Search Results

Search found 5267 results on 211 pages for 'use cases'.

Page 2/211 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • ubuntu-overlay-scrollbars set to false shows no arrows in several cases

    - by Willem van Gerven
    I'm running 12.04, and prefer the more conservative style "normal" scrollbars over the overlay scrollbars. I have set them to false in the terminal: gsettings set org.gnome.desktop.interface ubuntu-overlay-scrollbars false However after doing so, with some apps (e.g. Nautilus, Document Viewer) my scrollbars only view a vertical bar, but no arrows on the top and bottom to scroll up and down. With some programs these are shown though, for instance Gummi and Texmaker. It would make a big difference (for instance when having to scroll pdf documents containing several hundreds of pages) to have those arrows reinstated. Is there any way to make this work?

    Read the article

  • New Exadata Customer Cases

    - by Javier Puerta
    New reference stories available for Exadata: Procter & Gamble Completes Point-of-Sale Data Queries up to 30 Times Faster, Reduces IT Costs, and Improves Insight with Engineered Data Warehouse Solution ZLM Verzekeringen Improves Customer Service with Integrated Back-Office Environment on Exadata KyivStar, JSC Reduces Storage Volumes to 15% of Its Legacy Environment and Increases System Productivity by 500% with High-Performance IT Infrastructure GfK Group Retail and Technology ensures Successful Growth with Exadata Consolidation

    Read the article

  • Understanding exceptional cases

    - by Justin
    I've been studying the use of exceptions in various php projects (such as Doctrine and Zend Framework). Exceptions seem to be thrown when unordinary input/state occurs. A perfect example is Doctrine throwing an exception when you try to use a invalid query string. I think the creators of the doctrine api understood that first, you can't query data by using an invalid DQL statement, and a developer should immediately be warned that an error has occurred, rather then letting execution continue with the possibility of an error code going un-checked. I also bet that this simplifies reading the code. I can't think of a situation where you would want to use an invalid DQL statement, except unit testing. Since this is true, it's better to avoid plaguing a bunch of code with null/error checks and use exceptions. I've read in books that exceptions shouldn't be thrown when validating dating user input. I've seen examples where of where the guideline is broken. One example is the Zend framework. If supplying an invalid controller or action name, an exception is thrown. Unlike doctrine, the user has more direct control over this sort of input. I know you can configure an error controller and set up a 404 message or what have you, but I'm curious why they have used an exception in this scenario? I guess you can argue the Zend Framework does not know how to continue processing the quest. One last example Is I wrote a function to return some html based on a given resource type. This resource type is hard-coded and sent when a user interacts with a web site (such as clicking a button to display the form to input data). I don't expect users to be mucking around with the request type. Under normal operating conditions, the resource type should be valid. To clean up some logic, I was going to throw an exception if a particular form wasn't found. This is mainly to find the correct form associated with a resource type so proper validation can occur. Does this sound like a valid use case for an exception? Right now it's pretty trivial, but I do plan to implement a restful consumer and re-using a function to map resources to their validation services would be very useful. I can then catch the exception and based on the consumer, return an error message suitable for the request type...

    Read the article

  • ORA-00900 Super Easy Fix (for some cases)

    - by Bunch
    Here is a really easy fix for some ORA-00900 errors. Well at least the one I saw the other day. This was something that I did not come across when searching either. I found lots of other ideas on what the problem might be but not the fix. Since I am fairly new to PL/SQL (TSQL only for a long time) this one stumped me for a while. Until I asked someone and they saw the error in about two seconds. When using the Command Window to add a view I was receiving an ORA-00900 error. So I checked that everything the view was referencing was there and that the permissions looked OK. The code for the view was fairly simple and it ran just fine in a regular SQL Window. It ended up that the Command Window did not like the space I had between the list of items in the select before the from. Bad: col1,col2,                               <--- does not like the empty linefrom tblSomething Good: col1,col2,from tblSomething I will just chalk that up to my familiarity with PL/SQL. Tags: PLSQL

    Read the article

  • Windows Azure Use Case: Fast Acquisitions

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many organizations absorb, take over or merge with other organizations. In these cases, one of the most difficult parts of the process is the merging or changing of the IT systems that the employees use to do their work, process payments, and even get paid. Normally this means that the two companies have disparate systems, and several approaches can be used to have the two organizations use technology between them. An organization may choose to retain both systems, and manage them separately. The advantage here is speed, and keeping the profit/loss sheets separate. Another choice is to slowly “sunset” or stop using one organization’s system, and cutting to the other system immediately or at a later date. Although a popular choice, one of the most difficult methods is to extract data and processes from one system and import it into the other. Employees at the transitioning system have to be trained on the new one, the data must be examined and cleansed, and there is inevitable disruption when this happens. Still another option is to integrate the systems. This may prove to be as much work as a transitional strategy, but may have less impact on the users or the balance sheet. Implementation: A distributed computing paradigm can be a good strategic solution to most of these strategies. Retaining both systems is made more simple by allowing the users at the second organization immediate access to the new system, because security accounts can be created quickly inside an application. There is no need to set up a VPN or any other connections than just to the Internet. Having the users stop using one system and start with the other is also simple in Windows Azure for the same reason. Extracting data to Azure holds the same limitations as an on-premise system, and may even be more problematic because of the large data transfers that might be required. In a distributed environment, you pay for the data transfer, so a mixed migration strategy is not recommended. However, if the data is slowly migrated over time with a defined cutover, this can be an effective strategy. If done properly, an integration strategy works very well for a distributed computing environment like Windows Azure. If the Azure code is architected as a series of services, then endpoints can expose the service into and out of not only the Azure platform, but internally as well. This is a form of the Hybrid Application use-case documented here. References: Designing for Cloud Optimized Architecture: http://blogs.msdn.com/b/dachou/archive/2011/01/23/designing-for-cloud-optimized-architecture.aspx 5 Enterprise steps for adopting a Platform as a Service: http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0

    Read the article

  • Windows Azure Use Case: Infrastructure Limits

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Physical hardware components take up room, use electricity, create heat and therefore need cooling, and require wiring and special storage units. all of these requirements cost money to rent at a data-center or to build out at a local facility. In some cases, this can be a catalyst for evaluating options to remove this infrastructure requirement entirely by moving to a distributed computing environment. Implementation: There are three main options for moving to a distributed computing environment. Infrastructure as a Service (IaaS) The first option is simply to virtualize the current hardware and move the VM’s to a provider. You can do this with Microsoft’s Hyper-V product or other software, build the systems and host them locally on fewer physical machines. This is a good option for canned-applications (where you have to type setup.exe) but not as useful for custom applications, as you still have to license and patch those servers, and there are hard limits on the VM sizes. Software as a Service (SaaS) If there is already software available that does what you need, it may make sense to simply purchase not only the software license but the use of it on the vendor’s servers. Microsoft’s Exchange Online is an example of simply using an offering from a vendor on their servers. If you do not need a great deal of customization, have no interest in owning or extending the source code, and need to implement a solution quickly, this is a good choice. Platform as a Service (PaaS) If you do need to write software for your environment, your next choice is a Platform as a Service such as Windows Azure. In this case you no longer manager physical or even virtual servers. You start at the code and data level of control and responsibility, and your focus is more on the design and maintenance of the application itself. In this case you own the source code and can extend or change it as you see fit. An interesting side-benefit to using Windows Azure as a PaaS is that the Application Fabric component allows a hybrid approach, which gives you a basis to allow on-premise applications to leverage distributed computing paradigms. No one solution fits every situation. It’s common to see organizations pick a mixture of on-premise, IaaS, SaaS and PaaS components. In fact, that’s a great advantage to this form of computing - choice. References: 5 Enterprise steps for adopting a Platform as a Service: http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0  Application Patterns for the Cloud: http://blogs.msdn.com/b/kashif/archive/2010/08/07/application-patterns-for-the-cloud.aspx

    Read the article

  • Windows Azure Use Case: Web Applications

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many applications have a requirement to be located outside of the organization’s internal infrastructure control. For instance, the company website for a brick-and-mortar retail company may want to post not only static but interactive content to be available to their external customers, and not want the customers to have access inside the organization’s firewall. There are also cases of pure web applications used for a great many of the internal functions of the business. This allows for remote workers, shared customer/employee workloads and data and other advantages. Some firms choose to host these web servers internally, others choose to contract out the infrastructure to an “ASP” (Application Service Provider) or an Infrastructure as a Service (IaaS) company. In any case, the design of these applications often resembles the following: In this design, a server (or perhaps more than one) hosts the presentation function (http or https) access to the application, and this same system may hold the computational aspects of the program. Authorization and Access is controlled programmatically, or is more open if this is a customer-facing application. Storage is either placed on the same or other servers, hosted within an RDBMS or NoSQL database, or a combination of the options, all coded into the application. High-Availability within this scenario is often the responsibility of the architects of the application, and by purchasing more hosting resources which must be built, licensed and configured, and manually added as demand requires, although some IaaS providers have a partially automatic method to add nodes for scale-out, if the architecture of the application supports it. Disaster Recovery is the responsibility of the system architect as well. Implementation: In a Windows Azure Platform as a Service (PaaS) environment, many of these architectural considerations are designed into the system. The Azure “Fabric” (not to be confused with the Azure implementation of Application Fabric - more on that in a moment) is designed to provide scalability. Compute resources can be added and removed programmatically based on any number of factors. Balancers at the request-level of the Fabric automatically route http and https requests. The fabric also provides High-Availability for storage and other components. Disaster recovery is a shared responsibility between the facilities (which have the ability to restore in case of catastrophic failure) and your code, which should build in recovery. In a Windows Azure-based web application, you have the ability to separate out the various functions and components. Presentation can be coded for multiple platforms like smart phones, tablets and PC’s, while the computation can be a single entity shared between them. This makes the applications more resilient and more object-oriented, and lends itself to a SOA or Distributed Computing architecture. It is true that you could code up a similar set of functionality in a traditional web-farm, but the difference here is that the components are built into the very design of the architecture. The API’s and DLL’s you call in a Windows Azure code base contains components as first-class citizens. For instance, if you need storage, it is simply called within the application as an object.  Computation has multiple options and the ability to scale linearly. You also gain another component that you would either have to write or bolt-in to a typical web-farm: the Application Fabric. This Windows Azure component provides communication between applications or even to on-premise systems. It provides authorization in either person-based or claims-based perspectives. SQL Azure provides relational storage as another option, and can also be used or accessed from on-premise systems. It should be noted that you can use all or some of these components individually. Resources: Design Strategies for Scalable Active Server Applications - http://msdn.microsoft.com/en-us/library/ms972349.aspx  Physical Tiers and Deployment  - http://msdn.microsoft.com/en-us/library/ee658120.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Creating a Corporate Data Hub

    - by BuckWoody
    The Windows Azure Marketplace has a rich assortment of data and software offerings for you to use – a type of Software as a Service (SaaS) for IT workers, not necessarily for end-users. Among those offerings is the “Data Hub” – a  codename for a project that ironically actually does what the codename says. In many of our organizations, we have multiple data quality issues. Finding data is one problem, but finding it just once is often a bigger problem. Lots of departments and even individuals have stored the same data more than once, and in some cases, made changes to one of the copies. It’s difficult to know which location or version of the data is authoritative. Then there’s the problem of accessing the data. It’s fairly straightforward to publish a database, share or other location internally to store the data. But then you have to figure out who owns it, how it is controlled, and pass out the various connection strings to those who want to use it. And then you need to figure out how to let folks access the internal data externally – bringing up all kinds of security issues. Finally, in many cases our user community wants us to combine data from the internally sources with external data, bringing up the security, strings, and exploration features up all over again. Enter the Data Hub. This is an online offering, where you assign an administrator and data stewards. You import the data into the service, and it’s available to you - and only you and your organization if you wish. The basic steps for this service are to set up the portal for your company, assign administrators and permissions, and then you assign data areas and import data into them. From there you make them discoverable, and then you have multiple options that you or your users can access that data. You’re then able, if you wish, to combine that data with other data in one location. So how does all that work? What about security? Is it really that easy? And can you really move the data definition off to the Subject Matter Experts (SME’s) that know the particular data stack better than the IT team does? Well, nothing good is easy – but using the Data Hub is actually pretty simple. I’ll give you a link in a moment where you can sign up and try this yourself. Once you sign up, you assign an administrator. From there you’ll create data areas, and then use a simple interface to bring the data in. All of this is done in a portal interface – nothing to install, configure, update or manage. After the data is entered in, and you’ve assigned meta-data to describe it, your users have multiple options to access it. They can simply use the portal – which actually has powerful visualizations you can use on any platform, even mobile phones or tablets.     Your users can also hit the data with Excel – which gives them ultimate flexibility for display, all while using an authoritative, single reference for the data. Since the service is online, they can do this wherever they are – given the proper authentication and permissions. You can also hit the service with simple API calls, like this one from C#: http://msdn.microsoft.com/en-us/library/hh921924  You can make HTTP calls instead of code, and the data can even be exposed as an OData Feed. As you can see, there are a lot of options. You can check out the offering here: http://www.microsoft.com/en-us/sqlazurelabs/labs/data-hub.aspx and you can read the documentation here: http://msdn.microsoft.com/en-us/library/hh921938

    Read the article

  • Creating a Corporate Data Hub

    - by BuckWoody
    The Windows Azure Marketplace has a rich assortment of data and software offerings for you to use – a type of Software as a Service (SaaS) for IT workers, not necessarily for end-users. Among those offerings is the “Data Hub” – a  codename for a project that ironically actually does what the codename says. In many of our organizations, we have multiple data quality issues. Finding data is one problem, but finding it just once is often a bigger problem. Lots of departments and even individuals have stored the same data more than once, and in some cases, made changes to one of the copies. It’s difficult to know which location or version of the data is authoritative. Then there’s the problem of accessing the data. It’s fairly straightforward to publish a database, share or other location internally to store the data. But then you have to figure out who owns it, how it is controlled, and pass out the various connection strings to those who want to use it. And then you need to figure out how to let folks access the internal data externally – bringing up all kinds of security issues. Finally, in many cases our user community wants us to combine data from the internally sources with external data, bringing up the security, strings, and exploration features up all over again. Enter the Data Hub. This is an online offering, where you assign an administrator and data stewards. You import the data into the service, and it’s available to you - and only you and your organization if you wish. The basic steps for this service are to set up the portal for your company, assign administrators and permissions, and then you assign data areas and import data into them. From there you make them discoverable, and then you have multiple options that you or your users can access that data. You’re then able, if you wish, to combine that data with other data in one location. So how does all that work? What about security? Is it really that easy? And can you really move the data definition off to the Subject Matter Experts (SME’s) that know the particular data stack better than the IT team does? Well, nothing good is easy – but using the Data Hub is actually pretty simple. I’ll give you a link in a moment where you can sign up and try this yourself. Once you sign up, you assign an administrator. From there you’ll create data areas, and then use a simple interface to bring the data in. All of this is done in a portal interface – nothing to install, configure, update or manage. After the data is entered in, and you’ve assigned meta-data to describe it, your users have multiple options to access it. They can simply use the portal – which actually has powerful visualizations you can use on any platform, even mobile phones or tablets.     Your users can also hit the data with Excel – which gives them ultimate flexibility for display, all while using an authoritative, single reference for the data. Since the service is online, they can do this wherever they are – given the proper authentication and permissions. You can also hit the service with simple API calls, like this one from C#: http://msdn.microsoft.com/en-us/library/hh921924  You can make HTTP calls instead of code, and the data can even be exposed as an OData Feed. As you can see, there are a lot of options. You can check out the offering here: http://www.microsoft.com/en-us/sqlazurelabs/labs/data-hub.aspx and you can read the documentation here: http://msdn.microsoft.com/en-us/library/hh921938

    Read the article

  • Defining jUnit Test cases Correctly

    - by Epitaph
    I am new to Unit Testing and therefore wanted to do some practical exercise to get familiar with the jUnit framework. I created a program that implements a String multiplier public String multiply(String number1, String number2) In order to test the multiplier method, I created a test suite consisting of the following test cases (with all the needed integer parsing, etc) @Test public class MultiplierTest { Multiplier multiplier = new Multiplier(); // Test for 2 positive integers assertEquals("Result", 5, multiplier.multiply("5", "1")); // Test for 1 positive integer and 0 assertEquals("Result", 0, multiplier.multiply("5", "0")); // Test for 1 positive and 1 negative integer assertEquals("Result", -1, multiplier.multiply("-1", "1")); // Test for 2 negative integers assertEquals("Result", 10, multiplier.multiply("-5", "-2")); // Test for 1 positive integer and 1 non number assertEquals("Result", , multiplier.multiply("x", "1")); // Test for 1 positive integer and 1 empty field assertEquals("Result", , multiplier.multiply("5", "")); // Test for 2 empty fields assertEquals("Result", , multiplier.multiply("", "")); In a similar fashion, I can create test cases involving boundary cases (considering numbers are int values) or even imaginary values. 1) But, what should be the expected value for the last 3 test cases above? (a special number indicating error?) 2) What additional test cases did I miss? 3) Is assertEquals() method enough for testing the multiplier method or do I need other methods like assertTrue(), assertFalse(), assertSame() etc 4) Is this the RIGHT way to go about developing test cases? How am I "exactly" benefiting from this exercise? 5)What should be the ideal way to test the multiplier method? I am pretty clueless here. If anyone can help answer these queries I'd greatly appreciate it. Thank you.

    Read the article

  • Windows Azure Use Case: Agility

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Agility in this context is defined as the ability to quickly develop and deploy an application. In theory, the speed at which your organization can develop and deploy an application on available hardware is identical to what you could deploy in a distributed environment. But in practice, this is not always the case. Having an option to use a distributed environment can be much faster for the deployment and even the development process. Implementation: When an organization designs code, they are essentially becoming a Software-as-a-Service (SaaS) provider to their own organization. To do that, the IT operations team becomes the Infrastructure-as-a-Service (IaaS) to the development teams. From there, the software is developed and deployed using an Application Lifecycle Management (ALM) process. A simplified view of an ALM process is as follows: Requirements Analysis Design and Development Implementation Testing Deployment to Production Maintenance In an on-premise environment, this often equates to the following process map: Requirements Business requirements formed by Business Analysts, Developers and Data Professionals. Analysis Feasibility studies, including physical plant, security, manpower and other resources. Request is placed on the work task list if approved. Design and Development Code written according to organization’s chosen methodology, either on-premise or to multiple development teams on and off premise. Implementation Code checked into main branch. Code forked as needed. Testing Code deployed to on-premise Testing servers. If no server capacity available, more resources procured through standard budgeting and ordering processes. Manual and automated functional, load, security, etc. performed. Deployment to Production Server team involved to select platform and environments with available capacity. If no server capacity available, standard budgeting and procurement process followed. If no server capacity available, systems built, configured and put under standard organizational IT control. Systems configured for proper operating systems, patches, security and virus scans. System maintenance, HA/DR, backups and recovery plans configured and put into place. Maintenance Code changes evaluated and altered according to need. In a distributed computing environment like Windows Azure, the process maps a bit differently: Requirements Business requirements formed by Business Analysts, Developers and Data Professionals. Analysis Feasibility studies, including budget, security, manpower and other resources. Request is placed on the work task list if approved. Design and Development Code written according to organization’s chosen methodology, either on-premise or to multiple development teams on and off premise. Implementation Code checked into main branch. Code forked as needed. Testing Code deployed to Azure. Manual and automated functional, load, security, etc. performed. Deployment to Production Code deployed to Azure. Point in time backup and recovery plans configured and put into place.(HA/DR and automated backups already present in Azure fabric) Maintenance Code changes evaluated and altered according to need. This means that several steps can be removed or expedited. It also means that the business function requesting the application can be held directly responsible for the funding of that request, speeding the process further since the IT budgeting process may not be involved in the Azure scenario. An additional benefit is the “Azure Marketplace”, In effect this becomes an app store for Enterprises to select pre-defined code and data applications to mesh or bolt-in to their current code, possibly saving development time. Resources: Whitepaper download- What is ALM?  http://go.microsoft.com/?linkid=9743693  Whitepaper download - ALM and Business Strategy: http://go.microsoft.com/?linkid=9743690  LiveMeeting Recording on ALM and Windows Azure (registration required, but free): http://www.microsoft.com/uk/msdn/visualstudio/contact-us.aspx?sbj=Developing with Windows Azure (ALM perspective) - 10:00-11:00 - 19th Jan 2011

    Read the article

  • Windows Azure Use Case: Hybrid Applications

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Organizations see the need for computing infrastructures that they can “rent” or pay for only when they need them. They also understand the benefits of distributed computing, but do not want to create this infrastructure themselves. However, they may have considerations that prevent them from moving all of their current IT investment to a distributed environment: Private data (do not want to send or store sensitive data off-site) High dollar investment in current infrastructure Applications currently running well, but may need additional periodic capacity Current applications not designed in a stateless fashion In these situations, a “hybrid” approach works best. In fact, with Windows Azure, a hybrid approach is an optimal way to implement distributed computing even when the stipulations above do not apply. Keeping a majority of the computing function in an organization local while exploring and expanding that footprint into Windows and SQL Azure is a good migration or expansion strategy. A “hybrid” architecture merely means that part of a computing cycle is shared between two architectures. For instance, some level of computing might be done in a Windows Azure web-based application, while the data is stored locally at the organization. Implementation: There are multiple methods for implementing a hybrid architecture, in a spectrum from very little interaction from the local infrastructure to Windows or SQL Azure. The patterns fall into two broad schemas, and even these can be mixed. 1. Client-Centric Hybrid Patterns In this pattern, programs are coded such that the client system sends queries or compute requests to multiple systems. The “client” in this case might be a web-based codeset actually stored on another system (which acts as a client, the user’s device serving as the presentation layer) or a compiled program. In either case, the code on the client requestor carries the burden of defining the layout of the requests. While this pattern is often the easiest to code, it’s the most brittle. Any change in the architecture must be reflected on each client, but this can be mitigated by using a centralized system as the client such as in the web scenario. 2. System-Centric Hybrid Patterns Another approach is to create a distributed architecture by turning on-site systems into “services” that can be called from Windows Azure using the service Bus or the Access Control Services (ACS) capabilities. Code calls from a series of in-process client application. In this pattern you move the “client” interface into the server application logic. If you do not wish to change the application itself, you can “layer” the results of the code return using a product (such as Microsoft BizTalk) that exposes a Web Services Definition Language (WSDL) endpoint to Windows Azure using the Application Fabric. In effect, this is similar to creating a Service Oriented Architecture (SOA) environment, and has the advantage of de-coupling your computing architecture. If each system offers a “service” of the results of some software processing, the operating system or platform becomes immaterial, assuming it adheres to a service contract. There are important considerations when you federate a system, whether to Windows or SQL Azure or any other distributed architecture. While these considerations are consistent with coding any application for distributed computing, they are especially important for a hybrid application. Connection resiliency - Applications on-premise normally have low-latency and good connection properties, something you’re not always guaranteed in a distributed and hybrid application. Whether a centralized client or a distributed one, the code should be able to handle extended retry logic. Authorization and Access - In a single authorization environment like a Active Directory domain, security is handled at a user-password level. In a distributed computing environment, you have more options. You can mitigate this with  using The Windows Azure Application Fabric feature of ACS to make the Azure application aware of the App Fabric as an ADFS provider. However, a claims-based authentication structure is often a superior choice.  Consistency and Concurrency - When you have a Relational Database Management System (RDBMS), Consistency and Concurrency are part of the design. In a Service Architecture, you need to plan for sequential message handling and lifecycle. Resources: How to Build a Hybrid On-Premise/In Cloud Application: http://blogs.msdn.com/b/ignitionshowcase/archive/2010/11/09/how-to-build-a-hybrid-on-premise-in-cloud-application.aspx  General Architecture guidance: http://blogs.msdn.com/b/buckwoody/archive/2010/12/21/windows-azure-learning-plan-architecture.aspx   

    Read the article

  • Neural Networks test cases

    - by Betamoo
    Does increasing the number of test cases in case of Precision Neural Networks may led to problems (like over-fitting for example)..? Does it always good to increase test cases number? Will that always lead to conversion ? If no, what are these cases.. an example would be better.. Thanks,

    Read the article

  • Use-cases for assigning multiple IP addresses to 1 NIC

    - by Harry
    What would be some of major use-cases in which you would want to assign multiple IP addresses to your NIC? Knowing of any standard/well-known 'gotchas' associated with each use-case would also be helpful. For example, I heard someone saying that a user with access to such a machine will automatically get access to both networks, which could be a security issue. You can assume a Linux-based environment.

    Read the article

  • Keeping your options open in a cloud solution

    - by BuckWoody
    In on-premises solutions we have the full range of options open for a given computing solution – but we don’t always take advantage of them, for multiple reasons. Data goes in a Relational Database Management System, files go on a share, and e-mail goes to the Exchange server. Over time, vendors (including ourselves) add in functionality to one product that allow non-standard use of the platform. For example, SQL Server (and Oracle, and others) allow large binary storage in or through the system – something not originally intended for an RDBMS to handle. There are certainly times when this makes sense, of course, but often these platform hammers turn every problem into a nail. It can make us “lazy” in our design – we sometimes don’t take the time to learn another architecture because the one we’ve spent so much time with can handle what we want to do. But there’s a distinct danger here. In nature, when a population shares too many of the same traits, it can cause a complete collapse if a situation exploits a weakness shared by that population. The same is true with not using the righttool for the job in a computing environment. Your company or organization depends on your knowledge as a professional to select the best mix of supportable, flexible, cost-effective technologies to solve their problems, whether you’re in an architect role or not.  So take some time today to learn something new. The way I do this is to select a given problem, and try to solve it with a technology I’m not familiar with. For instance – create a Purchase Order system in Excel, then in Hadoop or MongoDB, or even in flat-files using PowerShell as an interface. No, I’m not suggesting any of these architectures are the proper way to solve the PO problem, but taking something concrete that you know well and applying that meta-knowledge to another platform will assist you in exercising the “little grey cells” and help you and your organization understand what is open to you. And of course you can do all of this on-premises – but my recommendation is to check out a cloud platform (my suggestion would of course be Windows Azure :) ) and try it there. Most providers (including Microsoft) provide free time to do that.

    Read the article

  • SSIS - user variable used in derived column transform is not available - in some cases

    - by soo
    Unfortunately I don't have a repro for my issue, but I thought I would try to describe it in case it sounds familiar to someone... I am using SSIS 2005, SP2. My package has a package-scope user variable - let's call it user_var first step in the control flow is an Execute SQL task which runs a stored procedure. All that SP does is insert a record in a SQL table (with an identity column) and then go back and get the max ID value. The Execute SQL task saves this output into user_var the control flow then has a Data Flow Task - it goes and gets some source data, has a derived column which sets a column called run_id to user_var - and saves the data to a SQL destination In most cases (this template is used for many packages, running every day) this all works great. All of the destination records created get set with a correct run_id. However, in some cases, there is a set of the destination data that does not get run_id equal to user_var, but instead gets a value of 0 (0 is the default value for user_var). I have 2 instances where this has happened, but I can't make it happen. In both cases, it was just less that 10,000 records that have run_id = 0. Since SSIS writes data out in 10,000 record blocks, this really makes me think that, for the first set of data written out, user_var was not yet set. Then, after that first block, for the rest of the data, run_id is set to a correct value. But control passed on to my data flow from the Execute SQL task - it would have seemed reasonable to me that it wouldn't go on until the SP has completed and user_var is set. Maybe it just runs the SP, but doesn't wait for it to complete? In both cases where this has happened there seemed to be a few packages hitting the table to get a new user_var at about the same time. And in both cases lots of data was written (40 million rows, 60 million rows) - my thinking is that that means the writes were happening for a while. Sorry to be both long-winded AND vague. A winning combination! Does this sound familiar to anyone? Thanks.

    Read the article

  • Use cases of [ordered], the new PowerShell 3.0 feature

    - by Roman Kuzmin
    PowerShell 3.0 CTP1 introduces a new feature [ordered] which is somewhat a shortcut for OrderedDictionary. I cannot imagine practical use cases of it. Why is this feature really useful? Can somebody provide some useful examples? Example: this is, IMHO, rather demo case than practical: $a = [ordered]@{a=1;b=2;d=3;c=4} (I do not mind if it is still useful, then I am just looking for other useful cases). I am not looking for use cases of OrderedDictionary, it is useful, indeed. But we can use it directly in v2.0 (and I do a lot). I am trying to understand why is this new feature [ordered] needed in addition. Collected use cases from answers: $hash = [ordered]@{} is shorter than $hash = New-Object System.Collections.Specialized.OrderedDictionary N.B. ordered is not a real shortcut for the type. New-Object ordered does not work. N.B. 2: But this is still a good shortcut because (I think, cannot try) it creates typical for PowerShell case insensitive dictionary. The equivalent command in v2.0 is too long, indeed: New-Object System.Collections.Specialized.OrderedDictionary]([System.StringComparer]::OrdinalIgnoreCase)

    Read the article

  • What are various methods for discovering test cases

    - by NativeByte
    All, I am a developer but like to know more about testing process and methods. I believe this helps me write more solid code as it improves the cases I can test using my unit tests before delivering product to the test team. I have recently started looking at Test Driven Development and Exploratory testing approach to software projects. Now it's easier for me to find test cases for the code that I have written. But I am curios to know how to discover test cases when I am not the developer for the functionality under test. Say for e.g. let's have a basic user registration form that we see on various websites. Assuming the person testing it is not the developer of the form, how should one go about testing the input fields on the form, what would be your strategy? How would you discover test cases? I believe this kind of testing benefits from exploratory testing approach, i may be wrong here though. I would appreciate your views on this. Thanks, Byte

    Read the article

  • documenting black-box test cases

    - by Blux
    Hi everyone, I want to write an initial (black box) test cases for one of my university projects. I haven't started coding yet, I'm still in completing the SRS document and i should specify the test cases i'm going to implement after the coding. The project is web based, and i should follow this template in each test case: +++++ Test case ID: Author: Initial state: Preconditions: Use Case: Test input: Expected output: ++++++ The thing is, i don't know what is the difference between "initial state" and "preconditions". In some of the test cases it's hard to differentiate between them. Like in "Edit Page" what should be the initial state and what should be the preconditions? any help will appreciated.=)

    Read the article

  • howto distinguish composition and self-typing use-cases

    - by ayvango
    Scala has two instruments for expressing object composition: original self-type concept and well known trivial composition. I'm curios what situations I should use which in. There are obvious differences in their applicability. Self-type requires you to use traits. Object composition allows you to change extensions on run-time with var declaration. Leaving technical details behind I can figure two indicators to help with classification of use cases. If some object used as combinator for a complex structure such as tree or just have several similar typed parts (1 car to 4 wheels relation) than it should use composition. There is extreme opposite use case. Lets assume one trait become too big to clearly observe it and it got split. It is quite natural that you should use self-types for this case. That rules are not absolute. You may do extra work to convert code between this techniques. e.g. you may replace 4 wheels composition with self-typing over Product4. You may use Cake[T <: MyType] {part : MyType} instead of Cake { this : MyType => } for cake pattern dependencies. But both cases seem counterintuitive and give you extra work. There are plenty of boundary use cases although. One-to-one relations is very hard to decide with. Is there any simple rule to decide what kind of technique is preferable? self-type makes you classes abstract, composition makes your code verbose. self-type gives your problems with blending namespaces and also gives you extra typing for free (you got not just a cocktail of two elements but gasoline-motor oil cocktail known as a petrol bomb). How can I choose between them? What hints are there? Update: Let us discuss the following example: Adapter pattern. What benefits it has with both selt-typing and composition approaches?

    Read the article

  • NHibernate mapping with two special cases

    - by brainimus
    I am using NHibernate to map a class to a database table. The Part table has an ID column (primary key) and a ParentPart column (along with a few others). class Part { public virtual long ID{ get; set; } public virtual Part ParentPart { get; set; } } The ParentPart is normally another valid part in the part table but I have two special cases. I have a case where the ParentPart column can be 0 (zero) and another case where it can be -1. Neither of these cases currently represent another valid Part object. I was thinking I could make 2 subclasses of Part (ZeroPart and NegativeOnePart) that would never persist. I want the zero and -1 values to be entered in the column but not persist the entire ZeroPart or NegativeOnePart objects. I am unsure how to map this (I'm using hbm files) or if this even the correct approach. How can I map this so that normal valid parts are persisted but I can also handle the special cases? As an aside: My current hbm file has the Part.ID's unsaved value as zero but I think I can just change this in the mapping to something different and default it in the class.

    Read the article

  • resolving incidents (closing cases) in CRM4 through webservices?

    - by Rafael D.
    Hello everybody, I'm trying to resolve/close Dynamics CRM4 cases/incidents through webservices. A single SetStateIncidentRequest is not enough and returns a Server was unable to process request error message. I think it has something to do with active workflows that trigger on case's attribute changes. I don't know if there's anything else preventing the request to work. Since it is possible to close those cases through the GUI, I guess there's a "correct" set of steps to follow in order to achieve it through CrmService; unfortunately, I've been googleing it for a while without finding what I want. Could anybody help me, please?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >