Search Results

Search found 20183 results on 808 pages for 'service moniker'.

Page 2/808 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • puppet service not stopping service

    - by Gregg Leventhal
    notice ("This should be echoed") service { "iptables": ensure => "stopped", } This does not stop iptables, I am not sure why. service iptables stop works fine. Puppet 2.6.17 on CentOS 6.3. UPDATE: /etc/puppet/manifests/nodes.pp node 'linux-dev' { include mycompany::install::apache::init include mycompany::config::services::init } /etc/puppet/modules/mycompany/manifests/config/services/init.pp class mycompany::config::services::init { if ($::id == "root") { service { 'iptables': #name => '/sbin/iptables', #enable => false, #hasstatus => true, ensure => stopped } notice ("IPTABLES is now being stopped...") file { '/tmp/puppet_still_works': ensure => 'present', owner => root } else { err("Error: this manifest must be run as the root user!") } }

    Read the article

  • Azure - Part 4 - Table Storage Service in Windows Azure

    - by Shaun
    In Windows Azure platform there are 3 storage we can use to save our data on the cloud. They are the Table, Blob and Queue. Before the Chinese New Year Microsoft announced that Azure SDK 1.1 had been released and it supports a new type of storage – Drive, which allows us to operate NTFS files on the cloud. I will cover it in the coming few posts but now I would like to talk a bit about the Table Storage.   Concept of Table Storage Service The most common development scenario is to retrieve, create, update and remove data from the data storage. In the normal way we communicate with database. When we attempt to move our application over to the cloud the most common requirement should be have a storage service. Windows Azure provides a in-build service that allow us to storage the structured data, which is called Windows Azure Table Storage Service. The data stored in the table service are like the collection of entities. And the entities are similar to rows or records in the tradtional database. An entity should had a partition key, a row key, a timestamp and set of properties. You can treat the partition key as a group name, the row key as a primary key and the timestamp as the identifer for solving the concurrency problem. Different with a table in a database, the table service does not enforce the schema for tables, which means you can have 2 entities in the same table with different property sets. The partition key is being used for the load balance of the Azure OS and the group entity transaction. As you know in the cloud you will never know which machine is hosting your application and your data. It could be moving based on the transaction weight and the number of the requests. If the Azure OS found that there are many requests connect to your Book entities with the partition key equals “Novel” it will move them to another idle machine to increase the performance. So when choosing the partition key for your entities you need to make sure they indecate the category or gourp information so that the Azure OS can perform the load balance as you wish.   Consuming the Table Although the table service looks like a database, you cannot access it through the way you are using now, neither ADO.NET nor ODBC. The table service exposed itself by ADO.NET Data Service protocol, which allows you can consume it through the RESTful style by Http requests. The Azure SDK provides a sets of classes for us to connect it. There are 2 classes we might need: TableServiceContext and TableServiceEntity. The TableServiceContext inherited from the DataServiceContext, which represents the runtime context of the ADO.NET data service. It provides 4 methods mainly used by us: CreateQuery: It will create a IQueryable instance from a given type of entity. AddObject: Add the specified entity into Table Service. UpdateObject: Update an existing entity in the Table Service. DeleteObject: Delete an entity from the Table Service. Beofre you operate the table service you need to provide the valid account information. It’s something like the connect string of the database but with your account name and the account key when you created the storage service on the Windows Azure Development Portal. After getting the CloudStorageAccount you can create the CloudTableClient instance which provides a set of methods for using the table service. A very useful method would be CreateTableIfNotExist. It will create the table container for you if it’s not exsited. And then you can operate the eneities to that table through the methods I mentioned above. Let me explain a bit more through an exmaple. We always like code rather than sentence.   Straightforward Accessing to the Table Here I would like to build a WCF service on the Windows Azure platform, and for now just one requirement: it would allow the client to create an account entity on the table service. The WCF service would have a method named Register and accept an instance of the account which the client wants to create. After perform some validation it will add the entity into the table service. So the first thing I should do is to create a Cloud Application on my VIstial Studio 2010 RC. (The Azure SDK 1.1 only supports VS2008 and VS2010 RC.) The solution should be like this below. Then I added a configuration items for the storage account through the Settings section under the cloud project. (Double click the Services file under Roles folder and navigate to the Setting section.) This setting will be used when to retrieve my storage account information. Since for now I just in the development phase I will select “UseDevelopmentStorage=true”. And then I navigated to the WebRole.cs file under my WCF project. If you have read my previous posts you would know that this file defines the process when the application start, and terminate on the cloud. What I need to do is to when the application start, set the configuration publisher to load my config file with the config name I specified. So the code would be like below. I removed the original service and contract created by the VS template and add my IAccountService contract and its implementation class - AccountService. And I add the service method Register with the parameters: email, password and it will return a boolean value to indicates the result which is very simple. At this moment if I press F5 the application will be established on my local development fabric and I can see my service runs well through the browser. Let’s implement the service method Rigister, add a new entity to the table service. As I said before the entities you want to store in the table service must have 3 properties: partition key, row key and timespan. You can create a class with these 3 properties. The Azure SDK provides us a base class for that named TableServiceEntity in Microsoft.WindowsAzure.StorageClient namespace. So what we need to do is more simply, create a class named Account and let it derived from the TableServiceEntity. And I need to add my own properties: Email, Password, DateCreated and DateDeleted. The DateDeleted is a nullable date time value to indecate whether this entity had been deleted and when. Do you notice that I missed something here? Yes it’s the partition key and row key I didn’t assigned. The TableServiceEntity base class defined 2 constructors one was a parameter-less constructor which will be used to fill values into the properties from the table service when retrieving data. The other was one with 2 parameters: partition key and row key. As I said below the partition key may affect the load balance and the row key must be unique so here I would like to use the email as the parition key and the email plus a Guid as the row key. OK now we finished the entity class we need to store onto the table service. The next step is to create a data access class for us to add it. Azure SDK gives us a base class for it named TableServiceContext as I mentioned below. So let’s create a class for operate the Account entities. The TableServiceContext need the storage account information for its constructor. It’s the combination of the storage service URI that we will create on Windows Azure platform, and the relevant account name and key. The TableServiceContext will use this information to find the related address and verify the account to operate the storage entities. Hence in my AccountDataContext class I need to override this constructor and pass the storage account into it. All entities will be saved in the table storage with one or many tables which we call them “table containers”. Before we operate an entity we need to make sure that the table container had been created on the storage. There’s a method we can use for that: CloudTableClient.CreateTableIfNotExist. So in the constructor I will perform it firstly to make sure all method will be invoked after the table had been created. Notice that I passed the storage account enpoint URI and the credentials to specify where my storage is located and who am I. Another advise is that, make your entity class name as the same as the table name when create the table. It will increase the performance when you operate it over the cloud especially querying. Since the Register WCF method will add a new account into the table service, here I will create a relevant method to add the account entity. Before implement, I should add a reference - System.Data.Services.Client to the project. This reference provides some common method within the ADO.NET Data Service which can be used in the Windows Azure Table Service. I will use its AddObject method to create my account entity. Since the table service are not fully implemented the ADO.NET Data Service, there are some methods in the System.Data.Services.Client that TableServiceContext doesn’t support, such as AddLinks, etc. Then I implemented the serivce method to add the account entity through the AccountDataContext. You can see in the service implmentation I load the storage account information through my configuration file and created the account table entity from the parameters. Then I created the AccountDataContext. If it’s my first time to invoke this method the constructor of the AccountDataContext will create a table container for me. Then I use Add method to add the account entity into the table. Next, let’s create a farely simple client application to test this service. I created a windows console application and added a service reference to my WCF service. The metadata information of the WCF service cannot be retrieved if it’s deployed on the Windows Azure even though the <serviceMetadata httpGetEnabled="true"/> had been set. If we need to get its metadata we can deploy it on the local development service and then changed the endpoint to the address which is on the cloud. In the client side app.config file I specified the endpoint to the local development fabric address. And the just implement the client to let me input an email and a password then invoke the WCF service to add my acocunt. Let’s run my application and see the result. Of course it should return TRUE to me. And in the local SQL Express I can see the data had been saved in the table.   Summary In this post I explained more about the Windows Azure Table Storage Service. I also created a small application for demostration of how to connect and consume it through the ADO.NET Data Service Managed Library provided within the Azure SDK. I only show how to create an eneity in the storage service. In the next post I would like to explain about how to query the entities with conditions thruogh LINQ. I also would like to refactor my AccountDataContext class to make it dyamic for any kinds of entities.   Hope this helps, Shaun   All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Windows service runs file locally but not on server

    - by Ben
    I created a simple Windows service in dot net which runs a file. When I run the service locally I see the file running in the task manager just fine. However, when I run the service on the server it won't run the file. I've checked the path to the file which is fine. I also checked the permissions on the folder and file, and they fine as well. Also there are no exceptions happening. Below is the code used to launch the process which runs the file. I posted this first on stack overflow, and some people were thinking this is a config issue, so I moved it here. Any ideas? try { // TODO: Add code here to start your service. eventLog1.WriteEntry("VirtualCameraService started"); // Create An instance of the Process class responsible for starting the newly process. System.Diagnostics.Process process1 = new System.Diagnostics.Process(); // Set the directory where the file resides process1.StartInfo.WorkingDirectory = "C:\\VirtualCameraServiceSetup\\"; // Set the filename name of the file to be opened process1.StartInfo.FileName = "VirtualCameraServiceProject.avc"; // Start the process process1.Start(); } catch (Exception ex) { eventLog1.WriteEntry("VirtualCameraService exception - " + ex.InnerException); }

    Read the article

  • EM12c Release 4: Database as a Service Enhancements

    - by Adeesh Fulay
    Oracle Enterprise Manager 12.1.0.4 (or simply put EM12c R4) is the latest update to the product. As previous versions, this release provides tons of enhancements and bug fixes, attributing to improved stability and quality. One of the areas that is most exciting and has seen tremendous growth in the last few years is that of Database as a Service. EM12c R4 provides a significant update to Database as a Service. The key themes are: Comprehensive Database Service Catalog (includes single instance, RAC, and Data Guard) Additional Storage Options for Snap Clone (includes support for Database feature CloneDB) Improved Rapid Start Kits Extensible Metering and Chargeback Miscellaneous Enhancements 1. Comprehensive Database Service Catalog Before we get deep into implementation of a service catalog, lets first understand what it is and what benefits it provides. Per ITIL, a service catalog is an exhaustive list of IT services that an organization provides or offers to its employees or customers. Service catalogs have been widely popular in the space of cloud computing, primarily as the medium to provide standardized and pre-approved service definitions. There is already some good collateral out there that talks about Oracle database service catalogs. The two whitepapers i recommend reading are: Service Catalogs: Defining Standardized Database Service High Availability Best Practices for Database Consolidation: The Foundation for Database as a Service [Oracle MAA] EM12c comes with an out-of-the-box service catalog and self service portal since release 1. For the customers, it provides the following benefits: Present a collection of standardized database service definitions, Define standardized pools of hardware and software for provisioning, Role based access to cater to different class of users, Automated procedures to provision the predefined database definitions, Setup chargeback plans based on service tiers and database configuration sizes, etc Starting Release 4, the scope of services offered via the service catalog has been expanded to include databases with varying levels of availability - Single Instance (SI) or Real Application Clusters (RAC) databases with multiple data guard based standby databases. Some salient points of the data guard integration: Standby pools can now be defined across different datacenters or within the same datacenter as the primary (this helps in modelling the concept of near and far DR sites) The standby databases can be single instance, RAC, or RAC One Node databases Multiple standby databases can be provisioned, where the maximum limit is determined by the version of database software The standby databases can be in either mount or read only (requires active data guard option) mode All database versions 10g to 12c supported (as certified with EM 12c) All 3 protection modes can be used - Maximum availability, performance, security Log apply can be set to sync or async along with the required apply lag The different service levels or service tiers are popularly represented using metals - Platinum, Gold, Silver, Bronze, and so on. The Oracle MAA whitepaper (referenced above) calls out the various service tiers as defined by Oracle's best practices, but customers can choose any logical combinations from the table below:  Primary  Standby [1 or more]  EM 12cR4  SI  -  SI  SI  RAC -  RAC SI  RAC RAC  RON -  RON RON where RON = RAC One Node is supported via custom post-scripts in the service template A sample service catalog would look like the image below. Here we have defined 4 service levels, which have been deployed across 2 data centers, and have 3 standardized sizes. Again, it is important to note that this is just an example to get the creative juices flowing. I imagine each customer would come up with their own catalog based on the application requirements, their RTO/RPO goals, and the product licenses they own. In the screenwatch titled 'Build Service Catalog using EM12c DBaaS', I walk through the complete steps required to setup this sample service catalog in EM12c. 2. Additional Storage Options for Snap Clone In my previous blog posts, i have described the snap clone feature in detail. Essentially, it provides a storage agnostic, self service, rapid, and space efficient approach to solving your data cloning problems. The net benefit is that you get incredible amounts of storage savings (on average 90%) all while cloning databases in a matter of minutes. Space and Time, two things enterprises would love to save on. This feature has been designed with the goal of providing data cloning capabilities while protecting your existing investments in server, storage, and software. With this in mind, we have pursued with the dual solution approach of Hardware and Software. In the hardware approach, we connect directly to your storage appliances and perform all low level actions required to rapidly clone your databases. While in the software approach, we use an intermediate software layer to talk to any storage vendor or any storage configuration to perform the same low level actions. Thus delivering the benefits of database thin cloning, without requiring you to drastically changing the infrastructure or IT's operating style. In release 4, we expand the scope of options supported by snap clone with the addition of database CloneDB. While CloneDB is not a new feature, it was first introduced in 11.2.0.2 patchset, it has over the years become more stable and mature. CloneDB leverages a combination of Direct NFS (or dNFS) feature of the database, RMAN image copies, sparse files, and copy-on-write technology to create thin clones of databases from existing backups in a matter of minutes. It essentially has all the traits that we want to present to our customers via the snap clone feature. For more information on cloneDB, i highly recommend reading the following sources: Blog by Tim Hall: Direct NFS (DNFS) CloneDB in Oracle Database 11g Release 2 Oracle OpenWorld Presentation by Cern: Efficient Database Cloning using Direct NFS and CloneDB The advantages of the new CloneDB integration with EM12c Snap Clone are: Space and time savings Ease of setup - no additional software is required other than the Oracle database binary Works on all platforms Reduce the dependence on storage administrators Cloning process fully orchestrated by EM12c, and delivered to developers/DBAs/QA Testers via the self service portal Uses dNFS to delivers better performance, availability, and scalability over kernel NFS Complete lifecycle of the clones managed by EM12c - performance, configuration, etc 3. Improved Rapid Start Kits DBaaS deployments tend to be complex and its setup requires a series of steps. These steps are typically performed across different users and different UIs. The Rapid Start Kit provides a single command solution to setup Database as a Service (DBaaS) and Pluggable Database as a Service (PDBaaS). One command creates all the Cloud artifacts like Roles, Administrators, Credentials, Database Profiles, PaaS Infrastructure Zone, Database Pools and Service Templates. Once the Rapid Start Kit has been successfully executed, requests can be made to provision databases and PDBs from the self service portal. Rapid start kit can create complex topologies involving multiple zones, pools and service templates. It also supports standby databases and use of RMAN image backups. The Rapid Start Kit in reality is a simple emcli script which takes a bunch of xml files as input and executes the complete automation in a matter of seconds. On a full rack Exadata, it took only 40 seconds to setup PDBaaS end-to-end. This kit works for both Oracle's engineered systems like Exadata, SuperCluster, etc and also on commodity hardware. One can draw parallel to the Exadata One Command script, which again takes a bunch of inputs from the administrators and then runs a simple script that configures everything from network to provisioning the DB software. Steps to use the kit: The kit can be found under the SSA plug-in directory on the OMS: EM_BASE/oracle/MW/plugins/oracle.sysman.ssa.oms.plugin_12.1.0.8.0/dbaas/setup It can be run from this default location or from any server which has emcli client installed For most scenarios, you would use the script dbaas/setup/database_cloud_setup.py For Exadata, special integration is provided to reduce the number of inputs even further. The script to use for this scenario would be dbaas/setup/exadata_cloud_setup.py The database_cloud_setup.py script takes two inputs: Cloud boundary xml: This file defines the cloud topology in terms of the zones and pools along with host names, oracle home locations or container database names that would be used as infrastructure for provisioning database services. This file is optional in case of Exadata, as the boundary is well know via the Exadata system target available in EM. Input xml: This file captures inputs for users, roles, profiles, service templates, etc. Essentially, all inputs required to define the DB services and other settings of the self service portal. Once all the xml files have been prepared, invoke the script as follows for PDBaaS: emcli @database_cloud_setup.py -pdbaas -cloud_boundary=/tmp/my_boundary.xml -cloud_input=/tmp/pdb_inputs.xml          The script will prompt for passwords a few times for key users like sysman, cloud admin, SSA admin, etc. Once complete, you can simply log into EM as the self service user and request for databases from the portal. More information available in the Rapid Start Kit chapter in Cloud Administration Guide.  4. Extensible Metering and Chargeback  Last but not the least, Metering and Chargeback in release 4 has been made extensible in all possible regards. The new extensibility features allow customer, partners, system integrators, etc to : Extend chargeback to any target type managed in EM Promote any metric in EM as a chargeback entity Extend list of charge items via metric or configuration extensions Model abstract entities like no. of backup requests, job executions, support requests, etc  A slew of emcli verbs have also been added that allows administrators to create, edit, delete, import/export charge plans, and assign cost centers all via the command line. More information available in the Chargeback API chapter in Cloud Administration Guide. 5. Miscellaneous Enhancements There are other miscellaneous, yet important, enhancements that are worth a mention. These mostly have been asked by customers like you. These are: Custom naming of DB Services Self service users can provide custom names for DB SID, DB service, schemas, and tablespaces Every custom name is validated for uniqueness in EM 'Create like' of Service Templates Now creating variants of a service template is only a click away. This would be vital when you publish service templates to represent different database sizes or service levels. Profile viewer View the details of a profile like datafile, control files, snapshot ids, export/import files, etc prior to its selection in the service template Cleanup automation - for failed and successful requests Single emcli command to cleanup all remnant artifacts of a failed request Cleanup can be performed on a per request bases or by the entire pool As an extension, you can also delete successful requests Improved delete user workflow Allows administrators to reassign cloud resources to another user or delete all of them Support for multiple tablespaces for schema as a service In addition to multiple schemas, user can also specify multiple tablespaces per request I hope this was a good introduction to the new Database as a Service enhancements in EM12c R4. I encourage you to explore many of these new and existing features and give us feedback. Good luck! References: Cloud Management Page on OTN Cloud Administration Guide [Documentation] -- Adeesh Fulay (@adeeshf)

    Read the article

  • Updating an ADF Web Service Data Control When Service Structure or Location Change

    - by Shay Shmeltzer
    The web service data control in Oracle ADF gives you a simplified approach to consuming services in ADF applications, and now with ADF Mobile the usage of this service seems to be growing. A frequent question we get is what happens if the service that I'm consuming changes - how do I update my data control? Well, first we should mention that if you do a good design of your application before you actually code - then things like Web service method signature shouldn't change. The signature is the contract between the publisher and the consumer, and contracts shouldn't be broken. But in reality things do change during development stages, so here is how you can update both method signatures and service location with the Web service data control: After watching this video you might be tempted to not copy the WSDLs to your project - which lets you use the right click update on a data control. However there is a reason why the copy is on by default, it reduces network traffic when you are actually running your application since ADF doesn't need to go to the server to find out the service structure. So for runtime performance, you probably should keep the WSDL local.  I encourage you to further look into both the connections.xml file where your service location is saved, and the datacontrols.dcx file where its definition is kept to get an even deeper understanding of how ADF works underneath the declarative layers.

    Read the article

  • Configuring service restart with 'restart service after' parameter

    - by Tim Brigham
    It appears that sc.exe isn't capable of setting the 'restart service after' parameter and powershell isn't capable of setting up service restarts at all. My intended configuration is failure1/restart failure2/restart failure3/nothing with a five minute counter between each restart. The five minute timer is extremely important. Is there anything else I can look at other than some registry hackery configure this?

    Read the article

  • Recommended service account setup for MS SQL Server 2005/2008

    - by boxerbucks
    We have a number of MS SQL servers in our environment running either SQL Server 2005 standard/enterprise or SQL server 2008 enterprise. Currently the SQL services are running as local service or network service and the MS recommended best practice is to run as a domain account which is what we are trying to move towards. Is the best practice with regards to domain accounts to have a separate domain account per service per server? So if we have 4 SQL services we want to run per server and we have 50 servers, we would create 50 * 4 = 200 accounts in AD? This seems excessive to me and I was wondering if anyone has any real experience with this type of setup and it's management.

    Read the article

  • Start/stop Windows Service A also Start/stop Windows service B

    - by Sean
    I created two Windows services A and B, and would like to add dependency between them so that I can: Start service A (service B starts automatically) Stop service A (service B stops automatically) However, the command sc config ServiceA depend= ServiceB only works for: Start service A (service B starts automatically) Stop service B (service A stops automatically) Is there any way to make service B stop automatically when I stop service A?

    Read the article

  • Android remote service doesn't call service methods

    - by tarantel
    Hello, I'm developing a GPS tracking software on android. I need IPC to control the service from different activities. So I decide to develop a remote service with AIDL. This wasn't a big problem but now it's always running into the methods of the interface and not into those of my service class. Maybe someone could help me? Here my ADIL file: package test.de.android.tracker interface ITrackingServiceRemote { void startTracking(in long trackId); void stopTracking(); void pauseTracking(); void resumeTracking(in long trackId); long trackingState(); } And the here a short version of my service class: public class TrackingService extends Service implements LocationListener{ private LocationManager mLocationManager; private TrackDb db; private long trackId; private boolean isTracking = false; @Override public void onCreate() { super.onCreate(); mNotificationManager = (NotificationManager) this .getSystemService(NOTIFICATION_SERVICE); mLocationManager = (LocationManager) getSystemService(LOCATION_SERVICE); db = new TrackDb(this.getApplicationContext()); } @Override public void onStart(Intent intent, int startId) { super.onStart(intent, startId); } @Override public void onDestroy(){ //TODO super.onDestroy(); } @Override public IBinder onBind(Intent intent){ return this.mBinder; } private IBinder mBinder = new ITrackingServiceRemote.Stub() { public void startTracking(long trackId) throws RemoteException { TrackingService.this.startTracking(trackId); } public void pauseTracking() throws RemoteException { TrackingService.this.pauseTracking(); } public void resumeTracking(long trackId) throws RemoteException { TrackingService.this.resumeTracking(trackId); } public void stopTracking() throws RemoteException { TrackingService.this.stopTracking(); } public long trackingState() throws RemoteException { long state = TrackingService.this.trackingState(); return state; } }; public synchronized void startTracking(long trackId) { // request updates every 250 meters or 0 sec this.trackId = trackId; mLocationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 250, this); isTracking = true; } public synchronized long trackingState() { if(isTracking){ return trackId; } else return -1; } public synchronized void stopTracking() { if(isTracking){ mLocationManager.removeUpdates(this); isTracking = false; } else Log.i(TAG, "Could not stop because service is not tracking at the moment"); } public synchronized void resumeTracking(long trackId) { if(!isTracking){ this.trackId = trackId; mLocationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 250, this); isTracking = true; } else Log.i(TAG, "Could not resume because service is tracking already track " + this.trackId); } public synchronized void pauseTracking() { if(isTracking){ mLocationManager.removeUpdates(this); isTracking = false; } else Log.i(TAG, "Could not pause because service is not tracking at the moment"); } public void onLocationChanged(Location location) { //TODO } For easier access from the client I wrote a ServiceManager class which sets up the ServiceConnection and you can call the service methods. Here my code for this: public class TrackingServiceManager{ private static final String TAG = "TrackingServiceManager"; private ITrackingServiceRemote mService = null; private Context mContext; private Boolean isBound = false; private ServiceConnection mServiceConnection; public TrackingServiceManager(Context ctx){ this.mContext = ctx; } public void start(long trackId) { if (isBound && mService != null) { try { mService.startTracking(trackId); } catch (RemoteException e) { Log.e(TAG, "Could not start tracking!",e); } } else Log.i(TAG, "No Service bound! 1"); } public void stop(){ if (isBound && mService != null) { try { mService.stopTracking(); } catch (RemoteException e) { Log.e(TAG, "Could not stop tracking!",e); } } else Log.i(TAG, "No Service bound!"); } public void pause(){ if (isBound && mService != null) { try { mService.pauseTracking(); } catch (RemoteException e) { Log.e(TAG, "Could not pause tracking!",e); } } else Log.i(TAG, "No Service bound!"); } public void resume(long trackId){ if (isBound && mService != null) { try { mService.resumeTracking(trackId); } catch (RemoteException e) { Log.e(TAG, "Could not resume tracking!",e); } } else Log.i(TAG, "No Service bound!"); } public float state(){ if (isBound && mService != null) { try { return mService.trackingState(); } catch (RemoteException e) { Log.e(TAG, "Could not resume tracking!",e); return -1; } } else Log.i(TAG, "No Service bound!"); return -1; } /** * Method for binding the Service with client */ public boolean connectService(){ mServiceConnection = new ServiceConnection() { @Override public void onServiceConnected(ComponentName name, IBinder service) { TrackingServiceManager.this.mService = ITrackingServiceRemote.Stub.asInterface(service); } } @Override public void onServiceDisconnected(ComponentName name) { if (mService != null) { mService = null; } } }; Intent mIntent = new Intent("test.de.android.tracker.action.intent.TrackingService"); this.isBound = this.mContext.bindService(mIntent, mServiceConnection, Context.BIND_AUTO_CREATE); return this.isBound; } public void disconnectService(){ this.mContext.unbindService(mServiceConnection); this.isBound = false; } } If i now try to call a method from an activity for example start(trackId) nothing happens. The binding is OK. When debugging it always runs into the startTracking() in the generated ITrackingServiceRemote.java file and not into my TrackingService class. Where is the problem? I can't find anything wrong. Thanks in advance! Tobias

    Read the article

  • SQL Server 2012 Service Pack 2 is available - but there's a catch!

