Search Results

Search found 9706 results on 389 pages for 'aggregate functions'.

Page 200/389 | < Previous Page | 196 197 198 199 200 201 202 203 204 205 206 207  | Next Page >

  • Calculated Fields - Idiosyncracies

    - by PointsToShare
    © 2011 By: Dov Trietsch. All rights reserved Calculated Fields and some of their Idiosyncrasies Did you try to write a calculate field formula directly into the screen? Good Luck – You’ll need it! Calculated Fields are a sophisticated OOB feature of SharePoint, so you could think that they are best left to the end users – at least to the power users. But they reach their limits before the “Professionals “do, and the tough ones come back to us anyway. Back to business; the simpler the formula, the easier it is. Still, use your favorite editor to write it, then cut it and paste it to the ridiculously small window. What about complex formulae? Write them in steps! Here is a case in point and an idiosyncrasy or two. Our welders need to be certified and recertified every two years. Some of them are certifiable…., but I digress. To be certified you need to pass an eye exam, and two more tests – test A and test B. for each of those you have an expiry date. When renewed, each expiry date is advanced by two years from the date of renewal. My users wanted a visual clue so that when the supervisor looks at the list, she’ll have a KPI symbol telling her if anything expired (Red), is going to expire within the next 90 days (Yellow) or is not to be worried about (green). Not all the dates are filled and any blank date implies a complete lack of certification in the particular requirement. Obviously, I needed to figure the minimal of these 3 dates – a simple enough formula: =MIN([Date_EyeExam], {Date_TestA], [Date_TestB]). Aha! Here is idiosyncrasy #1. When one of the dates is a null, MIN(Date1, Date2) returns the non null date. Null is construed as “Far, far away”. The funny thing is that when you compare it to Today, the null is the lesser one. So a null it is less than today, but not when MIN is calculated. Now, to me the fact that the welder does not have an exam date, is synonymous with his exam being prehistoric, or at least past due. So here is what I did: Solution: Let’s set a blank date to 1/1/1800. How will we do that? Use the IF. IF([Field] rel relValue, TrueValue, FalseValue). rel is any relationship operator <, >, <=, >=, =, <>. If the field is related to the relValue as prescribed, the “IF” returns the TrueValue, otherwise it returns the FalseValue. Thus: =IF([SomeDate]="",1/1/1800,[SomeDate]) will return 1/1/1800 if the date is blank and the date itself if not. So, using this formula, if the welder missed an exam, the returned exam date will be far in the past. It would be nice if we could take such a formula and make it into a reusable function. Alas, here is a calculated field serious shortcoming: You cannot write subs and functions!! Aha, but we can use interim calculated fields! So let’s create 3 calculated fields as follows: 1: c_DateTestA as a calculated field of the date type, with the formula:  IF([Date_TestA]="",1/1/1800,[Date_TestA]) 2: c_DateTestB as a calculated field of the date type, with the formula:  IF([Date_TestB]="",1/1/1800,[Date_TestB]) 3: c_DateEyeExam as a calculated field of the date type, with the formula:  IF([Date_EyeExam]="",1/1/1800,[Date_EyeExam]) And now use these to get c_MinDate. This is again a calculated field of type date with the formula: MIN(c_DateTestA, cDateTestB, c_DateEyeExam) Note that I missed the square parentheses. In “properly named fields – where there are no embedded spaces, we don’t need the square parentheses. I actually strongly recommend using underscores in place of spaces in all the field names in your lists. Among other things, it makes using CAML much simpler. Now, we still need to apply the KPI to this minimal date. I am going to use the available KPI graphics that come with SharePoint and are always available in your 12 hive. "/_layouts/images/kpidefault-2.gif" is the Red KPI "/_layouts/images/kpidefault-1.gif" is the Yellow KPI "/_layouts/images/kpidefault-0.gif" is the Green KPI And here is the nested IF formula that will do the trick: =IF(c_MinDate<=Today,"/_layouts/images/kpidefault-2.gif", IF(cMinDate<Today+90,"/_layouts/images/kpidefault-1.gif","/_layouts/images/kpidefault-0.gif")) Nice! BUT when I tested, it did not work! This is Idiosyncrasy #2: A calculated field based on a calculated field based on a calculated field does not work. You have to stop at two levels! Back to the drawing board: We have to reduce by one level. How? We’ll eliminate the c_DateX items in the formula and replace them with the proper IF formulae. Notice that this needs to be done with precision. You are much better off in doing it in your favorite line editor, than inside the cramped space that SharePoint gives you. So here is the result: MIN(IF([Date_TestA]="",1/1/1800,[ Date_TestA]), IF([Date_TestB]="",1/1/1800,[ Date_TestB]), 1/1/1800), IF([Date_EyeExam]="",1/1/1800,[Date_EyeExam])) Note that I bolded the parentheses and painted them red. They have to match for this formula to work. Now we can leave the KPI formula as is and test again. This time with SUCCESS! Conclusion: build the inner functions first, and then embed them inside the outer formulae. Do this as long as necessary. Use your favorite line editor. Limit yourself to 2 levels. That’s all folks! Almost! As soon as I finished doing all of the above, my users added yet another level of complexity. They added another test, a test that must be passed, but never expires and asked for yet another KPI, this time in Black to denote that any test is not just past due, but altogether missing. I just finished this. Let’s hope it ends here! And OH, the formula  =IF(c_MinDate<=Today,"/_layouts/images/kpidefault-2.gif",IF(cMinDate<Today+90,"/_layouts/images/kpidefault-1.gif","/_layouts/images/kpidefault-0.gif")) Deals with “Today” and this is a subject deserving a discussion of its own!  That’s all folks?! (and this time I mean it)

    Read the article

  • Who could ask for more with LESS CSS? (Part 2 of 3&ndash;Setup)

    - by ToStringTheory
    Welcome to part two in my series covering the LESS CSS language.  In the first post, I covered the two major CSS precompiled languages - LESS and SASS to a small extent, iterating over some of the features that you could expect to find in them.  In this post, I will go a little further in depth into the setup and execution of using the LESS framework. Introduction It really doesn’t take too much to get LESS working in your project.  The basic workflow will be including the necessary translator in your project, defining bundles for the LESS files, add the necessary code to your layouts.cshtml file, and finally add in all your necessary styles to the LESS files!  Lets get started… New Project Just like all great experiments in Visual Studio, start up a File > New Project, and create a new MVC 4 Web Application.  The Base Package After you have the new project spun up, use the Nuget Package Manager to install the Bundle Transformer: LESS package. This will take care of installing the main translator that we will be using for LESS code (dotless which is another Nuget package), as well as the core framework for the Bundle Transformer library.  The installation will come up with some instructions in a readme file on how to modify your web.config to handle all your *.less requests through the Bundle Transformer, which passes the translating onto dotless. Where To Put These LESS Files?! This step isn’t really a requirement, however I find that I don’t like how ASP.Net MVC just has a content directory where they store CSS, content images, css images….  In my project, I went ahead and created a new directory just for styles – LESS files, CSS files, and images that are only referenced in LESS or CSS.  Ignore the MVC directory as this was my testbed for another project I was working on at the same time.  As you can see here, I have: A top level directory for images which contains only images used in a page A top level directory for scripts A top level directory for Styles A few directories for plugins I am using (Colrizr, JQueryUI, Farbtastic) Multiple *.less files for different functions (I’ll go over these in a minute) I find that this layout offers the best separation of content types.  Bring Out Your Bundles! The next thing that we need to do is add in the necessary code for the bundling of these LESS files.  Go ahead and open your BundleConfig.cs file, usually located in the /App_Start/ folder of the project.  As you will see in a minute, instead of using the method Microsoft does in the base MVC 4 project, I change things up a bit.  Define Constants The first thing I do is define constants for each of the virtual paths that will be used in the bundler: The main reason is that I hate magic strings in my program, so the fact that you first defined a virtual path in the BundleConfig file, and then used that path in the _Layout.cshtml file really irked me. Add Bundles to the BundleCollection Next, I am going to define the bundles for my styles in my AddStyleBundles method: That is all it takes to get all of my styles in play with LESS.  The CssTransformer and NullOrderer types come from the Bundle Transformer we grabbed earlier.  If we didn’t use that package, we would have to write our own function (not too hard, but why do it if it’s been done). I use the site.less file as my main hub for LESS - I will cover that more in the next section. Add Bundles To Layout.cshtml File With the constants in the BundleConfig file, instead of having to use the same magic string I defined for the bundle virtual path, I am able to do this: Notice here that besides the RenderSection magic strings (something I am working on in another side project), all of the bundles are now based on const strings.  If I need to change the virtual path, I only have to do it in one place.  Nifty! Get Started! We are now ready to roll!  As I said in the previous section, I use the site.less file as a central hub for my styles: As seen here, I have a reset.css file which is a simple CSS reset.  Next, I have created a file for managing all my color variables – colors.less: Here, you can see some of the standards I started to use, in this case for color variables.  I define all color variables with the @col prefix.  Currently, I am going for verbose variable names. The next file imported is my font.less file that defines the typeface information for the site: Simple enough.  A couple of imports for fonts from Google, and then declaring variables for use throughout LESS.  I also set up the heading sizes, margins, etc..  You can also see my current standardization for font declaration strings – @font. Next, I pull in a mixins.less file that I grabbed from the Twitter Bootstrap library that gives some useful parameterized mixins for use such as border-radius, gradient, box-shadow, etc… The common.less file is a file that just contains items that I will be defining that can be used across all my LESS files.  Kind of like my own mixins or font-helpers: Finally I have my layout.less file that contains all of my definitions for general site layout – width, main/sidebar widths, footer layout, etc: That’s it!  For the rest of my one off definitions/corrections, I am currently putting them into the site.less file beneath my original imports Note Probably my favorite side effect of using the LESS handler/translator while bundling is that it also does a CSS checkup when rendering…  See, when your web.config is set to debug, bundling will output the url to the direct less file, not the bundle, and the http handler intercepts the call, compiles the less, and returns the result.  If there is an error in your LESS code, the CSS file can be returned empty, or may have the error output as a comment on the first couple lines. If you have the web.config set to not debug, then if there is an error in your code, you will end up with the usual ASP.Net exception page (unless you catch the exception of course), with information regarding the failure of the conversion, such as brace mismatch, undefined variable, etc…  I find it nifty. Conclusion This is really just the beginning.  LESS is very powerful and exciting!  My next post will show an actual working example of why LESS is so powerful with its functions and variables…  At least I hope it will!  As for now, if you have any questions, comments, or suggestions on my current practice, I would love to hear them!  Feel free to drop a comment or shoot me an email using the contact page.  In the mean time, I plan on posting the final post in this series tomorrow or the day after, with my side project, as well as a whole base ASP.Net MVC4 templated project with LESS added in it so that you can check out the layout I have in this post.  Until next time…

    Read the article

  • Linux RAID-0 performance doesn't scale up over 1 GB/s

    - by wazoox
    I have trouble getting the max throughput out of my setup. The hardware is as follow : dual Quad-Core AMD Opteron(tm) Processor 2376 16 GB DDR2 ECC RAM dual Adaptec 52245 RAID controllers 48 1 TB SATA drives set up as 2 RAID-6 arrays (256KB stripe) + spares. Software : Plain vanilla 2.6.32.25 kernel, compiled for AMD-64, optimized for NUMA; Debian Lenny userland. benchmarks run : disktest, bonnie++, dd, etc. All give the same results. No discrepancy here. io scheduler used : noop. Yeah, no trick here. Up until now I basically assumed that striping (RAID 0) several physical devices should augment performance roughly linearly. However this is not the case here : each RAID array achieves about 780 MB/s write, sustained, and 1 GB/s read, sustained. writing to both RAID arrays simultaneously with two different processes gives 750 + 750 MB/s, and reading from both gives 1 + 1 GB/s. however when I stripe both arrays together, using either mdadm or lvm, the performance is about 850 MB/s writing and 1.4 GB/s reading. at least 30% less than expected! running two parallel writer or reader processes against the striped arrays doesn't enhance the figures, in fact it degrades performance even further. So what's happening here? Basically I ruled out bus or memory contention, because when I run dd on both drives simultaneously, aggregate write speed actually reach 1.5 GB/s and reading speed tops 2 GB/s. So it's not the PCIe bus. I suppose it's not the RAM. It's not the filesystem, because I get exactly the same numbers benchmarking against the raw device or using XFS. And I also get exactly the same performance using either LVM striping and md striping. What's wrong? What's preventing a process from going up to the max possible throughput? Is Linux striping defective? What other tests could I run?

    Read the article

  • What are good design practices when working with Entity Framework

    - by AD
    This will apply mostly for an asp.net application where the data is not accessed via soa. Meaning that you get access to the objects loaded from the framework, not Transfer Objects, although some recommendation still apply. This is a community post, so please add to it as you see fit. Applies to: Entity Framework 1.0 shipped with Visual Studio 2008 sp1. Why pick EF in the first place? Considering it is a young technology with plenty of problems (see below), it may be a hard sell to get on the EF bandwagon for your project. However, it is the technology Microsoft is pushing (at the expense of Linq2Sql, which is a subset of EF). In addition, you may not be satisfied with NHibernate or other solutions out there. Whatever the reasons, there are people out there (including me) working with EF and life is not bad.make you think. EF and inheritance The first big subject is inheritance. EF does support mapping for inherited classes that are persisted in 2 ways: table per class and table the hierarchy. The modeling is easy and there are no programming issues with that part. (The following applies to table per class model as I don't have experience with table per hierarchy, which is, anyway, limited.) The real problem comes when you are trying to run queries that include one or many objects that are part of an inheritance tree: the generated sql is incredibly awful, takes a long time to get parsed by the EF and takes a long time to execute as well. This is a real show stopper. Enough that EF should probably not be used with inheritance or as little as possible. Here is an example of how bad it was. My EF model had ~30 classes, ~10 of which were part of an inheritance tree. On running a query to get one item from the Base class, something as simple as Base.Get(id), the generated SQL was over 50,000 characters. Then when you are trying to return some Associations, it degenerates even more, going as far as throwing SQL exceptions about not being able to query more than 256 tables at once. Ok, this is bad, EF concept is to allow you to create your object structure without (or with as little as possible) consideration on the actual database implementation of your table. It completely fails at this. So, recommendations? Avoid inheritance if you can, the performance will be so much better. Use it sparingly where you have to. In my opinion, this makes EF a glorified sql-generation tool for querying, but there are still advantages to using it. And ways to implement mechanism that are similar to inheritance. Bypassing inheritance with Interfaces First thing to know with trying to get some kind of inheritance going with EF is that you cannot assign a non-EF-modeled class a base class. Don't even try it, it will get overwritten by the modeler. So what to do? You can use interfaces to enforce that classes implement some functionality. For example here is a IEntity interface that allow you to define Associations between EF entities where you don't know at design time what the type of the entity would be. public enum EntityTypes{ Unknown = -1, Dog = 0, Cat } public interface IEntity { int EntityID { get; } string Name { get; } Type EntityType { get; } } public partial class Dog : IEntity { // implement EntityID and Name which could actually be fields // from your EF model Type EntityType{ get{ return EntityTypes.Dog; } } } Using this IEntity, you can then work with undefined associations in other classes // lets take a class that you defined in your model. // that class has a mapping to the columns: PetID, PetType public partial class Person { public IEntity GetPet() { return IEntityController.Get(PetID,PetType); } } which makes use of some extension functions: public class IEntityController { static public IEntity Get(int id, EntityTypes type) { switch (type) { case EntityTypes.Dog: return Dog.Get(id); case EntityTypes.Cat: return Cat.Get(id); default: throw new Exception("Invalid EntityType"); } } } Not as neat as having plain inheritance, particularly considering you have to store the PetType in an extra database field, but considering the performance gains, I would not look back. It also cannot model one-to-many, many-to-many relationship, but with creative uses of 'Union' it could be made to work. Finally, it creates the side effet of loading data in a property/function of the object, which you need to be careful about. Using a clear naming convention like GetXYZ() helps in that regards. Compiled Queries Entity Framework performance is not as good as direct database access with ADO (obviously) or Linq2SQL. There are ways to improve it however, one of which is compiling your queries. The performance of a compiled query is similar to Linq2Sql. What is a compiled query? It is simply a query for which you tell the framework to keep the parsed tree in memory so it doesn't need to be regenerated the next time you run it. So the next run, you will save the time it takes to parse the tree. Do not discount that as it is a very costly operation that gets even worse with more complex queries. There are 2 ways to compile a query: creating an ObjectQuery with EntitySQL and using CompiledQuery.Compile() function. (Note that by using an EntityDataSource in your page, you will in fact be using ObjectQuery with EntitySQL, so that gets compiled and cached). An aside here in case you don't know what EntitySQL is. It is a string-based way of writing queries against the EF. Here is an example: "select value dog from Entities.DogSet as dog where dog.ID = @ID". The syntax is pretty similar to SQL syntax. You can also do pretty complex object manipulation, which is well explained [here][1]. Ok, so here is how to do it using ObjectQuery< string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); The first time you run this query, the framework will generate the expression tree and keep it in memory. So the next time it gets executed, you will save on that costly step. In that example EnablePlanCaching = true, which is unnecessary since that is the default option. The other way to compile a query for later use is the CompiledQuery.Compile method. This uses a delegate: static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => ctx.DogSet.FirstOrDefault(it => it.ID == id)); or using linq static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => (from dog in ctx.DogSet where dog.ID == id select dog).FirstOrDefault()); to call the query: query_GetDog.Invoke( YourContext, id ); The advantage of CompiledQuery is that the syntax of your query is checked at compile time, where as EntitySQL is not. However, there are other consideration... Includes Lets say you want to have the data for the dog owner to be returned by the query to avoid making 2 calls to the database. Easy to do, right? EntitySQL string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)).Include("Owner"); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); CompiledQuery static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => (from dog in ctx.DogSet.Include("Owner") where dog.ID == id select dog).FirstOrDefault()); Now, what if you want to have the Include parametrized? What I mean is that you want to have a single Get() function that is called from different pages that care about different relationships for the dog. One cares about the Owner, another about his FavoriteFood, another about his FavotireToy and so on. Basicly, you want to tell the query which associations to load. It is easy to do with EntitySQL public Dog Get(int id, string include) { string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)) .IncludeMany(include); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); } The include simply uses the passed string. Easy enough. Note that it is possible to improve on the Include(string) function (that accepts only a single path) with an IncludeMany(string) that will let you pass a string of comma-separated associations to load. Look further in the extension section for this function. If we try to do it with CompiledQuery however, we run into numerous problems: The obvious static readonly Func<Entities, int, string, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, string, Dog>((ctx, id, include) => (from dog in ctx.DogSet.Include(include) where dog.ID == id select dog).FirstOrDefault()); will choke when called with: query_GetDog.Invoke( YourContext, id, "Owner,FavoriteFood" ); Because, as mentionned above, Include() only wants to see a single path in the string and here we are giving it 2: "Owner" and "FavoriteFood" (which is not to be confused with "Owner.FavoriteFood"!). Then, let's use IncludeMany(), which is an extension function static readonly Func<Entities, int, string, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, string, Dog>((ctx, id, include) => (from dog in ctx.DogSet.IncludeMany(include) where dog.ID == id select dog).FirstOrDefault()); Wrong again, this time it is because the EF cannot parse IncludeMany because it is not part of the functions that is recognizes: it is an extension. Ok, so you want to pass an arbitrary number of paths to your function and Includes() only takes a single one. What to do? You could decide that you will never ever need more than, say 20 Includes, and pass each separated strings in a struct to CompiledQuery. But now the query looks like this: from dog in ctx.DogSet.Include(include1).Include(include2).Include(include3) .Include(include4).Include(include5).Include(include6) .[...].Include(include19).Include(include20) where dog.ID == id select dog which is awful as well. Ok, then, but wait a minute. Can't we return an ObjectQuery< with CompiledQuery? Then set the includes on that? Well, that what I would have thought so as well: static readonly Func<Entities, int, ObjectQuery<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, ObjectQuery<Dog>>((ctx, id) => (ObjectQuery<Dog>)(from dog in ctx.DogSet where dog.ID == id select dog)); public Dog GetDog( int id, string include ) { ObjectQuery<Dog> oQuery = query_GetDog(id); oQuery = oQuery.IncludeMany(include); return oQuery.FirstOrDefault; } That should have worked, except that when you call IncludeMany (or Include, Where, OrderBy...) you invalidate the cached compiled query because it is an entirely new one now! So, the expression tree needs to be reparsed and you get that performance hit again. So what is the solution? You simply cannot use CompiledQueries with parametrized Includes. Use EntitySQL instead. This doesn't mean that there aren't uses for CompiledQueries. It is great for localized queries that will always be called in the same context. Ideally CompiledQuery should always be used because the syntax is checked at compile time, but due to limitation, that's not possible. An example of use would be: you may want to have a page that queries which two dogs have the same favorite food, which is a bit narrow for a BusinessLayer function, so you put it in your page and know exactly what type of includes are required. Passing more than 3 parameters to a CompiledQuery Func is limited to 5 parameters, of which the last one is the return type and the first one is your Entities object from the model. So that leaves you with 3 parameters. A pitance, but it can be improved on very easily. public struct MyParams { public string param1; public int param2; public DateTime param3; } static readonly Func<Entities, MyParams, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, MyParams, IEnumerable<Dog>>((ctx, myParams) => from dog in ctx.DogSet where dog.Age == myParams.param2 && dog.Name == myParams.param1 and dog.BirthDate > myParams.param3 select dog); public List<Dog> GetSomeDogs( int age, string Name, DateTime birthDate ) { MyParams myParams = new MyParams(); myParams.param1 = name; myParams.param2 = age; myParams.param3 = birthDate; return query_GetDog(YourContext,myParams).ToList(); } Return Types (this does not apply to EntitySQL queries as they aren't compiled at the same time during execution as the CompiledQuery method) Working with Linq, you usually don't force the execution of the query until the very last moment, in case some other functions downstream wants to change the query in some way: static readonly Func<Entities, int, string, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, IEnumerable<Dog>>((ctx, age, name) => from dog in ctx.DogSet where dog.Age == age && dog.Name == name select dog); public IEnumerable<Dog> GetSomeDogs( int age, string name ) { return query_GetDog(YourContext,age,name); } public void DataBindStuff() { IEnumerable<Dog> dogs = GetSomeDogs(4,"Bud"); // but I want the dogs ordered by BirthDate gridView.DataSource = dogs.OrderBy( it => it.BirthDate ); } What is going to happen here? By still playing with the original ObjectQuery (that is the actual return type of the Linq statement, which implements IEnumerable), it will invalidate the compiled query and be force to re-parse. So, the rule of thumb is to return a List< of objects instead. static readonly Func<Entities, int, string, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, IEnumerable<Dog>>((ctx, age, name) => from dog in ctx.DogSet where dog.Age == age && dog.Name == name select dog); public List<Dog> GetSomeDogs( int age, string name ) { return query_GetDog(YourContext,age,name).ToList(); //<== change here } public void DataBindStuff() { List<Dog> dogs = GetSomeDogs(4,"Bud"); // but I want the dogs ordered by BirthDate gridView.DataSource = dogs.OrderBy( it => it.BirthDate ); } When you call ToList(), the query gets executed as per the compiled query and then, later, the OrderBy is executed against the objects in memory. It may be a little bit slower, but I'm not even sure. One sure thing is that you have no worries about mis-handling the ObjectQuery and invalidating the compiled query plan. Once again, that is not a blanket statement. ToList() is a defensive programming trick, but if you have a valid reason not to use ToList(), go ahead. There are many cases in which you would want to refine the query before executing it. Performance What is the performance impact of compiling a query? It can actually be fairly large. A rule of thumb is that compiling and caching the query for reuse takes at least double the time of simply executing it without caching. For complex queries (read inherirante), I have seen upwards to 10 seconds. So, the first time a pre-compiled query gets called, you get a performance hit. After that first hit, performance is noticeably better than the same non-pre-compiled query. Practically the same as Linq2Sql When you load a page with pre-compiled queries the first time you will get a hit. It will load in maybe 5-15 seconds (obviously more than one pre-compiled queries will end up being called), while subsequent loads will take less than 300ms. Dramatic difference, and it is up to you to decide if it is ok for your first user to take a hit or you want a script to call your pages to force a compilation of the queries. Can this query be cached? { Dog dog = from dog in YourContext.DogSet where dog.ID == id select dog; } No, ad-hoc Linq queries are not cached and you will incur the cost of generating the tree every single time you call it. Parametrized Queries Most search capabilities involve heavily parametrized queries. There are even libraries available that will let you build a parametrized query out of lamba expressions. The problem is that you cannot use pre-compiled queries with those. One way around that is to map out all the possible criteria in the query and flag which one you want to use: public struct MyParams { public string name; public bool checkName; public int age; public bool checkAge; } static readonly Func<Entities, MyParams, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, MyParams, IEnumerable<Dog>>((ctx, myParams) => from dog in ctx.DogSet where (myParams.checkAge == true && dog.Age == myParams.age) && (myParams.checkName == true && dog.Name == myParams.name ) select dog); protected List<Dog> GetSomeDogs() { MyParams myParams = new MyParams(); myParams.name = "Bud"; myParams.checkName = true; myParams.age = 0; myParams.checkAge = false; return query_GetDog(YourContext,myParams).ToList(); } The advantage here is that you get all the benifits of a pre-compiled quert. The disadvantages are that you most likely will end up with a where clause that is pretty difficult to maintain, that you will incur a bigger penalty for pre-compiling the query and that each query you run is not as efficient as it could be (particularly with joins thrown in). Another way is to build an EntitySQL query piece by piece, like we all did with SQL. protected List<Dod> GetSomeDogs( string name, int age) { string query = "select value dog from Entities.DogSet where 1 = 1 "; if( !String.IsNullOrEmpty(name) ) query = query + " and dog.Name == @Name "; if( age > 0 ) query = query + " and dog.Age == @Age "; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>( query, YourContext ); if( !String.IsNullOrEmpty(name) ) oQuery.Parameters.Add( new ObjectParameter( "Name", name ) ); if( age > 0 ) oQuery.Parameters.Add( new ObjectParameter( "Age", age ) ); return oQuery.ToList(); } Here the problems are: - there is no syntax checking during compilation - each different combination of parameters generate a different query which will need to be pre-compiled when it is first run. In this case, there are only 4 different possible queries (no params, age-only, name-only and both params), but you can see that there can be way more with a normal world search. - Noone likes to concatenate strings! Another option is to query a large subset of the data and then narrow it down in memory. This is particularly useful if you are working with a definite subset of the data, like all the dogs in a city. You know there are a lot but you also know there aren't that many... so your CityDog search page can load all the dogs for the city in memory, which is a single pre-compiled query and then refine the results protected List<Dod> GetSomeDogs( string name, int age, string city) { string query = "select value dog from Entities.DogSet where dog.Owner.Address.City == @City "; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>( query, YourContext ); oQuery.Parameters.Add( new ObjectParameter( "City", city ) ); List<Dog> dogs = oQuery.ToList(); if( !String.IsNullOrEmpty(name) ) dogs = dogs.Where( it => it.Name == name ); if( age > 0 ) dogs = dogs.Where( it => it.Age == age ); return dogs; } It is particularly useful when you start displaying all the data then allow for filtering. Problems: - Could lead to serious data transfer if you are not careful about your subset. - You can only filter on the data that you returned. It means that if you don't return the Dog.Owner association, you will not be able to filter on the Dog.Owner.Name So what is the best solution? There isn't any. You need to pick the solution that works best for you and your problem: - Use lambda-based query building when you don't care about pre-compiling your queries. - Use fully-defined pre-compiled Linq query when your object structure is not too complex. - Use EntitySQL/string concatenation when the structure could be complex and when the possible number of different resulting queries are small (which means fewer pre-compilation hits). - Use in-memory filtering when you are working with a smallish subset of the data or when you had to fetch all of the data on the data at first anyway (if the performance is fine with all the data, then filtering in memory will not cause any time to be spent in the db). Singleton access The best way to deal with your context and entities accross all your pages is to use the singleton pattern: public sealed class YourContext { private const string instanceKey = "On3GoModelKey"; YourContext(){} public static YourEntities Instance { get { HttpContext context = HttpContext.Current; if( context == null ) return Nested.instance; if (context.Items[instanceKey] == null) { On3GoEntities entity = new On3GoEntities(); context.Items[instanceKey] = entity; } return (YourEntities)context.Items[instanceKey]; } } class Nested { // Explicit static constructor to tell C# compiler // not to mark type as beforefieldinit static Nested() { } internal static readonly YourEntities instance = new YourEntities(); } } NoTracking, is it worth it? When executing a query, you can tell the framework to track the objects it will return or not. What does it mean? With tracking enabled (the default option), the framework will track what is going on with the object (has it been modified? Created? Deleted?) and will also link objects together, when further queries are made from the database, which is what is of interest here. For example, lets assume that Dog with ID == 2 has an owner which ID == 10. Dog dog = (from dog in YourContext.DogSet where dog.ID == 2 select dog).FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; Person owner = (from o in YourContext.PersonSet where o.ID == 10 select dog).FirstOrDefault(); //dog.OwnerReference.IsLoaded == true; If we were to do the same with no tracking, the result would be different. ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>) (from dog in YourContext.DogSet where dog.ID == 2 select dog); oDogQuery.MergeOption = MergeOption.NoTracking; Dog dog = oDogQuery.FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; ObjectQuery<Person> oPersonQuery = (ObjectQuery<Person>) (from o in YourContext.PersonSet where o.ID == 10 select o); oPersonQuery.MergeOption = MergeOption.NoTracking; Owner owner = oPersonQuery.FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; Tracking is very useful and in a perfect world without performance issue, it would always be on. But in this world, there is a price for it, in terms of performance. So, should you use NoTracking to speed things up? It depends on what you are planning to use the data for. Is there any chance that the data your query with NoTracking can be used to make update/insert/delete in the database? If so, don't use NoTracking because associations are not tracked and will causes exceptions to be thrown. In a page where there are absolutly no updates to the database, you can use NoTracking. Mixing tracking and NoTracking is possible, but it requires you to be extra careful with updates/inserts/deletes. The problem is that if you mix then you risk having the framework trying to Attach() a NoTracking object to the context where another copy of the same object exist with tracking on. Basicly, what I am saying is that Dog dog1 = (from dog in YourContext.DogSet where dog.ID == 2).FirstOrDefault(); ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>) (from dog in YourContext.DogSet where dog.ID == 2 select dog); oDogQuery.MergeOption = MergeOption.NoTracking; Dog dog2 = oDogQuery.FirstOrDefault(); dog1 and dog2 are 2 different objects, one tracked and one not. Using the detached object in an update/insert will force an Attach() that will say "Wait a minute, I do already have an object here with the same database key. Fail". And when you Attach() one object, all of its hierarchy gets attached as well, causing problems everywhere. Be extra careful. How much faster is it with NoTracking It depends on the queries. Some are much more succeptible to tracking than other. I don't have a fast an easy rule for it, but it helps. So I should use NoTracking everywhere then? Not exactly. There are some advantages to tracking object. The first one is that the object is cached, so subsequent call for that object will not hit the database. That cache is only valid for the lifetime of the YourEntities object, which, if you use the singleton code above, is the same as the page lifetime. One page request == one YourEntity object. So for multiple calls for the same object, it will load only once per page request. (Other caching mechanism could extend that). What happens when you are using NoTracking and try to load the same object multiple times? The database will be queried each time, so there is an impact there. How often do/should you call for the same object during a single page request? As little as possible of course, but it does happens. Also remember the piece above about having the associations connected automatically for your? You don't have that with NoTracking, so if you load your data in multiple batches, you will not have a link to between them: ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>)(from dog in YourContext.DogSet select dog); oDogQuery.MergeOption = MergeOption.NoTracking; List<Dog> dogs = oDogQuery.ToList(); ObjectQuery<Person> oPersonQuery = (ObjectQuery<Person>)(from o in YourContext.PersonSet select o); oPersonQuery.MergeOption = MergeOption.NoTracking; List<Person> owners = oPersonQuery.ToList(); In this case, no dog will have its .Owner property set. Some things to keep in mind when you are trying to optimize the performance. No lazy loading, what am I to do? This can be seen as a blessing in disguise. Of course it is annoying to load everything manually. However, it decreases the number of calls to the db and forces you to think about when you should load data. The more you can load in one database call the better. That was always true, but it is enforced now with this 'feature' of EF. Of course, you can call if( !ObjectReference.IsLoaded ) ObjectReference.Load(); if you want to, but a better practice is to force the framework to load the objects you know you will need in one shot. This is where the discussion about parametrized Includes begins to make sense. Lets say you have you Dog object public class Dog { public Dog Get(int id) { return YourContext.DogSet.FirstOrDefault(it => it.ID == id ); } } This is the type of function you work with all the time. It gets called from all over the place and once you have that Dog object, you will do very different things to it in different functions. First, it should be pre-compiled, because you will call that very often. Second, each different pages will want to have access to a different subset of the Dog data. Some will want the Owner, some the FavoriteToy, etc. Of course, you could call Load() for each reference you need anytime you need one. But that will generate a call to the database each time. Bad idea. So instead, each page will ask for the data it wants to see when it first request for the Dog object: static public Dog Get(int id) { return GetDog(entity,"");} static public Dog Get(int id, string includePath) { string query = "select value o " + " from YourEntities.DogSet as o " +

    Read the article

  • Oracle Unveils Industry’s Broadest Cloud Strategy

    - by kellsey.ruppel
    Oracle Unveils Industry’s Broadest Cloud Strategy Adds Social Cloud and Showcases early customers Redwood Shores, Calif. – June 6, 2012 “Almost seven years of relentless engineering and innovation plus key strategic acquisitions. An investment of billions. We are now announcing the most comprehensive Cloud on the planet Earth,” said Oracle CEO, Larry Ellison. “Most cloud vendors only have niche assets. They don’t have platforms to extend. Oracle is the only vendor that offers a complete suite of modern, socially-enabled applications, all based on a standards-based platform.” News Facts In a major strategy update today, Larry Ellison announced the industry’s broadest and most advanced Cloud strategy and introduced Oracle Cloud Social Services, a broad Enterprise Social Platform offering. Oracle Cloud delivers a broad set of industry-standards based, integrated services that provide customers with subscription-based access to Oracle Platform Services, Application Services, and Social Services, all completely managed, hosted and supported by Oracle. Offering a wide range of business applications and platform services, the Oracle Cloud is the only cloud to enable customers to avoid the data and business process fragmentation that occurs when using multiple, siloed public clouds. Oracle Cloud is powered by leading enterprise-grade infrastructure, including Oracle Exadata and Oracle Exalogic, providing customers and partners with a high-performance, reliable, and secure infrastructure for running critical business applications. Oracle Cloud enables easy self-service for both business users and developers. Business users can order, configure, extend, and monitor their applications. Developers and administrators can easily develop, deploy, monitor and manage their applications. As part of the event, Oracle also showcased several early Oracle Cloud customers and partners including system integrators and independent software vendors. Oracle Cloud Platform Services Built on a common, complete, standards-based and enterprise-grade set of infrastructure components, Oracle Cloud Platform Services enable customers to speed time to market and lower costs by quickly building, deploying and managing bespoke applications. Oracle Cloud Platform Services will include: Database Services to manage data and build database applications with the Oracle Database. Java Services to develop, deploy and manage Java applications with Oracle WebLogic. Developer Services to allow application developers to collaboratively build applications. Web Services to build Web applications rapidly using PHP, Ruby, and Python. Mobile Services to allow developers to build cross-platform native and HTML5 mobile applications for leading smartphones and tablets. Documents Services to allow project teams to collaborate and share documents through online workspaces and portals. Sites Services to allow business users to develop and maintain visually engaging .com sites Analytics Services to allow business users to quickly build and share analytic dashboards and reports through the Cloud. Oracle Cloud Application Services Oracle Cloud Application Services provides customers access to the industry’s broadest range of enterprise applications available in the cloud today, with built-in business intelligence, social and mobile capabilities. Easy to setup, configure, extend, use and administer, Oracle Cloud Application Services will include: ERP Services: A complete set of Financial Accounting, Project Management, Procurement, Sourcing, and Governance, Risk & Compliance solutions. HCM Services: A complete Human Capital Management solution including Global HR, Workforce Lifecycle Management, Compensation, Benefits, Payroll and other solutions. Talent Management Services: A complete Talent Management solution including Recruiting, Sourcing, Performance Management, and Learning. Sales and Marketing Services: A complete Sales and Marketing solution including Sales Planning, Territory Management, Leads & Opportunity Management, and Forecasting. Customer Experience Services: A complete Customer Service solution including Web Self-Service, Contact Centers, Knowledge Management, Chat, and e-mail Management. Oracle Cloud Social Services Oracle Cloud Social Services provides the most broad and complete enterprise social platform available in the cloud today.  With Oracle Cloud Social Services, enterprises can engage with their customers on a range of social media properties in a comprehensive and meaningful fashion including social marketing, commerce, service and listening. The platform also provides enterprises with a rich social networking solution for their employees to collaborate effectively inside the enterprise. Oracle’s integrated social platform will include: Oracle Social Network to enable secure enterprise collaboration and purposeful social networking for business. Oracle Social Data Services to aggregate data from social networks and enterprise data sources to enrich business applications. Oracle Social Marketing and Engagement Services to enable marketers to centrally create, publish, moderate, manage, measure and report on their social marketing campaigns. Oracle Social Intelligence Services to enable marketers to analyze social media interactions and to enable customer service and sales teams to engage with customers and prospects effectively. Supporting Resources Oracle Cloud – learn more cloud.oracle.com – sign up now Webcast – watch the replay About Oracle Oracle engineers hardware and software to work together in the cloud and in your data center. For more information about Oracle (NASDAQ:ORCL), visit www.oracle.com. TrademarksOracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

    Read the article

  • Big Data – Buzz Words: Importance of Relational Database in Big Data World – Day 9 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is HDFS. In this article we will take a quick look at the importance of the Relational Database in Big Data world. A Big Question? Here are a few questions I often received since the beginning of the Big Data Series - Does the relational database have no space in the story of the Big Data? Does relational database is no longer relevant as Big Data is evolving? Is relational database not capable to handle Big Data? Is it true that one no longer has to learn about relational data if Big Data is the final destination? Well, every single time when I hear that one person wants to learn about Big Data and is no longer interested in learning about relational database, I find it as a bit far stretched. I am not here to give ambiguous answers of It Depends. I am personally very clear that one who is aspiring to become Big Data Scientist or Big Data Expert they should learn about relational database. NoSQL Movement The reason for the NoSQL Movement in recent time was because of the two important advantages of the NoSQL databases. Performance Flexible Schema In personal experience I have found that when I use NoSQL I have found both of the above listed advantages when I use NoSQL database. There are instances when I found relational database too much restrictive when my data is unstructured as well as they have in the datatype which my Relational Database does not support. It is the same case when I have found that NoSQL solution performing much better than relational databases. I must say that I am a big fan of NoSQL solutions in the recent times but I have also seen occasions and situations where relational database is still perfect fit even though the database is growing increasingly as well have all the symptoms of the big data. Situations in Relational Database Outperforms Adhoc reporting is the one of the most common scenarios where NoSQL is does not have optimal solution. For example reporting queries often needs to aggregate based on the columns which are not indexed as well are built while the report is running, in this kind of scenario NoSQL databases (document database stores, distributed key value stores) database often does not perform well. In the case of the ad-hoc reporting I have often found it is much easier to work with relational databases. SQL is the most popular computer language of all the time. I have been using it for almost over 10 years and I feel that I will be using it for a long time in future. There are plenty of the tools, connectors and awareness of the SQL language in the industry. Pretty much every programming language has a written drivers for the SQL language and most of the developers have learned this language during their school/college time. In many cases, writing query based on SQL is much easier than writing queries in NoSQL supported languages. I believe this is the current situation but in the future this situation can reverse when No SQL query languages are equally popular. ACID (Atomicity Consistency Isolation Durability) – Not all the NoSQL solutions offers ACID compliant language. There are always situations (for example banking transactions, eCommerce shopping carts etc.) where if there is no ACID the operations can be invalid as well database integrity can be at risk. Even though the data volume indeed qualify as a Big Data there are always operations in the application which absolutely needs ACID compliance matured language. The Mixed Bag I have often heard argument that all the big social media sites now a days have moved away from Relational Database. Actually this is not entirely true. While researching about Big Data and Relational Database, I have found that many of the popular social media sites uses Big Data solutions along with Relational Database. Many are using relational databases to deliver the results to end user on the run time and many still uses a relational database as their major backbone. Here are a few examples: Facebook uses MySQL to display the timeline. (Reference Link) Twitter uses MySQL. (Reference Link) Tumblr uses Sharded MySQL (Reference Link) Wikipedia uses MySQL for data storage. (Reference Link) There are many for prominent organizations which are running large scale applications uses relational database along with various Big Data frameworks to satisfy their various business needs. Summary I believe that RDBMS is like a vanilla ice cream. Everybody loves it and everybody has it. NoSQL and other solutions are like chocolate ice cream or custom ice cream – there is a huge base which loves them and wants them but not every ice cream maker can make it just right  for everyone’s taste. No matter how fancy an ice cream store is there is always plain vanilla ice cream available there. Just like the same, there are always cases and situations in the Big Data’s story where traditional relational database is the part of the whole story. In the real world scenarios there will be always the case when there will be need of the relational database concepts and its ideology. It is extremely important to accept relational database as one of the key components of the Big Data instead of treating it as a substandard technology. Ray of Hope – NewSQL In this module we discussed that there are places where we need ACID compliance from our Big Data application and NoSQL will not support that out of box. There is a new termed coined for the application/tool which supports most of the properties of the traditional RDBMS and supports Big Data infrastructure – NewSQL. Tomorrow In tomorrow’s blog post we will discuss about NewSQL. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Performance considerations for common SQL queries

    - by Jim Giercyk
    Originally posted on: http://geekswithblogs.net/NibblesAndBits/archive/2013/10/16/performance-considerations-for-common-sql-queries.aspxSQL offers many different methods to produce the same results.  There is a never-ending debate between SQL developers as to the “best way” or the “most efficient way” to render a result set.  Sometimes these disputes even come to blows….well, I am a lover, not a fighter, so I decided to collect some data that will prove which way is the best and most efficient.  For the queries below, I downloaded the test database from SQLSkills:  http://www.sqlskills.com/sql-server-resources/sql-server-demos/.  There isn’t a lot of data, but enough to prove my point: dbo.member has 10,000 records, and dbo.payment has 15,554.  Our result set contains 6,706 records. The following queries produce an identical result set; the result set contains aggregate payment information for each member who has made more than 1 payment from the dbo.payment table and the first and last name of the member from the dbo.member table.   /*************/ /* Sub Query  */ /*************/ SELECT  a.[Member Number] ,         m.lastname ,         m.firstname ,         a.[Number Of Payments] ,         a.[Average Payment] ,         a.[Total Paid] FROM    ( SELECT    member_no 'Member Number' ,                     AVG(payment_amt) 'Average Payment' ,                     SUM(payment_amt) 'Total Paid' ,                     COUNT(Payment_No) 'Number Of Payments'           FROM      dbo.payment           GROUP BY  member_no           HAVING    COUNT(Payment_No) > 1         ) a         JOIN dbo.member m ON a.[Member Number] = m.member_no         /***************/ /* Cross Apply  */ /***************/ SELECT  ca.[Member Number] ,         m.lastname ,         m.firstname ,         ca.[Number Of Payments] ,         ca.[Average Payment] ,         ca.[Total Paid] FROM    dbo.member m         CROSS APPLY ( SELECT    member_no 'Member Number' ,                                 AVG(payment_amt) 'Average Payment' ,                                 SUM(payment_amt) 'Total Paid' ,                                 COUNT(Payment_No) 'Number Of Payments'                       FROM      dbo.payment                       WHERE     member_no = m.member_no                       GROUP BY  member_no                       HAVING    COUNT(Payment_No) > 1                     ) ca /********/                    /* CTEs  */ /********/ ; WITH    Payments           AS ( SELECT   member_no 'Member Number' ,                         AVG(payment_amt) 'Average Payment' ,                         SUM(payment_amt) 'Total Paid' ,                         COUNT(Payment_No) 'Number Of Payments'                FROM     dbo.payment                GROUP BY member_no                HAVING   COUNT(Payment_No) > 1              ),         MemberInfo           AS ( SELECT   p.[Member Number] ,                         m.lastname ,                         m.firstname ,                         p.[Number Of Payments] ,                         p.[Average Payment] ,                         p.[Total Paid]                FROM     dbo.member m                         JOIN Payments p ON m.member_no = p.[Member Number]              )     SELECT  *     FROM    MemberInfo /************************/ /* SELECT with Grouping   */ /************************/ SELECT  p.member_no 'Member Number' ,         m.lastname ,         m.firstname ,         COUNT(Payment_No) 'Number Of Payments' ,         AVG(payment_amt) 'Average Payment' ,         SUM(payment_amt) 'Total Paid' FROM    dbo.payment p         JOIN dbo.member m ON m.member_no = p.member_no GROUP BY p.member_no ,         m.lastname ,         m.firstname HAVING  COUNT(Payment_No) > 1   We can see what is going on in SQL’s brain by looking at the execution plan.  The Execution Plan will demonstrate which steps and in what order SQL executes those steps, and what percentage of batch time each query takes.  SO….if I execute all 4 of these queries in a single batch, I will get an idea of the relative time SQL takes to execute them, and how it renders the Execution Plan.  We can settle this once and for all.  Here is what SQL did with these queries:   Not only did the queries take the same amount of time to execute, SQL generated the same Execution Plan for each of them.  Everybody is right…..I guess we can all finally go to lunch together!  But wait a second, I may not be a fighter, but I AM an instigator.     Let’s see how a table variable stacks up.  Here is the code I executed: /********************/ /*  Table Variable  */ /********************/ DECLARE @AggregateTable TABLE     (       member_no INT ,       AveragePayment MONEY ,       TotalPaid MONEY ,       NumberOfPayments MONEY     ) INSERT  @AggregateTable         SELECT  member_no 'Member Number' ,                 AVG(payment_amt) 'Average Payment' ,                 SUM(payment_amt) 'Total Paid' ,                 COUNT(Payment_No) 'Number Of Payments'         FROM    dbo.payment         GROUP BY member_no         HAVING  COUNT(Payment_No) > 1   SELECT  at.member_no 'Member Number' ,         m.lastname ,         m.firstname ,         at.NumberOfPayments 'Number Of Payments' ,         at.AveragePayment 'Average Payment' ,         at.TotalPaid 'Total Paid' FROM    @AggregateTable at         JOIN dbo.member m ON m.member_no = at.member_no In the interest of keeping things in groupings of 4, I removed the last query from the previous batch and added the table variable query.  Here’s what I got:     Since we first insert into the table variable, then we read from it, the Execution Plan renders 2 steps.  BUT, the combination of the 2 steps is only 22% of the batch.  It is actually faster than the other methods even though it is treated as 2 separate queries in the Execution Plan.  The argument I often hear against Table Variables is that SQL only estimates 1 row for the table size in the Execution Plan.  While this is true, the estimate does not come in to play until you read from the table variable.  In this case, the table variable had 6,706 rows, but it still outperformed the other queries.  People argue that table variables should only be used for hash or lookup tables.  The fact is, you have control of what you put IN to the variable, so as long as you keep it within reason, these results suggest that a table variable is a viable alternative to sub-queries. If anyone does volume testing on this theory, I would be interested in the results.  My suspicion is that there is a breaking point where efficiency goes down the tubes immediately, and it would be interesting to see where the threshold is. Coding SQL is a matter of style.  If you’ve been around since they introduced DB2, you were probably taught a little differently than a recent computer science graduate.  If you have a company standard, I strongly recommend you follow it.    If you do not have a standard, generally speaking, there is no right or wrong answer when talking about the efficiency of these types of queries, and certainly no hard-and-fast rule.  Volume and infrastructure will dictate a lot when it comes to performance, so your results may vary in your environment.  Download the database and try it!

    Read the article

  • Building a Distributed Commerce Infrastructure in the Cloud using Azure and Commerce Server

    - by Lewis Benge
    One of the biggest questions I routinely get asked is how scalable Commerce Server is. Of course the text book answer is the product has been around for 10 years, powers some of the largest e-Commerce websites in the world, so it scales horizontally extremely well. One argument however though is what if you can't predict the growth of demand required of your Commerce Platform, or need the ability to scale up during busy seasons such as Christmas for a retail environment but are hesitant on maintaining the infrastructure on a year-round basis? The obvious answer is to utilise the many elasticated cloud infrastructure providers that are establishing themselves in the ever-growing market, the problem however is Commerce Server is still product which has a legacy tightly coupled dependency on Windows and IIS components. Commerce Server 2009 codename "R2" however introduced to the concept of an n-tier deployment of Microsoft Commerce Server, meaning you are no longer tied to core objects API but instead have serializable Commerce Entity objects, and business logic allowing for Commerce Server to now be built into a WCF-based SOA architecture. Presentation layers no-longer now need to remain on the same physical machine as the application server, meaning you can now build the user experience into multiple-technologies and host them in multiple places – leveraging the transport benefits that a WCF service may bring, such as message queuing, security, and multiple end-points. All of this logic will still need to remain in your internal infrastructure, for two reasons. Firstly cloud based computing infrastructure does not support PCI security requirements, and secondly even though many of the legacy Commerce Server dependencies have been abstracted away within this version of the application, it is still not a fully supported to be deployed exclusively into the cloud. If you do wish to benefit from the scalability of the cloud however, you can still achieve a great Commerce Server and Azure setup by utilising both the Azure App Fabric in terms of the service bus, and authentication services and Windows Azure to host any online presence you may require. The architecture would be something similar to this: This setup would allow you to construct your Commerce Services as part of your on-site infrastructure. These services would contain all of the channels custom business logic, and provide the overall interface back into the underlying Commerce Server components. It would be recommended that services are constructed around the specific business domain of the application, which based on your business model would usually consist of separate services around Catalogue, Orders, Search, Profiles, and Marketing. The App Fabric service bus is then used to abstract and aggregate further the services, making them available to the cloud and subsequently secured by App Fabrics authentication services. These services are now available for consumption by any client, using any supported technology – not just .NET. Thus meaning you are now able to construct apps for IPhone, integrate with Java based POS Devices, and any many other potential uses. This aggregation is useful, and forms the basis of the further strategy around diversifying and enhancing the e-Commerce experience, but also provides the foundation for the scalability we want to gain from utilising a cloud-based application platform. The Windows Azure application platform is Microsoft solution to benefiting from the true economies of scale in terms of the elasticity of the cloud. Just before the launch of the Azure Platform – Domino's pizza actually managed to run their whole SuperBowl operation from the scalability of Windows Azure, and simply switching back to their traditional operation the next day with no residual infrastructure costs. The platform also natively can subscribe to services and messages exposed within the AppFabric service bus, making it an ideal solution to build and deploy a presentation layer which will need to support of scalable infrastructure – such as a high demand public facing e-Commerce portal, or a promotion element of a brand. Windows Azure has excellent support for ASP.NET, including its own caching providers meaning expensive operations such as catalogue queries can persist in memory on the application server, reducing the demand on internal infrastructure and prioritising it for more business critical operations such as receiving orders and processing payments. Windows Azure also supports other languages too, meaning utilising this approach you can technically build a Commerce Server presentation layer in Java, PHP, or Ruby – or equally in ASP.NET or Silverlight without having to change any of the underlying business or Commerce Server implementation. This SOA-style architecture is one of the primary differentiators for Commerce Server as a product in the e-Commerce market, and now with the introduction of a WCF capability in Commerce Server 2009/2009 R2 the opportunities for extensibility of the both the user experience, and integration into third parties, are drastically increased, all with no effect to the underlying channel logic. So if you are looking at deployment options for your e-Commerce application to help support demand in a cost effective way. I would highly recommend you consider looking at Windows Azure, and if you have any questions in-particular about this style of deployment, please feel free to get in touch!

    Read the article

  • Open Source but not Free Software (or vice versa)

    - by TRiG
    The definition of "Free Software" from the Free Software Foundation: “Free software” is a matter of liberty, not price. To understand the concept, you should think of “free” as in “free speech,” not as in “free beer.” Free software is a matter of the users' freedom to run, copy, distribute, study, change and improve the software. More precisely, it means that the program's users have the four essential freedoms: The freedom to run the program, for any purpose (freedom 0). The freedom to study how the program works, and change it to make it do what you wish (freedom 1). Access to the source code is a precondition for this. The freedom to redistribute copies so you can help your neighbor (freedom 2). The freedom to distribute copies of your modified versions to others (freedom 3). By doing this you can give the whole community a chance to benefit from your changes. Access to the source code is a precondition for this. A program is free software if users have all of these freedoms. Thus, you should be free to redistribute copies, either with or without modifications, either gratis or charging a fee for distribution, to anyone anywhere. Being free to do these things means (among other things) that you do not have to ask or pay for permission to do so. The definition of "Open Source Software" from the Open Source Initiative: Open source doesn't just mean access to the source code. The distribution terms of open-source software must comply with the following criteria: Free Redistribution The license shall not restrict any party from selling or giving away the software as a component of an aggregate software distribution containing programs from several different sources. The license shall not require a royalty or other fee for such sale. Source Code The program must include source code, and must allow distribution in source code as well as compiled form. Where some form of a product is not distributed with source code, there must be a well-publicized means of obtaining the source code for no more than a reasonable reproduction cost preferably, downloading via the Internet without charge. The source code must be the preferred form in which a programmer would modify the program. Deliberately obfuscated source code is not allowed. Intermediate forms such as the output of a preprocessor or translator are not allowed. Derived Works The license must allow modifications and derived works, and must allow them to be distributed under the same terms as the license of the original software. Integrity of The Author's Source Code The license may restrict source-code from being distributed in modified form only if the license allows the distribution of "patch files" with the source code for the purpose of modifying the program at build time. The license must explicitly permit distribution of software built from modified source code. The license may require derived works to carry a different name or version number from the original software. No Discrimination Against Persons or Groups The license must not discriminate against any person or group of persons. No Discrimination Against Fields of Endeavor The license must not restrict anyone from making use of the program in a specific field of endeavor. For example, it may not restrict the program from being used in a business, or from being used for genetic research. Distribution of License The rights attached to the program must apply to all to whom the program is redistributed without the need for execution of an additional license by those parties. License Must Not Be Specific to a Product The rights attached to the program must not depend on the program's being part of a particular software distribution. If the program is extracted from that distribution and used or distributed within the terms of the program's license, all parties to whom the program is redistributed should have the same rights as those that are granted in conjunction with the original software distribution. License Must Not Restrict Other Software The license must not place restrictions on other software that is distributed along with the licensed software. For example, the license must not insist that all other programs distributed on the same medium must be open-source software. License Must Be Technology-Neutral No provision of the license may be predicated on any individual technology or style of interface. These definitions, although they derive from very different ideologies, are broadly compatible, and most Free Software is also Open Source Software and vice versa. I believe, however, that it is possible for this not to be the case: It is possible for software to be Open Source without being Free, or to be Free without being Open Source. Questions Is my belief correct? Is it possible for software to fall into one camp and not the other? Does any such software actually exist? Please give examples. Clarification I've already accepted an answer now, but I seem to have confused a lot of people, so perhaps a clarification is in order. I was not asking about the difference between copyleft (or "viral", though I don't like that term) and non-copyleft ("permissive") licenses. Nor was I asking about your personal idiosyncratic definitions of "Free" and "Open". I was asking about "Free Software as defined by the FSF" and "Open Source Software as defined by the OSI". Are the two always the same? Is it possible to be one without being the other? And the answer, it seems, is that it's impossible to be Free without being Open, but possible to be Open without being Free. Thank you everyone who actually answered the question.

    Read the article

  • SPARC M7 Chip - 32 cores - Mind Blowing performance

    - by Angelo-Oracle
    The M7 Chip Oracle just announced its Next Generation Processor at the HotChips HC26 conference. As the Tech Lead in our Systems Division's Partner group, I had a front row seat to the extraordinary price performance advantage of Oracle current T5 and M6 based systems. Partner after partner tested  these systems and were impressed with it performance. Just read some of the quotes to see what our partner has been saying about our hardware. We just announced our next generation processor, the M7. This has 32 cores (up from 16-cores in T5 and 12-cores in M6). With 20 nm technology  this is our most advanced processor. The processor has more cores than anything else in the industry today. After the Sun acquisition Oracle has released 5 processors in 4 years and this is the 6th.  The S4 core  The M7 is built using the foundation of the S4 core. This is the next generation core technology. Like its predecessor, the S4 has 8 dynamic threads. It increases the frequency while maintaining the Pipeline depth. Each core has its own fine grain power estimator that keeps the core within its power envelop in 250 nano-sec granularity. Each core also includes Software in Silicon features for Application Acceleration Support. Each core includes features to improve Application Data Integrity, with almost no performance loss. The core also allows using part of the Virtual Address to store meta-data.  User-Level Synchronization Instructions are also part of the S4 core. Each core has 16 KB Instruction and 16 KB Data L1 cache. The Core Clusters  The cores on the M7 chip are organized in sets of 4-core clusters. The core clusters share  L2 cache.  All four cores in the complex share 256 KB of 4 way set associative L2 Instruction Cache, with over 1/2 TB/s of throughput. Two cores share 256 KB of 8 way set associative L2 Data Cache, with over 1/2 TB/s of throughput. With this innovative Core Cluster architecture, the M7 doubles core execution bandwidth. to maximize per-thread performance.  The Chip  Each  M7 chip has 8 sets of these core-clusters. The chip has 64 MB on-chip L3 cache. This L3 caches is shared among all the cores and is partitioned into 8 x 8 MB chunks. Each chunk is  8-way set associative cache. The aggregate bandwidth for the L3 cache on the chip is over 1.6TB/s. Each chip has 4 DDR4 memory controllers and can support upto 16 DDR4 DIMMs, allowing for 2 TB of RAM/chip. The chip also includes 4 internal links of PCIe Gen3 I/O controllers.  Each chip has 7 coherence links, allowing for 8 of these chips to be connected together gluelessly. Also 32 of these chips can be connected in an SMP configuration. A potential system with 32 chips will have 1024 cores and 8192 threads and 64 TB of RAM.  Software in Silicon The M7 chip has many built in Application Accelerators in Silicon. These features will be exposed to our Software partners using the SPARC Accelerator Program.  The M7  has built-in logic to decompress data at the speed of memory access. This means that applications can directly work on compressed data in memory increasing the data access rates. The VA Masking feature allows the use of part of the virtual address to store meta-data.  Realtime Application Data Integrity The Realtime Application Data Integrity feature helps applications safeguard against invalid, stale memory reference and buffer overflows. The first 4-bits if the Pointer can be used to store a version number and this version number is also maintained in the memory & cache lines. When a pointer accesses memory the hardware checks to make sure the two versions match. A SEGV signal is raised when there is a mismatch. This feature can be used by the Database, applications and the OS.  M7 Database In-Memory Query Accelerator The M7 chip also includes a In-Silicon Query Engines.  These accelerate tasks that work on In-Memory Columnar Vectors. Oracle In-Memory options stores data in Column Format. The M7 Query Engine can speed up In-Memory Format Conversion, Value and Range Comparisons and Set Membership lookups. This engine can work on Compressed data - this means not only are we accelerating the query performance but also increasing the memory bandwidth for queries.  SPARC Accelerated Program  At the Hotchips conference we also introduced the SPARC Accelerated Program to provide our partners and third part developers access to all the goodness of the M7's SPARC Application Acceleration features. Please get in touch with us if you are interested in knowing more about this program. 

    Read the article

  • Master Data Management Implementation Styles

    - by david.butler(at)oracle.com
    In any Master Data Management solution deployment, one of the key decisions to be made is the choice of the MDM architecture. Gartner and other analysts describe some different Hub deployment styles, which must be supported by a best of breed MDM solution in order to guarantee the success of the deployment project.   Registry Style: In a Registry Style MDM Hub, the various source systems publish their data and a subscribing Hub stores only the source system IDs, the Foreign Keys (record IDs on source systems) and the key data values needed for matching. The Hub runs the cleansing and matching algorithms and assigns unique global identifiers to the matched records, but does not send any data back to the source systems. The Registry Style MDM Hub uses data federation capabilities to build the "virtual" golden view of the master entity from the connected systems.   Consolidation Style: The Consolidation Style MDM Hub has a physically instantiated, "golden" record stored in the central Hub. The authoring of the data remains distributed across the spoke systems and the master data can be updated based on events, but is not guaranteed to be up to date. The master data in this case is usually not used for transactions, but rather supports reporting; however, it can also be used for reference operationally.   Coexistence Style: The Coexistence Style MDM Hub involves master data that's authored and stored in numerous spoke systems, but includes a physically instantiated golden record in the central Hub and harmonized master data across the application portfolio. The golden record is constructed in the same manner as in the consolidation style, and, in the operational world, Consolidation Style MDM Hubs often evolve into the Coexistence Style. The key difference is that in this architectural style the master data stored in the central MDM system is selectively published out to the subscribing spoke systems.   Transaction Style: In this architecture, the Hub stores, enhances and maintains all the relevant (master) data attributes. It becomes the authoritative source of truth and publishes this valuable information back to the respective source systems. The Hub publishes and writes back the various data elements to the source systems after the linking, cleansing, matching and enriching algorithms have done their work. Upstream, transactional applications can read master data from the MDM Hub, and, potentially, all spoke systems subscribe to updates published from the central system in a form of harmonization. The Hub needs to support merging of master records. Security and visibility policies at the data attribute level need to be supported by the Transaction Style hub, as well.   Adaptive Transaction Style: This is similar to the Transaction Style, but additionally provides the capability to respond to diverse information and process requests across the enterprise. This style emerged most recently to address the limitations of the above approaches. With the Adaptive Transaction Style, the Hub is built as a platform for consolidating data from disparate third party and internal sources and for serving unified master entity views to operational applications, analytical systems or both. This approach delivers a real-time Hub that has a reliable, persistent foundation of master reference and relationship data, along with all the history and lineage of data changes needed for audit and compliance tracking. On top of this persistent master data foundation, the Hub can dynamically aggregate transaction data on demand from different source systems to deliver the unified golden view to downstream systems. Data can also be accessed through batch interfaces, published to a message bus or served through a real-time services layer. New data sources can be readily added in this approach by extending the data model and by configuring the new source mappings and the survivorship rules, meaning that all legacy data hubs can be leveraged to contribute their records/rules into the new transaction hub. Finally, through rich user interfaces for data stewardship, it allows exception handling by business analysts to keep it current with business rules/practices while maintaining the reliability of best-of-breed master records.   Confederation Style: In this architectural style, several Hubs are maintained at departmental and/or agency and/or territorial level, and each of them are connected to the other Hubs either directly or via a central Super-Hub. Each Domain level Hub can be implemented using any of the previously described styles, but normally the Central Super-Hub is a Registry Style one. This is particularly important for Public Sector organizations, where most of the time it is practically or legally impossible to store in a single central hub all the relevant constituent information from all departments.   Oracle MDM Solutions can be deployed according to any of the above MDM architectural styles, and have been specifically designed to fully support the Transaction and Adaptive Transaction styles. Oracle MDM Solutions provide strong data federation and integration capabilities which are key to enabling the use of the Confederated Hub as a possible architectural style approach. Don't lock yourself into a solution that cannot evolve with your needs. With Oracle's support for any type of deployment architecture, its ability to leverage the outstanding capabilities of the Oracle technology stack, and its open interfaces for non-Oracle technology stacks, Oracle MDM Solutions provide a low TCO and a quick ROI by enabling a phased implementation strategy.

    Read the article

  • Reference Data Management and Master Data: Are Relation ?

    - by Mala Narasimharajan
    Submitted By:  Rahul Kamath  Oracle Data Relationship Management (DRM) has always been extremely powerful as an Enterprise Master Data Management (MDM) solution that can help manage changes to master data in a way that influences enterprise structure, whether it be mastering chart of accounts to enable financial transformation, or revamping organization structures to drive business transformation and operational efficiencies, or restructuring sales territories to enable equitable distribution of leads to sales teams following the acquisition of new products, or adding additional cost centers to enable fine grain control over expenses. Increasingly, DRM is also being utilized by Oracle customers for reference data management, an emerging solution space that deserves some explanation. What is reference data? How does it relate to Master Data? Reference data is a close cousin of master data. While master data is challenged with problems of unique identification, may be more rapidly changing, requires consensus building across stakeholders and lends structure to business transactions, reference data is simpler, more slowly changing, but has semantic content that is used to categorize or group other information assets – including master data – and gives them contextual value. In fact, the creation of a new master data element may require new reference data to be created. For example, when a European company acquires a US business, chances are that they will now need to adapt their product line taxonomy to include a new category to describe the newly acquired US product line. Further, the cross-border transaction will also result in a revised geo hierarchy. The addition of new products represents changes to master data while changes to product categories and geo hierarchy are examples of reference data changes.1 The following table contains an illustrative list of examples of reference data by type. Reference data types may include types and codes, business taxonomies, complex relationships & cross-domain mappings or standards. Types & Codes Taxonomies Relationships / Mappings Standards Transaction Codes Industry Classification Categories and Codes, e.g., North America Industry Classification System (NAICS) Product / Segment; Product / Geo Calendars (e.g., Gregorian, Fiscal, Manufacturing, Retail, ISO8601) Lookup Tables (e.g., Gender, Marital Status, etc.) Product Categories City à State à Postal Codes Currency Codes (e.g., ISO) Status Codes Sales Territories (e.g., Geo, Industry Verticals, Named Accounts, Federal/State/Local/Defense) Customer / Market Segment; Business Unit / Channel Country Codes (e.g., ISO 3166, UN) Role Codes Market Segments Country Codes / Currency Codes / Financial Accounts Date/Time, Time Zones (e.g., ISO 8601) Domain Values Universal Standard Products and Services Classification (UNSPSC), eCl@ss International Classification of Diseases (ICD) e.g., ICD9 à IC10 mappings Tax Rates Why manage reference data? Reference data carries contextual value and meaning and therefore its use can drive business logic that helps execute a business process, create a desired application behavior or provide meaningful segmentation to analyze transaction data. Further, mapping reference data often requires human judgment. Sample Use Cases of Reference Data Management Healthcare: Diagnostic Codes The reference data challenges in the healthcare industry offer a case in point. Part of being HIPAA compliant requires medical practitioners to transition diagnosis codes from ICD-9 to ICD-10, a medical coding scheme used to classify diseases, signs and symptoms, causes, etc. The transition to ICD-10 has a significant impact on business processes, procedures, contracts, and IT systems. Since both code sets ICD-9 and ICD-10 offer diagnosis codes of very different levels of granularity, human judgment is required to map ICD-9 codes to ICD-10. The process requires collaboration and consensus building among stakeholders much in the same way as does master data management. Moreover, to build reports to understand utilization, frequency and quality of diagnoses, medical practitioners may need to “cross-walk” mappings -- either forward to ICD-10 or backwards to ICD-9 depending upon the reporting time horizon. Spend Management: Product, Service & Supplier Codes Similarly, as an enterprise looks to rationalize suppliers and leverage their spend, conforming supplier codes, as well as product and service codes requires supporting multiple classification schemes that may include industry standards (e.g., UNSPSC, eCl@ss) or enterprise taxonomies. Aberdeen Group estimates that 90% of companies rely on spreadsheets and manual reviews to aggregate, classify and analyze spend data, and that data management activities account for 12-15% of the sourcing cycle and consume 30-50% of a commodity manager’s time. Creating a common map across the extended enterprise to rationalize codes across procurement, accounts payable, general ledger, credit card, procurement card (P-card) as well as ACH and bank systems can cut sourcing costs, improve compliance, lower inventory stock, and free up talent to focus on value added tasks. Change Management: Point of Sales Transaction Codes and Product Codes In the specialty finance industry, enterprises are confronted with usury laws – governed at the state and local level – that regulate financial product innovation as it relates to consumer loans, check cashing and pawn lending. To comply, it is important to demonstrate that transactions booked at the point of sale are posted against valid product codes that were on offer at the time of booking the sale. Since new products are being released at a steady stream, it is important to ensure timely and accurate mapping of point-of-sale transaction codes with the appropriate product and GL codes to comply with the changing regulations. Multi-National Companies: Industry Classification Schemes As companies grow and expand across geographies, a typical challenge they encounter with reference data represents reconciling various versions of industry classification schemes in use across nations. While the United States, Mexico and Canada conform to the North American Industry Classification System (NAICS) standard, European Union countries choose different variants of the NACE industry classification scheme. Multi-national companies must manage the individual national NACE schemes and reconcile the differences across countries. Enterprises must invest in a reference data change management application to address the challenge of distributing reference data changes to downstream applications and assess which applications were impacted by a given change. References 1 Master Data versus Reference Data, Malcolm Chisholm, April 1, 2006.

    Read the article

  • SPARC T4-4 Delivers World Record Performance on Oracle OLAP Perf Version 2 Benchmark

    - by Brian
    Oracle's SPARC T4-4 server delivered world record performance with subsecond response time on the Oracle OLAP Perf Version 2 benchmark using Oracle Database 11g Release 2 running on Oracle Solaris 11. The SPARC T4-4 server achieved throughput of 430,000 cube-queries/hour with an average response time of 0.85 seconds and the median response time of 0.43 seconds. This was achieved by using only 60% of the available CPU resources leaving plenty of headroom for future growth. The SPARC T4-4 server operated on an Oracle OLAP cube with a 4 billion row fact table of sales data containing 4 dimensions. This represents as many as 90 quintillion aggregate rows (90 followed by 18 zeros). Performance Landscape Oracle OLAP Perf Version 2 Benchmark 4 Billion Fact Table Rows System Queries/hour Users* Response Time (sec) Average Median SPARC T4-4 430,000 7,300 0.85 0.43 * Users - the supported number of users with a given think time of 60 seconds Configuration Summary and Results Hardware Configuration: SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 1 TB memory Data Storage 1 x Sun Fire X4275 (using COMSTAR) 2 x Sun Storage F5100 Flash Array (each with 80 FMODs) Redo Storage 1 x Sun Fire X4275 (using COMSTAR with 8 HDD) Software Configuration: Oracle Solaris 11 11/11 Oracle Database 11g Release 2 (11.2.0.3) with Oracle OLAP option Benchmark Description The Oracle OLAP Perf Version 2 benchmark is a workload designed to demonstrate and stress the Oracle OLAP product's core features of fast query, fast update, and rich calculations on a multi-dimensional model to support enhanced Data Warehousing. The bulk of the benchmark entails running a number of concurrent users, each issuing typical multidimensional queries against an Oracle OLAP cube consisting of a number of years of sales data with fully pre-computed aggregations. The cube has four dimensions: time, product, customer, and channel. Each query user issues approximately 150 different queries. One query chain may ask for total sales in a particular region (e.g South America) for a particular time period (e.g. Q4 of 2010) followed by additional queries which drill down into sales for individual countries (e.g. Chile, Peru, etc.) with further queries drilling down into individual stores, etc. Another query chain may ask for yearly comparisons of total sales for some product category (e.g. major household appliances) and then issue further queries drilling down into particular products (e.g. refrigerators, stoves. etc.), particular regions, particular customers, etc. Results from version 2 of the benchmark are not comparable with version 1. The primary difference is the type of queries along with the query mix. Key Points and Best Practices Since typical BI users are often likely to issue similar queries, with different constants in the where clauses, setting the init.ora prameter "cursor_sharing" to "force" will provide for additional query throughput and a larger number of potential users. Except for this setting, together with making full use of available memory, out of the box performance for the OLAP Perf workload should provide results similar to what is reported here. For a given number of query users with zero think time, the main measured metrics are the average query response time, the median query response time, and the query throughput. A derived metric is the maximum number of users the system can support achieving the measured response time assuming some non-zero think time. The calculation of the maximum number of users follows from the well-known response-time law N = (rt + tt) * tp where rt is the average response time, tt is the think time and tp is the measured throughput. Setting tt to 60 seconds, rt to 0.85 seconds and tp to 119.44 queries/sec (430,000 queries/hour), the above formula shows that the T4-4 server will support 7,300 concurrent users with a think time of 60 seconds and an average response time of 0.85 seconds. For more information see chapter 3 from the book "Quantitative System Performance" cited below. -- See Also Quantitative System Performance Computer System Analysis Using Queueing Network Models Edward D. Lazowska, John Zahorjan, G. Scott Graham, Kenneth C. Sevcik external local Oracle Database 11g – Oracle OLAP oracle.com OTN SPARC T4-4 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 11/2/2012.

    Read the article

  • Real Time BI in the Real World

    - by tobin.gilman(at)oracle.com
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman";} One of my favorite BI offerings from Oracle is a solution called Oracle Real Time Decisions.  Whenever I mention this product in customer meetings, eyes light up.  There are some fascinating examples of customers using it to up-sell, cross-sell, increase customer retention, and reduce risk in real time, with off the charts return on investment. I plan to share some of those stories in a future blog.  In this post however, I want to share some far more common real time analytics use case scenarios that are being addressed with widely deployed Oracle BI and data integration technologies Not all real time BI applications require continuous learning, predictive modeling, and data mining.  Many simply require the ability to integrate, aggregate, and access information that is current (typically within in few minutes or a few seconds).  The use cases are infinite.  A few I've seen: ·         Purchasing agents need to match demand against available inventory ·         Manufacturing planners need to monitor current parts and material against scheduled build plans ·         Airline agents need to match ticket demand against flight schedules, ·         Human resources managers need to track the status of global hiring requisitions against current headcount authorizations...you get the idea. One way of doing this is to run reports or federated queries directly against transactional systems.  That approach can be viable if you only need to access simple data sets on rare occasions.  High volume and complex queries can quickly bog down performance of mission critical transactional systems.  There is an architecturally simple way of solving the problem, and it's being applied by real companies around the world to solve real needs in real time.    Cbeyond is an Atlanta, GA based  provider of voice, data and mobile business applications delivers.  They deliver real time information to its call center agents  as they are interacting with their customers. The data they need resides in production CRM and other transactional systems, but  instead or reporting directly off the those systems, data is first moved to an operational data store (ODS).  Rather than running data intensive, time consuming, and performance degrading batch ETL routines to populate the ODS, Cbeyond uses Oracle Golden Gate software to incrementally capture and move only the changed records from log files of the transactional systems every few minutes.  There is no impact on transactional system performance, and the information needed by call center representatives is up to date.  Oracle Business Intelligence software presents the information to services reps in a rich, visual, and highly interactive format. Avea is similar to Cbeyond.  They are a telecommunications company who integrates billing and customer information in an ODS that is accessed by their call center agents in real time using Oracle Golden Gate and Oracle Business Intelligence.  They've taken it a step further by using the ODS to feed a data warehouse.  The operational data store provides the current information needed by call center agents during "in flight" customer interactions.  The data warehouse is used for more sophisticated analysis of historical data.  For maximum performance, both the ODS and data warehouse run on the Oracle Exadata Database Machine. These are practical illustrations of companies addressing real time reporting and analysis needs using established business intelligence/data warehousing methodologies and tools common to many IT departments.  If real time BI could benefit your organization, you may be already be closer than you thought to having the pieces in place to solving the problem.    Give us a shout if you are interested in learning more or if you have an interesting use or approach to real-time BI.

    Read the article

  • Using Stored Procedures in SSIS

    - by dataintegration
    The SSIS Data Flow components: the source task and the destination task are the easiest way to transfer data in SSIS. Some data transactions do not fit this model, they are procedural tasks modeled as stored procedures. In this article we show how you can call stored procedures available in RSSBus ADO.NET Providers from SSIS. In this article we will use the CreateJob and the CreateBatch stored procedures available in RSSBus ADO.NET Provider for Salesforce, but the same steps can be used to call a stored procedure in any of our data providers. Step 1: Open Visual Studio and create a new Integration Services Project. Step 2: Add a new Data Flow Task to the Control Flow window. Step 3: Open the Data Flow Task and add a Script Component to the data flow pane. A dialog box will pop-up allowing you to select the Script Component Type: pick the source type as we will be outputting columns from our stored procedure. Step 4: Double click the Script Component to open the editor. Step 5: In the "Inputs and Outputs" settings, enter all the columns you want to output to the data flow. Ensure the correct data type has been set for each output. You can check the data type by selecting the output and then changing the "DataType" property from the property editor. In our example, we'll add the column JobID of type String. Step 6: Select the "Script" option in the left-hand pane and click the "Edit Script" button. This will open a new Visual Studio window with some boiler plate code in it. Step 7: In the CreateOutputRows() function you can add code that executes the stored procedures included with the Salesforce Component. In this example we will be using the CreateJob and CreateBatch stored procedures. You can find a list of the available stored procedures along with their inputs and outputs in the product help. //Configure the connection string to your credentials String connectionString = "Offline=False;user=myusername;password=mypassword;access token=mytoken;"; using (SalesforceConnection conn = new SalesforceConnection(connectionString)) { //Create the command to call the stored procedure CreateJob SalesforceCommand cmd = new SalesforceCommand("CreateJob", conn); cmd.CommandType = CommandType.StoredProcedure; cmd.Parameters.Add(new SalesforceParameter("ObjectName", "Contact")); cmd.Parameters.Add(new SalesforceParameter("Action", "insert")); //Execute CreateJob //CreateBatch requires JobID as input so we store this value for later SalesforceDataReader rdr = cmd.ExecuteReader(); String JobID = ""; while (rdr.Read()) { JobID = (String)rdr["JobID"]; } //Create the command for CreateBatch, for this example we are adding two new rows SalesforceCommand batCmd = new SalesforceCommand("CreateBatch", conn); batCmd.CommandType = CommandType.StoredProcedure; batCmd.Parameters.Add(new SalesforceParameter("JobID", JobID)); batCmd.Parameters.Add(new SalesforceParameter("Aggregate", "<Contact><Row><FirstName>Bill</FirstName>" + "<LastName>White</LastName></Row><Row><FirstName>Bob</FirstName><LastName>Black</LastName></Row></Contact>")); //Execute CreateBatch SalesforceDataReader batRdr = batCmd.ExecuteReader(); } Step 7b: If you had specified output columns earlier, you can now add data into them using the UserComponent Output0Buffer. For example, we had set an output column called JobID of type String so now we can set a value for it. We will modify the DataReader that contains the output of CreateJob like so:. while (rdr.Read()) { Output0Buffer.AddRow(); JobID = (String)rdr["JobID"]; Output0Buffer.JobID = JobID; } Step 8: Note: You will need to modify the connection string to include your credentials. Also ensure that the System.Data.RSSBus.Salesforce assembly is referenced and include the following using statements to the top of the class: using System.Data; using System.Data.RSSBus.Salesforce; Step 9: Once you are done editing your script, save it, and close the window. Click OK in the Script Transformation window to go back to the main pane. Step 10: If had any outputs from the Script Component you can use them in your data flow. For example we will use a Flat File Destination. Configure the Flat File Destination to output the results to a file, and you should see the JobId in the file. Step 11: Your project should be ready to run.

    Read the article

  • Impressions and Reactions from Alliance 2012

    - by user739873
    Alliance 2012 has come to a conclusion.  What strikes me about every Alliance conference is the amazing amount of collaboration and cooperation I see across higher education in the sharing of best practices around the entire Oracle PeopleSoft software suite, not just the student information system (Oracle’s PeopleSoft Campus Solutions).  In addition to the vibrant U.S. organization, it's gratifying to see the growth in the international attendance again this year, with an EMEA HEUG organizing to complement the existing groups in the Netherlands, South Africa, and the U.K.  Their first meeting is planned for London in October, and I suspect they'll be surprised at the amount of interest and attendance. In my discussions with higher education IT and functional leadership at Alliance there were a number of instances where concern was expressed about Oracle's commitment to higher education as an industry, primarily because of a lack of perceived innovation in the applications that Oracle develops for this market. Here I think perception and reality are far apart, and I'd like to explain why I believe this to be true. First let me start with what I think drives this perception. Predominately it's in two areas. The first area is the user interface, both for students and faculty that interact with the system as "customers", and for those employees of the institution (faculty, staff, and sometimes students as well) that use the system in some kind of administrative role. Because the UI hasn't changed all that much from the PeopleSoft days, individuals perceive this as a dead product with little innovation and therefore Oracle isn't investing. The second area is around the integration of the higher education suite of applications (PeopleSoft Campus Solutions) and the rest of the Oracle software assets. Whether grown organically or acquired, there is an impressive array of middleware and other software products that could be leveraged much more significantly by the higher education applications than is currently the case today. This is also perceived as lack of investment. Let me address these two points.  First the UI.  More is being done here than ever before, and the PAG and other groups where this was discussed at Alliance 2012 were more numerous than I've seen in any past meeting. Whether it's Oracle development leveraging web services or some extremely early but very promising work leveraging the recent Endeca acquisition (see some cool examples here) there are a lot of resources aimed at this issue.  There are also some amazing prototypes being developed by our UX (user experience team) that will eventually make their way into the higher education applications realm - they had an impressive setup at Alliance.  Hopefully many of you that attended found this group. If not, the senior leader for that team Jeremy Ashley will be a significant contributor of content to our summer Industry Strategy Council meeting in Washington in June. In the area of integration with other elements of the Oracle stack, this is also an area of focus for the company and my team.  We're making this a priority especially in the areas of identity management and security, leveraging WebCenter more effectively for content, imaging, and mobility, and driving towards the ultimate objective of WebLogic Suite as our platform for SOA, links to learning management systems (SAIP), and content. There is also much work around business intelligence centering on OBI applications. But at the end of the day we get enormous value from the HEUG (higher education user group) and the various subgroups formed as a part of this community that help us align and prioritize our investments, whether it's around better integration with other Oracle products or integration with partner offerings.  It's one of the healthiest, mutually beneficial relationships between customers and an Education IT concern that exists on the globe. And I can't avoid mentioning that this kind of relationship between higher education and the corporate IT community that can truly address the problems of efficiency and effectiveness, institutional excellence (which starts with IT) and student success.  It's not (in my opinion) going to be solved through community source - cost and complexity only increase in that model and in the end higher education doesn't ultimately focus on core competencies: educating, developing, and researching.  While I agree with some of what Michael A. McRobbie wrote in his EDUCAUSE Review article (Information Technology: A View from Both Sides of the President’s Desk), I take strong issue with his assertion that the "the IT marketplace is just the opposite of long-term stability...."  Sure there has been healthy, creative destruction in the past 2-3 decades, but this has had the effect of, in the aggregate, benefiting education with greater efficiency, more innovation and increased stability as larger, more financially secure firms acquire and develop integrated solutions. Cole

    Read the article

  • ADF Business Components

    - by Arda Eralp
    ADF Business Components and JDeveloper simplify the development, delivery, and customization of business applications for the Java EE platform. With ADF Business Components, developers aren't required to write the application infrastructure code required by the typical Java EE application to: Connect to the database Retrieve data Lock database records Manage transactions   ADF Business Components addresses these tasks through its library of reusable software components and through the supporting design time facilities in JDeveloper. Most importantly, developers save time using ADF Business Components since the JDeveloper design time makes typical development tasks entirely declarative. In particular, JDeveloper supports declarative development with ADF Business Components to: Author and test business logic in components which automatically integrate with databases Reuse business logic through multiple SQL-based views of data, supporting different application tasks Access and update the views from browser, desktop, mobile, and web service clients Customize application functionality in layers without requiring modification of the delivered application The goal of ADF Business Components is to make the business services developer more productive.   ADF Business Components provides a foundation of Java classes that allow your business-tier application components to leverage the functionality provided in the following areas: Simplifying Data Access Design a data model for client displays, including only necessary data Include master-detail hierarchies of any complexity as part of the data model Implement end-user Query-by-Example data filtering without code Automatically coordinate data model changes with business services layer Automatically validate and save any changes to the database   Enforcing Business Domain Validation and Business Logic Declaratively enforce required fields, primary key uniqueness, data precision-scale, and foreign key references Easily capture and enforce both simple and complex business rules, programmatically or declaratively, with multilevel validation support Navigate relationships between business domain objects and enforce constraints related to compound components   Supporting Sophisticated UIs with Multipage Units of Work Automatically reflect changes made by business service application logic in the user interface Retrieve reference information from related tables, and automatically maintain the information when the user changes foreign-key values Simplify multistep web-based business transactions with automatic web-tier state management Handle images, video, sound, and documents without having to use code Synchronize pending data changes across multiple views of data Consistently apply prompts, tooltips, format masks, and error messages in any application Define custom metadata for any business components to support metadata-driven user interface or application functionality Add dynamic attributes at runtime to simplify per-row state management   Implementing High-Performance Service-Oriented Architecture Support highly functional web service interfaces for business integration without writing code Enforce best-practice interface-based programming style Simplify application security with automatic JAAS integration and audit maintenance "Write once, run anywhere": use the same business service as plain Java class, EJB session bean, or web service   Streamlining Application Customization Extend component functionality after delivery without modifying source code Globally substitute delivered components with extended ones without modifying the application   ADF Business Components implements the business service through the following set of cooperating components: Entity object An entity object represents a row in a database table and simplifies modifying its data by handling all data manipulation language (DML) operations for you. These are basically your 1 to 1 representation of a database table. Each table in the database will have 1 and only 1 EO. The EO contains the mapping between columns and attributes. EO's also contain the business logic and validation. These are you core data services. They are responsible for updating, inserting and deleting records. The Attributes tab displays the actual mapping between attributes and columns, the mapping has following fields: Name : contains the name of the attribute we expose in our data model. Type : defines the data type of the attribute in our application. Column : specifies the column to which we want to map the attribute with Column Type : contains the type of the column in the database   View object A view object represents a SQL query. You use the full power of the familiar SQL language to join, filter, sort, and aggregate data into exactly the shape required by the end-user task. The attributes in the View Objects are actually coming from the Entity Object. In the end the VO will generate a query but you basically build a VO by selecting which EO need to participate in the VO and which attributes of those EO you want to use. That's why you have the Entity Usage column so you can see the relation between VO and EO. In the query tab you can clearly see the query that will be generated for the VO. At this stage we don't need it and just use it for information purpose. In later stages we might use it. Application module An application module is the controller of your data layer. It is responsible for keeping hold of the transaction. It exposes the data model to the view layer. You expose the VO's through the Application Module. This is the abstraction of your data layer which you want to show to the outside word.It defines an updatable data model and top-level procedures and functions (called service methods) related to a logical unit of work related to an end-user task. While the base components handle all the common cases through built-in behavior, customization is always possible and the default behavior provided by the base components can be easily overridden or augmented. When you create EO's, a foreign key will be translated into an association in our model. It defines the type of relation and who is the master and child as well as how the visibility of the association looks like. A similar concept exists to identify relations between view objects. These are called view links. These are almost identical as association except that a view link is based upon attributes defined in the view object. It can also be based upon an association. Here's a short summary: Entity Objects: representations of tables Association: Relations between EO's. Representations of foreign keys View Objects: Logical model View Links: Relationships between view objects Application Model: interface to your application  

    Read the article

  • Using Subjects to Deploy Queries Dynamically

    - by Roman Schindlauer
    In the previous blog posting, we showed how to construct and deploy query fragments to a StreamInsight server, and how to re-use them later. In today’s posting we’ll integrate this pattern into a method of dynamically composing a new query with an existing one. The construct that enables this scenario in StreamInsight V2.1 is a Subject. A Subject lets me create a junction element in an existing query that I can tap into while the query is running. To set this up as an end-to-end example, let’s first define a stream simulator as our data source: var generator = myApp.DefineObservable(     (TimeSpan t) => Observable.Interval(t).Select(_ => new SourcePayload())); This ‘generator’ produces a new instance of SourcePayload with a period of t (system time) as an IObservable. SourcePayload happens to have a property of type double as its payload data. Let’s also define a sink for our example—an IObserver of double values that writes to the console: var console = myApp.DefineObserver(     (string label) => Observer.Create<double>(e => Console.WriteLine("{0}: {1}", label, e)))     .Deploy("ConsoleSink"); The observer takes a string as parameter which is used as a label on the console, so that we can distinguish the output of different sink instances. Note that we also deploy this observer, so that we can retrieve it later from the server from a different process. Remember how we defined the aggregation as an IQStreamable function in the previous article? We will use that as well: var avg = myApp     .DefineStreamable((IQStreamable<SourcePayload> s, TimeSpan w) =>         from win in s.TumblingWindow(w)         select win.Avg(e => e.Value))     .Deploy("AverageQuery"); Then we define the Subject, which acts as an observable sequence as well as an observer. Thus, we can feed a single source into the Subject and have multiple consumers—that can come and go at runtime—on the other side: var subject = myApp.CreateSubject("Subject", () => new Subject<SourcePayload>()); Subject are always deployed automatically. Their name is used to retrieve them from a (potentially) different process (see below). Note that the Subject as we defined it here doesn’t know anything about temporal streams. It is merely a sequence of SourcePayloads, without any notion of StreamInsight point events or CTIs. So in order to compose a temporal query on top of the Subject, we need to 'promote' the sequence of SourcePayloads into an IQStreamable of point events, including CTIs: var stream = subject.ToPointStreamable(     e => PointEvent.CreateInsert<SourcePayload>(e.Timestamp, e),     AdvanceTimeSettings.StrictlyIncreasingStartTime); In a later posting we will show how to use Subjects that have more awareness of time and can be used as a junction between QStreamables instead of IQbservables. Having turned the Subject into a temporal stream, we can now define the aggregate on this stream. We will use the IQStreamable entity avg that we defined above: var longAverages = avg(stream, TimeSpan.FromSeconds(5)); In order to run the query, we need to bind it to a sink, and bind the subject to the source: var standardQuery = longAverages     .Bind(console("5sec average"))     .With(generator(TimeSpan.FromMilliseconds(300)).Bind(subject)); Lastly, we start the process: standardQuery.Run("StandardProcess"); Now we have a simple query running end-to-end, producing results. What follows next is the crucial part of tapping into the Subject and adding another query that runs in parallel, using the same query definition (the “AverageQuery”) but with a different window length. We are assuming that we connected to the same StreamInsight server from a different process or even client, and thus have to retrieve the previously deployed entities through their names: // simulate the addition of a 'fast' query from a separate server connection, // by retrieving the aggregation query fragment // (instead of simply using the 'avg' object) var averageQuery = myApp     .GetStreamable<IQStreamable<SourcePayload>, TimeSpan, double>("AverageQuery"); // retrieve the input sequence as a subject var inputSequence = myApp     .GetSubject<SourcePayload, SourcePayload>("Subject"); // retrieve the registered sink var sink = myApp.GetObserver<string, double>("ConsoleSink"); // turn the sequence into a temporal stream var stream2 = inputSequence.ToPointStreamable(     e => PointEvent.CreateInsert<SourcePayload>(e.Timestamp, e),     AdvanceTimeSettings.StrictlyIncreasingStartTime); // apply the query, now with a different window length var shortAverages = averageQuery(stream2, TimeSpan.FromSeconds(1)); // bind new sink to query and run it var fastQuery = shortAverages     .Bind(sink("1sec average"))     .Run("FastProcess"); The attached solution demonstrates the sample end-to-end. Regards, The StreamInsight Team

    Read the article

  • Why can I query with an int but not a string here? PHP MySQL Datatypes

    - by CT
    I am working on an Asset Database problem. I receive $id from $_GET["id"]; I then query the database and display the results. This works if my id is an integer like "93650" but if it has other characters like "wci1001", it displays this MySQL error: Unknown column 'text' in 'where clause' All fields in tables are of type: VARCHAR(50) What would I need to do to be able to use this query to search by id that includes other characters? Thank you. <?php <?php /* * ASSET DB FUNCTIONS SCRIPT * */ # connect to database function ConnectDB(){ mysql_connect("localhost", "asset_db", "asset_db") or die(mysql_error()); mysql_select_db("asset_db") or die(mysql_error()); } # find asset type returns $type function GetAssetType($id){ $sql = "SELECT asset.type From asset WHERE asset.id = $id"; $result = mysql_query($sql) or die(mysql_error()); $row = mysql_fetch_assoc($result); $type = $row['type']; return $type; } # query server returns $result (sql query array) function QueryServer($id){ $sql = " SELECT asset.id ,asset.company ,asset.location ,asset.purchaseDate ,asset.purchaseOrder ,asset.value ,asset.type ,asset.notes ,server.manufacturer ,server.model ,server.serialNumber ,server.esc ,server.warranty ,server.user ,server.prevUser ,server.cpu ,server.memory ,server.hardDrive FROM asset LEFT JOIN server ON server.id = asset.id WHERE asset.id = $id "; $result = mysql_query($sql); return $result; } # get server data returns $serverArray function GetServerData($result){ while($row = mysql_fetch_assoc($result)) { $id = $row['id']; $company = $row['company']; $location = $row['location']; $purchaseDate = $row['purchaseDate']; $purchaseOrder = $row['purchaseOrder']; $value = $row['value']; $type = $row['type']; $notes = $row['notes']; $manufacturer = $row['manufacturer']; $model = $row['model']; $serialNumber = $row['serialNumber']; $esc = $row['esc']; $warranty = $row['warranty']; $user = $row['user']; $prevUser = $row['prevUser']; $cpu = $row['cpu']; $memory = $row['memory']; $hardDrive = $row['hardDrive']; $serverArray = array($id, $company, $location, $purchaseDate, $purchaseOrder, $value, $type, $notes, $manufacturer, $model, $serialNumber, $esc, $warranty, $user, $prevUser, $cpu, $memory, $hardDrive); } return $serverArray; } # print server table function PrintServerTable($serverArray){ $id = $serverArray[0]; $company = $serverArray[1]; $location = $serverArray[2]; $purchaseDate = $serverArray[3]; $purchaseOrder = $serverArray[4]; $value = $serverArray[5]; $type = $serverArray[6]; $notes = $serverArray[7]; $manufacturer = $serverArray[8]; $model = $serverArray[9]; $serialNumber = $serverArray[10]; $esc = $serverArray[11]; $warranty = $serverArray[12]; $user = $serverArray[13]; $prevUser = $serverArray[14]; $cpu = $serverArray[15]; $memory = $serverArray[16]; $hardDrive = $serverArray[17]; echo "<table width=\"100%\" border=\"0\"><tr><td style=\"vertical-align:top\"><table width=\"100%\" border=\"0\"><tr><td colspan=\"2\"><h2>General Info</h2></td></tr><tr id=\"hightlight\"><td>Asset ID:</td><td>"; echo $id; echo "</td></tr><tr><td>Company:</td><td>"; echo $company; echo "</td></tr><tr id=\"hightlight\"><td>Location:</td><td>"; echo $location; echo "</td></tr><tr><td>Purchase Date:</td><td>"; echo $purchaseDate; echo "</td></tr><tr id=\"hightlight\"><td>Purchase Order #:</td><td>"; echo $purchaseOrder; echo "</td></tr><tr><td>Value:</td><td>"; echo $value; echo "</td></tr><tr id=\"hightlight\"><td>Type:</td><td>"; echo $type; echo "</td></tr><tr><td>Notes:</td><td>"; echo $notes; echo "</td></tr></table></td><td style=\"vertical-align:top\"><table width=\"100%\" border=\"0\"><tr><td colspan=\"2\"><h2>Server Info</h2></td></tr><tr id=\"hightlight\"><td>Manufacturer:</td><td>"; echo $manufacturer; echo "</td></tr><tr><td>Model:</td><td>"; echo $model; echo "</td></tr><tr id=\"hightlight\"><td>Serial Number:</td><td>"; echo $serialNumber; echo "</td></tr><tr><td>ESC:</td><td>"; echo $esc; echo "</td></tr><tr id=\"hightlight\"><td>Warranty:</td><td>"; echo $warranty; echo "</td></tr><tr><td colspan=\"2\">&nbsp;</td></tr><tr><td colspan=\"2\"><h2>User Info</h2></td></tr><tr id=\"hightlight\"><td>User:</td><td>"; echo $user; echo "</td></tr><tr><td>Previous User:</td><td>"; echo $prevUser; echo "</td></tr></table></td><td style=\"vertical-align:top\"><table width=\"100%\" border=\"0\"><tr><td colspan=\"2\"><h2>Specs</h2></td></tr><tr id=\"hightlight\"><td>CPU:</td><td>"; echo $cpu; echo "</td></tr><tr><td>Memory:</td><td>"; echo $memory; echo "</td></tr><tr id=\"hightlight\"><td>Hard Drive:</td><td>"; echo $hardDrive; echo "</td></tr><tr><td colspan=\"2\">&nbsp;</td></tr><tr><td colspan=\"2\">&nbsp;</td></tr><tr><td colspan=\"2\"><h2>Options</h2></td></tr><tr><td colspan=\"2\"><a href=\"#\">Edit Asset</a></td></tr><tr><td colspan=\"2\"><a href=\"#\">Delete Asset</a></td></tr></table></td></tr></table>"; } ?> __ /* * View Asset * */ # include functions script include "functions.php"; $id = $_GET["id"]; if (empty($id)):$id="000"; endif; ConnectDB(); $type = GetAssetType($id); ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="style.css" /> <title>Wagman IT Asset</title> </head> <body> <div id="page"> <div id="header"> <img src="images/logo.png" /> </div> </div> <div id="content"> <div id="container"> <div id="main"> <div id="menu"> <ul> <table width="100%" border="0"> <tr> <td width="15%"></td> <td width="30%%"><li><a href="index.php">Search Assets</a></li></td> <td width="30%"><li><a href="addAsset.php">Add Asset</a></li></td> <td width="25%"></td> </tr> </table> </ul> </div> <div id="text"> <ul> <li> <h1>View Asset</h1> </li> </ul> <?php if (empty($type)):echo "<ul><li><h2>Asset ID does not match any database entries.</h2></li></ul>"; else: switch ($type){ case "Server": $result = QueryServer($id); $ServerArray = GetServerData($result); PrintServerTable($ServerArray); break; case "Desktop"; break; case "Laptop"; break; } endif; ?> </div> </div> </div> <div class="clear"></div> <div id="footer" align="center"> <p>&nbsp;</p> </div> </div> <div id="tagline"> Wagman Construction - Bridging Generations since 1902 </div> </body> </html>

    Read the article

  • undefined reference to function, despite giving reference in c

    - by Jamie Edwards
    I'm following a tutorial, but when it comes to compiling and linking the code I get the following error: /tmp/cc8gRrVZ.o: In function `main': main.c:(.text+0xa): undefined reference to `monitor_clear' main.c:(.text+0x16): undefined reference to `monitor_write' collect2: ld returned 1 exit status make: *** [obj/main.o] Error 1 What that is telling me is that I haven't defined both 'monitor_clear' and 'monitor_write'. But I have, in both the header and source files. They are as follows: monitor.c: // monitor.c -- Defines functions for writing to the monitor. // heavily based on Bran's kernel development tutorials, // but rewritten for JamesM's kernel tutorials. #include "monitor.h" // The VGA framebuffer starts at 0xB8000. u16int *video_memory = (u16int *)0xB8000; // Stores the cursor position. u8int cursor_x = 0; u8int cursor_y = 0; // Updates the hardware cursor. static void move_cursor() { // The screen is 80 characters wide... u16int cursorLocation = cursor_y * 80 + cursor_x; outb(0x3D4, 14); // Tell the VGA board we are setting the high cursor byte. outb(0x3D5, cursorLocation >> 8); // Send the high cursor byte. outb(0x3D4, 15); // Tell the VGA board we are setting the low cursor byte. outb(0x3D5, cursorLocation); // Send the low cursor byte. } // Scrolls the text on the screen up by one line. static void scroll() { // Get a space character with the default colour attributes. u8int attributeByte = (0 /*black*/ << 4) | (15 /*white*/ & 0x0F); u16int blank = 0x20 /* space */ | (attributeByte << 8); // Row 25 is the end, this means we need to scroll up if(cursor_y >= 25) { // Move the current text chunk that makes up the screen // back in the buffer by a line int i; for (i = 0*80; i < 24*80; i++) { video_memory[i] = video_memory[i+80]; } // The last line should now be blank. Do this by writing // 80 spaces to it. for (i = 24*80; i < 25*80; i++) { video_memory[i] = blank; } // The cursor should now be on the last line. cursor_y = 24; } } // Writes a single character out to the screen. void monitor_put(char c) { // The background colour is black (0), the foreground is white (15). u8int backColour = 0; u8int foreColour = 15; // The attribute byte is made up of two nibbles - the lower being the // foreground colour, and the upper the background colour. u8int attributeByte = (backColour << 4) | (foreColour & 0x0F); // The attribute byte is the top 8 bits of the word we have to send to the // VGA board. u16int attribute = attributeByte << 8; u16int *location; // Handle a backspace, by moving the cursor back one space if (c == 0x08 && cursor_x) { cursor_x--; } // Handle a tab by increasing the cursor's X, but only to a point // where it is divisible by 8. else if (c == 0x09) { cursor_x = (cursor_x+8) & ~(8-1); } // Handle carriage return else if (c == '\r') { cursor_x = 0; } // Handle newline by moving cursor back to left and increasing the row else if (c == '\n') { cursor_x = 0; cursor_y++; } // Handle any other printable character. else if(c >= ' ') { location = video_memory + (cursor_y*80 + cursor_x); *location = c | attribute; cursor_x++; } // Check if we need to insert a new line because we have reached the end // of the screen. if (cursor_x >= 80) { cursor_x = 0; cursor_y ++; } // Scroll the screen if needed. scroll(); // Move the hardware cursor. move_cursor(); } // Clears the screen, by copying lots of spaces to the framebuffer. void monitor_clear() { // Make an attribute byte for the default colours u8int attributeByte = (0 /*black*/ << 4) | (15 /*white*/ & 0x0F); u16int blank = 0x20 /* space */ | (attributeByte << 8); int i; for (i = 0; i < 80*25; i++) { video_memory[i] = blank; } // Move the hardware cursor back to the start. cursor_x = 0; cursor_y = 0; move_cursor(); } // Outputs a null-terminated ASCII string to the monitor. void monitor_write(char *c) { int i = 0; while (c[i]) { monitor_put(c[i++]); } } void monitor_write_hex(u32int n) { s32int tmp; monitor_write("0x"); char noZeroes = 1; int i; for (i = 28; i > 0; i -= 4) { tmp = (n >> i) & 0xF; if (tmp == 0 && noZeroes != 0) { continue; } if (tmp >= 0xA) { noZeroes = 0; monitor_put (tmp-0xA+'a' ); } else { noZeroes = 0; monitor_put( tmp+'0' ); } } tmp = n & 0xF; if (tmp >= 0xA) { monitor_put (tmp-0xA+'a'); } else { monitor_put (tmp+'0'); } } void monitor_write_dec(u32int n) { if (n == 0) { monitor_put('0'); return; } s32int acc = n; char c[32]; int i = 0; while (acc > 0) { c[i] = '0' + acc%10; acc /= 10; i++; } c[i] = 0; char c2[32]; c2[i--] = 0; int j = 0; while(i >= 0) { c2[i--] = c[j++]; } monitor_write(c2); } monitor.h: // monitor.h -- Defines the interface for monitor.h // From JamesM's kernel development tutorials. #ifndef MONITOR_H #define MONITOR_H #include "common.h" // Write a single character out to the screen. void monitor_put(char c); // Clear the screen to all black. void monitor_clear(); // Output a null-terminated ASCII string to the monitor. void monitor_write(char *c); #endif // MONITOR_H common.c: // common.c -- Defines some global functions. // From JamesM's kernel development tutorials. #include "common.h" // Write a byte out to the specified port. void outb ( u16int port, u8int value ) { asm volatile ( "outb %1, %0" : : "dN" ( port ), "a" ( value ) ); } u8int inb ( u16int port ) { u8int ret; asm volatile ( "inb %1, %0" : "=a" ( ret ) : "dN" ( port ) ); return ret; } u16int inw ( u16int port ) { u16int ret; asm volatile ( "inw %1, %0" : "=a" ( ret ) : "dN" ( port ) ); return ret; } // Copy len bytes from src to dest. void memcpy(u8int *dest, const u8int *src, u32int len) { const u8int *sp = ( const u8int * ) src; u8int *dp = ( u8int * ) dest; for ( ; len != 0; len-- ) *dp++ =*sp++; } // Write len copies of val into dest. void memset(u8int *dest, u8int val, u32int len) { u8int *temp = ( u8int * ) dest; for ( ; len != 0; len-- ) *temp++ = val; } // Compare two strings. Should return -1 if // str1 < str2, 0 if they are equal or 1 otherwise. int strcmp(char *str1, char *str2) { int i = 0; int failed = 0; while ( str1[i] != '\0' && str2[i] != '\0' ) { if ( str1[i] != str2[i] ) { failed = 1; break; } i++; } // Why did the loop exit? if ( ( str1[i] == '\0' && str2[i] != '\0' || (str1[i] != '\0' && str2[i] =='\0' ) ) failed =1; return failed; } // Copy the NULL-terminated string src into dest, and // return dest. char *strcpy(char *dest, const char *src) { do { *dest++ = *src++; } while ( *src != 0 ); } // Concatenate the NULL-terminated string src onto // the end of dest, and return dest. char *strcat(char *dest, const char *src) { while ( *dest != 0 ) { *dest = *dest++; } do { *dest++ = *src++; } while ( *src != 0 ); return dest; } common.h: // common.h -- Defines typedefs and some global functions. // From JamesM's kernel development tutorials. #ifndef COMMON_H #define COMMON_H // Some nice typedefs, to standardise sizes across platforms. // These typedefs are written for 32-bit x86. typedef unsigned int u32int; typedef int s32int; typedef unsigned short u16int; typedef short s16int; typedef unsigned char u8int; typedef char s8int; void outb ( u16int port, u8int value ); u8int inb ( u16int port ); u16int inw ( u16int port ); #endif //COMMON_H main.c: // main.c -- Defines the C-code kernel entry point, calls initialisation routines. // Made for JamesM's tutorials <www.jamesmolloy.co.uk> #include "monitor.h" int main(struct multiboot *mboot_ptr) { monitor_clear(); monitor_write ( "hello, world!" ); return 0; } here is my makefile: C_SOURCES= main.c monitor.c common.c S_SOURCES= boot.s C_OBJECTS=$(patsubst %.c, obj/%.o, $(C_SOURCES)) S_OBJECTS=$(patsubst %.s, obj/%.o, $(S_SOURCES)) CFLAGS=-nostdlib -nostdinc -fno-builtin -fno-stack-protector -m32 -Iheaders LDFLAGS=-Tlink.ld -melf_i386 --oformat=elf32-i386 ASFLAGS=-felf all: kern/kernel .PHONY: clean clean: -rm -f kern/kernel kern/kernel: $(S_OBJECTS) $(C_OBJECTS) ld $(LDFLAGS) -o $@ $^ $(C_OBJECTS): obj/%.o : %.c gcc $(CFLAGS) $< -o $@ vpath %.c source $(S_OBJECTS): obj/%.o : %.s nasm $(ASFLAGS) $< -o $@ vpath %.s asem Hopefully this will help you understand what is going wrong and how to fix it :L Thanks in advance. Jamie.

    Read the article

  • Inheritance issue

    - by VenkateshGudipati
    hi Friends i am facing a issue in Inheritance i have a interface called Irewhizz interface irewhzz { void object save(object obj); void object getdata(object obj); } i write definition in different class like public user:irewhzz { public object save(object obj); { ....... } public object getdata(object obj); { ....... } } this is antoher class public client:irewhzz { public object save(object obj); { ....... } public object getdata(object obj); { ....... } } now i have different classes like public partial class RwUser { #region variables IRewhizzDataHelper irewhizz; IRewhizzRelationDataHelper irewhizzrelation; private string _firstName; private string _lastName; private string _middleName; private string _email; private string _website; private int _addressId; private string _city; private string _zipcode; private string _phone; private string _fax; //private string _location; private string _aboutMe; private string _username; private string _password; private string _securityQuestion; private string _securityQAnswer; private Guid _user_Id; private long _rwuserid; private byte[] _image; private bool _changepassword; private string _mobilephone; private int _role; #endregion //IRewhizz is the interface and its functions are implimented by UserDataHelper class //RwUser Class is inheriting the UserDataHelper Properties and functions. //Here UserDataHelper functions are called with Irewhizz Interface Object but not with the //UserDataHelper class Object It will resolves the unit testing conflict. #region Constructors public RwUser() : this(new UserDataHelper(), new RewhizzRelationalDataHelper()) { } public RwUser(IRewhizzDataHelper repositary, IRewhizzRelationDataHelper relationrepositary) { irewhizz = repositary; irewhizzrelation = relationrepositary; } #endregion #region Properties public int Role { get { return _role; } set { _role = value; } } public string MobilePhone { get { return _mobilephone; } set { _mobilephone = value; } } public bool ChangePassword { get { return _changepassword; } set { _changepassword = value; } } public byte[] Image { get { return _image; } set { _image = value; } } public string FirstName { get { return _firstName; } set { _firstName = value; } } public string LastName { get { return _lastName; } set { _lastName = value; } } public string MiddleName { get { return _middleName; } set { _middleName = value; } } public string Email { get { return _email; } set { _email = value; } } public string Website { get { return _website; } set { _website = value; } } public int AddressId { get { return _addressId; } set { _addressId = value; } } public string City { get { return _city; } set { _city = value; } } public string Zipcode { get { return _zipcode; } set { _zipcode = value; } } public string Phone { get { return _phone; } set { _phone = value; } } public string Fax { get { return _fax; } set { _fax = value; } } //public string Location //{ // get // { // return _location; // } // set // { // _location = value; // } //} public string AboutMe { get { return _aboutMe; } set { _aboutMe = value; } } public string username { get { return _username; } set { _username = value; } } public string password { get { return _password; } set { _password = value; } } public string SecurityQuestion { get { return _securityQuestion; } set { _securityQuestion = value; } } public string SecurityQAnswer { get { return _securityQAnswer; } set { _securityQAnswer = value; } } public Guid UserID { get { return _user_Id; } set { _user_Id = value; } } public long RwUserID { get { return _rwuserid; } set { _rwuserid = value; } } #endregion #region MemberFunctions // DataHelperDataContext db = new DataHelperDataContext(); // RewhizzDataHelper rwdh=new RewhizzDataHelper(); //It saves user information entered by user and returns the id of that user public object saveUserInfo(RwUser userObj) { userObj.UserID = irewhizzrelation.GetUserId(username); var res = irewhizz.saveData(userObj); return res; } //It returns the security questions for user registration } public class Agent : RwUser { IRewhizzDataHelper irewhizz; IRewhizzRelationDataHelper irewhizzrelation; private int _roleid; private int _speclisationid; private int[] _language; private string _brokaragecompany; private int _loctionType_lk; private string _rolename; private int[] _specialization; private string _agentID; private string _expDate; private string _regstates; private string _selLangs; private string _selSpels; private string _locations; public string Locations { get { return _locations; } set { _locations = value; } } public string SelectedLanguages { get { return _selLangs; } set { _selLangs = value; } } public string SelectedSpecialization { get { return _selSpels; } set { _selSpels = value; } } public string RegisteredStates { get { return _regstates; } set { _regstates = value; } } //private string _registeredStates; public string AgentID { get { return _agentID; } set { _agentID = value; } } public string ExpDate { get { return _expDate; } set { _expDate = value; } } private int[] _registeredStates; public SelectList RegisterStates { set; get; } public SelectList Languages { set; get; } public SelectList Specializations { set; get; } public int[] RegisterdStates { get { return _registeredStates; } set { _registeredStates = value; } } //public string RegisterdStates //{ // get // { // return _registeredStates; // } // set // { // _registeredStates = value; // } //} public int RoleId { get { return _roleid; } set { _roleid = value; } } public int SpeclisationId { get { return _speclisationid; } set { _speclisationid = value; } } public int[] Language { get { return _language; } set { _language = value; } } public int LocationTypeId { get { return _loctionType_lk; } set { _loctionType_lk = value; } } public string BrokarageCompany { get { return _brokaragecompany; } set { _brokaragecompany = value; } } public string Rolename { get { return _rolename; } set { _rolename = value; } } public int[] Specialization { get { return _specialization; } set { _specialization = value; } } public Agent() : this(new AgentDataHelper(), new RewhizzRelationalDataHelper()) { } public Agent(IRewhizzDataHelper repositary, IRewhizzRelationDataHelper relationrepositary) { irewhizz = repositary; irewhizzrelation = relationrepositary; } public void inviteclient() { //Code related to mailing } //DataHelperDataContext dataObj = new DataHelperDataContext(); //#region IRewhizzFactory Members //public List<object> getAgentInfo(string username) //{ // var res=dataObj.GetCompleteUserDetails(username); // return res.ToList(); // throw new NotImplementedException(); //} //public List<object> GetRegisterAgentData(string username) //{ // var res= dataObj.RegisteredUserdetails(username); // return res.ToList(); //} //public void saveAgentInfo(string username, string password, string firstname, string lastname, string middlename, string securityquestion, string securityQanswer) //{ // User userobj=new User(); // var result = dataObj.rw_Users_InsertUserInfo(firstname, middlename, lastname, dataObj.GetUserId(username), securityquestion, securityquestionanswer); // throw new NotImplementedException(); //} //#endregion public Agent updateData(Agent objectId) { objectId.UserID = irewhizzrelation.GetUserId(objectId.username); objectId = (Agent)irewhizz.updateData(objectId); return objectId; } public Agent GetAgentData(Agent agentodj) { agentodj.UserID = irewhizzrelation.GetUserId(agentodj.username); agentodj = (Agent)irewhizz.getData(agentodj); if (agentodj.RoleId != 0) agentodj.Rolename = (string)(string)irewhizzrelation.getValue(agentodj.RoleId); if (agentodj.RegisterdStates.Count() != 0) { List<SelectListItem> list = new List<SelectListItem>(); string regstates = ""; foreach (int i in agentodj.RegisterdStates) { SelectListItem listitem = new SelectListItem(); listitem.Value = i.ToString(); listitem.Text = (string)irewhizzrelation.getValue(i); list.Add(listitem); regstates += (string)irewhizzrelation.getValue(i) + ","; } SelectList selectlist = new SelectList(list, "Value", "Text"); agentodj.RegisterStates = selectlist; if(regstates!=null) agentodj.RegisteredStates = regstates.Remove(regstates.Length - 1); } if (agentodj.Language.Count() != 0) { List<SelectListItem> list = new List<SelectListItem>(); string selectedlang = ""; foreach (int i in agentodj.Language) { SelectListItem listitem = new SelectListItem(); listitem.Value = i.ToString(); listitem.Text = (string)irewhizzrelation.getValue(i); list.Add(listitem); selectedlang += (string)irewhizzrelation.getValue(i) + ","; } SelectList selectlist = new SelectList(list, "Value", "Text"); agentodj.Languages = selectlist; // agentodj.SelectedLanguages = selectedlang; } if (agentodj.Specialization.Count() != 0) { List<SelectListItem> list = new List<SelectListItem>(); string selectedspel = ""; foreach (int i in agentodj.Specialization) { SelectListItem listitem = new SelectListItem(); listitem.Value = i.ToString(); listitem.Text = (string)irewhizzrelation.getValue(i); list.Add(listitem); selectedspel += (string)irewhizzrelation.getValue(i) + ","; } SelectList selectlist = new SelectList(list, "Value", "Text"); agentodj.Specializations = selectlist; //agentodj.SelectedSpecialization = selectedspel; } return agentodj; } public void SaveImage(byte[] pic, String username) { irewhizzrelation.SaveImage(pic, username); } } now the issue is when ever i am calling agent class it is given error like null reference exception for rwuser class can any body give the solution thanks in advance

    Read the article

  • WSRM error on Server running SQL databases

    - by Adam
    I have a Server Running Windows Server 2008 Enterprise Edition With SQL 2005. There is no problems with the server in its day to day functions but i am getting a Warning in the Event Log every 5 minutes with the following: Windows System Resource Manager encountered the following error 0x80010117. User Name will not be logged in the subsequent event logs. Error 0x80010117 User Action Address the error condition, and then try again. This has been happening for over 2 weeks now and i cannot find anything online to help! If i could have some help, then it would much appreciated. Thanks

    Read the article

  • Motorola NVG510 bridge mode

    - by Blacklight Shining
    I have a Motorola NVG510 modem from AT&T, and I would like to disable all routing functions and use it as just a modem. I have a Time Capsule that's already connected and broadcasting its own wireless network, which is how I've been connecting (it's been reporting a double-NAT error, which I assume is from the NVG510 also acting as a router). I followed the instructions in question six here, and I can connect as I did before, but my Time Capsule still has a double-NAT error. How do I put the NVG510 into bridge mode or otherwise fix the double-NAT error? (No, ignoring it does not count as a fix.)

    Read the article

  • WSRM error on Server running SQL databases

    - by Adam
    I have a Server Running Windows Server 2008 Enterprise Edition With SQL 2005. There is no problems with the server in its day to day functions but i am getting a Warning in the Event Log every 5 minutes with the following: Windows System Resource Manager encountered the following error 0x80010117. User Name will not be logged in the subsequent event logs. Error 0x80010117 User Action Address the error condition, and then try again. This has been happening for over 2 weeks now and i cannot find anything online to help! If i could have some help, then it would much appreciated. Thanks

    Read the article

  • Wireless Repeating with Netgear N750 (WNDR4300)

    - by jomo1911
    I have a Netgear N750 as my main router, which connects to the internet via a modem. I have a second Netgear N750 which I want to use to repeat the wireless signal of the main router. I logged in to routerlogin of my main router (192.168.1.1) and set up the "Wireless Repeating Function". I set it as the "Wireless Base Station" and filled in the MAC adress of my second Netgear N750. Then I logged in to routerlogn of my second router and set it up as the "Wireless Repeater", I gave it the IP 192.168.1.11 and filled in the MAC adress of the base station. During the setup of the second router (Repeater) I had to disable all security functions. If I connect to the repeaters' WLAN signal, I get no internet connection. Maybe you can help me, thanks

    Read the article

< Previous Page | 196 197 198 199 200 201 202 203 204 205 206 207  | Next Page >