Search Results

Search found 792 results on 32 pages for 'sparc t4'.

Page 2/32 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • The SPARC SuperCluster

    - by Karoly Vegh
    Oracle has been providing a lead in the Engineered Systems business for quite a while now, in accordance with the motto "Hardware and Software Engineered to Work Together." Indeed it is hard to find a better definition of these systems.  Allow me to summarize the idea. It is:  Build a compute platform optimized to run your technologies Develop application aware, intelligently caching storage components Take an impressively fast network technology interconnecting it with the compute nodes Tune the application to scale with the nodes to yet unseen performance Reduce the amount of data moving via compression Provide this all in a pre-integrated single product with a single-pane management interface All these ideas have been around in IT for quite some time now. The real Oracle advantage is adding the last one to put these all together. Oracle has built quite a portfolio of Engineered Systems, to run its technologies - and run those like they never ran before. In this post I'll focus on one of them that serves as a consolidation demigod, a multi-purpose engineered system.  As you probably have guessed, I am talking about the SPARC SuperCluster. It has many great features inherited from its predecessors, and it adds several new ones. Allow me to pick out and elaborate about some of the most interesting ones from a technological point of view.  I. It is the SPARC SuperCluster T4-4. That is, as compute nodes, it includes SPARC T4-4 servers that we learned to appreciate and respect for their features: The SPARC T4 CPUs: Each CPU has 8 cores, each core runs 8 threads. The SPARC T4-4 servers have 4 sockets. That is, a single compute node can in parallel, simultaneously  execute 256 threads. Now, a full-rack SPARC SuperCluster has 4 of these servers on board. Remember the keyword demigod.  While retaining the forerunner SPARC T3's exceptional throughput, the SPARC T4 CPUs raise the bar with single performance too - a humble 5x better one than their ancestors.  actually, the SPARC T4 CPU cores run in both single-threaded and multi-threaded mode, and switch between these two on-the-fly, fulfilling not only single-threaded OR multi-threaded applications' needs, but even mixed requirements (like in database workloads!). Data security, anyone? Every SPARC T4 CPU core has a built-in encryption engine, that is, encryption algorithms cast into silicon.  A PCI controller right on the chip for customers who need I/O performance.  Built-in, no-cost Virtualization:  Oracle VM for SPARC (the former LDoms or Logical Domains) is not a server-emulation virtualization technology but rather a serverpartitioning one, the hypervisor runs in the server firmware, and all the VMs' HW resources (I/O, CPU, memory) are accessed natively, without performance overhead.  This enables customers to run a number of Solaris 10 and Solaris 11 VMs separated, independent of each other within a physical server II. For Database performance, it includes Exadata Storage Cells - one of the main reasons why the Exadata Database Machine performs at diabolic speed. What makes them important? They provide DB backend storage for your Oracle Databases to run on the SPARC SuperCluster, that is what they are built and tuned for DB performance.  These storage cells are SQL-aware.  That is, if a SPARC T4 database compute node executes a query, it doesn't simply request tons of raw datablocks from the storage, filters the received data, and throws away most of it where the statement doesn't apply, but provides the SQL query to the storage node too. The storage cell software speaks SQL, that is, it is able to prefilter and through that transfer only the relevant data. With this, the traffic between database nodes and storage cells is reduced immensely. Less I/O is a good thing - as they say, all the CPUs of the world do one thing just as fast as any other - and that is waiting for I/O.  They don't only pre-filter, but also provide data preprocessing features - e.g. if a DB-node requests an aggregate of data, they can calculate it, and handover only the results, not the whole set. Again, less data to transfer.  They support the magical HCC, (Hybrid Columnar Compression). That is, data can be stored in a precompressed form on the storage. Less data to transfer.  Of course one can't simply rely on disks for performance, there is Flash Storage included there for caching.  III. The low latency, high-speed backbone network: InfiniBand, that interconnects all the members with: Real High Speed: 40 Gbit/s. Full Duplex, of course. Oh, and a really low latency.  RDMA. Remote Direct Memory Access. This technology allows the DB nodes to do exactly that. Remotely, directly placing SQL commands into the Memory of the storage cells. Dodging all the network-stack bottlenecks, avoiding overhead, placing requests directly into the process queue.  You can also run IP over InfiniBand if you please - that's the way the compute nodes can communicate with each other.  IV. Including a general-purpose storage too: the ZFSSA, which is a unified storage, providing NAS and SAN access too, with the following features:  NFS over RDMA over InfiniBand. Nothing is faster network-filesystem-wise.  All the ZFS features onboard, hybrid storage pools, compression, deduplication, snapshot, replication, NFS and CIFS shares Storageheads in a HA-Cluster configuration providing availability of the data  DTrace Live Analytics in a web-based Administration UI Being a general purpose application data storage for your non-database applications running on the SPARC SuperCluster over whichever protocol they prefer, easily replicating, snapshotting, cloning data for them.  There's a lot of great technology included in Oracle's SPARC SuperCluster, we have talked its interior through. As for external scalability: you can start with a half- of full- rack SPARC SuperCluster, and scale out to several racks - that is, stacking not separate full-rack SPARC SuperClusters, but extending always one large instance of the size of several full-racks. Yes, over InfiniBand network. Add racks as you grow.  What technologies shall run on it? SPARC SuperCluster is a general purpose scaleout consolidation/cloud environment. You can run Oracle Databases with RAC scaling, or Oracle Weblogic (end enjoy the SPARC T4's advantages to run Java). Remember, Oracle technologies have been integrated with the Oracle Engineered Systems - this is the Oracle on Oracle advantage. But you can run other software environments such as SAP if you please too. Run any application that runs on Oracle Solaris 10 or Solaris 11. Separate them in Virtual Machines, or even Oracle Solaris Zones, monitor and manage those from a central UI. Here the key takeaways once again: The SPARC SuperCluster: Is a pre-integrated Engineered System Contains SPARC T4-4 servers with built-in virtualization, cryptography, dynamic threading Contains the Exadata storage cells that intelligently offload the burden of the DB-nodes  Contains a highly available ZFS Storage Appliance, that provides SAN/NAS storage in a unified way Combines all these elements over a high-speed, low-latency backbone network implemented with InfiniBand Can grow from a single half-rack to several full-rack size Supports the consolidation of hundreds of applications To summarize: All these technologies are great by themselves, but the real value is like in every other Oracle Engineered System: Integration. All these technologies are tuned to perform together. Together they are way more than the sum of all - and a careful and actually very time consuming integration process is necessary to orchestrate all these for performance. The SPARC SuperCluster's goal is to enable infrastructure operations and offer a pre-integrated solution that can be architected and delivered in hours instead of months of evaluations and tests. The tedious and most importantly time and resource consuming part of the work - testing and evaluating - has been done.  Now go, provide services.   -- charlie  

    Read the article

  • Talend Enterprise Data Integration overperforms on Oracle SPARC T4

    - by Amir Javanshir
    The SPARC T microprocessor, released in 2005 by Sun Microsystems, and now continued at Oracle, has a good track record in parallel execution and multi-threaded performance. However it was less suited for pure single-threaded workloads. The new SPARC T4 processor is now filling that gap by offering a 5x better single-thread performance over previous generations. Following our long-term relationship with Talend, a fast growing ISV positioned by Gartner in the “Visionaries” quadrant of the “Magic Quadrant for Data Integration Tools”, we decided to test some of their integration components with the T4 chip, more precisely on a T4-1 system, in order to verify first hand if this new processor stands up to its promises. Several tests were performed, mainly focused on: Single-thread performance of the new SPARC T4 processor compared to an older SPARC T2+ processor Overall throughput of the SPARC T4-1 server using multiple threads The tests consisted in reading large amounts of data --ten's of gigabytes--, processing and writing them back to a file or an Oracle 11gR2 database table. They are CPU, memory and IO bound tests. Given the main focus of this project --CPU performance--, bottlenecks were removed as much as possible on the memory and IO sub-systems. When possible, the data to process was put into the ZFS filesystem cache, for instance. Also, two external storage devices were directly attached to the servers under test, each one divided in two ZFS pools for read and write operations. Multi-thread: Testing throughput on the Oracle T4-1 The tests were performed with different number of simultaneous threads (1, 2, 4, 8, 12, 16, 32, 48 and 64) and using different storage devices: Flash, Fibre Channel storage, two stripped internal disks and one single internal disk. All storage devices used ZFS as filesystem and volume management. Each thread read a dedicated 1GB-large file containing 12.5M lines with the following structure: customerID;FirstName;LastName;StreetAddress;City;State;Zip;Cust_Status;Since_DT;Status_DT 1;Ronald;Reagan;South Highway;Santa Fe;Montana;98756;A;04-06-2006;09-08-2008 2;Theodore;Roosevelt;Timberlane Drive;Columbus;Louisiana;75677;A;10-05-2009;27-05-2008 3;Andrew;Madison;S Rustle St;Santa Fe;Arkansas;75677;A;29-04-2005;09-02-2008 4;Dwight;Adams;South Roosevelt Drive;Baton Rouge;Vermont;75677;A;15-02-2004;26-01-2007 […] The following graphs present the results of our tests: Unsurprisingly up to 16 threads, all files fit in the ZFS cache a.k.a L2ARC : once the cache is hot there is no performance difference depending on the underlying storage. From 16 threads upwards however, it is clear that IO becomes a bottleneck, having a good IO subsystem is thus key. Single-disk performance collapses whereas the Sun F5100 and ST6180 arrays allow the T4-1 to scale quite seamlessly. From 32 to 64 threads, the performance is almost constant with just a slow decline. For the database load tests, only the best IO configuration --using external storage devices-- were used, hosting the Oracle table spaces and redo log files. Using the Sun Storage F5100 array allows the T4-1 server to scale up to 48 parallel JVM processes before saturating the CPU. The final result is a staggering 646K lines per second insertion in an Oracle table using 48 parallel threads. Single-thread: Testing the single thread performance Seven different tests were performed on both servers. Given the fact that only one thread, thus one file was read, no IO bottleneck was involved, all data being served from the ZFS cache. Read File ? Filter ? Write File: Read file, filter data, write the filtered data in a new file. The filter is set on the “Status” column: only lines with status set to “A” are selected. This limits each output file to about 500 MB. Read File ? Load Database Table: Read file, insert into a single Oracle table. Average: Read file, compute the average of a numeric column, write the result in a new file. Division & Square Root: Read file, perform a division and square root on a numeric column, write the result data in a new file. Oracle DB Dump: Dump the content of an Oracle table (12.5M rows) into a CSV file. Transform: Read file, transform, write the result data in a new file. The transformations applied are: set the address column to upper case and add an extra column at the end, which is the concatenation of two columns. Sort: Read file, sort a numeric and alpha numeric column, write the result data in a new file. The following table and graph present the final results of the tests: Throughput unit is thousand lines per second processed (K lines/second). Improvement is the % of improvement between the T5140 and T4-1. Test T4-1 (Time s.) T5140 (Time s.) Improvement T4-1 (Throughput) T5140 (Throughput) Read/Filter/Write 125 806 645% 100 16 Read/Load Database 195 1111 570% 64 11 Average 96 557 580% 130 22 Division & Square Root 161 1054 655% 78 12 Oracle DB Dump 164 945 576% 76 13 Transform 159 1124 707% 79 11 Sort 251 1336 532% 50 9 The improvement of single-thread performance is quite dramatic: depending on the tests, the T4 is between 5.4 to 7 times faster than the T2+. It seems clear that the SPARC T4 processor has gone a long way filling the gap in single-thread performance, without sacrifying the multi-threaded capability as it still shows a very impressive scaling on heavy-duty multi-threaded jobs. Finally, as always at Oracle ISV Engineering, we are happy to help our ISV partners test their own applications on our platforms, so don't hesitate to contact us and let's see what the SPARC T4-based systems can do for your application! "As describe in this benchmark, Talend Enterprise Data Integration has overperformed on T4. I was generally happy to see that the T4 gave scaling opportunities for many scenarios like complex aggregations. Row by row insertion in Oracle DB is faster with more than 650,000 rows per seconds without using any bulk Oracle capabilities !" Cedric Carbone, Talend CTO.

    Read the article

  • SAP Applications Certified for Oracle SPARC SuperCluster

    - by Javier Puerta
    SAP applications are now certified for use with the Oracle SPARC SuperCluster T4-4, a general-purpose engineered system designed for maximum simplicity, efficiency, reliability, and performance. "The Oracle SPARC SuperCluster is an ideal platform for consolidating SAP applications and infrastructure," says Ganesh Ramamurthy, vice president of engineering, Oracle. "Because the SPARC SuperCluster is a pre-integrated engineered system, it enables data center managers to dramatically reduce their time to production for SAP applications to a fraction of what a build-it-yourself approach requires and radically cuts operating and maintenance costs." SAP infrastructure and applications based on the SAP NetWeaver technology platform 6.4 and above and certified with Oracle Database 11g Release 2, such as the SAP ERP application and SAP NetWeaver Business Warehouse, can now be deployed using the SPARC SuperCluster T4 4. The SPARC SuperCluster T4-4 provides an optimized platform for SAP environments that can reduce configuration times by up to 75 percent, reduce operating costs up to 50 percent, can improve query performance by up to 10x, and can improve daily data loading up to 4x. The Oracle SPARC SuperCluster T4-4 is the world's fastest general purpose engineered system, delivering high performance, availability, scalability, and security to support and consolidate multi-tier enterprise applications with Web, database, and application components. The SPARC SuperCluster T4-4 combines Oracle's SPARC T4-4 servers running Oracle Solaris 11 with the database optimization of Oracle Exadata, the accelerated processing of Oracle Exalogic Elastic Cloud software, and the high throughput and availability of Oracle's Sun ZFS Storage Appliance all on a high-speed InfiniBand backplane. Part of Oracle's engineered systems family, the SPARC SuperCluster T4-4 demonstrates Oracle's unique ability to innovate and optimize at every layer of technology to simplify data center operations, drive down costs, and accelerate business innovation. For more details, refer to Our press release Datasheet: Oracle's SPARC SuperCluster T4-4 (PDF) Datasheet: Oracle's SPARC SuperCluster Now Supported by SAP (PDF) Video Podcast: Oracle's SPARC SuperCluster (MP4)

    Read the article

  • World Record Performance on PeopleSoft Enterprise Financials Benchmark on SPARC T4-2

    - by Brian
    Oracle's SPARC T4-2 server achieved World Record performance on Oracle's PeopleSoft Enterprise Financials 9.1 executing 20 Million Journals lines in 8.92 minutes on Oracle Database 11g Release 2 running on Oracle Solaris 11. This is the first result published on this version of the benchmark. The SPARC T4-2 server was able to process 20 million general ledger journal edit and post batch jobs in 8.92 minutes on this benchmark that reflects a large customer environment that utilizes a back-end database of nearly 500 GB. This benchmark demonstrates that the SPARC T4-2 server with PeopleSoft Financials 9.1 can easily process 100 million journal lines in less than 1 hour. The SPARC T4-2 server delivered more than 146 MB/sec of IO throughput with Oracle Database 11g running on Oracle Solaris 11. Performance Landscape Results are presented for PeopleSoft Financials Benchmark 9.1. Results obtained with PeopleSoft Financials Benchmark 9.1 are not comparable to the the previous version of the benchmark, PeopleSoft Financials Benchmark 9.0, due to significant change in data model and supports only batch. PeopleSoft Financials Benchmark, Version 9.1 Solution Under Test Batch (min) SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 8.92 Results from PeopleSoft Financials Benchmark 9.0. PeopleSoft Financials Benchmark, Version 9.0 Solution Under Test Batch (min) Batch with Online (min) SPARC Enterprise M4000 (Web/App) SPARC Enterprise M5000 (DB) 33.09 34.72 SPARC T3-1 (Web/App) SPARC Enterprise M5000 (DB) 35.82 37.01 Configuration Summary Hardware Configuration: 1 x SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 128 GB memory Storage Configuration: 1 x Sun Storage F5100 Flash Array (for database and redo logs) 2 x Sun Storage 2540-M2 arrays and 2 x Sun Storage 2501-M2 arrays (for backup) Software Configuration: Oracle Solaris 11 11/11 SRU 7.5 Oracle Database 11g Release 2 (11.2.0.3) PeopleSoft Financials 9.1 Feature Pack 2 PeopleSoft Supply Chain Management 9.1 Feature Pack 2 PeopleSoft PeopleTools 8.52 latest patch - 8.52.03 Oracle WebLogic Server 10.3.5 Java Platform, Standard Edition Development Kit 6 Update 32 Benchmark Description The PeopleSoft Enterprise Financials 9.1 benchmark emulates a large enterprise that processes and validates a large number of financial journal transactions before posting the journal entry to the ledger. The validation process certifies that the journal entries are accurate, ensuring that ChartFields values are valid, debits and credits equal out, and inter/intra-units are balanced. Once validated, the entries are processed, ensuring that each journal line posts to the correct target ledger, and then changes the journal status to posted. In this benchmark, the Journal Edit & Post is set up to edit and post both Inter-Unit and Regular multi-currency journals. The benchmark processes 20 million journal lines using AppEngine for edits and Cobol for post processes. See Also Oracle PeopleSoft Benchmark White Papers oracle.com SPARC T4-2 Server oracle.com OTN PeopleSoft Financial Management oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • Public Solaris/SPARC roadmap until 2015

    - by Karim Berrah
    It now public, and give you a nice overview on what's going on, where Oracle is going with Solaris and SPARC processors. It's now available from here. What can we lean from this roadmap ? well, if you look carefully: Oracle is announcing Solaris 11 this year. The release date should be ... check OOW11 Solaris 10 updates should still be released in 2012 (remember, released in 2005). Check the Solaris lifecycle to understand how long is Solaris to stay side by side with Solaris 11. in 2011, a great 3x Single Strand improvement for the T-Series. Some thing great under preparation. Probably revealed at Oracle Open World 2011. Good news for ISVs ! in 2012, a great 6x Troughput improvement for the M-Serie ! How can this be done ? .... Nearly everything on the SPARC/SOLARIS level is said through the public roadmap,but as you know the evil is in the details ;)

    Read the article

  • World Record Batch Rate on Oracle JD Edwards Consolidated Workload with SPARC T4-2

    - by Brian
    Oracle produced a World Record batch throughput for single system results on Oracle's JD Edwards EnterpriseOne Day-in-the-Life benchmark using Oracle's SPARC T4-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2. The workload includes both online and batch workload. The SPARC T4-2 server delivered a result of 8,000 online users while concurrently executing a mix of JD Edwards EnterpriseOne Long and Short batch processes at 95.5 UBEs/min (Universal Batch Engines per minute). In order to obtain this record benchmark result, the JD Edwards EnterpriseOne, Oracle WebLogic and Oracle Database 11g Release 2 servers were executed each in separate Oracle Solaris Containers which enabled optimal system resources distribution and performance together with scalable and manageable virtualization. One SPARC T4-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2 utilized only 55% of the available CPU power. The Oracle DB server in a Shared Server configuration allows for optimized CPU resource utilization and significant memory savings on the SPARC T4-2 server without sacrificing performance. This configuration with SPARC T4-2 server has achieved 33% more Users/core, 47% more UBEs/min and 78% more Users/rack unit than the IBM Power 770 server. The SPARC T4-2 server with 2 processors ran the JD Edwards "Day-in-the-Life" benchmark and supported 8,000 concurrent online users while concurrently executing mixed batch workloads at 95.5 UBEs per minute. The IBM Power 770 server with twice as many processors supported only 12,000 concurrent online users while concurrently executing mixed batch workloads at only 65 UBEs per minute. This benchmark demonstrates more than 2x cost savings by consolidating the complete solution in a single SPARC T4-2 server compared to earlier published results of 10,000 users and 67 UBEs per minute on two SPARC T4-2 and SPARC T4-1. The Oracle DB server used mirrored (RAID 1) volumes for the database providing high availability for the data without impacting performance. Performance Landscape JD Edwards EnterpriseOne Day in the Life (DIL) Benchmark Consolidated Online with Batch Workload System Rack Units BatchRate(UBEs/m) Online Users Users /Units Users /Core Version SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 3 95.5 8,000 2,667 500 9.0.2 IBM Power 770 (4 x POWER7, 3.3 GHz, 32 cores) 8 65 12,000 1,500 375 9.0.2 Batch Rate (UBEs/m) — Batch transaction rate in UBEs per minute Configuration Summary Hardware Configuration: 1 x SPARC T4-2 server with 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 4 x 300 GB 10K RPM SAS internal disk 2 x 300 GB internal SSD 2 x Sun Storage F5100 Flash Arrays Software Configuration: Oracle Solaris 10 Oracle Solaris Containers JD Edwards EnterpriseOne 9.0.2 JD Edwards EnterpriseOne Tools (8.98.4.2) Oracle WebLogic Server 11g (10.3.4) Oracle HTTP Server 11g Oracle Database 11g Release 2 (11.2.0.1) Benchmark Description JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations. Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company. The workload consists of online transactions and the UBE – Universal Business Engine workload of 61 short and 4 long UBEs. LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time. The UBE processes workload runs from the JD Enterprise Application server. Oracle's UBE processes come as three flavors: Short UBEs < 1 minute engage in Business Report and Summary Analysis, Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address, Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs. The UBE workload generates large numbers of PDF files reports and log files. The UBE Queues are categorized as the QBATCHD, a single threaded queue for large and medium UBEs, and the QPROCESS queue for short UBEs run concurrently. Oracle's UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute. Key Points and Best Practices Two JD Edwards EnterpriseOne Application Servers, two Oracle WebLogic Servers 11g Release 1 coupled with two Oracle Web Tier HTTP server instances and one Oracle Database 11g Release 2 database on a single SPARC T4-2 server were hosted in separate Oracle Solaris Containers bound to four processor sets to demonstrate consolidation of multiple applications, web servers and the database with best resource utilizations. Interrupt fencing was configured on all Oracle Solaris Containers to channel the interrupts to processors other than the processor sets used for the JD Edwards Application server, Oracle WebLogic servers and the database server. A Oracle WebLogic vertical cluster was configured on each WebServer Container with twelve managed instances each to load balance users' requests and to provide the infrastructure that enables scaling to high number of users with ease of deployment and high availability. The database log writer was run in the real time RT class and bound to a processor set. The database redo logs were configured on the raw disk partitions. The Oracle Solaris Container running the Enterprise Application server completed 61 Short UBEs, 4 Long UBEs concurrently as the mixed size batch workload. The mixed size UBEs ran concurrently from the Enterprise Application server with the 8,000 online users driven by the LoadRunner. See Also SPARC T4-2 Server oracle.com OTN JD Edwards EnterpriseOne oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Oracle Fusion Middleware oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/30/2012.

    Read the article

  • Multiple vulnerabilities in Network Time Protocol (NTP)

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2009-0021 Improper Authentication vulnerability 5.0 Firmware SPARC T3-4 SPARC: 147317-01 SPARC T3-2 SPARC: 147316-01 SPARC T3-1B SPARC: 147318-01 SPARC T3-1 SPARC: 147315-01 Netra SPARC T3-1B SPARC: 147320-01 Netra SPARC T3-1 SPARC: 147319-01 Netra SPARC T3-1BA SPARC: 144609-07 CVE-2009-0159 Buffer Overflow vulnerability 6.8 CVE-2009-3563 Denial of Service (DoS) vulnerability 6.4 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • Unleash the Power of Cryptography on SPARC T4

    - by B.Koch
    by Rob Ludeman Oracle’s SPARC T4 systems are architected to deliver enhanced value for customer via the inclusion of many integrated features.  One of the best examples of this approach is demonstrated in the on-chip cryptographic support that delivers wire speed encryption capabilities without any impact to application performance.  The Evolution of SPARC Encryption SPARC T-Series systems have a long history of providing this capability, dating back to the release of the first T2000 systems that featured support for on-chip RSA encryption directly in the UltraSPARC T1 processor.  Successive generations have built on this approach by support for additional encryption ciphers that are tightly coupled with the Oracle Solaris 10 and Solaris 11 encryption framework.  While earlier versions of this technology were implemented using co-processors, the SPARC T4 was redesigned with new crypto instructions to eliminate some of the performance overhead associated with the former approach, resulting in much higher performance for encrypted workloads. The Superiority of the SPARC T4 Approach to Crypto As companies continue to engage in more and more e-commerce, the need to provide greater degrees of security for these transactions is more critical than ever before.  Traditional methods of securing data in transit by applications have a number of drawbacks that are addressed by the SPARC T4 cryptographic approach. 1. Performance degradation – cryptography is highly compute intensive and therefore, there is a significant cost when using other architectures without embedded crypto functionality.  This performance penalty impacts the entire system, slowing down performance of web servers (SSL), for example, and potentially bogging down the speed of other business applications.  The SPARC T4 processor enables customers to deliver high levels of security to internal and external customers while not incurring an impact to overall SLAs in their IT environment. 2. Added cost – one of the methods to avoid performance degradation is the addition of add-in cryptographic accelerator cards or external offload engines in other systems.  While these solutions provide a brute force mechanism to avoid the problem of slower system performance, it usually comes at an added cost.  Customers looking to encrypt datacenter traffic without the overhead and expenditure of extra hardware can rely on SPARC T4 systems to deliver the performance necessary without the need to purchase other hardware or add-on cards. 3. Higher complexity – the addition of cryptographic cards or leveraging load balancers to perform encryption tasks results in added complexity from a management standpoint.  With SPARC T4, encryption keys and the framework built into Solaris 10 and 11 means that administrators generally don’t need to spend extra cycles determining how to perform cryptographic functions.  In fact, many of the instructions are built-in and require no user intervention to be utilized.  For example, For OpenSSL on Solaris 11, SPARC T4 crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "t4 engine."  For a deeper technical dive into the new instructions included in SPARC T4, consult Dan Anderson’s blog. Conclusion In summary, SPARC T4 systems offer customers much more value for applications than just increased performance. The integration of key virtualization technologies, embedded encryption, and a true Enterprise Operating System, Oracle Solaris, provides direct business benefits that supersedes the commodity approach to data center computing.   SPARC T4 removes the roadblocks to secure computing by offering integrated crypto accelerators that can save IT organizations in operating cost while delivering higher levels of performance and meeting objectives around compliance. For more on the SPARC T4 family of products, go to here.

    Read the article

  • Solaris WANboot & Jumpstart SPARC/x86

    - by watain
    I need to setup a Solaris WANboot and a Solaris jumpstart server for both SPARC and x86 architectures. Can I setup both on a single machine (SPARC or x86) or do I need a separate SPARC and x86 machine to jumpstart a SPARC respectively a x86 client? As far as I know the architecture of a WANboot server doesn't matter, as long as the correct Solaris flash archive is used. Best regards

    Read the article

  • SPARC T4-2 Produces World Record Oracle Essbase Aggregate Storage Benchmark Result

    - by Brian
    Significance of Results Oracle's SPARC T4-2 server configured with a Sun Storage F5100 Flash Array and running Oracle Solaris 10 with Oracle Database 11g has achieved exceptional performance for the Oracle Essbase Aggregate Storage Option benchmark. The benchmark has upwards of 1 billion records, 15 dimensions and millions of members. Oracle Essbase is a multi-dimensional online analytical processing (OLAP) server and is well-suited to work well with SPARC T4 servers. The SPARC T4-2 server (2 cpus) running Oracle Essbase 11.1.2.2.100 outperformed the previous published results on Oracle's SPARC Enterprise M5000 server (4 cpus) with Oracle Essbase 11.1.1.3 on Oracle Solaris 10 by 80%, 32% and 2x performance improvement on Data Loading, Default Aggregation and Usage Based Aggregation, respectively. The SPARC T4-2 server with Sun Storage F5100 Flash Array and Oracle Essbase running on Oracle Solaris 10 achieves sub-second query response times for 20,000 users in a 15 dimension database. The SPARC T4-2 server configured with Oracle Essbase was able to aggregate and store values in the database for a 15 dimension cube in 398 minutes with 16 threads and in 484 minutes with 8 threads. The Sun Storage F5100 Flash Array provides more than a 20% improvement out-of-the-box compared to a mid-size fiber channel disk array for default aggregation and user-based aggregation. The Sun Storage F5100 Flash Array with Oracle Essbase provides the best combination for large Oracle Essbase databases leveraging Oracle Solaris ZFS and taking advantage of high bandwidth for faster load and aggregation. Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle Essbase's performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation. Performance Landscape System Data Size(millions of items) Database Load(minutes) Default Aggregation(minutes) Usage Based Aggregation(minutes) SPARC T4-2, 2 x SPARC T4 2.85 GHz 1000 149 398* 55 Sun M5000, 4 x SPARC64 VII 2.53 GHz 1000 269 526 115 Sun M5000, 4 x SPARC64 VII 2.4 GHz 400 120 448 18 * – 398 mins with CALCPARALLEL set to 16; 484 mins with CALCPARALLEL threads set to 8 Configuration Summary Hardware Configuration: 1 x SPARC T4-2 2 x 2.85 GHz SPARC T4 processors 128 GB memory 2 x 300 GB 10000 RPM SAS internal disks Storage Configuration: 1 x Sun Storage F5100 Flash Array 40 x 24 GB flash modules SAS HBA with 2 SAS channels Data Storage Scheme Striped - RAID 0 Oracle Solaris ZFS Software Configuration: Oracle Solaris 10 8/11 Installer V 11.1.2.2.100 Oracle Essbase Client v 11.1.2.2.100 Oracle Essbase v 11.1.2.2.100 Oracle Essbase Administration services 64-bit Oracle Database 11g Release 2 (11.2.0.3) HP's Mercury Interactive QuickTest Professional 9.5.0 Benchmark Description The objective of the Oracle Essbase Aggregate Storage Option benchmark is to showcase the ability of Oracle Essbase to scale in terms of user population and data volume for large enterprise deployments. Typical administrative and end-user operations for OLAP applications were simulated to produce benchmark results. The benchmark test results include: Database Load: Time elapsed to build a database including outline and data load. Default Aggregation: Time elapsed to build aggregation. User Based Aggregation: Time elapsed of the aggregate views proposed as a result of tracked retrieval queries. Summary of the data used for this benchmark: 40 flat files, each of size 1.2 GB, 49.4 GB in total 10 million rows per file, 1 billion rows total 28 columns of data per row Database outline has 15 dimensions (five of them are attribute dimensions) Customer dimension has 13.3 million members 3 rule files Key Points and Best Practices The Sun Storage F5100 Flash Array has been used to accelerate the application performance. Setting data load threads (DLTHREADSPREPARE) to 64 and Load Buffer to 6 improved dataloading by about 9%. Factors influencing aggregation materialization performance are "Aggregate Storage Cache" and "Number of Threads" (CALCPARALLEL) for parallel view materialization. The optimal values for this workload on the SPARC T4-2 server were: Aggregate Storage Cache: 32 GB CALCPARALLEL: 16   See Also Oracle Essbase Aggregate Storage Option Benchmark on Oracle's SPARC T4-2 Server oracle.com Oracle Essbase oracle.com OTN SPARC T4-2 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 28 August 2012.

    Read the article

  • Happy Birthday, SPARC!

    - by A&C Redaktion
    25 Jahre gibt es SPARC in diesem Herbst – da gratulieren Oracle A&C und alle Partner natürlich ganz herzlich! Wir blicken zurück auf ein Vierteljahrhundert Erfolgsgeschichte:Wir befinden uns im Jahr 1987 und klobige graue PCs halten seit einigen Jahren Einzug in Büros und Privathäuser. Ein innovatives Startup-Unternehmen namens Sun Microsystems präsentiert seinen neuen Computer Sun-4, die eigentliche Sensation jedoch ist der Mikroprozessor, den die jungen Leute extra dafür entwickelt hatten: SPARC. Es handelte sich um einen extrem leistungsfähigen RISC-Hauptprozessor, der sowohl in den eigenen Workstations als auch den Servern der Sun-4-Baureihe zum Einsatz kommt. Vor allem in der Unternehmens-IT ermöglicht SPARC in den Folgejahren einen enormen Sprung nach vorn.Die weitere Entwicklung von SPARC, kombiniert mit einem Überblick über andere Meilensteine in der Geschichte der Computerwelt, finden Sie auf der Webseite "Celebrate 25 Years of SPARC Innovation".Wir springen gleich weiter in die Gegenwart, denn auch seit Sun zu Oracle gehört, hat sich so manches getan: Gerade erst hat Oracle die neue Server-Linie Sparc T4 vorgestellt – in Fachkreisen spricht man bereits von der größten Leistungssteigerung in der Geschichte der SPARC-Prozessoren.In den USA wurde das Jubiläum bereits kräftig gefeiert: Hier finden Sie Bilder vom Geburtstagsfest im Museum für Computer-Geschichte in Mountain View, Kalifornien, bei dem auch die SPARC-Entwickler Bill Joy and Andreas von Bechtolsheim zugegen waren und auch im Video SPARC-Event Highlights dreht sich alles um das Jubiläum. In der Oracle Familie gibt es 2012 noch ein weiteres Geburtstagskind: Solaris wird 20, herzlichen Glückwunsch! Das Unix-Betriebssystem, basierend auf SunOS, kam im Jahr 1992 erstmals auf den Markt. Solaris konnte seine gute Stellung seither behaupten und hat nun mit Solaris 11.1 das erste Cloud-Betriebssystem vorgestellt. Dieses überträgt die Zuverlässigkeit, Sicherheit und Skalierbarkeit des bewährten Solaris in die Cloud und bietet eine optimale Plattform für Unternehmensanwendungen.  Lesen Sie hier, was die Fachpresse über die Geburtstagskinder schreibt: ProLinux.de (SPARC) Computerwoche.de (Solaris)SearchDataCenter.de (Solaris)

    Read the article

  • Happy Birthday, SPARC!

    - by A&C Redaktion
    25 Jahre gibt es SPARC in diesem Herbst – da gratulieren Oracle A&C und alle Partner natürlich ganz herzlich! Wir blicken zurück auf ein Vierteljahrhundert Erfolgsgeschichte:Wir befinden uns im Jahr 1987 und klobige graue PCs halten seit einigen Jahren Einzug in Büros und Privathäuser. Ein innovatives Startup-Unternehmen namens Sun Microsystems präsentiert seinen neuen Computer Sun-4, die eigentliche Sensation jedoch ist der Mikroprozessor, den die jungen Leute extra dafür entwickelt hatten: SPARC. Es handelte sich um einen extrem leistungsfähigen RISC-Hauptprozessor, der sowohl in den eigenen Workstations als auch den Servern der Sun-4-Baureihe zum Einsatz kommt. Vor allem in der Unternehmens-IT ermöglicht SPARC in den Folgejahren einen enormen Sprung nach vorn.Die weitere Entwicklung von SPARC, kombiniert mit einem Überblick über andere Meilensteine in der Geschichte der Computerwelt, finden Sie auf der Webseite "Celebrate 25 Years of SPARC Innovation".Wir springen gleich weiter in die Gegenwart, denn auch seit Sun zu Oracle gehört, hat sich so manches getan: Gerade erst hat Oracle die neue Server-Linie Sparc T4 vorgestellt – in Fachkreisen spricht man bereits von der größten Leistungssteigerung in der Geschichte der SPARC-Prozessoren.In den USA wurde das Jubiläum bereits kräftig gefeiert: Hier finden Sie Bilder vom Geburtstagsfest im Museum für Computer-Geschichte in Mountain View, Kalifornien, bei dem auch die SPARC-Entwickler Bill Joy and Andreas von Bechtolsheim zugegen waren und auch im Video SPARC-Event Highlights dreht sich alles um das Jubiläum. In der Oracle Familie gibt es 2012 noch ein weiteres Geburtstagskind: Solaris wird 20, herzlichen Glückwunsch! Das Unix-Betriebssystem, basierend auf SunOS, kam im Jahr 1992 erstmals auf den Markt. Solaris konnte seine gute Stellung seither behaupten und hat nun mit Solaris 11.1 das erste Cloud-Betriebssystem vorgestellt. Dieses überträgt die Zuverlässigkeit, Sicherheit und Skalierbarkeit des bewährten Solaris in die Cloud und bietet eine optimale Plattform für Unternehmensanwendungen.  Lesen Sie hier, was die Fachpresse über die Geburtstagskinder schreibt: ProLinux.de (SPARC) Computerwoche.de (Solaris)SearchDataCenter.de (Solaris)

    Read the article

  • Building Private IaaS with SPARC and Oracle Solaris

    - by ferhat
    A superior enterprise cloud infrastructure with high performing systems using built-in virtualization! We are happy to announce the expansion of Oracle Optimized Solution for Enterprise Cloud Infrastructure with Oracle's SPARC T-Series servers and Oracle Solaris.  Designed, tuned, tested and fully documented, the Oracle Optimized Solution for Enterprise Cloud Infrastructure now offers customers looking to upgrade, consolidate and virtualize their existing SPARC-based infrastructure a proven foundation for private cloud-based services which can lower TCO by up to 81 percent(1). Faster time to service, reduce deployment time from weeks to days, and can increase system utilization to 80 percent. The Oracle Optimized Solution for Enterprise Cloud Infrastructure can also be deployed at up to 50 percent lower cost over five years than comparable alternatives(2). The expanded solution announced today combines Oracle’s latest SPARC T-Series servers; Oracle Solaris 11, the first cloud OS; Oracle VM Server for SPARC, Oracle’s Sun ZFS Storage Appliance, and, Oracle Enterprise Manager Ops Center 12c, which manages all Oracle system technologies, streamlining cloud infrastructure management. Thank you to all who stopped by Oracle booth at the CloudExpo Conference in New York. We were also at Cloud Boot Camp: Building Private IaaS with Oracle Solaris and SPARC, discussing how this solution can maximize return on investment and help organizations manage costs for their existing infrastructures or for new enterprise cloud infrastructure design. Designed, tuned, and tested, Oracle Optimized Solution for Enterprise Cloud Infrastructure is a complete cloud infrastructure or any virtualized environment  using the proven documented best practices for deployment and optimization. The solution addresses each layer of the infrastructure stack using Oracle's powerful SPARC T-Series as well as x86 servers with storage, network, virtualization, and management configurations to provide a robust, flexible, and balanced foundation for your enterprise applications and databases.  For more information visit Oracle Optimized Solution for Enterprise Cloud Infrastructure. Solution Brief: Accelerating Enterprise Cloud Infrastructure Deployments White Paper: Reduce Complexity and Accelerate Enterprise Cloud Infrastructure Deployments Technical White Paper: Enterprise Cloud Infrastructure on SPARC (1) Comparison based on current SPARC server customers consolidating existing installations including Sun Fire E4900, Sun Fire V440 and SPARC Enterprise T5240 servers to latest generation SPARC T4 servers. Actual deployments and configurations will vary. (2) Comparison based on solution with SPARC T4-2 servers with Oracle Solaris and Oracle VM Server for SPARC versus HP ProLiant DL380 G7 with VMware and Red Hat Enterprise Linux and IBM Power 720 Express - Power 730 Express with IBM AIX Enterprise Edition and Power VM.

    Read the article

  • SPARC??????25??????????····

    - by OTN-J Master
    OTN??????????????????????????Oracle???????(??????????????????·????????????????)?????????????????????????????????SPARC?25???????????????????????????SPARC?25???????????????????????????????????Sun??????????????????????????????????????????(??????????????????????????????????????)?????????SPARC?25???????? ???????????????????????????????SPARC??????????????????????(???????????????????(PDF??)???????????????) ????SPARC????????????·?????????????????????5??10???IT???????????????????·??????????????????????????????????????????25?????????????????????????····???????????????????UNIX??????SPARC????????????

    Read the article

  • No MAU required on a T4

    - by jsavit
    Cryptic background One of the powerful features of the T-series servers is its hardware crypto acceleration, which dramatically speeds up the compute intensive algorithms needed to encrypt and decrypt data. Previously, administrators setting up logical domains on older T-series servers had to explicitly assign crypto resources (called "MAU" for historical reasons from the T1 chip that had "modular arithmetic units") to domains that had a significant crypto workload (say, an SSL based web server). This could be an administrative burden, as you had to choose which domains got the crypto units, and issue the appropriate ldm set-mau N mydomain commands. The T4 changes things The T4 is fast. Really fast. Its clock rate and out-of-order (OOO) execution that provides the single-thread performance that T-series machines previously did not have. If you have any preconceptions about T-series performance, or SPARC in general, based on the older servers (which, it must be said, were absolutely outstanding for multi-threaded applications), those assumptions are now obsolete. The T4 provides outstanding. performance for all kinds of workload, as illustrated at https://blogs.oracle.com/bestperf. While we all focused on this (did I mention the T4 is fast?), another feature of the T4 went largely unnoticed: The T4 servers have crypto acceleration "just built in" so administrators no longer have to assign crypto accelerator units to domains - it "just happens". This is way way better since you have crypto everywhere by default without having to manage it like a discrete and limited resource. It's a feature of the processor, like doing an integer add. With T4, there is no management necessary, you just have HW crypto everywhere all the time seamlessly. This change hasn't been widely advertised, and some administrators have wondered why there were unable to assign a MAU to a domain as they did with T2 and T3 machines. The answer is that there is no longer any separate MAU, so you don't have to take any action at all - just leave the default of 0. Summary Besides being much faster than its predecessors, the T4 also integrates hardware crypto acceleration so its seamlessly available to applications, whether domains are being used or not. Administrators no longer have to control how they are allocated - it "just happens"

    Read the article

  • Visual Studio T4 vs CodeSmith

    - by Jake
    I've been using CodeSmith for the past 2 years and love what it does for me. However, I also know about T4 which is built in to Visual Studio and can do some pretty cool stuff too. Based on conversations with friends T4 in VS2010 T4 is going to be even better. So the question is: do I keep riding the CodeSmith bus or is it time to start converting all of my templates to T4?

    Read the article

  • Stability, x86 Vs Sparc

    - by Jason T
    Our project are plan to migrate from Sparc to x86, and our HA requirement is 99.99%, previous on Sparc, we assume the hardware stability would like, hardware failure every 4 month or even one year, and also we have test data for our application, then we have requirement for each unplanned recovery (fail over) to achieve 99.99% (52.6 minutes unplanned downtime per year). But since we are going to use Intel x86, it seems the hardware stability is not so good as Sparc, but we don't have the detail data. So compare with Sparc, how about the stability of the Intel x86, should we assume we have more unplanned downtime? If so, how many, double? Where I can find some more detail of this two type of hardware?

    Read the article

  • SPARC T4 ?????????

    - by user12798668
    ????????????????????????????????????????????????????? SPARC T4 ????????????????????????????T4 ??????? SP(Service Processor) ??? ILOM ?? - set /SP/powermgmt policy=elastic ?????????????????????????????????????????????????????????????????????????????????????????ILOM ? /SYS/VSP/history/0 ???????????????????????????? SPARC T4-1 ? OS ??????????????????????????????????????????????????????????? ?? ?? = ?????(W)?????????????? Mar 26 12:04:54 = 294 Mar 26 12:03:53 = 292 Mar 26 12:02:53 = 292 Mar 26 12:01:53 = 293 Mar 26 12:00:53 = 292 Mar 26 11:59:53 = 293 Mar 26 11:58:54 = 293 Mar 26 11:57:54 = 294 Mar 26 11:56:54 = 293 Mar 26 11:55:54 = 348 ????????????????????? 90W ?????????! ?? psrinfo ????????????????... # psrinfo 0 on-line since 03/23/2012 17:39:28 1 on-line since 03/26/2012 20:53:56 ?? SPARC T4-1 ????????8 ????????? 8 CPU ??????? SPARC T4 CPU ? 1 ??????????????psrinfo ??????? 64 CPU ??? OS ?????????????????????? 2 CPU ??????????! ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????CPU ??????????????????????????????????????????????????????????????????????????????????????????????????????? 2 CPU ?????????????????????????????????? CPU ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ??????????? SPARC T4 ????????????? Oracle VM Server for SPARC (OVM for SPARC) ?????????????????????????????????????????????????? Oracle VM Server for SPARC ???????????? ?10? ??????? - ??????? ??????????????????????????OTN ? How to Use the Power Management Controls on SPARC Servers ?????????????????????????????? ??????????????SPARC T4 ?????????????????? Oracle OpenWorld Tokyo 2012 ???????????????????? ?????????????????????????·????????????????????! 4/4(?) ???? K1-01?ENGINEERED FOR INNOVATION ???????????????(9:00-11:15) 4/5(?) ????????? G2-01 ???????&???????????IT???????????(11:50 - 13:20) ???????????!! Oracle OpenWorld Tokyo 2012 ???? URL http://www.oracle.com/openworld/jp-ja/index.html ?????? 7264 ???????????????

    Read the article

  • Can someone rid me of these turbulent T4 template editors?

    - by Will
    I'm using Tangible's editor and (no offense guys) it sucks. Its one painful step above notepad. But its (afaik) the only game in town. Does anybody have any tips/tricks on creating T4 templates in a non-painful way? For instance, I'm thinking about creating a T4 Template that essentially turns a class defined in a solution into a template generator. DTE, look for code that is marked with this or that attribute, run this or that method, and drop the results into a file. At least I'd get legit intellisense out of the deal...

    Read the article

  • Oracle's SPARC T4, 007 Style

    - by Kristin Rose
    The names 4, T4, and this power house travels hand in hand with its good friend SPARC. About 6 years ago on-chip encryption acceleration was first shipped in a commercial system, the SPARC T1. Today, thanks to Oracle SPARC innovative leadership in on-chip encryption acceleration, complex cryptographic computations was born and has since rapidly evolved. Customers can now have security with performance because we my friend, are in the Age of Big Data.If you need some high speed action in your life, listen here. The SPARC T4 systems offer customers much more value for applications than just increased performance through its cross sell opportunity. This is done by enabling partners to integrate your own applications to Oracle’s SPARC T4 Servers for Cloud deployments, and providing direct business benefits that supersedes the commodity approach to data center computing such as security, performance and optimization.As companies continue down this complex path of big data, eCommerce, and mobility, the need to provide better and more in-depth security is more prominent than ever. Oracle’s SPARC T4 processor allows customers to deliver the highest levels of application security, as well as deliver the necessary level performance without added cost, and complexity.To learn more behind the value of SPARC T4, check out a more in-depth blog here. For more on the SPARC T4 family of products, click here.Encryption Lives Another Day,The OPN Communications Team Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";}

    Read the article

  • SPARC Servers at Oracle OpenWorld

    - by B.Koch
    There is plenty to learn about the SPARC servers at the Oracle OpenWorld. The SPARC server sessions offer depth and breadth in content selection to satisfy everyone's need from the one who is technically oriented to the one who would like to understand more about the business value of SPARC technology. And, there is always more. Keynotes, Oracle innovations and many product demonstrations are only a few of many other opportunities to interact with the product experts and executives to establish greater insight to the Oracle SPARC technology. The Oracle SPARC Servers Oracle's SPARC servers running Oracle Solaris are ideal for mission-critical applications that require high performance, best-in-class availability, and unmatched scalability on all application tiers. With a robust roadmap, Oracle assures the highest levels of investment protection through 100% SPARC/Solaris binary compatibility, proven by hundreds of thousands of deployments over more than 20 year. 

    Read the article

  • Deep insight into the behaviour of the SPARC T4 processor

    - by nospam(at)example.com (Joerg Moellenkamp)
    Ruud van der Pas and Jared Smolens wrote an really interesting whitepaper about the SPARC T4 and its behaviour in regard with certain code: How the SPARC T4 Processor Optimizes Throughput Capacity: A Case Study. In this article the authors compare and explain the behaviour of the the UltraSPARC T4 and T2+ processor in order to highlight some of the strengths of the SPARC T-series processors in general and the T4 in particular.

    Read the article

  • T4 template for NHibernate? - not Fuent NHibernate

    - by NathanD
    Wondering if anyone knows of a set of T4 templates for generating C# POCO classes and also mapping XML files for NHibernate from a set of tables in a database. I saw that David Hayden has created T4 for generating FluentNH code based upon a DBML model, but I'm not quite ready to use FluentNH yet as there isn't even an official release yet (although I love the idea). Anyone know of any T4 templates for using plain NHibernate?

    Read the article

  • Setting a breakpoint in a T4 template

    - by Dave Swersky
    I'm trying to debug the execution of a T4 template in Visual Studio 2008. All the information I'm finding on debugging T4 templates in Visual Studio 2008 say that you can set a breakpoint (red dot) in the template as if it were a regular code file. I have the Clarius T4 code highlighter installed, so my T4 template is colored, but I can't set a breakpoint. When I click in the margin nothing happens. I've tried Debugger.Break(), and it launches a new instance of VS.NET, but it can't load the code from my template. I get a dialog that says "There is no source code available for the current location." This happens if I have the same project loaded in the another instance of if I spin up a new instance. What gives?

    Read the article

  • T4 Template Interception

    - by JeffN825
    I'm wondering if anyone out there knows of any T4 template based method interception systems? We are beginning to write mobile applications (currently with MonoTouch for IOS). We have a very nice core set of DI/IoC functionality and I'd like to leverage this in development for the new platform. Since runtime code generation Reflection.Emit is not supported, I'm hoping to use T4 templates to implement the dynamic interception functionality (+ TinyIoC as a container for resolution). We are currently using Castle Windsor (and intend to continue doing so for our SL and full .NET development), but all of the Windsor specific ties are completely encapsulated, so given a suitable T4 solution, it shouldn't be hard to implement an adapter that uses a T4 based implementation instead of Windsor.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >