Search Results

Search found 89 results on 4 pages for 'servicebehavior'.

Page 2/4 | < Previous Page | 1 2 3 4  | Next Page >

  • trouble configuring WCF to use session

    - by Michael
    I am having trouble in configuring WCF service to run in session mode. As a test I wrote this simple service : [ServiceContract] public interface IService1 { [OperationContract] string AddData(int value); } [ServiceBehavior(InstanceContextMode=InstanceContextMode.PerSession)] internal class Service1 : IService1,IDisposable { private int acc; public Service1() { acc = 0; } public string AddData(int value) { acc += value; return string.Format("Accumulator value: {0}", acc); } #region IDisposable Members public void Dispose() { } #endregion } I am using Net.TCP binding with default configuration with reliable session flag enabled. As far as I understand , such service should run with no problems in session mode. But , the service runs as in per call mode - each time I call AddData , constructor gets called before executing AddData and Dispose() is called after the call. Any ideas why this might be happening?

    Read the article

  • How to call a wpf singleton service within a wpf singleton service without hanging?

    - by Michael Hedgpeth
    I have two services, one that calls another. Both are marked as singletons as follows: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] public class Service : IService And I set these up with a ServiceHost as follows: ServiceHost serviceHost = new ServiceHost(singletonElement); serviceHost.Open(); When the parent service tries to call the child service on the same machine, the parent service hangs, waiting for the child service. I'm already considering moving away from the singleton model, but is there anything wrong with my approach? Is there an explanation for this behavior and a way out of it?

    Read the article

  • How to call a WCF singleton service within a WCF singleton service without hanging?

    - by Michael Hedgpeth
    I have two services, one that calls another. Both are marked as singletons as follows: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] public class Service : IService And I set these up with a ServiceHost as follows: ServiceHost serviceHost = new ServiceHost(singletonElement); serviceHost.Open(); When the parent service tries to call the child service on the same machine, the parent service hangs, waiting for the child service. I'm already considering moving away from the singleton model, but is there anything wrong with my approach? Is there an explanation for this behavior and a way out of it?

    Read the article

  • WCF Service Memory Leaks

    - by Mubashar Ahmad
    Dear Devs I have a very small wcf service hosted in a console app. [ServiceContract] public interface IService1 { [OperationContract] void DoService(); } [ServiceBehavior(InstanceContextMode=InstanceContextMode.PerCall)] public class Service1 : IService1 { public void DoService() { } } and its being called as using (ServiceReference1.Service1Client client = new ServiceReference1.Service1Client()) { client.DoService(new DoServiceRequest()); client.Close(); } Please remember that service is published on basicHttpBindings. Problem Now when i performed above client code in a loop of 1000 i found big difference between "All Heap bytes" and "Private Bytes" performance counters (i used .net memory profiler). After investigation i found some of the objects are not properly disposed following are the list of those objects (1000 undisposed instance were found -- equals to the client calls) (namespace for all of them is System.ServiceModel.Channels) HttpOutput.ListenerResponseHttpOutput.ListenerResponseOutputStream BodyWriterMessage BufferedMessage HttpRequestContext.ListenerHttpContext.ListenerContextHttpInput.ListenerContextInputStream HttpRequestContext.ListenerHttpContext Questions Why do we have lot of undisposed objects and how to control them. Please Help

    Read the article

  • WCF Runtime Error while using Constructor

    - by Pranesh Nair
    Hi all, I am new to WCF i am using constructor in my WCF service.svc.cs file....It throws this error when i use the constructor The service type provided could not be loaded as a service because it does not have a default (parameter-less) constructor. To fix the problem, add a default constructor to the type, or pass an instance of the type to the host. When i remove the constructor its working fine....But its compulsory that i have to use constructor... This is my code namespace UserAuthentication { [ServiceBehavior(InstanceContextMode=System.ServiceModel.InstanceContextMode.Single)] public class UserAuthentication : UserRepository,IUserAuthentication { private ISqlMapper _mapper; private IRoleRepository _roleRepository; public UserAuthentication(ISqlMapper mapper): base(mapper) { _mapper = mapper; _roleRepository = new RoleRepository(_mapper); } public string EduvisionLogin(EduvisionUser aUser, int SchoolID) { UserRepository sampleCode= new UserRepository(_mapper); sampleCode.Login(aUser); return "Login Success"; } } } can anyone provide ideas or suggestions or sample code hw to resolve this issue...

    Read the article

  • WCF Multiple Services

    - by David
    Hi, im brand spanking new to WCF and Im trying to understand how to correctly expose my BLL to it. I created my first Resource.svc and IResource.svc Resource.svc [ServiceBehavior] public class Resources : IResources { #region IResources Members public List<Model.Resource> GetAll() { return Repository.Inventory.Resource.GetAll(true); } public List<Model.Resource> GetAllEnabled() { return Repository.Inventory.Resource.GetAllEnabled(true); } #endregion } IResource.cs [ServiceContract] public interface IResources { [OperationContract] List<Model.Resource> GetAll(); [OperationContract] List<Model.Resource> GetAllEnabled(); } So this all works, My windows app can talk to the service and all is great. So I now need to access some information, I have created another .svc file called Project.svc and IProject.cs, this contains the same info as resource (apart from the type is Project) But this now means I have another webservice, surley this is not right!?

    Read the article

  • Are concurrency issues possible when using the WCF Service Behavoir attribute set to ConcurrencyMode

    - by Brandon Linton
    We have a WCF service that makes a good deal of transactional NHibernate calls. Occasionally we were seeing SQL timeouts, even though the calls were updating different rows and the tables were set to row level locking. After digging into the logs, it looks like different threads were entering the same point in the code (our transaction using block), and an update was hanging on commit. It didn't make sense, though, because we believed that the following service class attribute was forcing a unique execution thread per service call: [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.PerCall)] We recently changed the concurrency mode to ConcurrencyMode.Single and haven't yet run into any issues, but the bug was very difficult to reproduce (if anyone has any thoughts on flushing a bug like that out, let me know!). Anyway, that all brings me to my question: shouldn't an InstanceContextMode of PerCall enforce thread-safety within the service, even if the ConcurrencyMode is set to multiple? How would it be possible for two calls to be serviced by the same service instance? Thanks!

    Read the article

  • Interoperability when returning derived class by base class in WCF

    - by mt_serg
    I have some simple code: [DataContract] [KnownType(typeof(SpecialEvent))] public class Event { //data } [DataContract] public class SpecialEvent : Event { //data } [ServiceContract] public interface IService { [OperationContract] List<Event> GetEvents(); } [ServiceBehavior] public class Service : IService { public List<Event> GetEvents() { List<Event> events = new List<Event>(); events.Add(new Event()); events.Add(new SpecialEvent()); return events; } } I know that it works fine in case wcf to wcf. but what about interoperability? is it generate standart wsdl and any client can use the service or no?

    Read the article

  • Is it possible to set ContentType for a WCF WebGet method?

    - by James Cadd
    I'm working with a WCF restful/http method that returns a stream of image data. I want to make sure that the content type is marked as "image/png". The method is defined as: [ServiceContract] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)] public class TileImageService { [WebGet(UriTemplate = "{id}")] public Stream GetTileImage(string id) { Bitmap bmp = new Bitmap(173, 173); Graphics g = Graphics.FromImage(bmp); g.Clear(Color.Blue); g.DrawString(DateTime.Now.ToLongTimeString(), new Font("Chiller", 20), Brushes.White, new PointF(10, 10)); g.Flush(); MemoryStream ms = new MemoryStream(); bmp.Save(ms, ImageFormat.Png); ms.Seek(0, SeekOrigin.Begin); return ms; } } In Firefox it looks like the content type is marked as application/octet stream. Is there a way to change the content type?

    Read the article

  • WCF Service error received when using TCP: "The message could not be dispatched..."

    - by StM
    I am new to creating WCF services. I have created a WCF web service in VS2008 that is running on IIS 7. When I use http the service works perfectly. When I configure the service for TCP and run I get the following error message. There was a communication problem. The message could not be dispatched because the service at the endpoint address 'net:tcp://elec:9090/CoordinateIdTool_Tcp/IdToolService.svc is unavailable for the protocol of the address. I have searched a lot of forums, including this one, for a resolution but nothing has worked. Everything appears to be set up correctly on IIS 7. WAS has been set up to run. The default web site has a net.tcp binding and the application has net.tcp under the enabled protocols. I am including what I think is the important part of the web.config from the host project and also the app.config from the client project I am using to test the service. Hopefully someone can spot my error. Thanks in advance for any help or recommendations that anyone can provide. Web.Config <bindings> <wsHttpBinding> <binding name="wsHttpBindingNoMsgs"> <security mode="None" /> </binding> </wsHttpBinding> </bindings> <services> <service behaviorConfiguration="CogIDServiceHost.ServiceBehavior" name="CogIDServiceLibrary.CogIdService"> <endpoint address="" binding="wsHttpBinding" bindingConfiguration="wsHttpBindingNoMsgs" contract="CogIDServiceLibrary.CogIdTool"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" bindingConfiguration="" contract="IMetadataExchange" /> <endpoint name="CoordinateIdService_TCP" address="net.tcp://elec:9090/CoordinateIdTool_Tcp/IdToolService.svc" binding="netTcpBinding" bindingConfiguration="" contract="CogIDServiceLibrary.CogIdTool"> <identity> <dns value="localhost" /> </identity> </endpoint> </service> </services> <behaviors> <serviceBehaviors> <behavior name="CogIDServiceHost.ServiceBehavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> App.Config <system.serviceModel> <diagnostics performanceCounters="Off"> <messageLogging logEntireMessage="true" logMalformedMessages="false" logMessagesAtServiceLevel="false" logMessagesAtTransportLevel="false" /> </diagnostics> <behaviors /> <bindings> <wsHttpBinding> <binding name="WSHttpBinding_CogIdTool" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="None"> <transport clientCredentialType="Windows" proxyCredentialType="None" realm="" /> <message clientCredentialType="Windows" negotiateServiceCredential="true" establishSecurityContext="true" /> </security> </binding> <binding name="wsHttpBindingNoMsg"> <security mode="None"> <transport clientCredentialType="Windows" /> <message clientCredentialType="Windows" /> </security> </binding> </wsHttpBinding> </bindings> <client> <endpoint address="http://sdet/CogId_WCF/IdToolService.svc" binding="wsHttpBinding" bindingConfiguration="wsHttpBindingNoMsg" contract="CogIdServiceReference.CogIdTool" name="IISHostWsHttpBinding"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="http://localhost:1890/IdToolService.svc" binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_CogIdTool" contract="CogIdServiceReference.CogIdTool" name="WSHttpBinding_CogIdTool"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="http://elec/CoordinateIdTool/IdToolService.svc" binding="wsHttpBinding" bindingConfiguration="wsHttpBindingNoMsg" contract="CogIdServiceReference.CogIdTool" name="IIS7HostWsHttpBinding_Elec"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="net.tcp://elec:9090/CoordinateIdTool_Tcp/IdToolService.svc" binding="netTcpBinding" bindingConfiguration="" contract="CogIdServiceReference.CogIdTool" name="IIS7HostTcpBinding_Elec" > <identity> <dns value="localhost"/> </identity> </endpoint> </client> </system.serviceModel>

    Read the article

  • How can I push a string from one client connected to a WCF service to another connected as well?

    - by Sergio Tapia
    Here's what I have so far: IService: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.ServiceModel; namespace ServiceLibrary { [ServiceContract(SessionMode = SessionMode.Allowed, CallbackContract = typeof(IServiceCallback))] public interface IService { [OperationContract(IsOneWay = false, IsInitiating = true, IsTerminating = false)] void Join(string userName); } interface IServiceCallback { [OperationContract(IsOneWay = true)] void UserJoined(string senderName); } } Service: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.ServiceModel; namespace ServiceLibrary { [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession, ConcurrencyMode = ConcurrencyMode.Multiple)] public class Service:IService { IServiceCallback callback = null; public void Join(string userName) { callback = OperationContext.Current.GetCallbackChannel<IServiceCallback>(); } } } Just a simple string passed from one client to another.

    Read the article

  • How to? WCF customBinding over Https

    - by user663414
    Hi all, I'm trying to setup a WCF service for internal use, on our external facing web-farm (we dont have a web farm internally, and I need this service to have failover and load-balancing). Requirements: PerSession state, as we need the service to retain variable data for each session. HTTPS. After lots of googling i've read I needed to create a customBinding, which I've done, but not sure if it is correct. Larger message size, as one of the parameters is a byte[] array, which can be a max of 5mb. no requirement to manually edit the client-side app.config. ie, I need the Developer to just add the service reference, and then starts using the object without fiddly changing of app.config. Note: I've previously had this service working under HTTP correctly (using wsHttpBinding). I've also had it working under HTTPS, but it didn't support PerSession state, and lost internal variable values each function call. I'm currently getting this error from the test harness: Could not find default endpoint element that references contract 'AppMonitor.IAppMonitorWcfService' in the ServiceModel client configuration section. This might be because no configuration file was found for your application, or because no endpoint element matching this contract could be found in the client element. NOTE: The error is arising on an Test Harness EXE, that has the WCF service referenced directly under Service References. This is not the problem of an exe referencing another object, that then references the WCF service, that i've read about. The WSDL is showing correctly when browsing to the URL. Web.Config: <system.serviceModel> <services> <service name="AppMonitor.AppMonitorWcfService" behaviorConfiguration="ServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="EnablePerSessionUnderHttps" contract="AppMonitor.IAppMonitorWcfService"/> <endpoint address="mex" binding="mexHttpsBinding" contract="IMetadataExchange" /> </service> </services> <bindings> <customBinding> <binding name="EnablePerSessionUnderHttps" maxReceivedMessageSize="5242880"> <reliableSession ordered="true"/> <textMessageEncoding> <readerQuotas maxDepth="64" maxStringContentLength="2147483647" maxArrayLength="2147483647" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> </textMessageEncoding> <httpsTransport authenticationScheme="Anonymous" requireClientCertificate="false"/> </binding> </customBinding> </bindings> <behaviors> <serviceBehaviors> <behavior name="ServiceBehavior"> <serviceMetadata httpsGetEnabled="true" httpGetEnabled="false"/> <serviceDebug includeExceptionDetailInFaults="true"/> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> EXE's App.config (auto-generated when adding the Service Reference): <configuration> <system.serviceModel> <bindings> <wsHttpBinding> <binding name="CustomBinding_IAppMonitorWcfService" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="true" /> <security mode="Transport"> <transport clientCredentialType="None" proxyCredentialType="None" realm="" /> <message clientCredentialType="Windows" negotiateServiceCredential="true" establishSecurityContext="true" /> </security> </binding> </wsHttpBinding> </bindings> <client /> </system.serviceModel> </configuration> I'm not sure why the app.config is showing wsHttpBinding? Shouldn't this be customBinding? I really dont want to have to edit the app.config, as this service will be used by dozens of developers, and I want them to just be able to add the Service Reference, and away they go... Using VS2008, .NET 3.51. I think server is IIS7, Win Server 2008, can confirm if needed.

    Read the article

  • WCF: How to find out when a session is ending?

    - by TomTom
    I have a WCF application that is using sessions. Is there any central event to get thrown when a session ends? How can I find out when a session is ending WITHOUT (!) calling a method (network disconnect, client crashing - so no "logout" method call)? The server is hosted as: [ServiceBehavior( InstanceContextMode = InstanceContextMode.PerSession, ConcurrencyMode = ConcurrencyMode.Reentrant, UseSynchronizationContext = false, IncludeExceptionDetailInFaults = true )] Basically because it is using a callback interface. Now, I basically need to decoubple the instance created from the backend store when the session terminates ;) Any ideas?

    Read the article

  • Creating a WCF Restful service, concurrency issues

    - by pmillio
    Hi i am in the process of creating a restful service with WCF, the service is likely to be consumed by at least 500 people at any given time. What settings would i need to set in order to deal with this. Please give me any points and tips, thanks. Here is a sample of what i have so far; [ServiceBehavior(IncludeExceptionDetailInFaults = true, InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] And this is an example of a method being called; public UsersAPI getUserInfo(string UserID) { UsersAPI users = new UsersAPI(int.Parse(UserID)); return users; } [OperationContract] [WebGet(BodyStyle = WebMessageBodyStyle.Bare, ResponseFormat = WebMessageFormat.Json, UriTemplate = "User/{UserID}")] [WebHelp(Comment = "This returns a users info.")] UsersAPI getUserInfo(string UserID);

    Read the article

  • Class design question (Disposable and singleton behavior)

    - by user137348
    The Repository class has singleton behavior and the _db implements the disposable pattern. As excepted the _db object gets disposed after the first call and because of the singleton behavior any other call of _db will crash. [ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)] public class Repository : IRepository { private readonly DataBase _db; public Repository(DataBase db) { _db = db; } public int GetCount() { using(_db) { return _db.Menus.Count(); } } public Item GetItem(int id) { using(_db) { return _db.Menus.FirstOrDefault(x=>x.Id == id); } } } My question is, is there any way to design this class to work properly without removing the singleton behavior? The Repositoryclass will be serving big amount of requests.

    Read the article

  • How to access the service instance from host object in WCF?

    - by user1048677
    I am trying to incarnate some sort of ad hoc WCF service. I already managed to launch it and make it call its own web methods as some other guy's methods. The issue that I am facing is instance management. I have set [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)] so it now has a global instance with the same properties for all clients. But besides that I need it to call other services of its kind while listening to incoming requests from clients (similar crazy services). While debugging I noticed that the ServiceHost's constructor calls the constructor of the service class. So, I assumed it has access to the global instance of this class and I need to find a way to call methods of this instance. Please don't ask what I have been smoking, I just have to make it ad hoc.

    Read the article

  • Entity Framework Code-First, OData & Windows Phone Client

    - by Jon Galloway
    Entity Framework Code-First is the coolest thing since sliced bread, Windows  Phone is the hottest thing since Tickle-Me-Elmo and OData is just too great to ignore. As part of the Full Stack project, we wanted to put them together, which turns out to be pretty easy… once you know how.   EF Code-First CTP5 is available now and there should be very few breaking changes in the release edition, which is due early in 2011.  Note: EF Code-First evolved rapidly and many of the existing documents and blog posts which were written with earlier versions, may now be obsolete or at least misleading.   Code-First? With traditional Entity Framework you start with a database and from that you generate “entities” – classes that bridge between the relational database and your object oriented program. With Code-First (Magic-Unicorn) (see Hanselman’s write up and this later write up by Scott Guthrie) the Entity Framework looks at classes you created and says “if I had created these classes, the database would have to have looked like this…” and creates the database for you! By deriving your entity collections from DbSet and exposing them via a class that derives from DbContext, you "turn on" database backing for your POCO with a minimum of code and no hidden designer or configuration files. POCO == Plain Old CLR Objects Your entity objects can be used throughout your applications - in web applications, console applications, Silverlight and Windows Phone applications, etc. In our case, we'll want to read and update data from a Windows Phone client application, so we'll expose the entities through a DataService and hook the Windows Phone client application to that data via proxies.  Piece of Pie.  Easy as cake. The Demo Architecture To see this at work, we’ll create an ASP.NET/MVC application which will act as the host for our Data Service.  We’ll create an incredibly simple data layer using EF Code-First on top of SQLCE4 and we’ll expose the data in a WCF Data Service using the oData protocol.  Our Windows Phone 7 client will instantiate  the data context via a URI and load the data asynchronously. Setting up the Server project with MVC 3, EF Code First, and SQL CE 4 Create a new application of type ASP.NET MVC 3 and name it DeadSimpleServer.  We need to add the latest SQLCE4 and Entity Framework Code First CTP's to our project. Fortunately, NuGet makes that really easy. Open the Package Manager Console (View / Other Windows / Package Manager Console) and type in "Install-Package EFCodeFirst.SqlServerCompact" at the PM> command prompt. Since NuGet handles dependencies for you, you'll see that it installs everything you need to use Entity Framework Code First in your project. PM> install-package EFCodeFirst.SqlServerCompact 'SQLCE (= 4.0.8435.1)' not installed. Attempting to retrieve dependency from source... Done 'EFCodeFirst (= 0.8)' not installed. Attempting to retrieve dependency from source... Done 'WebActivator (= 1.0.0.0)' not installed. Attempting to retrieve dependency from source... Done You are downloading SQLCE from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'SQLCE 4.0.8435.1' You are downloading EFCodeFirst from Microsoft, the license agreement to which is available at http://go.microsoft.com/fwlink/?LinkID=206497. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst 0.8' Successfully installed 'WebActivator 1.0.0.0' You are downloading EFCodeFirst.SqlServerCompact from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst.SqlServerCompact 0.8' Successfully added 'SQLCE 4.0.8435.1' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst 0.8' to EfCodeFirst-CTP5 Successfully added 'WebActivator 1.0.0.0' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst.SqlServerCompact 0.8' to EfCodeFirst-CTP5 Note: We're using SQLCE 4 with Entity Framework here because they work really well together from a development scenario, but you can of course use Entity Framework Code First with other databases supported by Entity framework. Creating The Model using EF Code First Now we can create our model class. Right-click the Models folder and select Add/Class. Name the Class Person.cs and add the following code: using System.Data.Entity; namespace DeadSimpleServer.Models { public class Person { public int ID { get; set; } public string Name { get; set; } } public class PersonContext : DbContext { public DbSet<Person> People { get; set; } } } Notice that the entity class Person has no special interfaces or base class. There's nothing special needed to make it work - it's just a POCO. The context we'll use to access the entities in the application is called PersonContext, but you could name it anything you wanted. The important thing is that it inherits DbContext and contains one or more DbSet which holds our entity collections. Adding Seed Data We need some testing data to expose from our service. The simplest way to get that into our database is to modify the CreateCeDatabaseIfNotExists class in AppStart_SQLCEEntityFramework.cs by adding some seed data to the Seed method: protected virtual void Seed( TContext context ) { var personContext = context as PersonContext; personContext.People.Add( new Person { ID = 1, Name = "George Washington" } ); personContext.People.Add( new Person { ID = 2, Name = "John Adams" } ); personContext.People.Add( new Person { ID = 3, Name = "Thomas Jefferson" } ); personContext.SaveChanges(); } The CreateCeDatabaseIfNotExists class name is pretty self-explanatory - when our DbContext is accessed and the database isn't found, a new one will be created and populated with the data in the Seed method. There's one more step to make that work - we need to uncomment a line in the Start method at the top of of the AppStart_SQLCEEntityFramework class and set the context name, as shown here, public static class AppStart_SQLCEEntityFramework { public static void Start() { DbDatabase.DefaultConnectionFactory = new SqlCeConnectionFactory("System.Data.SqlServerCe.4.0"); // Sets the default database initialization code for working with Sql Server Compact databases // Uncomment this line and replace CONTEXT_NAME with the name of your DbContext if you are // using your DbContext to create and manage your database DbDatabase.SetInitializer(new CreateCeDatabaseIfNotExists<PersonContext>()); } } Now our database and entity framework are set up, so we can expose data via WCF Data Services. Note: This is a bare-bones implementation with no administration screens. If you'd like to see how those are added, check out The Full Stack screencast series. Creating the oData Service using WCF Data Services Add a new WCF Data Service to the project (right-click the project / Add New Item / Web / WCF Data Service). We’ll be exposing all the data as read/write.  Remember to reconfigure to control and minimize access as appropriate for your own application. Open the code behind for your service. In our case, the service was called PersonTestDataService.svc so the code behind class file is PersonTestDataService.svc.cs. using System.Data.Services; using System.Data.Services.Common; using System.ServiceModel; using DeadSimpleServer.Models; namespace DeadSimpleServer { [ServiceBehavior( IncludeExceptionDetailInFaults = true )] public class PersonTestDataService : DataService<PersonContext> { // This method is called only once to initialize service-wide policies. public static void InitializeService( DataServiceConfiguration config ) { config.SetEntitySetAccessRule( "*", EntitySetRights.All ); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; config.UseVerboseErrors = true; } } } We're enabling a few additional settings to make it easier to debug if you run into trouble. The ServiceBehavior attribute is set to include exception details in faults, and we're using verbose errors. You can remove both of these when your service is working, as your public production service shouldn't be revealing exception information. You can view the output of the service by running the application and browsing to http://localhost:[portnumber]/PersonTestDataService.svc/: <service xml:base="http://localhost:49786/PersonTestDataService.svc/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app" xmlns="http://www.w3.org/2007/app"> <workspace> <atom:title>Default</atom:title> <collection href="People"> <atom:title>People</atom:title> </collection> </workspace> </service> This indicates that the service exposes one collection, which is accessible by browsing to http://localhost:[portnumber]/PersonTestDataService.svc/People <?xml version="1.0" encoding="iso-8859-1" standalone="yes"?> <feed xml:base=http://localhost:49786/PersonTestDataService.svc/ xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom"> <title type="text">People</title> <id>http://localhost:49786/PersonTestDataService.svc/People</id> <updated>2010-12-29T01:01:50Z</updated> <link rel="self" title="People" href="People" /> <entry> <id>http://localhost:49786/PersonTestDataService.svc/People(1)</id> <title type="text"></title> <updated>2010-12-29T01:01:50Z</updated> <author> <name /> </author> <link rel="edit" title="Person" href="People(1)" /> <category term="DeadSimpleServer.Models.Person" scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" /> <content type="application/xml"> <m:properties> <d:ID m:type="Edm.Int32">1</d:ID> <d:Name>George Washington</d:Name> </m:properties> </content> </entry> <entry> ... </entry> </feed> Let's recap what we've done so far. But enough with services and XML - let's get this into our Windows Phone client application. Creating the DataServiceContext for the Client Use the latest DataSvcUtil.exe from http://odata.codeplex.com. As of today, that's in this download: http://odata.codeplex.com/releases/view/54698 You need to run it with a few options: /uri - This will point to the service URI. In this case, it's http://localhost:59342/PersonTestDataService.svc  Pick up the port number from your running server (e.g., the server formerly known as Cassini). /out - This is the DataServiceContext class that will be generated. You can name it whatever you'd like. /Version - should be set to 2.0 /DataServiceCollection - Include this flag to generate collections derived from the DataServiceCollection base, which brings in all the ObservableCollection goodness that handles your INotifyPropertyChanged events for you. Here's the console session from when we ran it: <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> Next, to keep things simple, change the Binding on the two TextBlocks within the DataTemplate to Name and ID, <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel Margin="0,0,0,17" Width="432"> <TextBlock Text="{Binding Name}" TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}" /> <TextBlock Text="{Binding ID}" TextWrapping="Wrap" Margin="12,-6,12,0" Style="{StaticResource PhoneTextSubtleStyle}" /> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> Getting The Context In the code-behind you’ll first declare a member variable to hold the context from the Entity Framework. This is named using convention over configuration. The db type is Person and the context is of type PersonContext, You initialize it by providing the URI, in this case using the URL obtained from the Cassini web server, PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); Create a second member variable of type DataServiceCollection<Person> but do not initialize it, DataServiceCollection<Person> people; In the constructor you’ll initialize the DataServiceCollection using the PersonContext, public MainPage() { InitializeComponent(); people = new DataServiceCollection<Person>( context ); Finally, you’ll load the people collection using the LoadAsync method, passing in the fully specified URI for the People collection in the web service, people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); Note that this method runs asynchronously and when it is finished the people  collection is already populated. Thus, since we didn’t need or want to override any of the behavior we don’t implement the LoadCompleted. You can use the LoadCompleted event if you need to do any other UI updates, but you don't need to. The final code is as shown below: using System; using System.Data.Services.Client; using System.Windows; using System.Windows.Controls; using DeadSimpleServer.Models; using Microsoft.Phone.Controls; namespace WindowsPhoneODataTest { public partial class MainPage : PhoneApplicationPage { PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); DataServiceCollection<Person> people; // Constructor public MainPage() { InitializeComponent(); // Set the data context of the listbox control to the sample data // DataContext = App.ViewModel; people = new DataServiceCollection<Person>( context ); people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); DataContext = people; this.Loaded += new RoutedEventHandler( MainPage_Loaded ); } // Handle selection changed on ListBox private void MainListBox_SelectionChanged( object sender, SelectionChangedEventArgs e ) { // If selected index is -1 (no selection) do nothing if ( MainListBox.SelectedIndex == -1 ) return; // Navigate to the new page NavigationService.Navigate( new Uri( "/DetailsPage.xaml?selectedItem=" + MainListBox.SelectedIndex, UriKind.Relative ) ); // Reset selected index to -1 (no selection) MainListBox.SelectedIndex = -1; } // Load data for the ViewModel Items private void MainPage_Loaded( object sender, RoutedEventArgs e ) { if ( !App.ViewModel.IsDataLoaded ) { App.ViewModel.LoadData(); } } } } With people populated we can set it as the DataContext and run the application; you’ll find that the Name and ID are displayed in the list on the Mainpage. Here's how the pieces in the client fit together: Complete source code available here

    Read the article

  • AspNetCompatibility in WCF Services &ndash; easy to trip up

    - by Rick Strahl
    This isn’t the first time I’ve hit this particular wall: I’m creating a WCF REST service for AJAX callbacks and using the WebScriptServiceHostFactory host factory in the service: <%@ ServiceHost Language="C#" Service="WcfAjax.BasicWcfService" CodeBehind="BasicWcfService.cs" Factory="System.ServiceModel.Activation.WebScriptServiceHostFactory" %>   to avoid all configuration. Because of the Factory that creates the ASP.NET Ajax compatible format via the custom factory implementation I can then remove all of the configuration settings that typically get dumped into the web.config file. However, I do want ASP.NET compatibility so I still leave in: <system.serviceModel> <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/> </system.serviceModel> in the web.config file. This option allows you access to the HttpContext.Current object to effectively give you access to most of the standard ASP.NET request and response features. This is not recommended as a primary practice but it can be useful in some scenarios and in backwards compatibility scenerios with ASP.NET AJAX Web Services. Now, here’s where things get funky. Assuming you have the setting in web.config, If you now declare a service like this: [ServiceContract(Namespace = "DevConnections")] #if DEBUG [ServiceBehavior(IncludeExceptionDetailInFaults = true)] #endif public class BasicWcfService (or by using an interface that defines the service contract) you’ll find that the service will not work when an AJAX call is made against it. You’ll get a 500 error and a System.ServiceModel.ServiceActivationException System error. Worse even with the IncludeExceptionDetailInFaults enabled you get absolutely no indication from WCF what the problem is. So what’s the problem?  The issue is that once you specify aspNetCompatibilityEnabled=”true” in the configuration you *have to* specify the AspNetCompatibilityRequirements attribute and one of the modes that enables or at least allows for it. You need either Required or Allow: [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)] without it the service will simply fail without further warning. It will also fail if you set the attribute value to NotAllowed. The following also causes the service to fail as above: [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.NotAllowed)] This is not totally unreasonable but it’s a difficult issue to debug especially since the configuration setting is global – if you have more than one service and one requires traditional ASP.NET access and one doesn’t then both must have the attribute specified. This is one reason why you’d want to avoid using this functionality unless absolutely necessary. WCF REST provides some basic access to some of the HTTP features after all, although what’s there is severely limited. I also wish that ServiceActivation errors would provide more error information. Getting an Activation error without further info on what actually is wrong is pretty worthless especially when it is a technicality like a mismatched configuration/attribute setting like this.© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  WCF  AJAX  

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Authenticating your windows domain users in the cloud

    - by cibrax
    Moving to the cloud can represent a big challenge for many organizations when it comes to reusing existing infrastructure. For applications that drive existing business processes in the organization, reusing IT assets like active directory represent good part of that challenge. For example, a new web mobile application that sales representatives can use for interacting with an existing CRM system in the organization. In the case of Windows Azure, the Access Control Service (ACS) already provides some integration with ADFS through WS-Federation. That means any organization can create a new trust relationship between the STS running in the ACS and the STS running in ADFS. As the following image illustrates, the ADFS running in the organization should be somehow exposed out of network boundaries to talk to the ACS. This is usually accomplish through an ADFS proxy running in a DMZ. This is the official story for authenticating existing domain users with the ACS.  Getting an ADFS up and running in the organization, which talks to a proxy and also trust the ACS could represent a painful experience. It basically requires  advance knowledge of ADSF and exhaustive testing to get everything right.  However, if you want to get an infrastructure ready for authenticating your domain users in the cloud in a matter of minutes, you will probably want to take a look at the sample I wrote for talking to an existing Active Directory using a regular WCF service through the Service Bus Relay Binding. You can use the WCF ability for self hosting the authentication service within a any program running in the domain (a Windows service typically). The service will not require opening any port as it is opening an outbound connection to the cloud through the Relay Service. In addition, the service will be protected from being invoked by any unauthorized party with the ACS, which will act as a firewall between any client and the service. In that way, we can get a very safe solution up and running almost immediately. To make the solution even more convenient, I implemented an STS in the cloud that internally invokes the service running on premises for authenticating the users. Any existing web application in the cloud can just establish a trust relationship with this STS, and authenticate the users via WS-Federation passive profile with regular http calls, which makes this very attractive for web mobile for example. This is how the WCF service running on premises looks like, [ServiceBehavior(Namespace = "http://agilesight.com/active_directory/agent")] public class ProxyService : IAuthenticationService { IUserFinder userFinder; IUserAuthenticator userAuthenticator;   public ProxyService() : this(new UserFinder(), new UserAuthenticator()) { }   public ProxyService(IUserFinder userFinder, IUserAuthenticator userAuthenticator) { this.userFinder = userFinder; this.userAuthenticator = userAuthenticator; }   public AuthenticationResponse Authenticate(AuthenticationRequest request) { if (userAuthenticator.Authenticate(request.Username, request.Password)) { return new AuthenticationResponse { Result = true, Attributes = this.userFinder.GetAttributes(request.Username) }; }   return new AuthenticationResponse { Result = false }; } } Two external dependencies are used by this service for authenticating users (IUserAuthenticator) and for retrieving user attributes from the user’s directory (IUserFinder). The UserAuthenticator implementation is just a wrapper around the LogonUser Win Api. The UserFinder implementation relies on Directory Services in .NET for searching the user attributes in an existing directory service like Active Directory or the local user store. public UserAttribute[] GetAttributes(string username) { var attributes = new List<UserAttribute>();   var identity = UserPrincipal.FindByIdentity(new PrincipalContext(this.contextType, this.server, this.container), IdentityType.SamAccountName, username); if (identity != null) { var groups = identity.GetGroups(); foreach(var group in groups) { attributes.Add(new UserAttribute { Name = "Group", Value = group.Name }); } if(!string.IsNullOrEmpty(identity.DisplayName)) attributes.Add(new UserAttribute { Name = "DisplayName", Value = identity.DisplayName }); if(!string.IsNullOrEmpty(identity.EmailAddress)) attributes.Add(new UserAttribute { Name = "EmailAddress", Value = identity.EmailAddress }); }   return attributes.ToArray(); } As you can see, the code is simple and uses all the existing infrastructure in Azure to simplify a problem that looks very complex at first glance with ADFS. All the source code for this sample is available to download (or change) in this GitHub repository, https://github.com/AgileSight/ActiveDirectoryForCloud

    Read the article

  • WCF Reliable Session Timeout

    - by RemotecUk
    Hi, when do reliable sessions time out? My session class is defined as follows: [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession, ConcurrencyMode = ConcurrencyMode.Multiple)] and in my app.config... <bindings> <netTcpBinding> <binding name="FTS_netTcpBinding"> <reliableSession enabled="true" inactivityTimeout="00:00:30"/> </binding> </netTcpBinding> </bindings> I have put a timer in the constructor of my session class that simply outputs a count (1..2..3...) to the console for every second the session is active. I have tested it so far by faulting my channel. I would have imagined that the session class would have died after ~30 seconds (as specified in my inactivityTimeout parameter) and hence the timer would have died. However it was still going after a minute. Each session on my app will have significant resources so I need to make sure that they are cleaned up when something goes wrong. Thanks.

    Read the article

  • WCF deadlock when using callback channel

    - by mafutrct
    This is probably a simple mistake, but I could not figure out what was wrong. I basically got a method like this: [ServiceBehavior ( ConcurrencyMode = ConcurrencyMode.Reentrant, InstanceContextMode = InstanceContextMode.PerSession, IncludeExceptionDetailInFaults = true) ] public class Impl : SomeContract { public string Foo() { _CallbackChannel.Blah(); return ""; } } Its interface is decorated: [ServiceContract ( Namespace = "http://MyServiceInterface", SessionMode = SessionMode.Required, CallbackContract = typeof (WcfCallbackContract)) ] public interface SomeContract { [OperationContract] string Foo (); } The service is hosted like this: ServiceHost host = new ServiceHost (typeof (Impl)); var binding = new NetTcpBinding (); var address = new Uri ("net.tcp://localhost:8000/"); host.AddServiceEndpoint ( typeof (SomeContract), binding, address); host.Open (); The client implements the callback interface and calls Foo. Foo runs, calls the callback method and returns. However, the client is still struck in the call to Foo and never returns. The client callback method is never run. I guess I made a design mistake somewhere. If needed, I can post more code. Any help is appreciated.

    Read the article

  • How to hook up WF4 WorkflowRuntime events when using a XAMLX service

    - by Joel D'Souza
    I'm currently using a BehaviorExtensionElement to load a ServiceBehavior where the ApplyDispatchBehavior method is set up as: public void ApplyDispatchBehavior(ServiceDescription serviceDescription, System.ServiceModel.ServiceHostBase serviceHostBase) { WorkflowServiceHost host = serviceHostBase as WorkflowServiceHost; if (host != null) { UnityService.CreateContainer(); host.WorkflowExtensions.Add<IUnityContainer>(delegate { return UnityService.CreateChildContainer(); }); System.Diagnostics.Debug.WriteLine("NotificationService : Adding extension"); WorkflowRuntimeBehavior wfbehavior = serviceDescription.Behaviors.Find<WorkflowRuntimeBehavior>(); WorkflowRuntime runtime = wfbehavior.WorkflowRuntime; runtime.WorkflowStarted += runtime_WorkflowStarted; runtime.WorkflowCreated += runtime_WorkflowCreated; runtime.WorkflowUnloaded += runtime_WorkflowUnloaded; runtime.WorkflowSuspended += runtime_WorkflowSuspended; runtime.WorkflowCompleted += runtime_WorkflowCompleted; runtime.WorkflowAborted += runtime_WorkflowAborted; runtime.WorkflowTerminated += runtime_WorkflowTerminated; } } None of the events are triggered which only goes to say that the way I'm referencing the runtime instance in this particular scenario is wrong. Anyone know of a way to do this? Thanks in advance.

    Read the article

< Previous Page | 1 2 3 4  | Next Page >