    - by AaronBertrand
    Service Pack 2 is available: http://www.microsoft.com/en-us/download/details.aspx?id=43340 The build number is 11.0.5058, and this includes fixes up to and including SQL Server 2012 SP1 CU #9. (The complete list of fixes is exhaustive, including all fixes from SP1 CU #1 -> #9, but the post-CU #9 fixes are listed here: http://support.microsoft.com/KB/2958429 However, if you may be affected by the regression bug I talked about earlier today , which could lead to data loss or corruption during online...(read more)

    Read the article

  • Create and Consume WCF service using Visual Studio 2010

    - by sreejukg
    In this article I am going to demonstrate how to create a WCF service, that can be hosted inside IIS and a windows application that consume the WCF service. To support service oriented architecture, Microsoft developed the programming model named Windows Communication Foundation (WCF). ASMX was the prior version from Microsoft, was completely based on XML and .Net framework continues to support ASMX web services in future versions also. While ASMX web services was the first step towards the service oriented architecture, Microsoft has made a big step forward by introducing WCF. An overview of planning for WCF can be found from this link http://msdn.microsoft.com/en-us/library/ff649584.aspx . The following are the important differences between WCF and ASMX from an asp.net developer point of view. 1. ASMX web services are easy to write, configure and consume 2. ASMX web services are only hosted in IIS 3. ASMX web services can only use http 4. WCF, can be hosted inside IIS, windows service, console application, WAS(Windows Process Activation Service) etc 5. WCF can be used with HTTP, TCP/IP, MSMQ and other protocols. The detailed difference between ASMX web service and WCF can be found here. http://msdn.microsoft.com/en-us/library/cc304771.aspx Though WCF is a bigger step for future, Visual Studio makes it simpler to create, publish and consume the WCF service. In this demonstration, I am going to create a service named SayHello that accepts 2 parameters such as name and language code. The service will return a hello to user name that corresponds to the language. So the proposed service usage is as follows. Caller: SayHello(“Sreeju”, “en”) -> return value -> Hello Sreeju Caller: SayHello(“???”, “ar”) -> return value -> ????? ??? Caller: SayHello(“Sreeju”, “es”) - > return value -> Hola Sreeju Note: calling an automated translation service is not the intention of this article. If you are interested, you can find bing translator API and can use in your application. http://www.microsofttranslator.com/dev/ So Let us start First I am going to create a Service Application that offer the SayHello Service. Open Visual Studio 2010, Go to File -> New Project, from your preferred language from the templates section select WCF, select WCF service application as the project type, give the project a name(I named it as HelloService), click ok so that visual studio will create the project for you. In this demonstration, I have used C# as the programming language. Visual studio will create the necessary files for you to start with. By default it will create a service with name Service1.svc and there will be an interface named IService.cs. The screenshot for the project in solution explorer is as follows Since I want to demonstrate how to create new service, I deleted Service1.Svc and IService1.cs files from the project by right click the file and select delete. Now in the project there is no service available, I am going to create one. From the solution explorer, right click the project, select Add -> New Item Add new item dialog will appear to you. Select WCF service from the list, give the name as HelloService.svc, and click on the Add button. Now Visual studio will create 2 files with name IHelloService.cs and HelloService.svc. These files are basically the service definition (IHelloService.cs) and the service implementation (HelloService.svc). Let us examine the IHelloService interface. The code state that IHelloService is the service definition and it provides an operation/method (similar to web method in ASMX web services) named DoWork(). Any WCF service will have a definition file as an Interface that defines the service. Let us see what is inside HelloService.svc The code illustrated is implementing the interface IHelloService. The code is self-explanatory; the HelloService class needs to implement all the methods defined in the Service Definition. Let me do the service as I require. Open IHelloService.cs in visual studio, and delete the DoWork() method and add a definition for SayHello(), do not forget to add OperationContract attribute to the method. The modified IHelloService.cs will look as follows Now implement the SayHello method in the HelloService.svc.cs file. Here I wrote the code for SayHello method as follows. I am done with the service. Now you can build and run the service by clicking f5 (or selecting start debugging from the debug menu). Visual studio will host the service in give you a client to test it. The screenshot is as follows. In the left pane, it shows the services available in the server and in right side you can invoke the service. To test the service sayHello, double click on it from the above window. It will ask you to enter the parameters and click on the invoke button. See a sample output below. Now I have done with the service. The next step is to write a service client. Creating a consumer application involves 2 steps. One generating the class and configuration file corresponds to the service. Create a project that utilizes the generated class and configuration file. First I am going to generate the class and configuration file. There is a great tool available with Visual Studio named svcutil.exe, this tool will create the necessary class and configuration files for you. Read the documentation for the svcutil.exe here http://msdn.microsoft.com/en-us/library/aa347733.aspx . Open Visual studio command prompt, you can find it under Start Menu -> All Programs -> Visual Studio 2010 -> Visual Studio Tools -> Visual Studio command prompt Make sure the service is in running state in visual studio. Note the url for the service(from the running window, you can right click and choose copy address). Now from the command prompt, enter the svcutil.exe command as follows. I have mentioned the url and the /d switch – for the directory to store the output files(In this case d:\temp). If you are using windows drive(in my case it is c: ) , make sure you open the command prompt with run as administrator option, otherwise you will get permission error(Only in windows 7 or windows vista). The tool has created 2 files, HelloService.cs and output.config. Now the next step is to create a new project and use the created files and consume the service. Let us do that now. I am going to add a console application to the current solution. Right click solution name in the solution explorer, right click, Add-> New Project Under Visual C#, select console application, give the project a name, I named it TestService Now navigate to d:\temp where I generated the files with the svcutil.exe. Rename output.config to app.config. Next step is to add both files (d:\temp\helloservice.cs and app.config) to the files. In the solution explorer, right click the project, Add -> Add existing item, browse to the d:\temp folder, select the 2 files as mentioned before, click on the add button. Now you need to add a reference to the System.ServiceModel to the project. From solution explorer, right click the references under testservice project, select Add reference. In the Add reference dialog, select the .Net tab, select System.ServiceModel, and click ok Now open program.cs by double clicking on it and add the code to consume the web service to the main method. The modified file looks as follows Right click the testservice project and set as startup project. Click f5 to run the project. See the sample output as follows Publishing WCF service under IIS is similar to publishing ASP.Net application. Publish the application to a folder using Visual studio publishing feature, create a virtual directory and create it as an application. Don’t forget to set the application pool to use ASP.Net version 4. One last thing you need to check is the app.config file you have added to the solution. See the element client under ServiceModel element. There is an endpoint element with address attribute that points to the published service URL. If you permanently host the service under IIS, you can simply change the address parameter to the corresponding one and your application will consume the service. You have seen how easily you can build/consume WCF service. If you need the solution in zipped format, please post your email below.

    Read the article

  • SQLAuthority News – Microsoft SQL Server 2012 Service Pack 1 Released (SP1)

    - by pinaldave
    Last week, I was attending SQLPASS 2012 and I had great fun attending the event. During the event long awaited SQL Serer 2012 Service Pack 1 was released. I am pretty excited with SP1 as new service packs are cumulative updates and upgrade all editions and service levels of SQL Server 2012 to SP1. This service pack contains SQL Server 2012 Cumulative Update 1 (CU1) and Cumulative Update 2 (CU2). The latest SP1 has many new and enhanced features. Here are a few for example: Cross-Cluster Migration of AlwaysOn Availability Groups for OS Upgrade Selective XML Index DBCC SHOW_STATISTICS works with SELECT permission New function returns statistics properties – sys.dm_db_stats_properties SSMS Complete in Express SlipStream Full Installation Business Intelligence highlights with Office and SharePoint Server 2013 Management Object Support Added for Resource Governor DDL Please note that the size of the service pack is near 1 GB. Here is the link to SQL Server 2012 Service Pack 1. SQL Server Express is the free and feature rich edition of the SQL Server. It is used with lightweight website and desktop applications. Here is the link to SQL Server 2012 EXPRESS Service Pack 1. Here is the question for you – how long have you been using SQL Server 2012? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Service Pack

    Read the article

  • Unable to add CRM 2011's Organization service as Service Reference to VS project

    - by Scorpion
    I have problem accessing Organization Service when I try to add it as a Service Reference in Visual Studio. However, I can Access the Service in browser. I have tried to add OrganizationData service and there is no issue with that. An Error occurred while attempting to find service at 'http://xxxxxxxx/xxxxx/XRMServices/2011/Organization.svc'. Error Details There was an error downloading 'http://xxxxxxxx/xxxxx/XRMServices/2011/Organization.svc/_vti_bin/ListData.svc/$metadata'. The request failed with HTTP status 400: Bad Request. Metadata contains a reference that cannot be resolved: 'http://xxxxxxxx/xxxxx/XRMServices/2011/Organization.svc'. Metadata contains a reference that cannot be resolved: 'http://xxxxxxxx/xxxxx/XRMServices/2011/Organization.svc'. If the service is defined in the current solution, try building the solution and adding the service reference again.

    Read the article

  • Combining Shared Secret and Username Token – Azure Service Bus

    - by Michael Stephenson
    As discussed in the introduction article this walkthrough will explain how you can implement WCF security with the Windows Azure Service Bus to ensure that you can protect your endpoint in the cloud with a shared secret but also flow through a username token so that in your listening WCF service you will be able to identify who sent the message. This could either be in the form of an application or a user depending on how you want to use your token. Prerequisites Before going into the walk through I want to explain a few assumptions about the scenario we are implementing but to keep the article shorter I am not going to walk through all of the steps in how to setup some of this. In the solution we have a simple console application which will represent the client application. There is also the services WCF application which contains the WCF service we will expose via the Windows Azure Service Bus. The WCF Service application in this example was hosted in IIS 7 on Windows 2008 R2 with AppFabric Server installed and configured to auto-start the WCF listening services. I am not going to go through significant detail around the IIS setup because it should not matter in relation to this article however if you want to understand more about how to configure WCF and IIS for such a scenario please refer to the following paper which goes into a lot of detail about how to configure this. The link is: http://tinyurl.com/8s5nwrz   The Service Component To begin with let's look at the service component and how it can be configured to listen to the service bus using a shared secret but to also accept a username token from the client. In the sample the service component is called Acme.Azure.ServiceBus.Poc.UN.Services. It has a single service which is the Visual Studio template for a WCF service when you add a new WCF Service Application so we have a service called Service1 with its Echo method. Nothing special so far!.... The next step is to look at the web.config file to see how we have configured the WCF service. In the services section of the WCF configuration you can see I have created my service and I have created a local endpoint which I simply used to do a little bit of diagnostics and to check it was working, but more importantly there is the Windows Azure endpoint which is using the ws2007HttpRelayBinding (note that this should also work just the same if your using netTcpRelayBinding). The key points to note on the above picture are the service behavior called MyServiceBehaviour and the service bus endpoints behavior called MyEndpointBehaviour. We will go into these in more detail later.   The Relay Binding The relay binding for the service has been configured to use the TransportWithMessageCredential security mode. This is the important bit where the transport security really relates to the interaction between the service and listening to the Azure Service Bus and the message credential is where we will use our username token like we have specified in the message/clientCrentialType attribute. Note also that we have left the relayClientAuthenticationType set to RelayAccessToken. This means that authentication will be made against ACS for accessing the service bus and messages will not be accepted from any sender who has not been authenticated by ACS.   The Endpoint Behaviour In the below picture you can see the endpoint behavior which is configured to use the shared secret client credential for accessing the service bus and also for diagnostic purposes I have included the service registry element. Hopefully if you are familiar with using Windows Azure Service Bus relay feature the above is very familiar to you and this is a very common setup for this section. There is nothing specific to the username token implementation here. The Service Behaviour Now we come to the bit with most of the username token bits in it. When you configure the service behavior I have included the serviceCredentials element and then setup to use userNameAuthentication and you can see that I have created my own custom username token validator.   This setup means that WCF will hand off to my class for validating the username token details. I have also added the serviceSecurityAudit element to give me a simple auditing of access capability. My UsernamePassword Validator The below picture shows you the details of the username password validator class I have implemented. WCF will hand off to this class when validating the token and give me a nice way to check the token credentials against an on-premise store. You have all of the validation features with a non-service bus WCF implementation available such as validating the username password against active directory or ASP.net membership features or as in my case above something much simpler.   The Client Now let's take a look at the client side of this solution and how we can configure the client to authenticate against ACS but also send a username token over to the service component so it can implement additional security checks on-premise. I have a console application and in the program class I want to use the proxy generated with Add Service Reference to send a message via the Azure Service Bus. You can see in my WCF client configuration below I have setup my details for the azure service bus url and am using the ws2007HttpRelayBinding. Next is my configuration for the relay binding. You can see below I have configured security to use TransportWithMessageCredential so we will flow the username token with the message and also the RelayAccessToken relayClientAuthenticationType which means the component will validate against ACS before being allowed to access the relay endpoint to send a message.     After the binding we need to configure the endpoint behavior like in the below picture. This is the normal configuration to use a shared secret for accessing a Service Bus endpoint.   Finally below we have the code of the client in the console application which will call the service bus. You can see that we have created our proxy and then made a normal call to a WCF service but this time we have also set the ClientCredentials to use the appropriate username and password which will be flown through the service bus and to our service which will validate them.     Conclusion As you can see from the above walkthrough it is not too difficult to configure a service to use both a shared secret and username token at the same time. This gives you the power and protection offered by the access control service in the cloud but also the ability to flow additional tokens to the on-premise component for additional security features to be implemented. Sample The sample used in this post is available at the following location: https://s3.amazonaws.com/CSCBlogSamples/Acme.Azure.ServiceBus.Poc.UN.zip

    Read the article

  • Amazon SOA: database as a Service

    - by Martin Lee
    There is an interesting interview with Werner Vogels which is partly about how Amazon does Service Oriented Architecture: For us service orientation means encapsulating the data with the business logic that operates on the data, with the only access through a published service interface. No direct database access is allowed from outside the service, and there’s no data sharing among the services. I do not understand that. Why do they need to 'wrap' a database into some layer if it already can be consumed as a service by other service through database adaptors? Does Amazon do that just because they need to expose the database to third parties or because of anything else? Why "no direct database access is allowed"? What are the advantages of such an architectural decision?

    Read the article

  • Service Catalogs for Database as a Service

    - by B R Clouse
    At the end of last month, I had the opportunity to present a speaking session at Oracle OpenWorld: Database as a Service: Creating a Database Cloud Service Catalog.  The session was well-attended which would have surprised me several months ago when I started researching this topic.  At that time, I thought of service catalogs as something trivial which could be explained in a few simple slides.  But while looking at all the different options and approaches available, I came to learn that designing a succinct and effective catalog is not a trivial task, and mistakes can lead to confusion and unintended side effects.  And when the room filled up, my new point of view was confirmed. In case you missed the session, or were able to attend but would like more details, I've posted a white paper that covers the topics from the session, and more.  We start with an overview of the components of a service catalog: And then look at several customer case studies of service catalogs for DBaaS.  Synthesizing those examples, we summarize the main options for defining the service categories and their levels.  We end with a template for defining Bronze | Silver | Gold service tiers for Oracle Database Services. The paper is now available here - watch for updates as we work to expand some sections and incorporate readers' feedback (hint - that includes your feedback). Visit our OTN page for additional Database Cloud collateral.

    Read the article

  • WIF, ADFS 2 and WCF&ndash;Part 4: Service Client (using Service Metadata)

    - by Your DisplayName here!
    See parts 1, 2 and 3 first. In this part we will finally build a client for our federated service. There are basically two ways to accomplish this. You can use the WCF built-in tooling to generate client and configuration via the service metadata (aka ‘Add Service Reference’). This requires no WIF on the client side. Another approach would be to use WIF’s WSTrustChannelFactory to manually talk to the ADFS 2 WS-Trust endpoints. This option gives you more flexibility, but is slightly more code to write. You also need WIF on the client which implies that you need to run on a WIF supported operating system – this rules out e.g. Windows XP clients. We’ll start with the metadata way. You simply create a new client project (e.g. a console app) – call ‘Add Service Reference’ and point the dialog to your service endpoint. What will happen then is, that VS will contact your service and read its metadata. Inside there is also a link to the metadata endpoint of ADFS 2. This one will be contacted next to find out which WS-Trust endpoints are available. The end result will be a client side proxy and a configuration file. Let’s first write some code to call the service and then have a closer look at the config file. var proxy = new ServiceClient(); proxy.GetClaims().ForEach(c =>     Console.WriteLine("{0}\n {1}\n  {2} ({3})\n",         c.ClaimType,         c.Value,         c.Issuer,         c.OriginalIssuer)); That’s all. The magic is happening in the configuration file. When you in inspect app.config, you can see the following general configuration hierarchy: <client /> element with service endpoint information federation binding and configuration containing ADFS 2 endpoint 1 (with binding and configuration) ADFS 2 endpoint n (with binding and configuration) (where ADFS 2 endpoint 1…n are the endpoints I talked about in part 1) You will see a number of <issuer /> elements in the binding configuration where simply the first endpoint from the ADFS 2 metadata becomes the default endpoint and all other endpoints and their configuration are commented out. You now need to find the endpoint you want to use (based on trust version, credential type and security mode) and replace that with the default endpoint. That’s it. When you call the WCF proxy, it will inspect configuration, then first contact the selected ADFS 2 endpoint to request a token. This token will then be used to authenticate against the service. In the next post I will show you the more manual approach using the WIF APIs.

    Read the article

  • SQL Server 2008 R2 Service Pack 2 CTP is available

    - by AaronBertrand
    You can download the Service Pack 2 CTP from the following URL: http://www.microsoft.com/en-us/download/details.aspx?id=29848 The build # is 10.50.3720. This service pack contains all of the fixes from Service Pack 1 & Cumulative Updates 1 through 5, and a couple of other minor fixes (a couple of SSRS bugs and a bug about an ALTER TABLE batch not being cached correctly). It does not include fixes from Service Pack 1 Cumulative Update #6, which I mentioned recently . You should *NOT* install this...(read more)

    Read the article

  • Announcing: Oracle Enterprise Manager 12c Delivers Advanced Self-Service Automation for Oracle Database 12c Multitenant

    - by Scott McNeil
    New Self-Service Driven Provisioning of Pluggable Databases Today Oracle announced new capabilities that support managing the full lifecycle of pluggable database as a service in Oracle Enterprise Manager 12c Release 3 (12.1.0.3). This latest release builds on the existing capabilities to provide advanced automation for deploying database as a service using Oracle Database 12c Multitenant option. It takes it one step further by offering pluggable database as a service through Oracle Enterprise Manager 12c self-service portal providing customers with fast provisioning of database cloud services with minimal time and effort. This is a significant addition to Oracle Enterprise Manager 12c’s existing portfolio of cloud services that includes infrastructure as a service, database as a service, testing as a service, and Java platform as a service. The solution provides a self-service mechanism to provision pluggable databases allowing users to request and access database(s) on-demand. The self-service operations are also enabled through REST APIs allowing customers to integrate with third-party automation systems or their custom enterprise portals. Benefits Self-service provisioning allows rapid access to pluggable database as a service for hosting or certifying applications on Oracle Database 12c Self-service driven migration to pluggable database as a service in order to migrate a pre-Oracle Database 12c database to a pluggable database as a service model and test the consolidation strategy Single service catalog for all approved pluggable database as a service configurations which helps customers achieve standardization while catering to all applications and users in the enterprise Resource guarantee via database resource manager (and IORM on Oracle Exadata) that enables deployment of mixed workloads in a shared environment Quota, role based access, and policy based management that enforces governance and reduces administrative overhead Chargeback or showback which improves metering and accountability for services consumed by each pluggable database Comprehensive REST APIs that support integration with ticketing or change management systems, and or with other self-service portals Minimal administrative and maintenance overhead through self-managing automation that allows for intelligent placement of pluggable databases To understand how pluggable database as a service works, watch this quick demo: Stay Connected: Twitter | Facebook | YouTube | Linkedin | Newsletter Download the Oracle Enterprise Manager Cloud Control12c Mobile app

    Read the article

  • Calling Web Service Functions Asynchronously from a Web Page

    - by SGWellens
    Over on the Asp.Net forums where I moderate, a user had a problem calling a Web Service from a web page asynchronously. I tried his code on my machine and was able to reproduce the problem. I was able to solve his problem, but only after taking the long scenic route through some of the more perplexing nuances of Web Services and Proxies. Here is the fascinating story of that journey. Start with a simple Web Service     public class Service1 : System.Web.Services.WebService    {        [WebMethod]        public string HelloWorld()        {            // sleep 10 seconds            System.Threading.Thread.Sleep(10 * 1000);            return "Hello World";        }    } The 10 second delay is added to make calling an asynchronous function more apparent. If you don't call the function asynchronously, it takes about 10 seconds for the page to be rendered back to the client. If the call is made from a Windows Forms application, the application freezes for about 10 seconds. Add the web service to a web site. Right-click the project and select "Add Web Reference…" Next, create a web page to call the Web Service. Note: An asp.net web page that calls an 'Async' method must have the Async property set to true in the page's header: <%@ Page Language="C#"          AutoEventWireup="true"          CodeFile="Default.aspx.cs"          Inherits="_Default"           Async='true'  %> Here is the code to create the Web Service proxy and connect the event handler. Shrewdly, we make the proxy object a member of the Page class so it remains instantiated between the various events. public partial class _Default : System.Web.UI.Page {    localhost.Service1 MyService;  // web service proxy     // ---- Page_Load ---------------------------------     protected void Page_Load(object sender, EventArgs e)    {        MyService = new localhost.Service1();        MyService.HelloWorldCompleted += EventHandler;          } Here is the code to invoke the web service and handle the event:     // ---- Async and EventHandler (delayed render) --------------------------     protected void ButtonHelloWorldAsync_Click(object sender, EventArgs e)    {        // blocks        ODS("Pre HelloWorldAsync...");        MyService.HelloWorldAsync();        ODS("Post HelloWorldAsync");    }    public void EventHandler(object sender, localhost.HelloWorldCompletedEventArgs e)    {        ODS("EventHandler");        ODS("    " + e.Result);    }     // ---- ODS ------------------------------------------------    //    // Helper function: Output Debug String     public static void ODS(string Msg)    {        String Out = String.Format("{0}  {1}", DateTime.Now.ToString("hh:mm:ss.ff"), Msg);        System.Diagnostics.Debug.WriteLine(Out);    } I added a utility function I use a lot: ODS (Output Debug String). Rather than include the library it is part of, I included it in the source file to keep this example simple. Fire up the project, open up a debug output window, press the button and we get this in the debug output window: 11:29:37.94 Pre HelloWorldAsync... 11:29:37.94 Post HelloWorldAsync 11:29:48.94 EventHandler 11:29:48.94 Hello World   Sweet. The asynchronous call was made and returned immediately. About 10 seconds later, the event handler fires and we get the result. Perfect….right? Not so fast cowboy. Watch the browser during the call: What the heck? The page is waiting for 10 seconds. Even though the asynchronous call returned immediately, Asp.Net is waiting for the event to fire before it renders the page. This is NOT what we wanted. I experimented with several techniques to work around this issue. Some may erroneously describe my behavior as 'hacking' but, since no ingesting of Twinkies was involved, I do not believe hacking is the appropriate term. If you examine the proxy that was automatically created, you will find a synchronous call to HelloWorld along with an additional set of methods to make asynchronous calls. I tried the other asynchronous method supplied in the proxy:     // ---- Begin and CallBack ----------------------------------     protected void ButtonBeginHelloWorld_Click(object sender, EventArgs e)    {        ODS("Pre BeginHelloWorld...");        MyService.BeginHelloWorld(AsyncCallback, null);        ODS("Post BeginHelloWorld");    }    public void AsyncCallback(IAsyncResult ar)    {        String Result = MyService.EndHelloWorld(ar);         ODS("AsyncCallback");        ODS("    " + Result);    } The BeginHelloWorld function in the proxy requires a callback function as a parameter. I tested it and the debug output window looked like this: 04:40:58.57 Pre BeginHelloWorld... 04:40:58.57 Post BeginHelloWorld 04:41:08.58 AsyncCallback 04:41:08.58 Hello World It works the same as before except for one critical difference: The page rendered immediately after the function call. I was worried the page object would be disposed after rendering the page but the system was smart enough to keep the page object in memory to handle the callback. Both techniques have a use: Delayed Render: Say you want to verify a credit card, look up shipping costs and confirm if an item is in stock. You could have three web service calls running in parallel and not render the page until all were finished. Nice. You can send information back to the client as part of the rendered page when all the services are finished. Immediate Render: Say you just want to start a service running and return to the client. You can do that too. However, the page gets sent to the client before the service has finished running so you will not be able to update parts of the page when the service finishes running. Summary: YourFunctionAsync() and an EventHandler will not render the page until the handler fires. BeginYourFunction() and a CallBack function will render the page as soon as possible. I found all this to be quite interesting and did a lot of searching and researching for documentation on this subject….but there isn't a lot out there. The biggest clues are the parameters that can be sent to the WSDL.exe program: http://msdn.microsoft.com/en-us/library/7h3ystb6(VS.100).aspx Two parameters are oldAsync and newAsync. OldAsync will create the Begin/End functions; newAsync will create the Async/Event functions. Caveat: I haven't tried this but it was stated in this article. I'll leave confirming this as an exercise for the student J. Included Code: I'm including the complete test project I created to verify the findings. The project was created with VS 2008 SP1. There is a solution file with 3 projects, the 3 projects are: Web Service Asp.Net Application Windows Forms Application To decide which program runs, you right-click a project and select "Set as Startup Project". I created and played with the Windows Forms application to see if it would reveal any secrets. I found that in the Windows Forms application, the generated proxy did NOT include the Begin/Callback functions. Those functions are only generated for Asp.Net pages. Probably for the reasons discussed earlier. Maybe those Microsoft boys and girls know what they are doing. I hope someone finds this useful. Steve Wellens

    Read the article

  • Using a service registry that doesn’t suck Part III: Service testing is part of SOA governance

    - by gsusx
    This is the third post of this series intended to highlight some of the principles of modern SOA governance solution. You can read the first two parts here: Using a service registry that doesn’t suck part I: UDDI is dead Using a service registry that doesn’t suck part II: Dear registry, do you have to be a message broker? This time I’ve decided to focus on what of the aspects that drives me ABSOLUTELY INSANE about traditional SOA Governance solutions: service testing or I should I say the lack of...(read more)

    Read the article

  • SQL Server Service Broker Service Disappearing (Automatically Deleted)?

    - by mwigdahl
    I've implemented a messaging system over SQL Server Service Broker. It is working great, with the sole exception that every once in a while (maybe once per week per server) my initiator service just vanishes without a trace. The corresponding queue is still there, but the service is missing. Obviously this causes problems in my system. It's a simple matter to recreate the service by hand, but I'm confused as to what might cause this behavior. I understand that automatic poison message handling causes queues to be disabled, but I don't see anything that indicates services can be disabled or deleted automatically. When this happens, I usually have a large backlog of messages in multiple application queues, but nothing extreme. Total message backlog is around 200,000. Does anyone know what might be happening here?

    Read the article

  • Android Design - Service vs Thread for Networking

    - by Nevyn
    I am writing an Android app, finally (yay me) and for this app I need persistant, but user closeable, network sockets (yes, more than one). I decided to try my hand at writing my own version of an IRC Client. My design issue however, is I'm not sure how to run the Socket connectivity itself. If I put the sockets at the Activity level, they keeps getting closed shortly after the Activity becomes non-visible (also a problem that needs solving...but I think i figured that one out)...but if I run a "connectivity service", I need to find out if I can have multiple instances of it running (the service, that is...one per server/socket). Either that or a I need a way to Thread the sockets themselves and have multiple threads running that I can still communicate with directly (ID system of some sort). Thus the question: Is it a 'better', or at least more "proper" design pattern, to put the Socket and networking in a service, and have the Activities consume said service...or should I tie the sockets directly to some Threaded Process owned by the UI Activity and not bother with the service implementation at all? I do know better than to put the networking directly on the UI thread, but that's as far as I've managed to get.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >