actionscript (AS3) in an .swc file. When I place an instance of the clip on the stage without any modifications, it appears in the upper left corner, about half off stage (i.e. only the lower right quadrant of the object is visible). I understand that this is because the clip has a registration point which is not the upper left corner. If you call getBounds() on the movieclip you can get the bounds of the clip (presumably from the "point" that it's aligned on) which looks something like (left: -303, top: -100, right: 303, bottom: 100), you can subtract the left and top values from the clip x and y: clip.x -= bounds.left; clip.y -= bounds.top; This seems to properly align the clip fully on stage with the top left of the clip squarely in the corner of the stage. But! Following that logic doesn't seem to work when aligning it on the center of the stage! clip.x = (stage.stageWidth / 2); etc... This creates the crazy parallel universe where the clip is now down in the lower right corner of the stage. The only clue I have is that looking at: clip.transform.matrix and clip.transform.concatenatedMatrix matrix has a tx value of 748 (half of stage height) ty value of 426 (Half of stage height) concatenatedMatrix has a tx value of 1699.5 and ty value of 967.75 That's also obviously where the movieclip is getting positioned, but why? Where is this additional translation coming from?

    Read the article

  • In Ruby, can the coerce() method know what operator it is that requires the help to coerce?

    - by Jian Lin
    In Ruby, it seems that a lot of coerce() help can be done by def coerce(something) [self, something] end that's is, when 3 + rational is needed, Fixnum 3 doesn't know how to handle adding a Rational, so it asks Rational#coerce for help by calling rational.coerce(3), and this coerce instance method will tell the caller: # I know how to handle rational + something, so I will return you the following: [self, something] # so that now you can invoke + on me, and I will deal with Fixnum to get an answer So what if most operators can use this method, but not when it is (a - b) != (b - a) situation? Can coerce() know which operator it is, and just handle those special cases, while just using the simple [self, something] to handle all the other cases where (a op b) == (b op a) ? (op is the operator).

    Read the article

  • Androids development life cycle model query [closed]

    - by Andrew Rose
    I have been currently researching Google and their approach to marketing the Android OS. Primarily using an open source technique with the Open Hand Alliance and out souring through third-party developers. I'm now keen to investigate their approach using various development life cycle models in the form of waterfall, spiral, scrum, agile etc. And i'm just curious to have some feedback from professionals and what approach they think Google would use to have a positive effect on their business. Thanks for your time Andy Rose

    Read the article

  • What Precalculus knowledge is required before learning Discrete Math Computer Science topics?

    - by Ein Doofus
    Below I've listed the chapters from a Precalculus book as well as the author recommended Computer Science chapters from a Discrete Mathematics book. Although these chapters are from two specific books on these subjects I believe the topics are generally the same between any Precalc or Discrete Math book. What Precalculus topics should one know before starting these Discrete Math Computer Science topics?: Discrete Mathematics CS Chapters 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers 1.5 Rules of Inference 1.6 Introduction to Proofs 1.7 Proof Methods and Strategy 2.1 Sets 2.2 Set Operations 2.3 Functions 2.4 Sequences and Summations 3.1 Algorithms 3.2 The Growths of Functions 3.3 Complexity of Algorithms 3.4 The Integers and Division 3.5 Primes and Greatest Common Divisors 3.6 Integers and Algorithms 3.8 Matrices 4.1 Mathematical Induction 4.2 Strong Induction and Well-Ordering 4.3 Recursive Definitions and Structural Induction 4.4 Recursive Algorithms 4.5 Program Correctness 5.1 The Basics of Counting 5.2 The Pigeonhole Principle 5.3 Permutations and Combinations 5.6 Generating Permutations and Combinations 6.1 An Introduction to Discrete Probability 6.4 Expected Value and Variance 7.1 Recurrence Relations 7.3 Divide-and-Conquer Algorithms and Recurrence Relations 7.5 Inclusion-Exclusion 8.1 Relations and Their Properties 8.2 n-ary Relations and Their Applications 8.3 Representing Relations 8.5 Equivalence Relations 9.1 Graphs and Graph Models 9.2 Graph Terminology and Special Types of Graphs 9.3 Representing Graphs and Graph Isomorphism 9.4 Connectivity 9.5 Euler and Hamilton Ptahs 10.1 Introduction to Trees 10.2 Application of Trees 10.3 Tree Traversal 11.1 Boolean Functions 11.2 Representing Boolean Functions 11.3 Logic Gates 11.4 Minimization of Circuits 12.1 Language and Grammars 12.2 Finite-State Machines with Output 12.3 Finite-State Machines with No Output 12.4 Language Recognition 12.5 Turing Machines Precalculus Chapters R.1 The Real-Number System R.2 Integer Exponents, Scientific Notation, and Order of Operations R.3 Addition, Subtraction, and Multiplication of Polynomials R.4 Factoring R.5 Rational Expressions R.6 Radical Notation and Rational Exponents R.7 The Basics of Equation Solving 1.1 Functions, Graphs, Graphers 1.2 Linear Functions, Slope, and Applications 1.3 Modeling: Data Analysis, Curve Fitting, and Linear Regression 1.4 More on Functions 1.5 Symmetry and Transformations 1.6 Variation and Applications 1.7 Distance, Midpoints, and Circles 2.1 Zeros of Linear Functions and Models 2.2 The Complex Numbers 2.3 Zeros of Quadratic Functions and Models 2.4 Analyzing Graphs of Quadratic Functions 2.5 Modeling: Data Analysis, Curve Fitting, and Quadratic Regression 2.6 Zeros and More Equation Solving 2.7 Solving Inequalities 3.1 Polynomial Functions and Modeling 3.2 Polynomial Division; The Remainder and Factor Theorems 3.3 Theorems about Zeros of Polynomial Functions 3.4 Rational Functions 3.5 Polynomial and Rational Inequalities 4.1 Composite and Inverse Functions 4.2 Exponential Functions and Graphs 4.3 Logarithmic Functions and Graphs 4.4 Properties of Logarithmic Functions 4.5 Solving Exponential and Logarithmic Equations 4.6 Applications and Models: Growth and Decay 5.1 Systems of Equations in Two Variables 5.2 System of Equations in Three Variables 5.3 Matrices and Systems of Equations 5.4 Matrix Operations 5.5 Inverses of Matrices 5.6 System of Inequalities and Linear Programming 5.7 Partial Fractions 6.1 The Parabola 6.2 The Circle and Ellipse 6.3 The Hyperbola 6.4 Nonlinear Systems of Equations

    Read the article

  • Sending Bulk Emails using PHP

    - by Rose
    Hi All I have to send mails to all users in the site when a new user joins. My problem is the script stops execution after sending around 400 mails. I have set the set_time_limit to 0. And also I am giving sleep(2) after sending 10 mails. What may be the reason behind this issue.Any solution for this problem . Is there any better method to send bulk emails? Thanks in Advance Rose

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Tiff Analyzer

    - by Kevin
    I am writing a program to convert some data, mainly a bunch of Tiff images. Some of the Tiffs seems to have a minor problem with them. They show up fine in some viewers (Irfanview, client's old system) but not in others (Client's new system, Window's picture and fax viewer). I have manually looked at the binary data and all the tags seem ok. Can anyone recommend an app that can analyze it and tell me what, if anything, is wrong with it? Also, for clarity sake, I'm only converting the data about the images which is stored seperately in a database and copying the images, I'm not editting the images myself, so I'm pretty sure I'm not messing them up. UDPATE: For anyone interested, here are the tags from a good and bad file: BAD Tag Type Length Value 256 Image Width SHORT 1 1652 257 Image Length SHORT 1 704 258 Bits Per Sample SHORT 1 1 259 Compression SHORT 1 4 262 Photometric SHORT 1 0 266 Fill Order SHORT 1 1 273 Strip Offsets LONG 1 210 (d2 Hex) 274 Orientation SHORT 1 3 277 Samples Per Pixel SHORT 1 1 278 Rows Per Strip SHORT 1 450 279 Strip Byte Counts LONG 1 7264 (1c60 Hex) 282 X Resolution RATIONAL 1 <194 200 / 1 = 200.000 283 Y Resolution RATIONAL 1 <202 200 / 1 = 200.000 284 Planar Configuration SHORT 1 1 296 Resolution Unit SHORT 1 2 Good Tag Type Length Value 254 New Subfile Type LONG 1 0 (0 Hex) 256 Image Width SHORT 1 1193 257 Image Length SHORT 1 788 258 Bits Per Sample SHORT 1 1 259 Compression SHORT 1 4 262 Photometric SHORT 1 0 266 Fill Order SHORT 1 1 270 Image Description ASCII 45 256 273 Strip Offsets LONG 1 1118 (45e Hex) 274 Orientation SHORT 1 1 277 Samples Per Pixel SHORT 1 1 278 Rows Per Strip LONG 1 788 (314 Hex) 279 Strip Byte Counts LONG 1 496 (1f0 Hex) 280 Min Sample Value SHORT 1 0 281 Max Sample Value SHORT 1 1 282 X Resolution RATIONAL 1 <301 200 / 1 = 200.000 283 Y Resolution RATIONAL 1 <309 200 / 1 = 200.000 284 Planar Configuration SHORT 1 1 293 Group 4 Options LONG 1 0 (0 Hex) 296 Resolution Unit SHORT 1 2

    Read the article

  • CCRC unable to check in and check out issue.

    - by Rational Admin
    Hi; One of the team with Clearcase already set up is facing issues in checking and checking out files. They don't have issue in adding a new file to source control. The team has been complaining that they are unable to do so due to domain problem. Seems like Clearcase server is in a domain and the users are logging to the server from a different domain. I haven't yet had a look at the environment. Do you have any idea or would be able to give me heads up on the cause of this issue. Have you ever faced this issue in the past?

    Read the article

  • Test your internet connection - Emtel Mobile Internet

    After yesterday's report on Emtel Fixed Broadband (I'm still wondering where the 'fixed' part is), I did the same tests on Emtel Mobile Internet. For this I'm using the Huawei E169G HSDPA USB stick, connected to the same machine. Actually, this is my fail-safe internet connection and the system automatically switches between them if a problem, let's say timeout, etc. has been detected on the main line. For better comparison I used exactly the same servers on Speedtest.net. The results Following are the results of Rose Hill (hosted by Emtel) and respectively Frankfurt, Germany (hosted by Vodafone DE): Speedtest.net result of 31.05.2013 between Flic en Flac and Rose Hill, Mauritius (Emtel - Mobile Internet) Speedtest.net result of 31.05.2013 between Flic en Flac and Frankfurt, Germany (Emtel - Mobile Internet) As you might easily see, there is a big difference in speed between national and international connections. More interestingly are the results related to the download and upload ratio. I'm not sure whether connections over Emtel Mobile Internet are asymmetric or symmetric like the Fixed Broadband. Might be interesting to find out. The first test result actually might give us a clue that the connection could be asymmetric with a ratio of 3:1 but again I'm not sure. I'll find out and post an update on this. It depends on network coverage Later today I was on tour with my tablet, a Samsung Galaxy Tab 10.1 (model GT-P7500) running on Android 4.0.4 (Ice Cream Sandwich), and did some more tests using the Speedtest.net app. The results are actually as expected and in areas with better network coverage you will get better results after all. At least, as long as you stay inside the national networks. For anything abroad, it doesn't really matter. But see for yourselves: Speedtest.net result of 31.05.2013 between Cascavelle and servers in Rose Hill, Mauritius (Emtel - Mobile Internet), Port Louis, Mauritius and Kuala Lumpur, Malaysia It's rather shocking and frustrating to see how the speed on international destinations goes down. And the full capability of the tablet's integrated modem (HSDPA: 21 Mbps; HSUPA: 5.76 Mbps) isn't used, too. I guess, this demands more tests in other areas of the island, like Ebene, Pailles or Port Louis. I'll keep you updated... The question remains: Alternatives? After the publication of the test results on Fixed Broadband I had some exchange with others on Facebook. Sadly, it seems that there are really no alternatives to what Emtel is offering at the moment. There are the various internet packages by Mauritius Telecom feat. Orange, like ADSL, MyT and Mobile Internet, and there is Bharat Telecom with their Bees offer which is currently limited to Ebene and parts of Quatre Bornes.

    Read the article

  • issues with live function

    - by Do Good
    I am using the .live function to fire of a function aaa(). Unable to fire the function because code does not reach alert msg The structure of my html is body id="plants" form id= flower method="post" div class= "rose" div class= "red" ul id = "colors" li a li a li a Cuurently I am using $( 'body#plants form#flower div.rose div.red ul#colors li a' ).live('click', function(){ alert('code reaches'); aaa(); }); How can I get this to work?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >