Search Results

Search found 13608 results on 545 pages for 'performance dashboard'.

Page 201/545 | < Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >

  • What's New In 11.1.2.1 (Talleyrand SP1)

    - by russ.bishop
    This release is primarily about bug fixes and that's what we spent the most time on, but we also addressed a number of other things: 1. Performance improvements We've done a lot of work to improve the performance of page load and execution times. For example, the View Compare page is about half the size it was previously! We've also done a lot of work on the server to improve performance of queries, exports, action scripts, etc. We implemented some finer-grained locking so fewer operations will block other users while they are in progress. We made some optimizations to improve performance when you have a lot of network or database latency as well. Just a few examples: An Import that previously took 8 GB of memory and hours to complete now runs in about 30 minutes and never takes more than 1 GB of RAM. Searching by exact Node Name now completes within 2 seconds even for a hierarchy with millions of nodes. Another search that was taking 30 seconds to run now completes in less than 5 seconds. 2. Upgrade support This release supports automatic upgrade from previous releases, built right into the console. 3. Console Improvements The Console has been reorganized and made easier to use. It is also much more multi-threaded so it responds quicker without freezing up when you save changes or when it needs to get status. 4. Property Namespaces Properties now have a concept called a Namespace. This is tied into the Application Templates to prevent conflicts with duplicate property names. Right now, if you have an AccountType and you pull in the HFM template, it also has AccountType so you end up creating properties with decorations on the name like "Account Type (HFM)". This is no longer necessary. In addition, properties within a namespace must have unique labels but they can be duplicated across namespaces. So in the Property Grid when you click on the HFM category, you just see "AccountType". When you click on MyCategory, you see "AccountType", but they are different properties with different values. Within formulas, the names are still unique (eg: Custom.AccountType vs HFM.AccountType). I'll write more about this one later. 5. Single Sign On DRM now supports Single Sign-On via HSS. For example, if you are using Oracle's OAM as your SSO solution then you configure HSS to use OAM just like you would before. You also configure DRM to use HSS, again just like before. Then you configure OAM to protect the DRM web app, like you would any other website. However once you do those things, users are no longer prompted to enter their username/password. They simply get redirected to OAM if they don't already have a login token, otherwise they pick their application and sail right into DRM. You can also avoid having to pick an application (see the next item) 6. URL-based navigation You can now specify the application you want to log into via the URL. Combined with SSO and your Intranet, it becomes easy to provide links on our intranet portal that take users directly into a specific DRM application. We also support specifying the Version, Hierarchy, and Node. Again, this can be used on your internal portal, but the scenarios get even more interesting when you are using workflow like Oracle BPEL you can automatically generate links within emails that will take users directly to a specific node in the UI. 7. Job status and cancellation A lot of the jobs now report their status and support true cancellation. Action Scripts also report a progress complete percentage since the amount of work is known ahead of time. 8. Action Script Options Action scripts support Option declarations at the top of the file so a script can self-describe (when specified in the file, the corresponding item in the file is ignored). For example: Option|DetectDelimiter Option|UsePropertyNames|true This will tell DRM to automatically detect the delimiter (a pipe symbol in this case) and that all references to properties are by Name, not by Label. Note that when you load a script in the UI, if you use Labels we automatically try to match them up if they are unique. Any duplicates are indicated and you are presented with a choice to pick which property you actually referred to. This is somewhat similar to Version substitution, but tailored for properties. There are other more minor changes and like I said earlier a lot of bug fixes and performance improvements. Hopefully I will get a chance to dig into some of these things in future blog posts.

    Read the article

  • EPM and Business Analytics Talking-head Videos from Oracle OpenWorld 2013

    - by Mike.Hallett(at)Oracle-BI&EPM
    Normal 0 false false false EN-GB X-NONE X-NONE Here is a selection of 2 to 3 minute video interviews at this year’s Oracle OpenWorld: 1. George Somogyi, Solutions Architect, New Edge Group, talks about the importance of having their integrated Oracle Hyperion Platform consisting of Oracle Hyperion Financial Management, Oracle Hyperion Financial Data Quality Management, Oracle E-Business Suite R12 and Oracle Business Intelligence Extended Edition plus their use of Oracle Managed Cloud Services. Speaker: George Somogyi @ http://youtu.be/kWn0dQxCUy8 2. Gregg Thompson, Director of Financial Systems for ADT, talks about using Oracle Data Relationship Management prior to implementing an Enterprise Performance Management solution. Gregg confirmed that there are big benefits to bringing the full Oracle Hyperion Financial Close suite online with Oracle DRM as the metadata source. Reduced maintenance time and use of external consultants translates into significant time and cost savings and faster implementation times. Speaker: Gregg Thompson @ http://youtu.be/XnFrR9Uk4xk 3. Jeff Spangler, Director Financial Planning and Analysis for Speedy Cash Holdings Corp, talked to us about the benefits achieved through implementing Oracle Hyperion Planning and financial reporting solutions. He also describes how the use of Data Relationship Management will keep the process running smoothly now and in the future. Speaker: Jeff Spangler @ http://youtu.be/kkkuMkgJ22U 4. Marc Seewald, Senior Director of Product Management for Oracle Hyperion Tax Provision at Oracle, talks about Oracle Hyperion Tax Provision, how it is an integral part of the financial close process and that it provides better internal controls and automation of this task. Marc talks about Oracle Partners and customers alike who are seeing great value. Speaker: Marc Seewald @ http://youtu.be/lM_nfvACGuA 5. Matt Bradley, SVP of Product Development for Enterprise Performance Management (EPM) Applications at Oracle, talked to us about different deployment options for Oracle EPM. Cloud services (SaaS), managed services, on-premise, off-premise all have their merits, and organizations need flexibility to easily move between them as their companies evolve. Speaker: Matt Bradley @ http://youtu.be/ATO7Z9dbE-o 6. Neil Sellers, Partner, Qubix International talks about their experience with previewing Oracle’s new Planning and Budgeting Cloud Service. He describes the benefits of the step-by-step task lists, the speed of getting the application up and running, and the huge benefits of not having to manage the software and hardware side of the planning process. Speaker: Neil Sellers @ http://youtu.be/xmosO28e4_I 7. Praveen Pasupuleti, Senior Business Intelligence Development Manager of Citrix Systems Inc., talks about their Oracle Hyperion Planning upgrade and the huge performance improvement now experienced in forecasting. He also talked about the benefits of Oracle Hyperion Workforce Planning achieved by Citrix. Speaker: Praveen Pasupuleti @ http://youtu.be/d1e_4hLqw8c 8. CheckPoint Consulting, talked to us about how Enterprise Performance Management should be viewed as an entire solution, rather than as a bunch of applications in silos, to provide significant benefits; and how Data Relationship Management can tie it all together effectively. Speaker: Ron Dimon @ http://youtu.be/sRwbdbbXvUE 9. Sonal Kulkarni, Enterprise Performance Management Leader, Cummins Inc., talks about their use of Oracle Hyperion Financial Close Management (Account Reconciliation Manager), Oracle Hyperion Financial Management and Oracle Hyperion Financial Data Quality Management and how this is providing efficiency, visibility and compliance benefits. Speaker: Sonal Kulkarni @ http://youtu.be/OEgup5dKyVc 10. Todd Renard, Manager Financial Planning and Business Analytics for B/E Aerospace Inc., talks about the huge benefits that B/E Aerospace is experiencing from Oracle Financial Close Suite. He was extremely excited about Oracle Hyperion Financial Data Quality Management and how this helps them integrate a new business in as little as three weeks. Speaker: Todd Renard @ http://youtu.be/nIfqK46uVI8 11. Peter Smolianski, Chief Technology Officer for the District of Columbia Courts, talked to us about how D.C. Courts is using Oracle Scorecard and Strategy Management to push their 5 year plan forward, to report results to their constituents, and take accountability for process changes to become more efficient. Speaker: Peter Smolianski @ http://www.youtube.com/watch?v=T-DtB5pl-uk 12. Rich Wilkie, Senior Director of Product Management for Financial Close Suite at Oracle, talked to us about Oracle Financial Management Analytics. He told us how the prebuilt dashboards on top of Oracle Hyperion Financial Close Suite make it easy for everyone to see the numbers and understand where they are in the close process, and if there is an issue, they can see where it is. Executives are excited to get this information on mobile devices too. Speaker: Rich Wilkie @ http://www.youtube.com/watch?v=4UHuHgx74Yg 13. Dinesh Balebail, Senior Director of Software Development for Oracle Hyperion Profitability and Cost Management, talked to us about the power and speed of Oracle Hyperion Profitability and Cost Management and how it is being used to do deep costing for Telecoms, Hospitals, Banks and other high transaction volume organizations effectively. Speaker: Dinesh Balebail @ http://youtu.be/ivx5AZCXAfs /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US; mso-fareast-language:EN-US;}

    Read the article

  • Some non-generic collections

    - by Simon Cooper
    Although the collections classes introduced in .NET 2, 3.5 and 4 cover most scenarios, there are still some .NET 1 collections that don't have generic counterparts. In this post, I'll be examining what they do, why you might use them, and some things you'll need to bear in mind when doing so. BitArray System.Collections.BitArray is conceptually the same as a List<bool>, but whereas List<bool> stores each boolean in a single byte (as that's what the backing bool[] does), BitArray uses a single bit to store each value, and uses various bitmasks to access each bit individually. This means that BitArray is eight times smaller than a List<bool>. Furthermore, BitArray has some useful functions for bitmasks, like And, Xor and Not, and it's not limited to 32 or 64 bits; a BitArray can hold as many bits as you need. However, it's not all roses and kittens. There are some fundamental limitations you have to bear in mind when using BitArray: It's a non-generic collection. The enumerator returns object (a boxed boolean), rather than an unboxed bool. This means that if you do this: foreach (bool b in bitArray) { ... } Every single boolean value will be boxed, then unboxed. And if you do this: foreach (var b in bitArray) { ... } you'll have to manually unbox b on every iteration, as it'll come out of the enumerator an object. Instead, you should manually iterate over the collection using a for loop: for (int i=0; i<bitArray.Length; i++) { bool b = bitArray[i]; ... } Following on from that, if you want to use BitArray in the context of an IEnumerable<bool>, ICollection<bool> or IList<bool>, you'll need to write a wrapper class, or use the Enumerable.Cast<bool> extension method (although Cast would box and unbox every value you get out of it). There is no Add or Remove method. You specify the number of bits you need in the constructor, and that's what you get. You can change the length yourself using the Length property setter though. It doesn't implement IList. Although not really important if you're writing a generic wrapper around it, it is something to bear in mind if you're using it with pre-generic code. However, if you use BitArray carefully, it can provide significant gains over a List<bool> for functionality and efficiency of space. OrderedDictionary System.Collections.Specialized.OrderedDictionary does exactly what you would expect - it's an IDictionary that maintains items in the order they are added. It does this by storing key/value pairs in a Hashtable (to get O(1) key lookup) and an ArrayList (to maintain the order). You can access values by key or index, and insert or remove items at a particular index. The enumerator returns items in index order. However, the Keys and Values properties return ICollection, not IList, as you might expect; CopyTo doesn't maintain the same ordering, as it copies from the backing Hashtable, not ArrayList; and any operations that insert or remove items from the middle of the collection are O(n), just like a normal list. In short; don't use this class. If you need some sort of ordered dictionary, it would be better to write your own generic dictionary combining a Dictionary<TKey, TValue> and List<KeyValuePair<TKey, TValue>> or List<TKey> for your specific situation. ListDictionary and HybridDictionary To look at why you might want to use ListDictionary or HybridDictionary, we need to examine the performance of these dictionaries compared to Hashtable and Dictionary<object, object>. For this test, I added n items to each collection, then randomly accessed n/2 items: So, what's going on here? Well, ListDictionary is implemented as a linked list of key/value pairs; all operations on the dictionary require an O(n) search through the list. However, for small n, the constant factor that big-o notation doesn't measure is much lower than the hashing overhead of Hashtable or Dictionary. HybridDictionary combines a Hashtable and ListDictionary; for small n, it uses a backing ListDictionary, but switches to a Hashtable when it gets to 9 items (you can see the point it switches from a ListDictionary to Hashtable in the graph). Apart from that, it's got very similar performance to Hashtable. So why would you want to use either of these? In short, you wouldn't. Any gain in performance by using ListDictionary over Dictionary<TKey, TValue> would be offset by the generic dictionary not having to cast or box the items you store, something the graphs above don't measure. Only if the performance of the dictionary is vital, the dictionary will hold less than 30 items, and you don't need type safety, would you use ListDictionary over the generic Dictionary. And even then, there's probably more useful performance gains you can make elsewhere.

    Read the article

  • Part 1 - Load Testing In The Cloud

    - by Tarun Arora
    Azure is fascinating, but even more fascinating is the marriage of Azure and TFS! Introduction Recently a client I worked for had 2 major business critical applications being delivered, with very little time budgeted for Performance testing, we immediately hit a bottleneck when the performance testing phase started, the in house infrastructure team could not support the hardware requirements in the short notice. It was suggested that the performance testing be performed on one of the QA environments which was a fraction of the production environment. This didn’t seem right, the team decided to turn to the cloud. The team took advantage of the elasticity offered by Azure, starting with a single test agent which was provisioned and ready for use with in 30 minutes the team scaled up to 17 test agents to perform a very comprehensive performance testing cycle. Issues were identified and resolved but the highlight was that the cost of running the ‘test rig’ proved to be less than if hosted on premise by the infrastructure team. Thank you for taking the time out to read this blog post, in the series of posts, I’ll try and cover the start to end of everything you need to know to use Azure to build your Test Rig in the cloud. But Why Azure? I have my own Data Centre… If the environment is provisioned in your own datacentre, - No matter what level of service agreement you may have with your infrastructure team there will be down time when the environment is patched - How fast can you scale up or down the environments (keeping the enterprise processes in mind) Administration, Cost, Flexibility and Scalability are the areas you would want to think around when taking the decision between your own Data Centre and Azure! How is Microsoft's Public Cloud Offering different from Amazon’s Public Cloud Offering? Microsoft's offering of the Cloud is a hybrid of Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) which distinguishes Microsoft's offering from other providers such as Amazon (Amazon only offers IaaS). PaaS – Platform as a Service IaaS – Infrastructure as a Service Fills the needs of those who want to build and run custom applications as services. Similar to traditional hosting, where a business will use the hosted environment as a logical extension of the on-premises datacentre. A service provider offers a pre-configured, virtualized application server environment to which applications can be deployed by the development staff. Since the service providers manage the hardware (patching, upgrades and so forth), as well as application server uptime, the involvement of IT pros is minimized. On-demand scalability combined with hardware and application server management relieves developers from infrastructure concerns and allows them to focus on building applications. The servers (physical and virtual) are rented on an as-needed basis, and the IT professionals who manage the infrastructure have full control of the software configuration. This kind of flexibility increases the complexity of the IT environment, as customer IT professionals need to maintain the servers as though they are on-premises. The maintenance activities may include patching and upgrades of the OS and the application server, load balancing, failover clustering of database servers, backup and restoration, and any other activities that mitigate the risks of hardware and software failures.   The biggest advantage with PaaS is that you do not have to worry about maintaining the environment, you can focus all your time in solving the business problems with your solution rather than worrying about maintaining the environment. If you decide to use a VM Role on Azure, you are asking for IaaS, more on this later. A nice blog post here on the difference between Saas, PaaS and IaaS. Now that we are convinced why we should be turning to the cloud and why in specific Azure, let’s discuss about the Test Rig. The Load Test Rig – Topology Now the moment of truth, Of course a big part of getting value from cloud computing is identifying the most adequate workloads to take to the cloud, so I’ve decided to try to make a Load Testing rig where the Agents are running on Windows Azure.   I’ll talk you through the above Topology, - User: User kick starts the load test run from the developer workstation on premise. This passes the request to the Test Controller. - Test Controller: The Test Controller is on premise connected to the same domain as the developer workstation. As soon as the Test Controller receives the request it makes use of the Windows Azure Connect service to orchestrate the test responsibilities to all the Test Agents. The Windows Azure Connect endpoint software must be active on all Azure instances and on the Controller machine as well. This allows IP connectivity between them and, given that the firewall is properly configured, allows the Controller to send work loads to the agents. In parallel, the Controller will collect the performance data from the agents, using the traditional WMI mechanisms. - Test Agents: The Test Agents are on the Windows Azure Public Cloud, as soon as the test controller issues instructions to the test agents, the test agents start executing the load tests. The HTTP requests are issued against the web server on premise, the results are captured by the test agents. And finally the results are passed over to the controller. - Servers: The Web Server and DB Server are hosted on premise in the datacentre, this is usually the case with business critical applications, you probably want to manage them your self. Recap and What’s next? So, in the introduction in the series of blog posts on Load Testing in the cloud I highlighted why creating a test rig in the cloud is a good idea, what advantages does Windows Azure offer and the Test Rig topology that I will be using. I would also like to mention that i stumbled upon this [Video] on Azure in a nutshell, great watch if you are new to Windows Azure. In the next post I intend to start setting up the Load Test Environment and discuss pricing with respect to test agent machine types that will be used in the test rig. Hope you enjoyed this post, If you have any recommendations on things that I should consider or any questions or feedback, feel free to add to this blog post. Remember to subscribe to http://feeds.feedburner.com/TarunArora.  See you in Part II.   Share this post : CodeProject

    Read the article

  • To My 24 Year Old Self, Wherever You Are&hellip;

    - by D'Arcy Lussier
    A decade is a milestone in one’s life, regardless of when it occurs. 2011 might seem like a weird year to mark a decade, but 2001 was a defining year for me. It marked my emergence into the technology industry, an unexpected loss of innocence, and triggered an ongoing struggle with faith and belief. Once you go through a valley, climbing the mountain and looking back over where you travelled, you can take in the entirety of the journey. Over the last 10 years I kept journals, and in this new year I took some time to review them. For those today that are me a decade ago, I share with you what I’ve gleamed from my experiences. Take it for what it’s worth, and safe travels on your own journeys through life. Life is a Performance-Based Sport Have confidence, believe you’re capable, but realize that life is a performance-based sport. Everything you get in life is based on whether you can show that you deserve it. Performance is also your best defense against personal attacks. Just make sure you know what standards you’re expected to hit and if people want to poke holes at you let them do the work of trying to find them. Sometimes performance won’t matter though. Good things will happen to bad people, and bad things to good people. What’s important is that you do the right things and ensure the good and bad even out in your own life. How you finish is just as important as how you start. Start strong, end strong. Respect is Your Most Prized Reward Respect is more important than status or ego. The formula is simple: Performing Well + Building Trust + Showing Dedication = Respect Focus on perfecting your craft and helping your team and respect will come. Life is a Team Sport Whatever aspect of your life, you can’t do it alone. You need to rely on the people around you and ensure you’re a positive aspect of their lives; even those that may be difficult or unpleasant. Avoid criticism and instead find ways to help colleagues and superiors better whatever environment you’re in (work, home, etc.). Don’t just highlight gaps and issues, but also come to the table with solutions. At the same time though, stand up for yourself and hold others accountable for the commitments they make to the team. A healthy team needs accountability. Give feedback early and often, and make it verbal. Issues should be dealt with immediately, and positives should be celebrated as they happen. Life is a Contact Sport Difficult moments will happen. Don’t run from them or shield yourself from experiencing them. Embrace them. They will further mold you and reveal who you will become. Find Your Tribe and Embrace Your Community We all need a tribe: a group of people that we gravitate to for support, guidance, wisdom, and friendship. Discover your tribe and immerse yourself in them. Don’t look for a non-existent tribe just to fill the need of belonging though that will leave you empty and bitter when they don’t meet your unrealistic expectations. Try to associate with people more experienced and more knowledgeable than you. You’ll always learn, and you’ll always remember you have much to learn. Put yourself out there, get involved with the community. Opportunities will present themselves. When we open ourselves up to be vulnerable, we also give others the chance to do the same. This helps us all to grow and help each other, it’s very important. And listen to your wife. (Easter *is* a romantic holiday btw, regardless of what you may think.) Don’t Believe Your Own Press Clippings (and by that I mean the ones you write) Until you have a track record of performance to refer to, any notions of grandeur are just that: notions. You lose your rookie status through trials and tribulations, not by the number of stamps in your passport. Be realistic about your own “experience and leadership” and be honest when you aren’t ready for something. And always remember: nobody really cares about you as much as you think they do. Don’t Let Assholes Get You Down The world isn’t evil, but there is evil in the world. Know the difference and don’t paint all people with the same brush. Do be wary of those that use personal beliefs to describe their business (i.e. “We’re a [religion] company”). What matters is the culture of the organization, and that will tell you the moral compass and what is truly valued. Don’t make someone or something a priority that only makes you an option. Life is unfair and enemies/opponents will succeed when you fail. Don’t waste your energy getting upset at this; the only one that will lose out is you. As mentioned earlier, nobody really cares about you as much as you think they do. Misc Ecclesiastes is bullshit. Everything is certainly *not* meaningless. Software development is about delivery, not the process. Having a great process means nothing if you don’t produce anything. Watch “The Weatherman” (“It’s not easy, but easy doesn’t enter into grownup life.”). Read Tony Dungee’s autobiography, even if you don’t like football, and even if you aren’t a Christian. Say no, don’t feel like you have to commit right away when someone asks you to.

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Is there a work around for slow performance of do.call(cbind.xts,...) in R 2.15.2?

    - by Petr Matousu
    I would expect cbind.xts and do.call(cbind.xts) to perform with similar elapsed time. That was true for R2.11, R2.14. For R2.15.2 and xts 0.8-8, the do.call(cbind.xts,...) variant performs drastically slower, which effectively breaks my previous codes. As Josh Ulrich notes in a comment below, the xts package maintainers are aware of this problem. In the meantime, is there a convenient work around?

    Read the article

  • UPDATE FOR BI PUBLISHER ENTERPRISE 10.1.3.4.1 MARCH 2010

    - by Tim Dexter
    Latest roll up patch for 10.1.3.4.1 is now out in the wild. Yep, there are bug fixes but the guys have implemented some great enhancements. I'll be covering some of them over the coming weeks, from collapsing bookmarks in your PDFs to better MS AD support to 'true' Excel templates, yes you read that correctly! Patch is available from Oracle's support site. Just search for patch 9546699. Here's the contents and readme, apologies for the big list but at least you can search against it for a particular fix. This patch contains backports of following bugs for BI Publisher Enterprise 10.1.3.4.0 and 10.1.3.4.1. 6193342 - REG:SAMPLE DATA FILE FOR PDF FORM MAPPING IS NOT VALIDATED 6261875 - ERRONEOUS PRECISION VALIDATION ON ONLINE ANALYZER 6439437 - NULL POINTER EXCEPTION WHEN PROCESSING TABLE OF CONTENT 6460974 - BACS EFT PAYMENT INSTRUCTION OUTPUT FILE IS EMPTY 6939721 - BIP: REPORT BUSTING DELIVERY KEY VALUES CANNOT CONTAIN SEVERAL SPECIAL CHARACTER 6996069 - USING XML DB FOR BI REPOSITORY FAILS WITH RESOURCENOTFOUNDEXCEPTION 7207434 - TIMEZONE:SHOULD NOT DO TIMEZONE CONVERSION AGAINST CANONICAL DATE YYYY-MM-DD 7371531 - SUPPORT FOR CSV OUTPUT FOR STRUCTURED XML AND NON SQL DATA SOURCES 7596148 - ER: LDAP FOR MS AD TO SEARCH FROM AD ROOT 7646139 - WEBSERVICES ERROR 7829516 - BIP STANDALONE FAILS TO BURST USING XSL-FO TEMPLATES 8219848 - PDF TEMPLATE REPORT NOT PERFORMING PAGE BREAK 8232116 - PARAMETER VALUE IS PASSED AS NULL,IF IT CONTAINS 'AND' WITHIN THE STRING 8250690 - NOT ABLE TO UPLOAD TEMPLATE VIA BIP API 8288459 - ER: QUERY BUILDER OPTION TO NOT INCLUDE TABLENAME. PREFIX IN SQL 8289600 - REPORT TITLE AND DESCRIPTION CAN'T SUPPORT MULTIPLE LANGUAGES 8327080 - CAN NOT CONFIGURE ORACLE EBUSINESS SUITE SECURITY MODEL WITH ORACLE RAC 8332164 - AN XDO PROPERTY TO ENABLE DEBUG LOGGING 8333289 - WEB SERVICE JOBS FAIL AFTER BIP STARTED UP 8340239 - HTTP NOTIFY IS MISSING IN SCHEDULEREPORTREQUEST 8360933 - UNABLE TO USE LOGGED IN BI USER AS THE WSSECURITY USERNAME IN A VARIABLE FORMAT 8400744 - ADMINISTRATOR USER DOES NOT HAVE FULL ADMINISTRATOR RIGHTS 8402436 - CRASH CAUSED BY UNDETERMINED ATTRKEY ERROR IN MULTI-THREADED 8403779 - IMPOSSIBLE TO CONFIGURE PARAMETER FOR A REPORT 8412259 - PDF, RTF OUTPUT NOT HANDLING THE TABLE BORDER AND CONTENT OVERFLOWS TO NEXT PAGE 8483919 - DYNAMIC DATASOURCE WEBSERVICE SHOULD WORK WITH SERVERSIDE CONNECTIONS 8444382 - ID ATTRIBUTE IN TITLE-PAGE DOES NOT WORK WITH SELECTACTION PROPERTY 8446681 - UI LANGUAGE IS NOT REFLECTED AT THE FIRST LOG IN 8449884 - PUBLICREPORTSERVICE FAILS ON EMAIL DELIVERY USING BIP 10.1.3.4.0D+ - NPE 8454858 - DB: XMLP_ADMIN CAN SEE ALL THE FOLDERS BUT ONLY HAS VIEW PERMISSIONS 8458818 - PDFBOOKBINDER FAILS WITH OUTOFMEMORY ERROR WHEN TRYING TO BIND > 1500 PDFS 8463992 - INCORRECT IMPLEMENTATION OF XLIFF SPECIFICATION 8468777 - BI PUBLISHER QUERY BUILDER NOT LOADING SCHEMA OBJECTS 8477310 - QUERY BUILDER NOT WORK WITH SSL ON STANDALONE OC4J 8506701 - POSITIVE PAY FILE WITH OPTIONS NOT CREATING FILE CHECKS OVER 2500 8506761 - PERFORMANCE: PDFBOOKBINDER CLASS TAKES 4 HOURS TO BIND 4000 PAGES 8535604 - NPE WHEN CLICKING "ANALYZER FOR EXCEL" BUTTON IN ALL_* REPORTS 8536246 - REMOVE-PDF-FIELDS DOES NOT WORK WITH CHECKBOXES WITH OPT ARRAY 8541792 - NULLPOINTER EXCEPTION WHILE USING SFTP PROTOCOL 8554443 - LOGGING TIME STAMP IN 10G: THE HOUR PART IS WRONG 8558007 - UNABLE TO LOGIN BIP WITH UNPRIVILEGED USER WHEN XDB IS USED FOR REPORSITORY STOR 8565758 - NEED TO CONNECT IMPERSONATION TO DATA SOURCE WITH PL/SQL FUNCTION 8567235 - EFTPROCESSOR AND XDO DEBUG ENABLED CAUSES ORG.XML.SAX.SAXPARSEEXCEPTION 8572216 - EFTPROCESSOR NOT THREAD SAFE - CAUSING CORRUPTED REPORTS TO BE GENERATED 8575776 - LANDSCAPE REPORT ORIENTAION NOT SELECTED WHEN REPORT IS PRINTED WITH PS 8588330 - XLIFF GENERATING WITH WRONG MAXWIDTH ATTRIBUTE IN SOME TRANS-UNITS 8584446 - EFTGENERATOR DOES NOT USE XSLT SCALABILITY - JAVA.LANG.OUTOFMEMORY EXCEPTION 8594954 - ENG: BIP NOTIFY MESSAGE BECOMES ENGLISH 8599646 - ER:EXTRA SPACE ADDED BELOW IMAGE IN A TABLE CELL OF TEMPLATE IN FIREFOX 8605110 - PDFSIGNATURE API ENCOUNTERS JAVA.LANG.NULLPOINTEREXCEPTION ON PDF WITH WATERMARK 8660915 - BURSTING WITH DATA TEMPLATE NOT WORKING WITH OPTION: VALUE=FALSE 8660920 - ER: EXTRACT XHTML DATA USING XDODTEXE IN XHTML FORMAT 8667150 - PROBLEM WITH 3RD APPLICATION ABOUT PDF GENERATED WITH BI PUBLISHER 8683547 - "CLICK VIEW REPORT BUTTON TO GENERATE THE REPORT" MESSAGE IS DISPLAYED 8713080 - SEARCH" PARAMETER IS NOT SHOWING NON ENGLISH DATA IN INTERNET EXPLORER 8724778 - EXCEL ANALYZER PARAMETERS DO NOT WORK WITH EXCEL 2007 8725450 - UIX 2.3.6.6 UPTAKE FOR 10.1.3.4.1 8728807 - DYNAMIC JDBC DATA SOURCE WITH PRE-PROCESS FUNCTION BASED ON EXISTING DATA SOURCE 8759558 - XDO TEMPLATE SHOWS CURRENCY IN WRONG FORMAT FOR DUNNING 8792894 - EFTPROCESSOR DOES NOT SUPPORT XSL TEMPLATE AS INPUTSTREAM 8793550 - BIP GENERATES CSV REPORTS OUTPUT FORMAT WITH EXTENTION .OUT NOT .CSV IN EMAIL 8819869 - PERIOD CLOSE VALUE SUMMARY REPORT (XML) RUNNING INTO WARNING 8825732 - MY FOLDERS LINK BROKEN WITH USER NAME THAT INCLUDES A SLASH (/) OBIEE SECURITY 8831948 - TRYING TO GENERATE A SCATTER PLOT USING THE CHART WIZARD 8842299 - SEEDED QUERY ALWAYS RETURNS RESULTS BASED ON FIRST COLUMN 8858027 - NODE.GETTEXTCONTEXT() NOT AVAILABLE IN 10G UNDER OC4J 8859957 - REPORT TITLE ALIGNMENT GOES BAD FOR REPORTS WITH XLIFF FILE ATTACHED 8860957 - ER: IMPROVE PERFORMANCE OF ANSWERS PARAMETERS 8891537 - GETREPORTPARAMETERS WEB SERVICE API ISSUES WITH OAAM REPORTS 8891558 - GETTING SQLEXCEPTION IN GENERATEREPORT WEB SERVICE API ON OAAM REPORTS 8927796 - ER: DYANAMIC DATA SOURCE SUPPORT BY DATA SOURCE NAME 8969898 - BI PUBLISHER WEB SERVICE GETREPORTPARAMETERS DOES NOT TRANSLATE PARAMETER LABEL 8998967 - MULTIPLE XSL PREDICATES ELEMENT[A='A'] [B='B'] CAUSES XML-22019 ERROR 9012511 - SCALABLE MODE IS NOT WORKING IN XMLPUBLISHER 10.1.3.4 9016976 - ER: PRINT XSL-T AND FOPROCESSING TIMING INFORMATION 9018580 - WEB SERVICE CALL FAILS WHEN REPORT INCLUDES SEARCH TYPE 9018657 - JOB FAILS WHEN LOV QUERY CONTAINS BIND VARIABLES :XDO_USER_UI_LOCALE 9021224 - PERFORMANCE ISSUE TO VIEW DASHBOARD PAGE WITH BIP REPORT LINKS 9022440 - ER: SUPPORT "COMB OF N CHARACTERS" FEATURE PDF FORM TEXT FIELDS 9026236 - XPATH DOES NOT WORK CORRECTLY IN 10.1.3.4.1 9051652 - FILE EXTENSION OF CSV OUTPUT IS TXT WHEN IT IS EXPORTED FROM REPORT VIEWER 9053770 - WHEN SENDING CSV REPORT OUTPUT BY EMAIL SOMETIMES IT IS SENT WITHOUT EXTENSION 9066483 - PDFBOOKBINDER LEAVE SOME TEMPORARY FILES AFTER MERGING TITLE PAGE OR TOC 9102420 - USE RELATIVE PATHS IN HYPERLINKS 9127185 - CHECKBOX NOT WORK ON SUB TEMPLATE 9149679 - BASE URL IS NOT PASSED CORRECTLY 9149691 - PROVIDE A WAY TO DISABLE THE ABILITY TO CREATE SCHEDULED REPORT JOB "PUBLIC" 9167822 - NOTIFICATION URL BREAKS ON FOLDER NAMES WITH SPACES 9167913 - CHARTS ARE MISSING IN PDF OUTPUTS WHEN THE DEFAULT OUTPUT FORMAT IS NOT A PDF 9217965 - REPORT HISTORY TAKES LONG TIME TO RENDER THE PAGE 9236674 - BI PUBLISHER PARAMETERS DO NOT CASCADE REFRESH AFTER SECOND PARAMETER 9283933 - OPTION TO COLLAPSE PDF OUTPUT BOOKMARKS BY DEFAULT 9287245 - SAVE COMPLETED SCHEDULED REPORTS IN ITS REPORT NAME AND NOT IN A GENERIC NAME 9348862 - ADD FEATURE TO DISABLE THE XSLT1.0-COMPATIBILITY IN RTF TEMPLATE 9355897 - ER: NEED A SAFE DIVIDE FUNCTION 9364169 - UIX 2.3.6.6 PATCH UPTAKE FOR 10.1.3.4.1 9365153 - LEADING WHITESPACE CHARACTERS IN A FIELD TRIMMED WHEN RUN VIEW OR EXPORT TO .CSV 9389039 - LONG TEXT IS NOT WRAPPED PROPERLY IN THE AUTOSHAPE ON RTF TEMPLATE 9475697 - ENH: SUB-TEMPLATE:DYNAMIC VARIABLE WITH PARAMETER VALUE IN CALL-TEMPLATE CLAUSE 9484549 - CHANGE DEFAULT FOR "XSLT1.0-COMPATIBILITY" TO FALSE FOR 10G 9508499 - UNABLE TO READ EXCEL FILE IF MORE THAN 1800 ROWS GENERATED 9546078 - EMAIL DELIVERY INFORMATION SHOULD NOT BE SAVED AND AUTO-FED IN JOB SUBMISSION 9546101 - EXCEPTION OCCURS WHEN SFTP/FTP REMOTE FILENAME DOSE NOT CONTAIN A SLASH '/' 9546117 - SFTP REPORT DELIVERY FAILS WITH NO CLASS DEF FOUND EXCEPTION ON WEBLOGIC 9.2 Following bugs are included in 10.1.3.4.1 and they are only applied to 10.1.3.4.0. 4612604 - FROM EDGE ATTRIBUTE OF HEADER AND FOOTER IS NOT PRESERVED 6621006 - PARAMNAMEVALUE ELEMENT DEFINITION SHOULD HAVE PARAMETER TYPE 6811967 - DATE PARAMETER NOT HANDLING DATE OFFSET WHEN PASSED UPPERCASE Z FOR OFFSET 6864451 - WHEN BIP REPORTS TIMEOUT, THE PROCESS TO LOG BACK IN IS NOT USER FRIENDLY 6869887 - FUSION CURRENCY BRD:4.1.4/4.1.6 OVERRIDINDG MASK /W XSLT._XDOCURMASKS /W SYMBOL 6959078 - "TEXT FIELD CONTAINS COMMA-SEPARATED VALUES" DOESN'T WORK IN CASE OF STRING 6994647 - GETTING ERROR MESSAGE SAYING JOB FAILED EVEN THOUGH WORKS OK IN BI PUBLISHER 7133143 - ENABLE USER TO ENTER 'TODAY' AS VALUE TO DATE PARAMETER IN SCHEDULE REPORT UI 7165117 - QA_BIP_FUNC:-CLOSED LIFE TIME REPORT ERROR MESSAGE IN CMD 7167068 - LEADER-LENGTH OR RULE-THICKNESS PROPRTY IS TOO LARGE 7219517 - NEED EXTENSION FUNCTIONS TO URL ENCODE TEXT STRING. 7269228 - TEMPLATEHELPER PRODUCES A GARBLED OUTPUT WHEN INVOKED BY MULTIPLE THREADS 7276813 - GETREPORTPARAMETERSRETURN ELEMENT SHOULD HAVE DEFAULT VALUE 7279046 - SCHDEULER:UNABLE TO DELETE A JOB USING API 7280336 - ER: BI PUBLISHER - SITEMINDER SUPPORT - GENERIC NON-ORACLE SSO SUPPORT 7281468 - MODIFY SQL SERVER PROPERTIES TO USE HYP DATA DIRECT IN JDBCDEFAULTS.XML 7281495 - PLEASE ADD SUPPORTED DBS TO JDBCDEFAULT.XML AND LIST EACH DB VERSION SEPARATELY 7282456 - FUSION CURRENCY BRD 4.1.9.2: CURRENCY AMOUTS SHOULD NOT BE WRAPPED. MINUS SIGN 7282507 - FUSION CURRENCY BRD4.1.2.5:DISPLAY CURRENCY AND LOCALE DERIVED CURRENCY SYMBOL 7284780 - FUSION CURRENCY BRD 4.1.12.4 CORRECTLY ALIGN NEGATIVE CURRENCY AMOUNTS 7306874 - OPP ERROR - JAVA.LANG.OUTOFMEMORYERROR: ZIP002:OUTOFMEMORYERROR, MEM_ERROR 7309596 - SIEBELCRM: BIP ENHANCEMENT REQUEST FOR SIEBEL PARAMETERIZATION 7337173 - UI LOCALE IS ALWAYS REWRITTEN TO EN WHEN MOVE FROM DASHBOARD 7338349 - REG:ANALYZER REPORT WITH AVERAGE FUNCTION FAIL TO RUN FOR NON INTERACTIVE FORMAT 7343757 - OUTPUT FORMAT OF TEMPLATES IS NOT SAVING 7345989 - SET XDK REPLACEILLEGALCHARS AND ENHANCE XSLTWRAPPER WARNING 7354775 - UNEXPECTED BEHAVIOR OF LAYOUT TEMPLATE PARAMETER OF RUNREPORT WEBSERVICES API 7354798 - SEQUENCE ORDER OF PARAMETERS FOR THE RUNREPORT WEBSERVICES API 7358973 - PARALLEL SFTP DELIVERY FAILS DUE TO SSHEXCEPTION: CORRUPT MAC ON INPUT 7370110 - REGN:FAIL WHEN USE JNDI TO XMLDB REPORT REPOSITORY 7375859 - NEW WEBSERVICE REQUIRED FOR RUNREPORT 7375892 - REQUIRE NEW WEBSERVICE TO CHECK IF REPORTFOLDER EXISTS 7377686 - TEXT-ALIGN NOT APPLIED IN PDF IN HEBREW LOCALE 7413722 - RUNREPORT API DOES NOT PASS BACK ANY GENERATED EXCEPTIONS TO SCHEDULEREPORT 7435420 - FUSION CURRENCY: SUPPORT MICROSOFT(JAVA) FORMAT MASK WITH CURRENCY 7441486 - ER: ADD PARAMETER FOR SFTP TO BURSTING QUERY 7458169 - SSO WITH OID LDAP COULD NOT FETCH OID ROLES 7461161 - EMAIL DELIVERY FAILS - DELIVERYEXCEPTION: 0 BYTE AVAILABLE IN THE GIVEN INPU 7580715 - INCORRECT FORMATTING OF DATES IN TIMEZONE GMT+13 7582694 - INVALID MAXWIDTH VALUE CAUSES NLS FAILURES 7583693 - JAVA.LANG.NULLPOINTEREXCEPTION RAISED WHEN GENERATING HRMS BENEFITS PDF REPORT 7587998 - NEWLY CREATED USERS IN OID CANT ACCESS REPORTS UNTILL BI PUBLISHER IS RESTARTED 7588317 - TABLE OF CONTENT ALWAYS IN THE SAME FONT 7590084 - REMOVING THE BIP ENTERPRISE BANNER BUT KEEPING THE REPORTS & SCHEDULES TAB 7590112 - SOMEONE NOT PRIVILEGED ACCESS BIP DIRECTLY SHOULD GET A CUSTOM PAGE 7590125 - AUTOMATING CREATION OF USERS AND ROLES 7597902 - TIMEZONE SUPPORT IN RUNREPORT WEBSERVICE API 7599031 - XML PUBLISHER SUM(CURRENT-GROUP()) FAILS 7609178 - ISSUE WITH TAGS EXTRACTED FROM RTF TEMPLATE 7613024 - HEADER/FOOTER SETTINGS OF RTF TEMPLATE ARE NOT RETAINING IN THE RTF OUTPUT 7623988 - ADD XSLT FUNCTION TO PRINT XDO PROPERTIES 7625975 - RETRIEVING PARAMETER LOV FROM RTF TEMPLATE 7629445 - SPELL OUT A NUMBER INTO WORDS 7641827 - ANALYTICS FROZED AFTER PAGE TAB WHICH INCLUDES [BI PUBLISHER REPORT] WERE CLICKE 7645504 - BIP REPORT FROZED AFTER THE SAME DASHBOARD BIP REPORTS WERE CLICKED SIMULTANEOUS 7649561 - RECEIVE 'TO MANY OPEN FILE HANDLES' ERROR CAUSING BI TO CRASH 7654155 - BIP REMOVES THE FIRST FILE SEPARATOR WHEN RE-ENTER REPOSITORY LOCATION IN ADMIN 7656834 - NEED AN OPTION TO NOT APPEND SCHEMA NAME IN GENERATED QUERY 7660292 - ER: XDOPARSER UPGRADE TO XDK 11G 7687862 - BIP DATA EXTRACTING ENHANCEMENT FOR SIEBEL BIP INTEGRATION 7694875 - ADMINISTRATOR IS SUPER USER WHETHER CONFIGURED MANDATORY_USER_ROLE OR NOT 7697592 - BI PUBLISHER STRINGINDEXOUTOFBOUNDSEXCEPTION WHEN PRINTING LABEL FROM SIM 7702372 - ARABIC/ENGLISH NUMBER/DATE PROBLEM, TOTAL PAGE NUMBER NOT RENDERED IN ENGLISH 7707987 - OUTOFMEMORY BURSTING A BI PUBLISHER REPORT BI SERVER DATA SOURCE 7712026 - ER: CHANGE CHART OUTPUT FORMAT TO PNG IN HTML OUTPUT 7833732 - THE 'SEARCH' PARAMETER TYPE CANNOT BE USED IN IE6 UNDER WINDOWS 8214839 - ER: INCREASE COLUMN SIZE IN SCHEDULER TABLE XMLP_SCHED_JOB 8218271 - ISSUES WHILE CONVERTING EXCEL TO XML 8218452 - BI PUBLISHER STANDALONE : GRAPHICS WITHOUT COLORS IF MORE THAN 33 PAGES 8250980 - USER WITH XMLP_ADMIN RESPONSIBILITY IS NOT ABLE TO EDIT REPORT IN BIP 8262410 - IMPOSSIBLE TO PRINT PDF CREATED BY BI PUBLISHER VIA 3RD PARTY PDF APPLICATION 8274369 - QA: CANNOT DELETE EMAIL SERVER UNDER DELIVERY CONFIGURATION 8284173 - FO:VISIBILITY="HIDDEN" DOESN'T WORK WITH FO:PAGE-NUMBER-CITATION 8288421 - THE VALUE OF VIEW BY GO BACK TO MY HISTORY IN SCHEDULES TAB 8299212 - REG: THE SPECIFICAL BI USER DIDN'T GET THE CORRECT REPORT HISTORY 8301767 - ORA-01795 ERROR OCCURED AFTER ACCESSING DASHBOARD PAGE WHICH INCLUDES BIP 8304944 - ADD SIEBEL SECURITY MODEL IN BI PUBLISHER 10.1.3.4.1 8312814 - QA:HOT:OBI SERVER JDBC DRIVER BIJDBC14.JAR IN XMLPSERVER.WAR IS INCORRECT 8323679 - BI PUBLISHER SENDS HTML REPORT TO OUTLOOK CLIENT AS ATTACHMENT NOT INLINE 8370794 - HISTORY OF COMPLETED SCHEDULER JOBS STILL SHOW ONE AS RUNNING ON CLUSTER ENV 8390970 - OUT OF MEMORY EXCEPTION RAISED, WHILE SAVING THE DATA 8393681 - CHECKBOX IS SHOWING UP AS CHECKED WHEN DATA IS NOT CHECKED VALUE 8725450 - UIX 2.3.6.6 UPTAKE FOR 10.1.3.4.1 UIX fixes: 6866363 - SUPPORT FOR JAVA DATE FORMAT AS PER JDK 1.4 AND ABOVE 6829124 - DATE PARAMETER NOT HANDLING DATE OFFSET AS PER JAVA STANDARDS ---------------------------- INSTALLATION FOR ENTERPRISE ---------------------------- Upgrade from 10.1.3.4.0d (patch 8284524, 8398280) and 10.1.3.4.1 does not require step 8 and step 9. 1 - Make a backup copy of the xmlp-server-config.xml file located in <application installation>/WEB-INF/ directory, where your application server unpacked the BI Publisher war or ear file. Example: In an Oracle AS/OC4J 10.1.3 deployment, the location is <ORACLE_HOME>/j2ee/home/applications/xmlpserver/xmlpserver/WEB-INF/xmlp-server-config.xml 2 - Back up all the directories under the BI Publisher repository (for example: {Oracle_Home}/xmlp/XMLP). 3 - If you are using Scheduling, back up your existing BI Publisher Scheduler schema. 4 - Shut down BI Publisher. 5 - Undeploy the BI Publisher application ("xmlpserver") from your J2EE application server. See your application server documentation for instructions how to undeploy an application. 6 - Deploy the 10.1.3.4 xmlpserver.ear or xmlpserver.war to your application server. See "Manually Installing BI Publisher to Your J2EE Application Server" secition of BI Publisher Installation Guide for guidelines for your application server type. 7 - Copy the saved backup copy of the xmlp-server-config.xml file from step 1 to the newly created BI Publisher <application installation>/WEB-INF/ directory, where your application server unpacked the BI Publisher war or ear file. Example: In an Oracle AS/OC4J 10.1.3 deployment, the location is <ORACLE_HOME>/j2ee/home/applications/xmlpserver/xmlpserver/WEB-INF/xmlp-server-config.xml 8 - Copy ssodefaults.xml to the following directory. And replace [host]:[port] with your server's information. Default values for other properties can be updated depending on your configuration. <Existing Repository>\XMLP\Admin\Security 9 - Copy database-config.xml to the following directory. <Existing Repository>\XMLP\Admin\Scheduler 10 - Restart xmlpserver application or Application Server ---------------------------------- IBM WEBSPHERE 6.1 DEPLOYMENT NOTE ---------------------------------- When users fail to log on to BI Publisher with "HTTP 500 Internal Server Error" on WebSphere 6.1, you must change Class Loader configuration to avoid the error. (bug7506253 - XMLPSERVER WON'T START AFTER DEPLOYMENT TO WEBSPHERE 6.1) SystemErr.log: java.lang.VerifyError: class loading constraint violated (class: oracle/xml/parser/v2/XMLNode method: xdkSetQxName(Loracle/xml/util/QxName;)V) at pc: 0 .... Class Loader Configuration Steps: 1 - Login to WebSphere Admin console. Click Enterprise Applications under Applications menu 2 - Click xmlpserver application name from the list 3 - Select "Class loading and update detection" 4 - Update class loader configuration as follows in Class Loader -> General Properties * Polling interval for updated files: [0] Seconds * Class loader order: [x] Classes loaded with application class loader first * WAR class loader policy: [x] Single class loader for application 5 - Apply this change and save the new configuration. 6 - Restart xmlpserver application Please refer to WebSphere 6.1 documentation for more details. "http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/trun_classload_entapp.html"> http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/trun_classload_entapp.html ------------------------------------------------------- Oracle WebLogic Server 11g R1 (10.3.1) Deployment NOTE ------------------------------------------------------- If you are deploying BI Publisher to WebLogic Server 10.3.1, you must add the following setting at startup for the domain that contains the BI Publisher server in the /weblogic_home/user_projects/domains/base_domain/bin/startWebLogic.sh script : -Dtoplink.xml.platform=oracle.toplink.platform.xml.jaxp.JAXPPlatform This setting is required to enable BI Publisher to find the TopLink JAR files to create the Scheduler tables.

    Read the article

  • TRIM in centos 5.X?

    - by Frank Farmer
    I've got a bunch of centos 5 boxes with Intel X-25 drives (x25-m in dev, x25-e in prod, I think). We're seeing severely degraded disk performance on one of our dev boxes (which easily does 5+ gb of writes every day, meaning we write the full drive's worth of data several times a month). The box in question: Intel x25-m Ext3 (which doesn't support TRIM) centos 5 vmware ESXi Wikipedia mentions that newer versions of hdparm (which centos5 doesn't include) can bulk-TRIM free blocks. This utility also sounds potentially useful: http://blog.patshead.com/2009/12/a-quick-and-dirty-wipersh-fix-for-intel-x25-m.html Disk write performance has dropped to <1 MB/sec while copying a 300 meg directory on this system, as of a month or so ago -- it used to be able to perform the same copy operation at least 5 times faster. What can I do to recover performance on this system?

    Read the article

  • What would happen in a Software Raid 1 of one HDD and one SSD?

    - by Adrian Grigore
    Hi, I'm running my Windows 7 installation and all of my apps from an SSD for performance reasons. Since SSD's can instantly die at any moment, I'm looking for some kind of data backup strategy. Right Now I regularly backing up the drive image on a hard disk, but that only happens once per day, which is not enough for my taste. So I got an idea: What if I created a software raid 1 of the SSD and partition on my Hard disk? All data would be mirrored on both drives, making this a lot safer. But what about performance? Will Windows 7 detect that the SSD is faster than the hard drive and always read from the SSD? Or will it randomly read from both, thus reducing read performance? Thanks, Adrian Edit: I just found this article which basically answers my question. Feel free to close this post.

    Read the article

  • Hypervisor for mixed client and server OSes

    - by Mark
    I need to replace three old boxes I use for development, running Linux, Win Server and Win XP. Instead of purchasing three new boxes I am thinking of purchasing a single box and virtualizing the OSes. As it is for development, absolute performance is not a problem, but I want the Linux and Win servers to run continuously, while running Win 7 as if it is a regular PC. Therefore running Linux and Win Server on top off Win 7 is not an option. Is this a viable solution? Has anyone done this? What is performance like? I'd like to get decent graphics performance with Win 7, sufficient to run the occasional game. If so, I'm looking for suggestions or recommendations on which hypervisor or virtualization option to go for.

    Read the article

  • Should I install Windows 7 on a 3 years old PC?

    - by Jitendra vyas
    This is my PC configuration, Should I upgrade my Windows XP to Windows 7. Currently I'm using Windows XP SP3 32 bit. Now will I get same performance or better performance or bad performance if I install Windows 7 on this system? Or would sticking with XP be better? Memory (RAM): 1472 MB DDR RAM (not DDR 2) CPU Info: AMD Sempron(tm) Processor 2500+ CPU Speed: 1398.7 MHz Sound card: Vinyl AC'97 Audio (WAVE) Display Adapters: VIA/S3G UniChrome Pro IGP | NetMeeting driver | RDPDD Chained DD Network Adapters: Bluetooth Device (Personal Area Network) | WAN (PPP/SLIP) Interface Hard Disks: 300 GB SATA HDD Manufacturer: Phoenix Technologies, LTD Product Make: MS-7142 AC Power Status: OnLine BIOS Info: AT/AT COMPATIBLE | 01/18/06 | VIAK8M - 42302e31 Motherboard: MICRO-STAR INTERNATIONAL CO., LTD MS-7142 Modem: ZTE USB Modem FFFE CDMA :

    Read the article

  • How many disks to use for eight channel RAID controller

    - by Tvrtko
    I have a 3ware 8 channel SAS controller and a back plane extender (also 8 channel) which can take 16 drives. I will be creating a single RAID 10 volume. I know that adding more drives has positive effect on performance, but I'm not sure if adding more than 8 drives on an 8 channel controller will have any positive impact at all. Am I wrong? Should I put 16 drives for best performance? Would 8 drives give me the same performance?

    Read the article

  • Will Software RAID And iSCSI Work For A SAN

    - by Justin
    I am looking for a SAN solution, but can't afford even entry level solutions. Basically, the SAN is for development and a proof of concept product. The performance doesn't have to be amazing, but needs to be functional. My buddy says we should just setup sotware RAID and software iSCSI in Linux. Essentially I have a spare server with dual Xeon processors, 4GB of memory, and (2) 500GB 7200RPM drives. It's a bit old but working. I am sure there is reason people don't do software RAID and iSCSI, but will performance be usable? Thinking of configuring the drives in RAID 0 (for performance).

    Read the article

  • pnp4nagios does not generate perfdata

    - by gonvaled
    I am running nagios2, pnp4nagios-0.6.16 and php 5.2.4-2ubuntu5.19. In my setup, pnp4nagios is correctly generating perfdata, which can be seen via the web interface in graphical form for lots of services. The perfdata directory contains entries of the kind: /usr/local/pnp4nagios/var/perfdata/zeus/Disk_Space_Home.rrd /usr/local/pnp4nagios/var/perfdata/zeus/Disk_Space_Home.xml I have activated performance data for a new nagios service: define serviceextinfo { host_name zeus service_description 450average action_url /pnp4nagios/index.php?host=$HOSTNAME$&srv=$SERVICEDESC$ } This service is generating monitoring data in the format: status_info|perf_data as required for performance gathering. But somehow the performance data related to this service is not being collected by pnp4nagios (no related entries in /usr/local/pnp4nagios/var/perfdata) Are there any pnp4nagios scripts or settings which I could use to debug this?

    Read the article

  • Should I disable write caching on my Windows 2008 VM?

    - by javano
    I have a Windows Server 2008 x64 Standard virtual machine that runs on a machine with a hardware RAID controller, a Perc 6/i, which has a battery on-board. Doing everything I can for additional performance, I think I should disable this. Is this very dangerous though? My understand is that Battery Backed Write Caching gives a performance boost to the host OS, telling it the write was complete when they are still sitting in flash waiting to be written. However, I can't see how it would be detrimental to performance, but is there a gain (even if marginal) to enabling it / disabling it? P.s. There machine has a backup power. Here is a screen shot for clarification:

    Read the article

  • Will Software RAID And iSCSI Work For A SAN

    - by Justin
    I am looking for a SAN solution, but can't afford even entry level solutions. Basically, the SAN is for development and a proof of concept product. The performance doesn't have to be amazing, but needs to be functional. My buddy says we should just setup sotware RAID and software iSCSI in Linux. Essentially I have a spare server with dual Xeon processors, 4GB of memory, and (2) 500GB 7200RPM drives. It's a bit old but working. I am sure there is reason people don't do software RAID and iSCSI, but will performance be usable? Thinking of configuring the drives in RAID 0 (for performance).

    Read the article

  • File store: CouchDB vs SQL Server + file system

    - by Andrey
    I'm exploring different ways of storing user-uploaded files (all are MS Office documents or alikes) on our high load web site. It's currently designed to store documents as files and have a SQL database store all metadata for those files. I'm concerned about growing out of the storage server and SQL server performance when number of documents reaches hundreds of millions. I was reading a lot of good information about CouchDB including its built-in scalability and performance, but I'm not sure how storing files as attachments in CouchDB would compare to storing files on a file system in terms of performance. Anybody used CouchDB clusters for storing LARGE amounts of documents and in high load environment?

    Read the article

  • VMWare Workstation Dev Machine Disks: one fast or four echofriendly raid?

    - by Avi
    I'm building a new dev computer. It will be running a few VMWare Worksation virtual machines - A dev machine running VS-2010, a build machine, a version-control machine, a web server for testing, a "personal" machine running office etc. I'll be connecting the computer to my stereo, so I'll also be running iTunes (possible on a dedicated VM) and I want the computer to be a silent one. I'll probably use an Antec P183 case. I was advised on Serverfault to use Raid10 for performance. Raid 10 uses 4 disks. So, my question is as follows: In terms of heat, noise, reliability, warranty, price, capacity and performance, what would you suggest: A Raid10 4 disk array using eco-friendly disks such as the $94 1TB Western Digital Caviar Green, or one high performance disk such as the 2TB Western Digital Caviar Black at $280?

    Read the article

  • RAID--0 " TWO " DRIVES SSD ONLY Should I use on-board / Software RAID OR a RAID Card / Control

    - by Wes
    I am looking at going with a TWO Drive Only SSD RAID-0 Configuration And was wondering if I would get better performance / Speed from the Use of a RAID Controller / Card Verses just using the Software RAID on my Mother Board. I have herd conflicting reports , Again I only Plan on Running " 2 " SSD Drives in RAID-0 Config I have No- problem spending the extra money for a good controller but only if I am going to benifit performance wise , Otherwise if there is no notable Gain I will just use the Software RAID that my HP-180-T came with Intel- 3.33 GHZ , 6-Core , 12-GB of DDR-3. I have a huge External drive for All Storage and am not concerned about Data loss just looking for pure speed. And if a Controller will benifit my performance Wht type of card would one suggest?

    Read the article

  • What can impact the throughput rate at tcp or Os level?

    - by Jimm
    I am facing a problem, where running the same application on different servers, yields unexpected performance results. For example, running the application on a particular faster server (faster cpu, more memory), with no load, yields slower performance than running on a less powerful server on the same network. I am suspecting that either OS or TCP is causing the slowness on the faster server. I cannot use IPerf , unless i modify it, because the "performance" in my application is defined as Component A sends a message to Component B. Component B sends an ACK to component A and ONLY then Component A would send the next message. So it is different from what IPerf does, which to my knowledge, simply tries to push as many messages as possible. Is there a tool that can look at OS and TCP configuration and suggest the cause of slowness?

    Read the article

  • What is a proper MySql replication configuration for frequent db updates and rare selects?

    - by serg555
    We currently have 1 master db on its own server and slave db on app server. App executes very frequent but light updates (like increasing counters), and occasional (once in a few minutes) heavy selects (which is the most important part of the app). When app was connected only to master db there were no performance issues. With slave db introduction CPU load avg on app server increased to about 6-10 during that heavy select period (from 3-4 as before). When server doesn't run those frequent updates it seems like performance for selects stays within the limits. So I have a feeling that those updates is what is causing the performance drop (also these frequent updates are not critical so if slave db doesn't have them in sync with master for some time it would be ok). What would be a good db replication setup for such kind of app? What are the replication parameters we could tweak? Thanks.

    Read the article

  • Visual Studio Development on Virtual Box, Boot Camp, or VMWare Fusion

    - by Eli
    I currently have a Mac, 2ghz and 2 gigs of ram, running OS X Leopard and Virtual Box with a Windows 7 Pro 32bit virtual machine. Performance on the virtual machine is fine for minor tasks but is very clunky while trying to multi-task or develop in Visual Studio 2008. What would be my best option for being able to use Visual Studio, keeping cost and time in mind? 1) Upgrade ram to 4 gigs ($100). Will this really improve my performance enough to use Visual Studio in a Windows 7 vm? Or am I just wasting time/money? 2) Reinstall/restore Windows 7 disk image as a Boot Camp partition. I assume this should improve my performance, yes? 3) Purchase VMWare fusion instead of VirtualBox. Does Fusion require less resources to run? I am open to any suggestions. Thanks in advance

    Read the article

  • Iozone: sensible settings for a server with lots of RAM

    - by Frank Brenner
    I have just acquired a server with: 2x quadcore Xeons 48G ECC RAM 5x 160GB SSDs on an LSI 9260-8i Before deploying the target platform, I'd like to collect as much benchmark data as possible, testing I/O with hardware RAID in various configurations, ZFS zRAID, as well as I/O performance on vSphere and with KVM virtualization. In order to see real disk I/O performance without cache effects, I tried running Iozone with a maximum file of more than twice the physical RAM as recommended in the documentation, so: iozone -a -g100G However, as one might expect, this takes far too long to be practicable. (I stopped the run after seven hours..) I'd like to reduce the range of record and file sizes to values that might reflect realistic performance for an application server, hopefully getting the run times to under an hour or so. Any ideas? Thanks.

    Read the article

< Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >