Search Results

Search found 5267 results on 211 pages for 'use cases'.

Page 1/211 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Should a developer create test cases and then run through test cases

    - by Eben Roux
    I work for a company where the development manager expects a developer to create test cases before writing any code. These test cases have to then be maintained by the developers. Every-so-often a developer will be expected to run through the test cases. From this you should be able to gather that the company in question is rather small and there are no testers. Coming from a Software Architect position and having to write / execute test cases wearing my 'tester' hat is somewhat of a shock to the system. I do it anyway but it does seem to be a rather expensive exercise :) EDIT: I seem to need to elaborate here: I am not talking about unit-testing, TDD, etc. :) I am talking about that bit of testing a tester does. Once I have developed a system (with my unit tests / tdd / etc.) the software goes through a testing phase. Should a developer be that tester and developer those test cases? I think the misunderstanding may stem from the fact that developers, typically, are not involved with this type of testing and, therefore, assumed I am referring to that testing we do do: unit testing. But alas, no. I hope that clears it up.

    Read the article

  • Aluminum Laptop Cases vs Leather Laptop Cases

    Both aluminum and leather have been known for their excellent qualities in the world of business, travel and even fashion; but when it comes to choosing one, there are certain qualities that put alum... [Author: Shannon Hilson - Computers and Internet - March 23, 2010]

    Read the article

  • Using Essential Use Cases to design a UI-centric Application

    - by Bruno Brant
    Hello all, I'm begging a new project (oh, how I love the fresh taste of a new project!) and we are just starting to design it. In short: The application is a UI that will enable users to model an execution flow (a Visio like drag & drop interface). So our greatest concern is usability and features that will help the users model fast and clearly the execution flow. Our established methodology makes extensive use of Use Cases in order to create a harmonious view of the application between the programmers and users. This is a business concern, really: I'd prefer to use an Agile Method with User Stories rather than User Cases, but we need to define a clear scope to sell the product to our clients. However, Use Cases have a number of flaws, most of which are related to the fact that they include technical details, like UI, etc, as can be seem here. But, since we can't use User Stories and a fully interactive design, I've decided that we compromise: I will be using Essential Use Cases in order to hide those details. Now I have another problem: it's essential (no pun intended) to have a clear description of UI interaction, so, how should I document it? In other words, how do I specify a application through the use of Essential Use Cases where the UI interaction is vital to it? I can see some alternatives: Abandon the use of Use Cases since they don't correctly represent the problem Do not include interface descriptions in the use case, but create another documentation (Story Boards) and link then to the Essential Use Cases Include UI interaction description to the Essential Use Cases, since they are part of the business rules in the perspective of the users and the application itself

    Read the article

  • Writing Acceptance test cases

    - by HH_
    We are integrating a testing process in our SCRUM process. My new role is to write acceptance tests of our web applications in order to automate them later. I have read a lot about how tests cases should be written, but none gave me practical advices to write test cases for complex web applications, and instead they threw conflicting principles that I found hard to apply: Test cases should be short: Take the example of a CMS. Short test cases are easy to maintain and to identify the inputs and outputs. But what if I want to test a long series of operations (eg. adding a document, sending a notification to another user, the other user replies, the document changes state, the user gets a notice). It rather seems to me that test cases should represent complete scenarios. But I can see how this will produce overtly complex test documents. Tests should identify inputs and outputs:: What if I have a long form with many interacting fields, with different behaviors. Do I write one test for everything, or one for each? Test cases should be independent: But how can I apply that if testing the upload operation requires that the connect operation is successful? And how does it apply to writing test cases? Should I write a test for each operation, but each test declares its dependencies, or should I rewrite the whole scenario for each test? Test cases should be lightly-documented: This principles is specific to Agile projects. So do you have any advice on how to implement this principle? Although I thought that writing acceptance test cases was going to be simple, I found myself overwhelmed by every decision I had to make (FYI: I am a developer and not a professional tester). So my main question is: What steps or advices do you have in order to write maintainable acceptance test cases for complex applications. Thank you.

    Read the article

  • Black box test cases for insertion procedure

    - by AJ
    insertion_procedure (int a[], int p [], int N) { int i,j,k; for (i=0; i<=N; i++) p[i] = i; for (i=2; i<=N; i++) { k = p[i]; j = 1; while (a[p[j-1]] > a[k]) {p[j] = p[j-1]; j--} p[j] = k; } } What would be few good test cases for this particular insertion procedure?

    Read the article

  • Writing use cases for XML mapping scenarios between two different systems

    - by deepak_prn
    I am having some trouble writing use cases for XML mapping after a certain trigger invoked by the system. For example, one of the scenarios goes: the store cashier sells an item, the transaction data is sent to Data management system. Now, I am writing a functional design for the scenario which deals with mapping XML fields between our system and the data management system. Question : I was wondering if some one had to deal with writing use cases or extension use cases for mapping XML fields between two systems? (There is no XSLT involved) and if you used a table to represent the fields mapping (example is below) or any other visualization tool which does not break the bank ? I searched many questions on SO and here but nothing came close to my requirement.

    Read the article

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

  • Use-cases for node.js and c#

    - by Chase Florell
    I do quite a bit of ASP.NET work (C#, MVC), but most of it is typical web development. I do Restful architecture using CRUD repositories. Most of my clients don't have a lot of advanced requirements within their applications. I'm now looking at node.js and it's performance implications (I'm addicted to speed), but I haven't delved into it all that much. I'm wondering if node.js can realistically replace my typical web development in C# and ASP.NET MVC (not rewriting existing apps, but when working on new ones) node.js can complement an ASP.NET MVC app by adding some async goodness to the existing architecture. Are there use-cases for/against C# and node.js? Edit I love ASP.NET MVC and am super excited with where it's going. Just trying to see if there are special use cases that would favor node.js

    Read the article

  • test cases for common algorithms [on hold]

    - by Alexey
    I need samples of test inputs and correct outputs for common algorithms for sorting, searching, data structures, graphs, etc. to check for mistakes in my future implementations. Can you advice resources with test cases? Or a website with community that implements algorithms and shares with results? Thanks! Edit: to clarify: I am going to implement forementioned algorithms for studying purposes and need inputs including large ones and correct outputs to better find mistakes in my implementations, since test cases that I can come up with on my own with might not be enough to reveal mistakes.

    Read the article

  • Map, Set use cases in a general web app

    - by user2541902
    I am currently working on my own Java web app (to be shown in interview to get a Java job). So I've not worked on Java in professional environment, so no guidance. I have database, entity classes, JPA relationships. Use cases are like, user has albums, album has pics, user has locations, location has co-ordinates etc. I used List (ArrayList) everywhere. I can do anything with List and DB, get some entry, find etc. For example, I will keep the list of users in List, then use queries to get some entry (why would I keep them in Map with id/email as key?). I know very well the working and features, implementing classes of Map, Set. I can use them for solving some algorithm, processing some data etc. In interviews, I get asked have you worked with these, where have you used them etc. So, Please tell me cases where they should be used (DB or any popular real use case).

    Read the article

  • Exadata ROI cases

    - by Javier Puerta
    The following cases illustrate the type of ROI benefits that customers can obtain from their investment in Exadata infrastructure. Australian Finance Group will achieve a 42% ROI by and break even in three years by consolidating Oracle E-Business Suite and Siebel applications on Oracle Exadata.  Read the ROI case at: http://www.oracle.com/us/corporate/customers/afg-1-exadata-cs-1354807.pdf In addition to this study, there are Oracle Exadata Mainstay ROI Case Studies for the following: Merck -Pharma, Oracle Exadata Achieves Fivefold Performance Increase for Critical Product Research Platform Turkcell Accelerates Reporting Tenfold, Saves on Storage and Energy Costs with Consolidated Oracle Exadata Platform

    Read the article

  • Why Choose Aluminum Laptop Cases

    One of the decisions you will face when you purchase a new laptop computer is which case will best suit your needs. While there are many different cases on the market, many of the ones that are carri... [Author: Shannon Hilson - Computers and Internet - March 25, 2010]

    Read the article

  • Dealing with a developer continuously ignoring edge cases in his work

    - by Alex N.
    I have an interesting, fairly common I guess, issue with one of the developers in my team. The guy is a great developer, work fast and productive, produces fairly good quality code and all. Good engineer. But there is a problem with him - very often he fails to address edge cases in his code. We spoke with him about it many times and he is trying but I guess he just doesn't think this way. So what ends up happening is that QA would find plenty issues with his code and return it back for development again and again, ultimately resulting in missed deadlines and everyone in the team unhappy. I don't know what to do with him and how to help him overcome this problem. Perhaps someone with more experience could advise? Thank you!

    Read the article

  • How do I explain the importance of NUNIT Test cases to my Colleagues [duplicate]

    - by JNL
    This question already has an answer here: How to explain the value of unit testing 6 answers I am currently working in Software Development for applications including lot of Mathematical Calculations. As a result there are lot of test cases that we need to consider. We donot have any NUNIT Test case system, I am wonderring how should I get the advantages of implementing the NUNIT testing in front of my colleagues and my boss. I am pretty sure, it would be of great help for our team. Any help regarding the same, will be higly appreciated.

    Read the article

  • Requesting quality analysis test cases up front of implementation/change

    - by arin
    Recently I have been assigned to work on a major requirement that falls between a change request and an improvement. The previous implementation was done (badly) by a senior developer that left the company and did so without leaving a trace of documentation. Here were my initial steps to approach this problem: Considering that the release date was fast approaching and there was no time for slip-ups, I initially asked if the requirement was a "must have". Since the requirement helped the product significantly in terms of usability, the answer was "If possible, yes". Knowing the wide-spread use and affects of this requirement, had it come to a point where the requirement could not be finished prior to release, I asked if it would be a viable option to thrash the current state and revert back to the state prior to the ex-senior implementation. The answer was "Most likely: no". Understanding that the requirement was coming from the higher management, and due to the complexity of it, I asked all usability test cases to be written prior to the implementation (by QA) and given to me, to aid me in the comprehension of this task. This was a big no-no for the folks at the management as they failed to understand this approach. Knowing that I had to insist on my request and the responsibility of this requirement, I insisted and have fallen out of favor with some of the folks, leaving me in a state of "baffledness". Basically, I was trying a test-driven approach to a high-risk, high-complexity and must-have requirement and trying to be safe rather than sorry. Is this approach wrong or have I approached it incorrectly? P.S.: The change request/improvement was cancelled and the implementation was reverted back to the prior state due to the complexity of the problem and lack of time. This only happened after a 2 hour long meeting with other seniors in order to convince the aforementioned folks.

    Read the article

  • A starting point for Use Cases and User Stories

    - by Mike Benkovich
    Originally posted on: http://geekswithblogs.net/benko/archive/2013/07/23/a-starting-point-for-use-cases-and-user-stories.aspxSoftware is a challenging business and is rife with opportunities to go wrong. Over the years a number of methodologies have evolved to help make sure that things go right. In an effort to contribute to this I’ve created a list of user stories that I think should be included and sometimes are just assumed. Note this is a work in progress, so I’m looking for your feedback. I’m curious what you would add or change in my list. · As a DBA I am working with a Normalized data model that reflects an agreed upon logical model for the system · As a DBA I am using consistent names for my fields which match the naming standards of my organization · As a DBA my model supports simple CRUD operations against all the entities · As an Application Architect the UI has been validated against the Business requirements and a complete set of user story’s have been created · As an Application Architect the database model has been validated against the UI · As an Application Architect we have a logical business model that describes all the known and/or expected usage of the system during the software’s expected lifecycle · As an Application Architect we have a Deployment diagram that describes how the application components will be deployed · As an Application Architect we have a navigation diagram that describes the typical application flow · As an Application Architect we have identified points of interaction which describes how the UI interacts with the services and the data storage · As an Application Architect we have identified external systems which may now or in the future use the data of this application and have adapted the logical model to include these interactions · As an Application Architect we have identified existing systems and tools that can be extended and/or reused to help this application achieve it’s business goals · As a Project Manager all team members understand the goals of each release and iteration as they are planned · As a Project Manager all team members understand their role and the roles of others · As a Project Manager we have support of the business to do the right thing even if it is not the expedient thing · As a Test/QA Analyst we have created a simulation environment for testing the system which does not use sensitive data and accurately reflects the scenarios of all the data that will be supported by the system · As a Test/QA Analyst we have identified the matrix of supported clients used to access the system including the likely browsers, mobile devices and other interfaces to work with the application · As a Test/QA Analyst we have created exit criteria for each user story that match the requirements of the business story that was used to create them · As a Test/QA Analyst we have access to a Test environment that is isolated from production and staging environments · As a Test/QA Analyst there we have a way to reset the environment so we can rerun tests when a new version of the software becomes available · As a Test/QA Analyst I am able to automate portions of the test process Thoughts? -mike

    Read the article

  • Physics System ignores collision in some rare cases

    - by Gajoo
    I've been developing a simple physics engine for my game. since the game physics is very simple I've decided to increase accuracy a little bit. Instead of formal integration methods like fourier or RK4, I'm directly computing the results after delta time "dt". based on the very first laws of physics : dx = 0.5 * a * dt^2 + v0 * dt dv = a * dt where a is acceleration and v0 is object's previous velocity. Also to handle collisions I've used a method which is somehow different from those I've seen so far. I'm detecting all the collision in the given time frame, stepping the world forward to the nearest collision, resolving it and again check for possible collisions. As I said the world consist of very simple objects, so I'm not loosing any performance due to multiple collision checking. First I'm checking if the ball collides with any walls around it (which is working perfectly) and then I'm checking if it collides with the edges of the walls (yellow points in the picture). the algorithm seems to work without any problem except some rare cases, in which the collision with points are ignored. I've tested everything and all the variables seem to be what they should but after leaving the system work for a minute or two the system the ball passes through one of those points. Here is collision portion of my code, hopefully one of you guys can give me a hint where to look for a potential bug! void PhysicalWorld::checkForPointCollision(Vec2 acceleration, PhysicsComponent& ball, Vec2& collisionNormal, float& collisionTime, Vec2 target) { // this function checks if there will be any collision between a circle and a point // ball contains informations about the circle (it's current velocity, position and radius) // collisionNormal is an output variable // collisionTime is also an output varialbe // target is the point I want to check for collisions Vec2 V = ball.mVelocity; Vec2 A = acceleration; Vec2 P = ball.mPosition - target; float wallWidth = mMap->getWallWidth() / (mMap->getWallWidth() + mMap->getHallWidth()) / 2; float r = ball.mRadius / (mMap->getWallWidth() + mMap->getHallWidth()); // r is ball radius scaled to match actual rendered object. if (A.any()) // todo : I need to first correctly solve the collisions in case there is no acceleration return; if (V.any()) // if object is not moving there will be no collisions! { float D = P.x * V.y - P.y * V.x; float Delta = r*r*V.length2() - D*D; if(Delta < eps) return; Delta = sqrt(Delta); float sgnvy = V.y > 0 ? 1: (V.y < 0?-1:0); Vec2 c1(( D*V.y+sgnvy*V.x*Delta) / V.length2(), (-D*V.x+fabs(V.y)*Delta) / V.length2()); Vec2 c2(( D*V.y-sgnvy*V.x*Delta) / V.length2(), (-D*V.x-fabs(V.y)*Delta) / V.length2()); float t1 = (c1.x - P.x) / V.x; float t2 = (c2.x - P.x) / V.x; if(t1 > eps && t1 <= collisionTime) { collisionTime = t1; collisionNormal = c1; } if(t2 > eps && t2 <= collisionTime) { collisionTime = t2; collisionNormal = c2; } } } // this function should step the world forward by dt. it doesn't check for collision of any two balls (components) // it just checks if there is a collision between the current component and 4 points forming a rectangle around it. void PhysicalWorld::step(float dt) { for (unsigned i=0;i<mObjects.size();i++) { PhysicsComponent &current = *mObjects[i]; Vec2 acceleration = current.mForces * current.mInvMass; float rt=dt; // stores how much more the world should advance while(rt > eps) { float collisionTime = rt; Vec2 collisionNormal = Vec2(0,0); float halfWallWidth = mMap->getWallWidth() / (mMap->getWallWidth() + mMap->getHallWidth()) / 2; // we check if there is any collision with any of those 4 points around the ball // if there is a collision both collisionNormal and collisionTime variables will change // after these functions collisionTime will be exactly the value of nearest collision (if any) // and if there was, collisionNormal will report in which direction the ball should return. checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2(floor(current.mPosition.x) + halfWallWidth,floor(current.mPosition.y) + halfWallWidth)); checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2(floor(current.mPosition.x) + halfWallWidth, ceil(current.mPosition.y) - halfWallWidth)); checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2( ceil(current.mPosition.x) - halfWallWidth,floor(current.mPosition.y) + halfWallWidth)); checkForPointCollision(acceleration,current,collisionNormal,collisionTime,Vec2( ceil(current.mPosition.x) - halfWallWidth, ceil(current.mPosition.y) - halfWallWidth)); // either if there is a collision or if there is not we step the forward since we are sure there will be no collision before collisionTime current.mPosition += collisionTime * (collisionTime * acceleration * 0.5 + current.mVelocity); current.mVelocity += collisionTime * acceleration; // if the ball collided with anything collisionNormal should be at least none zero in one of it's axis if (collisionNormal.any()) { collisionNormal *= Dot(collisionNormal, current.mVelocity) / collisionNormal.length2(); current.mVelocity -= 2 * collisionNormal; // simply reverse velocity along collision normal direction } rt -= collisionTime; } // reset all forces for current object so it'll be ready for later game event current.mForces.zero(); } }

    Read the article

  • Windows Azure Use Case: High-Performance Computing (HPC)

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: High-Performance Computing (also called Technical Computing) at its most simplistic is a layout of computer workloads where a “head node” accepts work requests, and parses them out to “worker nodes'”. This is useful in cases such as scientific simulations, drug research, MatLab work and where other large compute loads are required. It’s not the immediate-result type computing many are used to; instead, a “job” or group of work requests is sent to a cluster of computers and the worker nodes work on individual parts of the calculations and return the work to the scheduler or head node for the requestor in a batch-request fashion. This is typical to the way that many mainframe computing use-cases work. You can use commodity-based computers to create an HPC Cluster, such as the Linux application called Beowulf, and Microsoft has a server product for HPC using standard computers, called the Windows Compute Cluster that you can read more about here. The issue with HPC (from any vendor) that some organization have is the amount of compute nodes they need. Having too many results in excess infrastructure, including computers, buildings, storage, heat and so on. Having too few means that the work is slower, and takes longer to return a result to the calling application. Unless there is a consistent level of work requested, predicting the number of nodes is problematic. Implementation: Recently, Microsoft announced an internal partnership between the HPC group (Now called the Technical Computing Group) and Windows Azure. You now have two options for implementing an HPC environment using Windows. You can extend the current infrastructure you have for HPC by adding in Compute Nodes in Windows Azure, using a “Broker Node”.  You can then purchase time for adding machines, and then stop paying for them when the work is completed. This is a common pattern in groups that have a constant need for HPC, but need to “burst” that load count under certain conditions. The second option is to install only a Head Node and a Broker Node onsite, and host all Compute Nodes in Windows Azure. This is often the pattern for organizations that need HPC on a scheduled and periodic basis, such as financial analysis or actuarial table calculations. References: Blog entry on Hybrid HPC with Windows Azure: http://blogs.msdn.com/b/ignitionshowcase/archive/2010/12/13/high-performance-computing-on-premise-and-in-the-windows-azure-cloud.aspx  Links for further research on HPC, includes Windows Azure information: http://blogs.msdn.com/b/ncdevguy/archive/2011/02/16/handy-links-for-hpc-and-azure.aspx 

    Read the article

  • In which cases Robolectric is a relevant solution?

    - by Francis Toth
    As you may now, Robolectric is a framework that provides stubs for Android objects, in order to make tests runnable outside the Dalvik environment. My concern is that, by doing this, one can fake a third party library, which is, I believe, not a good practice (it should be encapsulated instead). If you make assumptions about an interface you don't own, which is changed once your test has been written, you won't be always noticed about the modifications. This can lead to a misunderstanding between your implementations and the interface they depends on. In addition, Android use mostly inheritance over interfaces which limits contract testing. So here's my question: Are there situations when Robolectric is the way to go? Here are some links you can check for further information: test-doubles-with-mockito in-brief-contract-tests

    Read the article

  • Real-world use cases for Smalltalk

    - by Andrea Spadaccini
    Hello, I've been playing a bit with Smalltalk, and I found it interesting. I know that there are some classical examples of Smalltalk: the Smalltalk images themselves and the Seaside web framework, and that there are lots of in-house custom applications built using this language. I'd like to know if: there are computer applications actively used and developed apart from the ones I mentioned. there are software houses that use Smalltalk for doing their job when would you use Smalltalk instead of another language for developing from scratch a new application

    Read the article

  • Case Management In-Depth: Cases & Case Activities Part 1 – Activity Scope by Mark Foster

    - by JuergenKress
    In the previous blog entry we looked at stakeholders and permissions, i.e. how we control interaction with the case and its artefacts. In this entry we’ll look at case activities, specifically how we decide their scope, in the next part we’ll look at how these activities relate to the over-arching case and how we can effectively visualize the relationship between the case and its activities. Case Activities As mentioned in an earlier blog entry, case activities can be created from: BPM processes Human Tasks Custom (Java Code) It is pretty obvious that we would use custom case activities when either: we already have existing code that we would like to form part of a case we cannot provide the necessary functionality with a BPM process or simple Human Task However, how do we determine what our BPM process as a case activity contains? What level of granularity? Take the following simple BPM process Read the full article here. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Mix Forum Technorati Tags: ACM,BPM,Mark Foster,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • In which cases build artifacts will be different in different environments

    - by Sundeep
    We are working on automation of deployment using Jenkins. We have different environments - DEV, UAT, PROD. In SVN, we are tagging each release and placing same binaries in DEV, UAT, PROD. The artifacts already contains config files w.r.t each environment but I am not understanding why we are storing binaries in environment folder again. Are there any scenarios where deployment might be different for different environments.

    Read the article

  • Advantages of Locking Laptop Cases

    A laptop is meant to be carried around from one place to another and should be never let out of sight when being away from home but this is unfortunately not always possible. "Many of us store valu... [Author: Jeremy Mezzi - Computers and Internet - May 29, 2010]

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >