Search Results

Search found 2912 results on 117 pages for 'std tr1'.

Page 20/117 | < Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >

  • Compiler turning a string& into a basic_string<>&

    - by Shtong
    Hello I'm coming back to C++ after long years spent on other technologies and i'm stuck on some weird behavior when calling some methods taking std::string as parameters : An example of call : LocalNodeConfiguration *LocalNodeConfiguration::ReadFromFile(std::string & path) { // ... throw configuration_file_error(string("Configuration file empty"), path); // ... } When I compile I get this (I cropped file names for readability) : /usr/bin/g++ -g -I/home/shtong/Dev/OmegaNoc/build -I/usr/share/include/boost-1.41.0 -o CMakeFiles/OmegaNocInternals.dir/configuration/localNodeConfiguration.cxx.o -c /home/shtong/Dev/OmegaNoc/source/configuration/localNodeConfiguration.cxx .../localNodeConfiguration.cxx: In static member function ‘static OmegaNoc::LocalNodeConfiguration* OmegaNoc::LocalNodeConfiguration::ReadFromFile(std::string&)’: .../localNodeConfiguration.cxx:72: error: no matching function for call to ‘OmegaNoc::configuration_file_error::configuration_file_error(std::string, std::basic_string<char, std::char_traits<char>, std::allocator<char> >&)’ .../configurationManager.hxx:25: note: candidates are: OmegaNoc::configuration_file_error::configuration_file_error(std::string&, std::string&) .../configurationManager.hxx:22: note: OmegaNoc::configuration_file_error::configuration_file_error(const OmegaNoc::configuration_file_error&) So as I understand it, the compiler is considering that my path parameter turned into a basic_string at some point, thus not finding the constructor overload I want to use. But I don't really get why this transformation happened. Some search on the net suggested me to use g++ but I was already using it. So any other advice would be appreciated :) Thanks

    Read the article

  • Using an initializer_list on a map of vectors

    - by Hooked
    I've been trying to initialize a map of <ints, vector<ints> > using the new 0X standard, but I cannot seem to get the syntax correct. I'd like to make a map with a single entry with key:value = 1:<3,4 #include <initializer_list> #include <map> #include <vector> using namespace std; map<int, vector<int> > A = {1,{3,4}}; .... It dies with the following error using gcc 4.4.3: error: no matching function for call to std::map<int,std::vector<int,std::allocator<int> >,std::less<int>,std::allocator<std::pair<const int,std::vector<int,std::allocator<int> > > > >::map(<brace-enclosed initializer list>) Edit Following the suggestion by Cogwheel and adding the extra brace it now compiles with a warning that can be gotten rid of using the -fno-deduce-init-list flag. Is there any danger in doing so?

    Read the article

  • Strange results about C++11 memory model (Relaxed ordering)

    - by Dancing_bunny
    I was testing the example in the memory model of the Anthony Williams's book "C++ Concurrency" #include<atomic> #include<thread> #include<cassert> std::atomic_bool x,y; std::atomic_int z; void write_x_then_y() { x.store(true, std::memory_order_relaxed); y.store(true, std::memory_order_relaxed); } void read_y_then_x() { while(!y.load(std::memory_order_relaxed)); if(x.load(std::memory_order_relaxed)) { ++z; } } int main() { x = false; y = false; z = 0; std::thread a(write_x_then_y); std::thread b(read_y_then_x); a.join(); b.join(); assert(z.load()!=0); } According to the explanation, relaxed operations on difference variables (here x and y) can be freely reordered. However, I repeated running the problem for more than several days. I never hit the situation that the assertion (assert(z.load()!=0);) fires. I just use the default optimization and compile the code using g++ -std=c++11 -lpthread dataRaceAtomic.cpp Does anyone actually try it and hit the assertion? Could anyone give me an explanation about my test results? BTW, I also tried the version without using the atomic type, I got the same result. Currently, both programs are running healthily. Thanks.

    Read the article

  • Including typedef of child in parent class

    - by Baz
    I have a class which looks something like this. I'd prefer to have the typedef of ParentMember in the Parent class and rename it Member. How might this be possible? The only way I can see is to have std::vector as a public member instead of using inheritance. typedef std::pair<std::string, boost::any> ParentMember; class Parent: public std::vector<ParentMember> { public: template <typename T> std::vector<T>& getMember(std::string& s) { MemberFinder finder(s); std::vector<ParentMember>::iterator member = std::find_if(begin(), end(), finder); boost::any& container = member->second; return boost::any_cast<std::vector<T>&>(container); } private: class Finder { ... }; };

    Read the article

  • printing 2d table (headers)

    - by k0re
    Hi Is there are a better way than this one to print 2d table? std::cout << std::setw(25) << left << "FF.name" << std::setw(25) << left << "BB.name" << std::setw(12) << left << "sw.cycles" << std::setw(12) << left << "hw.cycles" << "\n" << std::setw(25) << left << "------" << std::setw(25) << left << "------" << std::setw(12) << left << "---------" << std::setw(12) << left << "---------" << "\n";

    Read the article

  • Prefer algorithms to hand-written loops?

    - by FredOverflow
    Which of the following to you find more readable? The hand-written loop: for (std::vector<Foo>::const_iterator it = vec.begin(); it != vec.end(); ++it) { bar.process(*it); } Or the algorithm invocation: #include <algorithm> #include <functional> std::for_each(vec.begin(), vec.end(), std::bind1st(std::mem_fun_ref(&Bar::process), bar)); I wonder if std::for_each is really worth it, given such a simple example already requires so much code. What are your thoughts on this matter?

    Read the article

  • What is the general feeling about reflection extensions in std::type_info?

    - by Evan Teran
    I've noticed that reflection is one feature that developers from other languages find very lacking in c++. For certain applications I can really see why! It is so much easier to write things like an IDE's auto-complete if you had reflection. And certainly serialization APIs would be a world easier if we had it. On the other side, one of the main tenets of c++ is don't pay for what you don't use. Which makes complete sense. That's something I love about c++. But it occurred to me there could be a compromise. Why don't compilers add extensions to the std::type_info structure? There would be no runtime overhead. The binary could end up being larger, but this could be a simple compiler switch to enable/disable and to be honest, if you are really concerned about the space savings, you'll likely disable exceptions and RTTI anyway. Some people cite issues with templates, but the compiler happily generates std::type_info structures for template types already. I can imagine a g++ switch like -fenable-typeinfo-reflection which could become very popular (and mainstream libs like boost/Qt/etc could easily have a check to generate code which uses it if there, in which case the end user would benefit with no more cost than flipping a switch). I don't find this unreasonable since large portable libraries like this already depend on compiler extensions. So why isn't this more common? I imagine that I'm missing something, what are the technical issues with this?

    Read the article

  • How can I use Boost::regex.hpp library in C++?

    - by MIH1406
    I tried to use Boost library but I failed, see my code: #include "listy.h" #include <boost/regex.hpp> using namespace boost; ListyCheck::ListyCheck() { } ListyCheck::~ListyCheck() { } bool ListyCheck::isValidItem(std::string &__item) { regex e("(\\d{4}[- ]){3}\\d{4}"); return regex_match(__item, e); } When I tried to compile it I get those messages: /usr/include/boost/regex/v4/regex_match.hpp:50: undefined reference to `boost::re_detail::perl_matcher<__gnu_cxx::__normal_iterator, std::allocator , std::allocator, std::allocator , boost::regex_traits ::match()' /usr/include/boost/regex/v4/basic_regex.hpp:425: undefined reference to `boost::basic_regex ::do_assign(char const*, char const*, unsigned int)' /usr/include/boost/regex/v4/perl_matcher.hpp:366: undefined reference to `boost::re_detail::perl_matcher<__gnu_cxx::__normal_iterator, std::allocator , std::allocator, std::allocator , boost::regex_traits ::construct_init(boost::basic_regex const&, boost::regex_constants::_match_flags)' etc...

    Read the article

  • How to detect segmentation fault details using Valgrind?

    - by Davit Siradeghyan
    Hi all I have a std::map< std::string, std::string which initialized with some API call. When I'm trying to use this map I'm getting segmentation fault. How can I detect invalid code or what is invalid or any detail which can help me to fix problem? Code looks like this: std::map< std::string, std::string> cont; some_func( cont ); // getting parameter by reference and initialize it std::cout << cont[ "some_key" ] << '\n'; // getting segmentation fault here

    Read the article

  • no matching function for call to 'getline'

    - by WTP
    I have a class called parser: class parser { const std::istream& stream; public: parser(const std::istream& stream_) : stream(stream_) {} ~parser() {} void parse(); }; In parser::parse I want to loop over each line, so I use std::getline: std::getline(stream, line) The compiler gives me this error, however: src/parser.cc:10:7: error: no matching function for call to 'getline' std::getline(stream, line); ^~~~~~~~~~~~ But the first argument to std::getline is of type std::istream&, right? What could I be doing wrong?

    Read the article

  • Making swap faster, easier to use and exception-safe

    - by FredOverflow
    I could not sleep last night and started thinking about std::swap. Here is the familiar C++98 version: template <typename T> void swap(T& a, T& b) { T c(a); a = b; b = c; } If a user-defined class Foo uses external ressources, this is inefficient. The common idiom is to provide a method void Foo::swap(Foo& other) and a specialization of std::swap<Foo>. Note that this does not work with class templates since you cannot partially specialize a function template, and overloading names in the std namespace is illegal. The solution is to write a template function in one's own namespace and rely on argument dependent lookup to find it. This depends critically on the client to follow the "using std::swap idiom" instead of calling std::swap directly. Very brittle. In C++0x, if Foo has a user-defined move constructor and a move assignment operator, providing a custom swap method and a std::swap<Foo> specialization has little to no performance benefit, because the C++0x version of std::swap uses efficient moves instead of copies: #include <utility> template <typename T> void swap(T& a, T& b) { T c(std::move(a)); a = std::move(b); b = std::move(c); } Not having to fiddle with swap anymore already takes a lot of burden away from the programmer. Current compilers do not generate move constructors and move assignment operators automatically yet, but as far as I know, this will change. The only problem left then is exception-safety, because in general, move operations are allowed to throw, and this opens up a whole can of worms. The question "What exactly is the state of a moved-from object?" complicates things further. Then I was thinking, what exactly are the semantics of std::swap in C++0x if everything goes fine? What is the state of the objects before and after the swap? Typically, swapping via move operations does not touch external resources, only the "flat" object representations themselves. So why not simply write a swap template that does exactly that: swap the object representations? #include <cstring> template <typename T> void swap(T& a, T& b) { unsigned char c[sizeof(T)]; memcpy( c, &a, sizeof(T)); memcpy(&a, &b, sizeof(T)); memcpy(&b, c, sizeof(T)); } This is as efficient as it gets: it simply blasts through raw memory. It does not require any intervention from the user: no special swap methods or move operations have to be defined. This means that it even works in C++98 (which does not have rvalue references, mind you). But even more importantly, we can now forget about the exception-safety issues, because memcpy never throws. I can see two potential problems with this approach: First, not all objects are meant to be swapped. If a class designer hides the copy constructor or the copy assignment operator, trying to swap objects of the class should fail at compile-time. We can simply introduce some dead code that checks whether copying and assignment are legal on the type: template <typename T> void swap(T& a, T& b) { if (false) // dead code, never executed { T c(a); // copy-constructible? a = b; // assignable? } unsigned char c[sizeof(T)]; std::memcpy( c, &a, sizeof(T)); std::memcpy(&a, &b, sizeof(T)); std::memcpy(&b, c, sizeof(T)); } Any decent compiler can trivially get rid of the dead code. (There are probably better ways to check the "swap conformance", but that is not the point. What matters is that it's possible). Second, some types might perform "unusual" actions in the copy constructor and copy assignment operator. For example, they might notify observers of their change. I deem this a minor issue, because such kinds of objects probably should not have provided copy operations in the first place. Please let me know what you think of this approach to swapping. Would it work in practice? Would you use it? Can you identify library types where this would break? Do you see additional problems? Discuss!

    Read the article

  • boost for each problem

    - by areslp
    std::map< std::string , std::string > matrix_int; typedef std::pair< std::string , std::string > lp_type; BOOST_FOREACH( lp_type &row, matrix_int ){ } this can not be complied: error C2440: 'initializing' : cannot convert from 'std::pair<_Ty1,_Ty2' to 'lp_type &' when I have ',' in element type, boost doc says I can use typedef or predefine a var; but what should I do when I want to get a reference?

    Read the article

  • Are returned locals automatically xvalues

    - by mark
    Following on from a comment I made on this: passing std::vector to constructor and move semantics Is the std::move necessary in the following code, to ensure that the returned value is a xvalue? std::vector<string> buildVector() { std::vector<string> local; // .... build a vector return std::move(local); } It is my understanding that this is required. I have often seen this used when returning a std::unique_ptr from a function, however GManNickG made the following comment: It is my understanding that in a return statement all local variables are automatically xvalues (expiring values) and will be moved, but I'm unsure if that only applies to the returned object itself. So OP should go ahead and put that in there until I'm more confident it shouldn't have to be. :) Can anyone clarify if the std::move is necessary? Is the behaviour compiler dependent?

    Read the article

  • What's the bug in the following code ?

    - by Johannes
    #include <iostream> #include <algorithm> #include <vector> #include <boost/array.hpp> #include <boost/bind.hpp> int main() { boost::array<int, 4> a = {45, 11, 67, 23}; std::vector<int> v(a.begin(), a.end()); std::vector<int> v2; std::transform(v.begin(), v.end(), v2.begin(), boost::bind(std::multiplies<int>(), _1, 2)); std::copy(v2.begin(), v2.end(), std::ostream_iterator<int>(std::cout, " ")); } When run, this gives a creepy segmentation fault. Please tell me where I'm going wrong.

    Read the article

  • Any side effect of not using USES_CONVERSION

    - by Yan Cheng CHEOK
    Recently, I have a utilities function of // T2CA #include "ATLCONV.H" std::string Utils::CString2String(const CString& cString) { #if _MSC_VER > 1200 // Convert a TCHAR string to a LPCSTR // construct a std::string using the LPCSTR input CT2CA tmp(cString); std::string strStd (tmp); #else // Deprecated in VC2008. // construct a std::string using the LPCSTR input std::string strStd (T2CA (cString)); #endif return strStd; } I do several simple test it seems work fine. However, when I google around, I see most usage of T2CA in VC6, before they call, they will invoke USES_CONVERSION; Is there any thing I had missed out? Shall I invoke my function by : #else // Deprecated in VC2008. // construct a std::string using the LPCSTR input USES_CONVERSION; std::string strStd (T2CA (cString)); #endif

    Read the article

  • boost::asio::async_read_until problem

    - by user368831
    Hi again, I'm modify the boost asio echo example to use async_read_until to read the input word by word. Even though I am using async_read_until all the data sent seems to be read from the socket. Could someone please advise: #include <cstdlib> #include <iostream> #include <boost/bind.hpp> #include <boost/asio.hpp> using boost::asio::ip::tcp; class session { public: session(boost::asio::io_service& io_service) : socket_(io_service) { } tcp::socket& socket() { return socket_; } void start() { std::cout<<"starting"<<std::endl; boost::asio::async_read_until(socket_, buffer, ' ', boost::bind(&session::handle_read, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred)); } void handle_read(const boost::system::error_code& error, size_t bytes_transferred) { std::ostringstream ss; ss<<&buffer; std::string s = ss.str(); std::cout<<s<<std::endl; if (!error) { boost::asio::async_write(socket_, boost::asio::buffer(s), boost::bind(&session::handle_write, this, boost::asio::placeholders::error)); } else { delete this; } } void handle_write(const boost::system::error_code& error) { std::cout<<"handling write"<<std::endl; if (!error) { } else { delete this; } } private: tcp::socket socket_; boost::asio::streambuf buffer; }; class server { public: server(boost::asio::io_service& io_service, short port) : io_service_(io_service), acceptor_(io_service, tcp::endpoint(tcp::v4(), port)) { session* new_session = new session(io_service_); acceptor_.async_accept(new_session->socket(), boost::bind(&server::handle_accept, this, new_session, boost::asio::placeholders::error)); } void handle_accept(session* new_session, const boost::system::error_code& error) { if (!error) { new_session->start(); new_session = new session(io_service_); acceptor_.async_accept(new_session->socket(), boost::bind(&server::handle_accept, this, new_session, boost::asio::placeholders::error)); } else { delete new_session; } } private: boost::asio::io_service& io_service_; tcp::acceptor acceptor_; }; int main(int argc, char* argv[]) { try { if (argc != 2) { std::cerr << "Usage: async_tcp_echo_server <port>\n"; return 1; } boost::asio::io_service io_service; using namespace std; // For atoi. server s(io_service, atoi(argv[1])); io_service.run(); } catch (std::exception& e) { std::cerr << "Exception: " << e.what() << "\n"; } return 0; } Thanks!

    Read the article

  • boost::asio::async_write problem

    - by user368831
    Hi, I'm trying to figure out how asynchronous reads and writes work in boost asio by manipulating the echo example. Currently, I have a server that should, when sent a sentence, respond with only the first word. However, the boost::asio::async_write never seems to complete even though the write handler is being called. Can someone please explain what's going on? Here's the code: #include <cstdlib> #include <iostream> #include <boost/bind.hpp> #include <boost/asio.hpp> using boost::asio::ip::tcp; class session { public: session(boost::asio::io_service& io_service) : socket_(io_service) { } tcp::socket& socket() { return socket_; } void start() { std::cout<<"starting"<<std::endl; boost::asio::async_read_until(socket_, buffer, ' ', boost::bind(&session::handle_read, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred)); } void handle_read(const boost::system::error_code& error, size_t bytes_transferred) { // std::ostringstream ss; // ss<<&buffer; char* c = new char[bytes_transferred]; //std::string s; buffer.sgetn(c,bytes_transferred); std::cout<<"data: "<< c<<" bytes: "<<bytes_transferred<<std::endl; if (!error) { boost::asio::async_write(socket_, boost::asio::buffer(c,bytes_transferred), boost::bind(&session::handle_write, this, boost::asio::placeholders::error)); } else { delete this; } } void handle_write(const boost::system::error_code& error) { std::cout<<"handling write"<<std::endl; if (!error) { } else { delete this; } } private: tcp::socket socket_; boost::asio::streambuf buffer; }; class server { public: server(boost::asio::io_service& io_service, short port) : io_service_(io_service), acceptor_(io_service, tcp::endpoint(tcp::v4(), port)) { session* new_session = new session(io_service_); acceptor_.async_accept(new_session->socket(), boost::bind(&server::handle_accept, this, new_session, boost::asio::placeholders::error)); } void handle_accept(session* new_session, const boost::system::error_code& error) { if (!error) { new_session->start(); new_session = new session(io_service_); acceptor_.async_accept(new_session->socket(), boost::bind(&server::handle_accept, this, new_session, boost::asio::placeholders::error)); } else { delete new_session; } } private: boost::asio::io_service& io_service_; tcp::acceptor acceptor_; }; int main(int argc, char* argv[]) { try { if (argc != 2) { std::cerr << "Usage: async_tcp_echo_server <port>\n"; return 1; } boost::asio::io_service io_service; using namespace std; // For atoi. server s(io_service, atoi(argv[1])); io_service.run(); } catch (std::exception& e) { std::cerr << "Exception: " << e.what() << "\n"; } return 0; } Thanks!

    Read the article

  • Problems manipulating strings through a stdcall to a dll

    - by ibiza
    I need to create a C++ dll that will be called from another program through stdcall. What is needed : the caller program will pass an array of string to the dll and the dll should change the string values in the array. The caller program will then continue to work with these string values that came from the dll. I made a simple test project and I am obviously missing something... Here is my test C++ dll : #ifndef _DLL_H_ #define _DLL_H_ #include <string> #include <iostream> struct strStruct { int len; char* string; }; __declspec (dllexport) int __stdcall TestFunction(strStruct* s) { std::cout << "Just got in dll" << std::endl; std::cout << s[0].string << std::endl; //////std::cout << s[1].string << std::endl; /* char str1[] = "foo"; strcpy(s[0].string, str1); s[0].len = 3; char str2[] = "foobar"; strcpy(s[1].string, str2); s[1].len = 6; */ //std::cout << s[0].string << std::endl; //std::cout << s[1].string << std::endl; std::cout << "Getting out of dll" << std::endl; return 1; } #endif and here is a simple C# program that I am using to test my test dll : using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Runtime.InteropServices; namespace TestStr { class Program { [DllImport("TestStrLib.dll", CharSet = CharSet.Ansi, CallingConvention = CallingConvention.StdCall)] public static extern int TestFunction(string[] s); static void Main(string[] args) { string[] test = new string[2] { "a1a1a1a1a1", "b2b2b2b2b2" }; Console.WriteLine(test[0]); Console.WriteLine(test[1]); TestFunction(test); Console.WriteLine(test[0]); Console.WriteLine(test[1]); Console.ReadLine(); } } } And here is the output produced : a1a1a1a1a1 b2b2b2b2b2 Just got in dll b2b2b2b2b2 Getting out of dll a1a1a1a1a1 b2b2b2b2b2 I have some questions : 1) Why is it outputting the element in the second position of the array rather than in the first position?? 2) If I uncomment the line commented with ////// in the dll file, the program crashes. Why? 3) Obviously I wanted to do more things in the dll (the parts in /* */) than what it does right now, but I am blocked by the first 2 questions... Thanks for all your help

    Read the article

  • Critique my heap debugger

    - by FredOverflow
    I wrote the following heap debugger in order to demonstrate memory leaks, double deletes and wrong forms of deletes (i.e. trying to delete an array with delete p instead of delete[] p) to beginning programmers. I would love to get some feedback on that from strong C++ programmers because I have never done this before and I'm sure I've done some stupid mistakes. Thanks! #include <cstdlib> #include <iostream> #include <new> namespace { const int ALIGNMENT = 16; const char* const ERR = "*** ERROR: "; int counter = 0; struct heap_debugger { heap_debugger() { std::cerr << "*** heap debugger started\n"; } ~heap_debugger() { std::cerr << "*** heap debugger shutting down\n"; if (counter > 0) { std::cerr << ERR << "failed to release memory " << counter << " times\n"; } else if (counter < 0) { std::cerr << ERR << (-counter) << " double deletes detected\n"; } } } instance; void* allocate(size_t size, const char* kind_of_memory, size_t token) throw (std::bad_alloc) { void* raw = malloc(size + ALIGNMENT); if (raw == 0) throw std::bad_alloc(); *static_cast<size_t*>(raw) = token; void* payload = static_cast<char*>(raw) + ALIGNMENT; ++counter; std::cerr << "*** allocated " << kind_of_memory << " at " << payload << " (" << size << " bytes)\n"; return payload; } void release(void* payload, const char* kind_of_memory, size_t correct_token, size_t wrong_token) throw () { if (payload == 0) return; std::cerr << "*** releasing " << kind_of_memory << " at " << payload << '\n'; --counter; void* raw = static_cast<char*>(payload) - ALIGNMENT; size_t* token = static_cast<size_t*>(raw); if (*token == correct_token) { *token = 0xDEADBEEF; free(raw); } else if (*token == wrong_token) { *token = 0x177E6A7; std::cerr << ERR << "wrong form of delete\n"; } else { std::cerr << ERR << "double delete\n"; } } } void* operator new(size_t size) throw (std::bad_alloc) { return allocate(size, "non-array memory", 0x5AFE6A8D); } void* operator new[](size_t size) throw (std::bad_alloc) { return allocate(size, " array memory", 0x5AFE6A8E); } void operator delete(void* payload) throw () { release(payload, "non-array memory", 0x5AFE6A8D, 0x5AFE6A8E); } void operator delete[](void* payload) throw () { release(payload, " array memory", 0x5AFE6A8E, 0x5AFE6A8D); }

    Read the article

  • How can I resolve component types in a way that supports adding new types relatively easily?

    - by John
    I am trying to build an Entity Component System for an interactive application developed using C++ and OpenGL. My question is quite simple. In my GameObject class I have a collection of Components. I can add and retrieve components. class GameObject: public Object { public: GameObject(std::string objectName); ~GameObject(void); Component * AddComponent(std::string name); Component * AddComponent(Component componentType); Component * GetComponent (std::string TypeName); Component * GetComponent (<Component Type Here>); private: std::map<std::string,Component*> m_components; }; I will have a collection of components that inherit from the base Components class. So if I have a meshRenderer component and would like to do the following GameObject * warship = new GameObject("myLovelyWarship"); MeshRenderer * meshRenderer = warship->AddComponent(MeshRenderer); or possibly MeshRenderer * meshRenderer = warship->AddComponent("MeshRenderer"); I could be make a Component Factory like this: class ComponentFactory { public: static Component * CreateComponent(const std::string &compTyp) { if(compTyp == "MeshRenderer") return new MeshRenderer; if(compTyp == "Collider") return new Collider; return NULL; } }; However, I feel like I should not have to keep updating the Component Factory every time I want to create a new custom Component but it is an option. Is there a more proper way to add and retrieve these components? Is standard templates another solution?

    Read the article

  • How do I pass an array of structs (containing std:string or BSTR) from ATL to C#. SafeArray? Varian

    - by Andrew
    Hi, I have an ATL COM object that I am using from C#. The interface currently looks like: interface ICHASCom : IDispatch{ [id(1), helpstring("method Start")] HRESULT Start([in] BSTR name, [out,retval] VARIANT_BOOL* result); ... [id(4), helpstring("method GetCount")] HRESULT GetCount([out,retval] LONG* numPorts); ... [id(7), helpstring("method EnableLogging")] HRESULT EnableLogging([in] VARIANT_BOOL enableLogging); }; That is, it's a very simple interface. I also have some events that I send back too. Now, I would like to add something to the interface. In the ATL I have some results, which are currently structs and look like struct REPORT_LINE { string creationDate; string Id; string summary; }; All the members of the struct are std::string. I have an array of these that I need to get back to the C#. What's the best way to do this? I suspect someone is going to say, "hey, you can't just send std::string over COM like that. If so, fine, but what's the best way to modidfy the struct? Change the std::string to BSTR? And then how do I, 1) Set up the IDL to pass an array of structs (structs with BSTR or std::string) 2) If I must use SAFEARRAYS, how do I fill the SAFEARRAYS with the structs. I'm not familiar with COM except for use with simple types. Thanks, Dave

    Read the article

  • Is it good practice to use std::size_t all over the place?

    - by dehmann
    I have a lot of constants in my code that are unsigned numbers, e.g. counters, frequency cutoffs, lengths, etc. I started using std::size_t for all of these, instead of int or unsigned int. Is that the right thing to do? I started it because the STL containers use it for their sizes, it's used for string position, etc.

    Read the article

  • gcc - using -werror and -std= -pedantic considered good practice?

    - by Helper Method
    I'm just digging into the gcc manual and some things are still unclear to me: a) When specifying a std, should I always use -pedantic in conjunction? b) When using -g, it the standard level sufficient or should I specify level 3, i.e. -g3? c) Is it good practice to use -Werror to promote all warnings to errors and -pedantic-errors to promote all pedantic warnings to errors?

    Read the article

< Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >