Search Results

Search found 5086 results on 204 pages for 'compiler constants'.

Page 202/204 | < Previous Page | 198 199 200 201 202 203 204  | Next Page >

  • ClassCastException happens when I use maven with tomcat plugin

    - by zjffdu
    Hi all, I try to use maven with tomcat plugin to develop a simple web application. But When I invoke the servlet, ClassCastException happens, this is the error message: java.lang.ClassCastException: "com.snda.dw.moniter.LogQueryServlet cannot be to javax.servlet.Servlet" But I already make com.snda.dw.moniter.LogQueryServlet extends HttpServlet, it should can be cast to avax.servlet.Servlet. The following is my pom.xml http://maven.apache.org/maven-v4_0_0.xsd" 4.0.0 com.snda dw.moniter war 0.0.1-SNAPSHOT dw.moniter Maven Webapp http://maven.apache.org junit junit 3.8.1 test <dependency> <groupId>javax.servlet</groupId> <artifactId>servlet-api</artifactId> <version>2.4</version> <scope>provided</scope> </dependency> <dependency> <groupId>javax.servlet.jsp</groupId> <artifactId>jsp-api</artifactId> <version>2.0</version> <scope>provided</scope> </dependency> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>r07</version> <type>jar</type> <scope>compile</scope> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>1.6.1</version> <type>jar</type> <scope>compile</scope> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-simple</artifactId> <version>1.6.1</version> <type>jar</type> <scope>compile</scope> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-core</artifactId> <version>0.20.2</version> <type>jar</type> <scope>compile</scope> </dependency> <dependency> <groupId>com.snda</groupId> <artifactId>dw.common</artifactId> <version>1.0-SNAPSHOT</version> <type>jar</type> <scope>compile</scope> </dependency> <dependency> <groupId>net.sf.flexjson</groupId> <artifactId>flexjson</artifactId> <version>2.1</version> <type>jar</type> <scope>compile</scope> </dependency> </dependencies> <build> <finalName>dw.moniter</finalName> <pluginManagement> <plugins> <plugin> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.5</source> <target>1.5</target> </configuration> </plugin> <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>tomcat-maven-plugin</artifactId> <version>1.1</version> </plugin> <plugin> <groupId>org.mortbay.jetty</groupId> <artifactId>jetty-maven-plugin</artifactId> <version>8.0.0.M2</version> </plugin> </plugins> </pluginManagement> </build>

    Read the article

  • ASP.net MVC 2.0 using the same form for adding and editing.

    - by Chevex
    I would like to use the same view for editing a blog post and adding a blog post. However, I'm having an issue with the ID. When adding a blog post, I have no need for an ID value to be posted. When model binding binds the form values to the BlogPost object in the controller, it will auto-generate the ID in entity framework entity. When I am editing a blog post I DO need a hidden form field to store the ID in so that it accompanies the next form post. Here is the view I have right now. <% using (Html.BeginForm("CommitEditBlogPost", "Admin")) { %> <% if (Model != null) { %> <%: Html.HiddenFor(x => x.Id)%> <% } %> Title:<br /> <%: Html.TextBoxFor(x => x.Title, new { Style = "Width: 90%;" })%> <br /> <br /> Summary:<br /> <%: Html.TextAreaFor(x => x.Summary, new { Style = "Width: 90%; Height: 50px;" }) %> <br /> <br /> Body:<br /> <%: Html.TextAreaFor(x => x.Body, new { Style = "Height: 250px; Width: 90%;" })%> <br /> <br /> <input type="submit" value="Submit" /> <% } %> Right now checking if the model is coming in NULL is a great way to know if I'm editing a blog post or adding one, because when I'm adding one it will be null as it hasn't been created yet. The problem comes in when there is an error and the entity is invalid. When the controller renders the form after an invalid model the Model != null evaluates to false, even though we are editing a post and there is clearly a model. If I render the hidden input field for ID when adding a post, I get an error stating that the ID can't be null. Any help is appreciated. EDIT: I went with OJ's answer for this question, however I discovered something that made me feel silly and I wanted to share it just in case anyone was having a similar issue. The page the adds/edits blogs does not even need a hidden field for id, ever. The reason is because when I go to add a blog I do a GET to this relative URL BlogProject/Admin/AddBlogPost This URL does not contain an ID and the action method just renders the page. The page does a POST to the same URL when adding the blog post. The incoming BlogPost entity has a null Id and is generated by EF during save changes. The same thing happens when I edit blog posts. The URL is BlogProject/Admin/EditBlogPost/{Id} This URL contains the id of the blog post and since the page is posting back to the exact same URL the id goes with the POST to the action method that executes the edit. The only problem I encountered with this is that the action methods cannot have identical signatures. [HttpGet] public ViewResult EditBlogPost(int Id) { } [HttpPost] public ViewResult EditBlogPost(int Id) { } The compiler will yell at you if you try to use these two methods above. It is far too convenient that the Id will be posted back when doing a Html.BeginForm() with no arguments for action or controller. So rather than change the name of the POST method I just modified the arguments to include a FormCollection. Like this: [HttpPost] public ViewResult EditBlogPost(int Id, FormCollection formCollection) { // You can then use formCollection as the IValueProvider for UpdateModel() // and TryUpdateModel() if you wish. I mean, you might as well use the // argument since you're taking it. } The formCollection variable is filled via model binding with the same content that Request.Form would be by default. You don't have to use this collection for UpdateModel() or TryUpdateModel() but I did just so I didn't feel like that collection was pointless since it really was just to make the method signature different from its GET counterpart. Thanks for the help guys!

    Read the article

  • Will creating a background thread in a WCF service during a call, take up a thread in the ASP .NET t

    - by Nate Pinchot
    The following code is part of a WCF service. Will eventWatcher take up a thread in the ASP .NET thread pool, even if it is set IsBackground = true? /// <summary> /// Provides methods to work with the PhoneSystem web services SDK. /// This is a singleton since we need to keep track of what lines (extensions) are open. /// </summary> public sealed class PhoneSystemWebServiceFactory : IDisposable { // singleton instance reference private static readonly PhoneSystemWebServiceFactory instance = new PhoneSystemWebServiceFactory(); private static readonly object l = new object(); private static volatile Hashtable monitoredExtensions = new Hashtable(); private static readonly PhoneSystemWebServiceClient webServiceClient = CreateWebServiceClient(); private static volatile bool isClientRegistered; private static volatile string clientHandle; private static readonly Thread eventWatcherThread = new Thread(EventPoller) {IsBackground = true}; #region Constructor // these constructors are hacks to make the C# compiler not mark beforefieldinit // more info: http://www.yoda.arachsys.com/csharp/singleton.html static PhoneSystemWebServiceFactory() { } PhoneSystemWebServiceFactory() { } #endregion #region Properties /// <summary> /// Gets a thread safe instance of PhoneSystemWebServiceFactory /// </summary> public static PhoneSystemWebServiceFactory Instance { get { return instance; } } #endregion #region Private methods /// <summary> /// Create and configure a PhoneSystemWebServiceClient with basic http binding and endpoint from app settings. /// </summary> /// <returns>PhoneSystemWebServiceClient</returns> private static PhoneSystemWebServiceClient CreateWebServiceClient() { string url = ConfigurationManager.AppSettings["PhoneSystemWebService_Url"]; if (string.IsNullOrEmpty(url)) { throw new ConfigurationErrorsException( "The AppSetting \"PhoneSystemWebService_Url\" could not be found. Check the application configuration and ensure that the element exists. Example: <appSettings><add key=\"PhoneSystemWebService_Url\" value=\"http://xyz\" /></appSettings>"); } return new PhoneSystemWebServiceClient(new BasicHttpBinding(), new EndpointAddress(url)); } #endregion #region Event poller public static void EventPoller() { while (true) { if (Thread.CurrentThread.ThreadState == ThreadState.Aborted || Thread.CurrentThread.ThreadState == ThreadState.AbortRequested || Thread.CurrentThread.ThreadState == ThreadState.Stopped || Thread.CurrentThread.ThreadState == ThreadState.StopRequested) break; // get events //webServiceClient.GetEvents(clientHandle, 30, 100); } Thread.Sleep(5000); } #endregion #region Client registration methods private static void RegisterClientIfNeeded() { if (isClientRegistered) { return; } lock (l) { // double lock check if (isClientRegistered) { return; } //clientHandle = webServiceClient.RegisterClient("PhoneSystemWebServiceFactoryInternal", null); isClientRegistered = true; } } private static void UnregisterClient() { if (!isClientRegistered) { return; } lock (l) { // double lock check if (!isClientRegistered) { return; } //webServiceClient.UnegisterClient(clientHandle); } } #endregion #region Phone extension methods public bool SubscribeToEventsForExtension(string extension) { if (monitoredExtensions.Contains(extension)) { return false; } lock (monitoredExtensions.SyncRoot) { // double lock check if (monitoredExtensions.Contains(extension)) { return false; } RegisterClientIfNeeded(); // open line so we receive events for extension LineInfo lineInfo; try { //lineInfo = webServiceClient.OpenLine(clientHandle, extension); } catch (FaultException<PhoneSystemWebSDKErrorDetail>) { // TODO: log error return false; } // add extension to list of monitored extensions //monitoredExtensions.Add(extension, lineInfo.lineID); monitoredExtensions.Add(extension, 1); // start event poller thread if not already started if (eventWatcherThread.ThreadState == ThreadState.Stopped || eventWatcherThread.ThreadState == ThreadState.Unstarted) { eventWatcherThread.Start(); } return true; } } public bool UnsubscribeFromEventsForExtension(string extension) { if (!monitoredExtensions.Contains(extension)) { return false; } lock (monitoredExtensions.SyncRoot) { if (!monitoredExtensions.Contains(extension)) { return false; } // close line try { //webServiceClient.CloseLine(clientHandle, (int) monitoredExtensions[extension]); } catch (FaultException<PhoneSystemWebSDKErrorDetail>) { // TODO: log error return false; } // remove extension from list of monitored extensions monitoredExtensions.Remove(extension); // if we are not monitoring anything else, stop the poller and unregister the client if (monitoredExtensions.Count == 0) { eventWatcherThread.Abort(); UnregisterClient(); } return true; } } public bool IsExtensionMonitored(string extension) { lock (monitoredExtensions.SyncRoot) { return monitoredExtensions.Contains(extension); } } #endregion #region Dispose public void Dispose() { lock (l) { // close any open lines var extensions = monitoredExtensions.Keys.Cast<string>().ToList(); while (extensions.Count > 0) { UnsubscribeFromEventsForExtension(extensions[0]); extensions.RemoveAt(0); } if (!isClientRegistered) { return; } // unregister web service client UnregisterClient(); } } #endregion }

    Read the article

  • Why is .NET faster than C++ in this case?

    - by acidzombie24
    -edit- I LOVE SLaks comment. "The amount of misinformation in these answers is staggering." :D Calm down guys. Pretty much all of you were wrong. I DID make optimizations. It turns out whatever optimizations I made wasn't good enough. I ran the code in GCC using gettimeofday (I'll paste code below) and used g++ -O2 file.cpp and got slightly faster results then C#. Maybe MS didn't create the optimizations needed in this specific case but after downloading and installing mingw I was tested and found the speed to be near identical. Justicle Seems to be right. I could have sworn I use clock on my PC and used that to count and found it was slower but problem solved. C++ speed isn't almost twice as slower in the MS compiler. When my friend informed me of this I couldn't believe it. So I took his code and put some timers onto it. Instead of Boo I used C#. I constantly got faster results in C#. Why? The .NET version was nearly half the time no matter what number I used. C++ version: #include <iostream> #include <stdio.h> #include <intrin.h> #include <windows.h> using namespace std; int fib(int n) { if (n < 2) return n; return fib(n - 1) + fib(n - 2); } int main() { __int64 time = 0xFFFFFFFF; while (1) { int n; //cin >> n; n = 41; if (n < 0) break; __int64 start = __rdtsc(); int res = fib(n); __int64 end = __rdtsc(); cout << res << endl; cout << (float)(end-start)/1000000<<endl; break; } return 0; } C# version: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Runtime.InteropServices; using System.ComponentModel; using System.Threading; using System.IO; using System.Diagnostics; namespace fibCSTest { class Program { static int fib(int n) { if (n < 2)return n; return fib(n - 1) + fib(n - 2); } static void Main(string[] args) { //var sw = new Stopwatch(); //var timer = new PAB.HiPerfTimer(); var timer = new Stopwatch(); while (true) { int n; //cin >> n; n = 41; if (n < 0) break; timer.Start(); int res = fib(n); timer.Stop(); Console.WriteLine(res); Console.WriteLine(timer.ElapsedMilliseconds); break; } } } } GCC version: #include <iostream> #include <stdio.h> #include <sys/time.h> using namespace std; int fib(int n) { if (n < 2) return n; return fib(n - 1) + fib(n - 2); } int main() { timeval start, end; while (1) { int n; //cin >> n; n = 41; if (n < 0) break; gettimeofday(&start, 0); int res = fib(n); gettimeofday(&end, 0); int sec = end.tv_sec - start.tv_sec; int usec = end.tv_usec - start.tv_usec; cout << res << endl; cout << sec << " " << usec <<endl; break; } return 0; }

    Read the article

  • C++0x rvalue references - lvalues-rvalue binding

    - by Doug
    This is a follow-on question to http://stackoverflow.com/questions/2748866/c0x-rvalue-references-and-temporaries In the previous question, I asked how this code should work: void f(const std::string &); //less efficient void f(std::string &&); //more efficient void g(const char * arg) { f(arg); } It seems that the move overload should probably be called because of the implicit temporary, and this happens in GCC but not MSVC (or the EDG front-end used in MSVC's Intellisense). What about this code? void f(std::string &&); //NB: No const string & overload supplied void g1(const char * arg) { f(arg); } void g2(const std::string & arg) { f(arg); } It seems that, based on the answers to my previous question that function g1 is legal (and is accepted by GCC 4.3-4.5, but not by MSVC). However, GCC and MSVC both reject g2 because of clause 13.3.3.1.4/3, which prohibits lvalues from binding to rvalue ref arguments. I understand the rationale behind this - it is explained in N2831 "Fixing a safety problem with rvalue references". I also think that GCC is probably implementing this clause as intended by the authors of that paper, because the original patch to GCC was written by one of the authors (Doug Gregor). However, I don't this is quite intuitive. To me, (a) a const string & is conceptually closer to a string && than a const char *, and (b) the compiler could create a temporary string in g2, as if it were written like this: void g2(const std::string & arg) { f(std::string(arg)); } Indeed, sometimes the copy constructor is considered to be an implicit conversion operator. Syntactically, this is suggested by the form of a copy constructor, and the standard even mentions this specifically in clause 13.3.3.1.2/4, where the copy constructor for derived-base conversions is given a higher conversion rank than other implicit conversions: A conversion of an expression of class type to the same class type is given Exact Match rank, and a conversion of an expression of class type to a base class of that type is given Conversion rank, in spite of the fact that a copy/move constructor (i.e., a user-defined conversion function) is called for those cases. (I assume this is used when passing a derived class to a function like void h(Base), which takes a base class by value.) Motivation My motivation for asking this is something like the question asked in http://stackoverflow.com/questions/2696156/how-to-reduce-redundant-code-when-adding-new-c0x-rvalue-reference-operator-over ("How to reduce redundant code when adding new c++0x rvalue reference operator overloads"). If you have a function that accepts a number of potentially-moveable arguments, and would move them if it can (e.g. a factory function/constructor: Object create_object(string, vector<string>, string) or the like), and want to move or copy each argument as appropriate, you quickly start writing a lot of code. If the argument types are movable, then one could just write one version that accepts the arguments by value, as above. But if the arguments are (legacy) non-movable-but-swappable classes a la C++03, and you can't change them, then writing rvalue reference overloads is more efficient. So if lvalues did bind to rvalues via an implicit copy, then you could write just one overload like create_object(legacy_string &&, legacy_vector<legacy_string> &&, legacy_string &&) and it would more or less work like providing all the combinations of rvalue/lvalue reference overloads - actual arguments that were lvalues would get copied and then bound to the arguments, actual arguments that were rvalues would get directly bound. Questions My questions are then: Is this a valid interpretation of the standard? It seems that it's not the conventional or intended one, at any rate. Does it make intuitive sense? Is there a problem with this idea that I"m not seeing? It seems like you could get copies being quietly created when that's not exactly expected, but that's the status quo in places in C++03 anyway. Also, it would make some overloads viable when they're currently not, but I don't see it being a problem in practice. Is this a significant enough improvement that it would be worth making e.g. an experimental patch for GCC?

    Read the article

  • c++ and c# speed compared

    - by Mack
    I was worried about C#'s speed when it deals with heavy calculations, when you need to use raw CPU power. I always thought that C++ is much faster than C# when it comes to calculations. So I did some quick tests. The first test computes prime numbers < an integer n, the second test computes some pandigital numbers. The idea for second test comes from here: Pandigital Numbers C# prime computation: using System; using System.Diagnostics; class Program { static int primes(int n) { uint i, j; int countprimes = 0; for (i = 1; i <= n; i++) { bool isprime = true; for (j = 2; j <= Math.Sqrt(i); j++) if ((i % j) == 0) { isprime = false; break; } if (isprime) countprimes++; } return countprimes; } static void Main(string[] args) { int n = int.Parse(Console.ReadLine()); Stopwatch sw = new Stopwatch(); sw.Start(); int res = primes(n); sw.Stop(); Console.WriteLine("I found {0} prime numbers between 0 and {1} in {2} msecs.", res, n, sw.ElapsedMilliseconds); Console.ReadKey(); } } C++ variant: #include <iostream> #include <ctime> int primes(unsigned long n) { unsigned long i, j; int countprimes = 0; for(i = 1; i <= n; i++) { int isprime = 1; for(j = 2; j < (i^(1/2)); j++) if(!(i%j)) { isprime = 0; break; } countprimes+= isprime; } return countprimes; } int main() { int n, res; cin>>n; unsigned int start = clock(); res = primes(n); int tprime = clock() - start; cout<<"\nI found "<<res<<" prime numbers between 1 and "<<n<<" in "<<tprime<<" msecs."; return 0; } When I ran the test trying to find primes < than 100,000, C# variant finished in 0.409 seconds and C++ variant in 5.553 seconds. When I ran them for 1,000,000 C# finished in 6.039 seconds and C++ in about 337 seconds. Pandigital test in C#: using System; using System.Diagnostics; class Program { static bool IsPandigital(int n) { int digits = 0; int count = 0; int tmp; for (; n > 0; n /= 10, ++count) { if ((tmp = digits) == (digits |= 1 << (n - ((n / 10) * 10) - 1))) return false; } return digits == (1 << count) - 1; } static void Main() { int pans = 0; Stopwatch sw = new Stopwatch(); sw.Start(); for (int i = 1; i <= 123456789; i++) { if (IsPandigital(i)) { pans++; } } sw.Stop(); Console.WriteLine("{0}pcs, {1}ms", pans, sw.ElapsedMilliseconds); Console.ReadKey(); } } Pandigital test in C++: #include <iostream> #include <ctime> using namespace std; int IsPandigital(int n) { int digits = 0; int count = 0; int tmp; for (; n > 0; n /= 10, ++count) { if ((tmp = digits) == (digits |= 1 << (n - ((n / 10) * 10) - 1))) return 0; } return digits == (1 << count) - 1; } int main() { int pans = 0; unsigned int start = clock(); for (int i = 1; i <= 123456789; i++) { if (IsPandigital(i)) { pans++; } } int ptime = clock() - start; cout<<"\nPans:"<<pans<<" time:"<<ptime; return 0; } C# variant runs in 29.906 seconds and C++ in about 36.298 seconds. I didn't touch any compiler switches and bot C# and C++ programs were compiled with debug options. Before I attempted to run the test I was worried that C# will lag well behind C++, but now it seems that there is a pretty big speed difference in C# favor. Can anybody explain this? C# is jitted and C++ is compiled native so it's normal that a C++ will be faster than a C# variant. Thanks for the answers!

    Read the article

  • C++ Sentinel/Count Controlled Loop beginning programming

    - by Bryan Hendricks
    Hello all this is my first post. I'm working on a homework assignment with the following parameters. Piecework Workers are paid by the piece. Often worker who produce a greater quantity of output are paid at a higher rate. 1 - 199 pieces completed $0.50 each 200 - 399 $0.55 each (for all pieces) 400 - 599 $0.60 each 600 or more $0.65 each Input: For each worker, input the name and number of pieces completed. Name Pieces Johnny Begood 265 Sally Great 650 Sam Klutz 177 Pete Precise 400 Fannie Fantastic 399 Morrie Mellow 200 Output: Print an appropriate title and column headings. There should be one detail line for each worker, which shows the name, number of pieces, and the amount earned. Compute and print totals of the number of pieces and the dollar amount earned. Processing: For each person, compute the pay earned by multiplying the number of pieces by the appropriate price. Accumulate the total number of pieces and the total dollar amount paid. Sample Program Output: Piecework Weekly Report Name Pieces Pay Johnny Begood 265 145.75 Sally Great 650 422.50 Sam Klutz 177 88.5 Pete Precise 400 240.00 Fannie Fantastic 399 219.45 Morrie Mellow 200 110.00 Totals 2091 1226.20 You are required to code, compile, link, and run a sentinel-controlled loop program that transforms the input to the output specifications as shown in the above attachment. The input items should be entered into a text file named piecework1.dat and the ouput file stored in piecework1.out . The program filename is piecework1.cpp. Copies of these three files should be e-mailed to me in their original form. Read the name using a single variable as opposed to two different variables. To accomplish this, you must use the getline(stream, variable) function as discussed in class, except that you will replace the cin with your textfile stream variable name. Do not forget to code the compiler directive #include < string at the top of your program to acknowledge the utilization of the string variable, name . Your nested if-else statement, accumulators, count-controlled loop, should be properly designed to process the data correctly. The code below will run, but does not produce any output. I think it needs something around line 57 like a count control to stop the loop. something like (and this is just an example....which is why it is not in the code.) count = 1; while (count <=4) Can someone review the code and tell me what kind of count I need to introduce, and if there are any other changes that need to be made. Thanks. [code] //COS 502-90 //November 2, 2012 //This program uses a sentinel-controlled loop that transforms input to output. #include <iostream> #include <fstream> #include <iomanip> //output formatting #include <string> //string variables using namespace std; int main() { double pieces; //number of pieces made double rate; //amout paid per amount produced double pay; //amount earned string name; //name of worker ifstream inFile; ofstream outFile; //***********input statements**************************** inFile.open("Piecework1.txt"); //opens the input text file outFile.open("piecework1.out"); //opens the output text file outFile << setprecision(2) << showpoint; outFile << name << setw(6) << "Pieces" << setw(12) << "Pay" << endl; outFile << "_____" << setw(6) << "_____" << setw(12) << "_____" << endl; getline(inFile, name, '*'); //priming read inFile >> pieces >> pay >> rate; // ,, while (name != "End of File") //while condition test { //begining of loop pay = pieces * rate; getline(inFile, name, '*'); //get next name inFile >> pieces; //get next pieces } //end of loop inFile.close(); outFile.close(); return 0; }[/code]

    Read the article

  • Odd optimization problem under MSVC

    - by Goz
    I've seen this blog: http://igoro.com/archive/gallery-of-processor-cache-effects/ The "weirdness" in part 7 is what caught my interest. My first thought was "Thats just C# being weird". Its not I wrote the following C++ code. volatile int* p = (volatile int*)_aligned_malloc( sizeof( int ) * 8, 64 ); memset( (void*)p, 0, sizeof( int ) * 8 ); double dStart = t.GetTime(); for (int i = 0; i < 200000000; i++) { //p[0]++;p[1]++;p[2]++;p[3]++; // Option 1 //p[0]++;p[2]++;p[4]++;p[6]++; // Option 2 p[0]++;p[2]++; // Option 3 } double dTime = t.GetTime() - dStart; The timing I get on my 2.4 Ghz Core 2 Quad go as follows: Option 1 = ~8 cycles per loop. Option 2 = ~4 cycles per loop. Option 3 = ~6 cycles per loop. Now This is confusing. My reasoning behind the difference comes down to the cache write latency (3 cycles) on my chip and an assumption that the cache has a 128-bit write port (This is pure guess work on my part). On that basis in Option 1: It will increment p[0] (1 cycle) then increment p[2] (1 cycle) then it has to wait 1 cycle (for cache) then p[1] (1 cycle) then wait 1 cycle (for cache) then p[3] (1 cycle). Finally 2 cycles for increment and jump (Though its usually implemented as decrement and jump). This gives a total of 8 cycles. In Option 2: It can increment p[0] and p[4] in one cycle then increment p[2] and p[6] in another cycle. Then 2 cycles for subtract and jump. No waits needed on cache. Total 4 cycles. In option 3: It can increment p[0] then has to wait 2 cycles then increment p[2] then subtract and jump. The problem is if you set case 3 to increment p[0] and p[4] it STILL takes 6 cycles (which kinda blows my 128-bit read/write port out of the water). So ... can anyone tell me what the hell is going on here? Why DOES case 3 take longer? Also I'd love to know what I've got wrong in my thinking above, as i obviously have something wrong! Any ideas would be much appreciated! :) It'd also be interesting to see how GCC or any other compiler copes with it as well! Edit: Jerry Coffin's idea gave me some thoughts. I've done some more tests (on a different machine so forgive the change in timings) with and without nops and with different counts of nops case 2 - 0.46 00401ABD jne (401AB0h) 0 nops - 0.68 00401AB7 jne (401AB0h) 1 nop - 0.61 00401AB8 jne (401AB0h) 2 nops - 0.636 00401AB9 jne (401AB0h) 3 nops - 0.632 00401ABA jne (401AB0h) 4 nops - 0.66 00401ABB jne (401AB0h) 5 nops - 0.52 00401ABC jne (401AB0h) 6 nops - 0.46 00401ABD jne (401AB0h) 7 nops - 0.46 00401ABE jne (401AB0h) 8 nops - 0.46 00401ABF jne (401AB0h) 9 nops - 0.55 00401AC0 jne (401AB0h) I've included the jump statetements so you can see that the source and destination are in one cache line. You can also see that we start to get a difference when we are 13 bytes or more apart. Until we hit 16 ... then it all goes wrong. So Jerry isn't right (though his suggestion DOES help a bit), however something IS going on. I'm more and more intrigued to try and figure out what it is now. It does appear to be more some sort of memory alignment oddity rather than some sort of instruction throughput oddity. Anyone want to explain this for an inquisitive mind? :D Edit 3: Interjay has a point on the unrolling that blows the previous edit out of the water. With an unrolled loop the performance does not improve. You need to add a nop in to make the gap between jump source and destination the same as for my good nop count above. Performance still sucks. Its interesting that I need 6 nops to improve performance though. I wonder how many nops the processor can issue per cycle? If its 3 then that account for the cache write latency ... But, if thats it, why is the latency occurring? Curiouser and curiouser ...

    Read the article

  • How to make negate_unary work with any type?

    - by Chan
    Hi, Following this question: How to negate a predicate function using operator ! in C++? I want to create an operator ! can work with any functor that inherited from unary_function. I tried: template<typename T> inline std::unary_negate<T> operator !( const T& pred ) { return std::not1( pred ); } The compiler complained: Error 5 error C2955: 'std::unary_function' : use of class template requires template argument list c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 223 1 Graphic Error 7 error C2451: conditional expression of type 'std::unary_negate<_Fn1>' is illegal c:\program files\microsoft visual studio 10.0\vc\include\ostream 529 1 Graphic Error 3 error C2146: syntax error : missing ',' before identifier 'argument_type' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 4 error C2065: 'argument_type' : undeclared identifier c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 2 error C2039: 'argument_type' : is not a member of 'std::basic_ostream<_Elem,_Traits>::sentry' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 6 error C2039: 'argument_type' : is not a member of 'std::basic_ostream<_Elem,_Traits>::sentry' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 230 1 Graphic Any idea? Update Follow "templatetypedef" solution, I got new error: Error 3 error C2831: 'operator !' cannot have default parameters c:\visual studio 2010 projects\graphic\graphic\main.cpp 39 1 Graphic Error 2 error C2808: unary 'operator !' has too many formal parameters c:\visual studio 2010 projects\graphic\graphic\main.cpp 39 1 Graphic Error 4 error C2675: unary '!' : 'is_prime' does not define this operator or a conversion to a type acceptable to the predefined operator c:\visual studio 2010 projects\graphic\graphic\main.cpp 52 1 Graphic Update 1 Complete code: #include <iostream> #include <functional> #include <utility> #include <cmath> #include <algorithm> #include <iterator> #include <string> #include <boost/assign.hpp> #include <boost/assign/std/vector.hpp> #include <boost/assign/std/map.hpp> #include <boost/assign/std/set.hpp> #include <boost/assign/std/list.hpp> #include <boost/assign/std/stack.hpp> #include <boost/assign/std/deque.hpp> struct is_prime : std::unary_function<int, bool> { bool operator()( int n ) const { if( n < 2 ) return 0; if( n == 2 || n == 3 ) return 1; if( n % 2 == 0 || n % 3 == 0 ) return 0; int upper_bound = std::sqrt( static_cast<double>( n ) ); for( int pf = 5, step = 2; pf <= upper_bound; ) { if( n % pf == 0 ) return 0; pf += step; step = 6 - step; } return 1; } }; /* template<typename T> inline std::unary_negate<T> operator !( const T& pred, typename T::argument_type* dummy = 0 ) { return std::not1<T>( pred ); } */ inline std::unary_negate<is_prime> operator !( const is_prime& pred ) { return std::not1( pred ); } template<typename T> inline void print_con( const T& con, const std::string& ms = "", const std::string& sep = ", " ) { std::cout << ms << '\n'; std::copy( con.begin(), con.end(), std::ostream_iterator<typename T::value_type>( std::cout, sep.c_str() ) ); std::cout << "\n\n"; } int main() { using namespace boost::assign; std::vector<int> nums; nums += 1, 3, 5, 7, 9; nums.erase( remove_if( nums.begin(), nums.end(), !is_prime() ), nums.end() ); print_con( nums, "After remove all primes" ); } Thanks, Chan Nguyen

    Read the article

  • file doesn't open, running outside of debugger results in seg fault (c++)

    - by misterich
    Hello (and thanks in advance) I'm in a bit of a quandry, I cant seem to figure out why I'm seg faulting. A couple of notes: It's for a course -- and sadly I am required to use use C-strings instead of std::string. Please dont fix my code (I wont learn that way and I will keep bugging you). please just point out the flaws in my logic and suggest a different function/way. platform: gcc version 4.4.1 on Suse Linux 11.2 (2.6.31 kernel) Here's the code main.cpp: // /////////////////////////////////////////////////////////////////////////////////// // INCLUDES (C/C++ Std Library) #include <cstdlib> /// EXIT_SUCCESS, EXIT_FAILURE #include <iostream> /// cin, cout, ifstream #include <cassert> /// assert // /////////////////////////////////////////////////////////////////////////////////// // DEPENDENCIES (custom header files) #include "dict.h" /// Header for the dictionary class // /////////////////////////////////////////////////////////////////////////////////// // PRE-PROCESSOR CONSTANTS #define ENTER '\n' /// Used to accept new lines, quit program. #define SPACE ' ' /// One way to end the program // /////////////////////////////////////////////////////////////////////////////////// // CUSTOM DATA TYPES /// File Namespace -- keep it local namespace { /// Possible program prompts to display for the user. enum FNS_Prompts { fileName_, /// prints out the name of the file noFile_, /// no file was passed to the program tooMany_, /// more than one file was passed to the program noMemory_, /// Not enough memory to use the program usage_, /// how to use the program word_, /// ask the user to define a word. notFound_, /// the word is not in the dictionary done_, /// the program is closing normally }; } // /////////////////////////////////////////////////////////////////////////////////// // Namespace using namespace std; /// Nothing special in the way of namespaces // /////////////////////////////////////////////////////////////////////////////////// // FUNCTIONS /** prompt() prompts the user to do something, uses enum Prompts for parameter. */ void prompt(FNS_Prompts msg /** determines the prompt to use*/) { switch(msg) { case fileName_ : { cout << ENTER << ENTER << "The file name is: "; break; } case noFile_ : { cout << ENTER << ENTER << "...Sorry, a dictionary file is needed. Try again." << endl; break; } case tooMany_ : { cout << ENTER << ENTER << "...Sorry, you can only specify one dictionary file. Try again." << endl; break; } case noMemory_ : { cout << ENTER << ENTER << "...Sorry, there isn't enough memory available to run this program." << endl; break; } case usage_ : { cout << "USAGE:" << endl << " lookup.exe [dictionary file name]" << endl << endl; break; } case done_ : { cout << ENTER << ENTER << "like Master P says, \"Word.\"" << ENTER << endl; break; } case word_ : { cout << ENTER << ENTER << "Enter a word in the dictionary to get it's definition." << ENTER << "Enter \"?\" to get a sorted list of all words in the dictionary." << ENTER << "... Press the Enter key to quit the program: "; break; } case notFound_ : { cout << ENTER << ENTER << "...Sorry, that word is not in the dictionary." << endl; break; } default : { cout << ENTER << ENTER << "something passed an invalid enum to prompt(). " << endl; assert(false); /// something passed in an invalid enum } } } /** useDictionary() uses the dictionary created by createDictionary * - prompts user to lookup a word * - ends when the user enters an empty word */ void useDictionary(Dictionary &d) { char *userEntry = new char; /// user's input on the command line if( !userEntry ) // check the pointer to the heap { cout << ENTER << MEM_ERR_MSG << endl; exit(EXIT_FAILURE); } do { prompt(word_); // test code cout << endl << "----------------------------------------" << endl << "Enter something: "; cin.getline(userEntry, INPUT_LINE_MAX_LEN, ENTER); cout << ENTER << userEntry << endl; }while ( userEntry[0] != NIL && userEntry[0] != SPACE ); // GARBAGE COLLECTION delete[] userEntry; } /** Program Entry * Reads in the required, single file from the command prompt. * - If there is no file, state such and error out. * - If there is more than one file, state such and error out. * - If there is a single file: * - Create the database object * - Populate the database object * - Prompt the user for entry * main() will return EXIT_SUCCESS upon termination. */ int main(int argc, /// the number of files being passed into the program char *argv[] /// pointer to the filename being passed into tthe program ) { // EXECUTE /* Testing code * / char tempFile[INPUT_LINE_MAX_LEN] = {NIL}; cout << "enter filename: "; cin.getline(tempFile, INPUT_LINE_MAX_LEN, '\n'); */ // uncomment after successful debugging if(argc <= 1) { prompt(noFile_); prompt(usage_); return EXIT_FAILURE; /// no file was passed to the program } else if(argc > 2) { prompt(tooMany_); prompt(usage_); return EXIT_FAILURE; /// more than one file was passed to the program } else { prompt(fileName_); cout << argv[1]; // print out name of dictionary file if( !argv[1] ) { prompt(noFile_); prompt(usage_); return EXIT_FAILURE; /// file does not exist } /* file.open( argv[1] ); // open file numEntries >> in.getline(file); // determine number of dictionary objects to create file.close(); // close file Dictionary[ numEntries ](argv[1]); // create the dictionary object */ // TEMPORARY FILE FOR TESTING!!!! //Dictionary scrabble(tempFile); Dictionary scrabble(argv[1]); // creaate the dicitonary object //*/ useDictionary(scrabble); // prompt the user, use the dictionary } // exit return EXIT_SUCCESS; /// terminate program. } Dict.h/.cpp #ifndef DICT_H #define DICT_H // /////////////////////////////////////////////////////////////////////////////////// // DEPENDENCIES (Custom header files) #include "entry.h" /// class for dictionary entries // /////////////////////////////////////////////////////////////////////////////////// // PRE-PROCESSOR MACROS #define INPUT_LINE_MAX_LEN 256 /// Maximum length of each line in the dictionary file class Dictionary { public : // // Do NOT modify the public section of this class // typedef void (*WordDefFunc)(const char *word, const char *definition); Dictionary( const char *filename ); ~Dictionary(); const char *lookupDefinition( const char *word ); void forEach( WordDefFunc func ); private : // // You get to provide the private members // // VARIABLES int m_numEntries; /// stores the number of entries in the dictionary Entry *m_DictEntry_ptr; /// points to an array of class Entry // Private Functions }; #endif ----------------------------------- // /////////////////////////////////////////////////////////////////////////////////// // INCLUDES (C/C++ Std Library) #include <iostream> /// cout, getline #include <fstream> // ifstream #include <cstring> /// strchr // /////////////////////////////////////////////////////////////////////////////////// // DEPENDENCIES (custom header files) #include "dict.h" /// Header file required by assignment //#include "entry.h" /// Dicitonary Entry Class // /////////////////////////////////////////////////////////////////////////////////// // PRE-PROCESSOR MACROS #define COMMA ',' /// Delimiter for file #define ENTER '\n' /// Carriage return character #define FILE_ERR_MSG "The data file could not be opened. Program will now terminate." #pragma warning(disable : 4996) /// turn off MS compiler warning about strcpy() // /////////////////////////////////////////////////////////////////////////////////// // Namespace reference using namespace std; // /////////////////////////////////////////////////////////////////////////////////// // PRIVATE MEMBER FUNCTIONS /** * Sorts the dictionary entries. */ /* static void sortDictionary(?) { // sort through the words using qsort } */ /** NO LONGER NEEDED?? * parses out the length of the first cell in a delimited cell * / int getWordLength(char *str /// string of data to parse ) { return strcspn(str, COMMA); } */ // /////////////////////////////////////////////////////////////////////////////////// // PUBLIC MEMBER FUNCTIONS /** constructor for the class * - opens/reads in file * - creates initializes the array of member vars * - creates pointers to entry objects * - stores pointers to entry objects in member var * - ? sort now or later? */ Dictionary::Dictionary( const char *filename ) { // Create a filestream, open the file to be read in ifstream dataFile(filename, ios::in ); /* if( dataFile.fail() ) { cout << FILE_ERR_MSG << endl; exit(EXIT_FAILURE); } */ if( dataFile.is_open() ) { // read first line of data // TEST CODE in.getline(dataFile, INPUT_LINE_MAX_LEN) >> m_numEntries; // TEST CODE char temp[INPUT_LINE_MAX_LEN] = {NIL}; // TEST CODE dataFile.getline(temp,INPUT_LINE_MAX_LEN,'\n'); dataFile >> m_numEntries; /** Number of terms in the dictionary file * \todo find out how many lines in the file, subtract one, ingore first line */ //create the array of entries m_DictEntry_ptr = new Entry[m_numEntries]; // check for valid memory allocation if( !m_DictEntry_ptr ) { cout << MEM_ERR_MSG << endl; exit(EXIT_FAILURE); } // loop thru each line of the file, parsing words/def's and populating entry objects for(int EntryIdx = 0; EntryIdx < m_numEntries; ++EntryIdx) { // VARIABLES char *tempW_ptr; /// points to a temporary word char *tempD_ptr; /// points to a temporary def char *w_ptr; /// points to the word in the Entry object char *d_ptr; /// points to the definition in the Entry int tempWLen; /// length of the temp word string int tempDLen; /// length of the temp def string char tempLine[INPUT_LINE_MAX_LEN] = {NIL}; /// stores a single line from the file // EXECUTE // getline(dataFile, tempLine) // get a "word,def" line from the file dataFile.getline(tempLine, INPUT_LINE_MAX_LEN); // get a "word,def" line from the file // Parse the string tempW_ptr = tempLine; // point the temp word pointer at the first char in the line tempD_ptr = strchr(tempLine, COMMA); // point the def pointer at the comma *tempD_ptr = NIL; // replace the comma with a NIL ++tempD_ptr; // increment the temp def pointer // find the string lengths... +1 to account for terminator tempWLen = strlen(tempW_ptr) + 1; tempDLen = strlen(tempD_ptr) + 1; // Allocate heap memory for the term and defnition w_ptr = new char[ tempWLen ]; d_ptr = new char[ tempDLen ]; // check memory allocation if( !w_ptr && !d_ptr ) { cout << MEM_ERR_MSG << endl; exit(EXIT_FAILURE); } // copy the temp word, def into the newly allocated memory and terminate the strings strcpy(w_ptr,tempW_ptr); w_ptr[tempWLen] = NIL; strcpy(d_ptr,tempD_ptr); d_ptr[tempDLen] = NIL; // set the pointers for the entry objects m_DictEntry_ptr[ EntryIdx ].setWordPtr(w_ptr); m_DictEntry_ptr[ EntryIdx ].setDefPtr(d_ptr); } // close the file dataFile.close(); } else { cout << ENTER << FILE_ERR_MSG << endl; exit(EXIT_FAILURE); } } /** * cleans up dynamic memory */ Dictionary::~Dictionary() { delete[] m_DictEntry_ptr; /// thou shalt not have memory leaks. } /** * Looks up definition */ /* const char *lookupDefinition( const char *word ) { // print out the word ---- definition } */ /** * prints out the entire dictionary in sorted order */ /* void forEach( WordDefFunc func ) { // to sort before or now.... that is the question } */ Entry.h/cpp #ifndef ENTRY_H #define ENTRY_H // /////////////////////////////////////////////////////////////////////////////////// // INCLUDES (C++ Std lib) #include <cstdlib> /// EXIT_SUCCESS, NULL // /////////////////////////////////////////////////////////////////////////////////// // PRE-PROCESSOR MACROS #define NIL '\0' /// C-String terminator #define MEM_ERR_MSG "Memory allocation has failed. Program will now terminate." // /////////////////////////////////////////////////////////////////////////////////// // CLASS DEFINITION class Entry { public: Entry(void) : m_word_ptr(NULL), m_def_ptr(NULL) { /* default constructor */ }; void setWordPtr(char *w_ptr); /// sets the pointer to the word - only if the pointer is empty void setDefPtr(char *d_ptr); /// sets the ponter to the definition - only if the pointer is empty /// returns what is pointed to by the word pointer char getWord(void) const { return *m_word_ptr; } /// returns what is pointed to by the definition pointer char getDef(void) const { return *m_def_ptr; } private: char *m_word_ptr; /** points to a dictionary word */ char *m_def_ptr; /** points to a dictionary definition */ }; #endif -------------------------------------------------- // /////////////////////////////////////////////////////////////////////////////////// // DEPENDENCIES (custom header files) #include "entry.h" /// class header file // /////////////////////////////////////////////////////////////////////////////////// // PUBLIC FUNCTIONS /* * only change the word member var if it is in its initial state */ void Entry::setWordPtr(char *w_ptr) { if(m_word_ptr == NULL) { m_word_ptr = w_ptr; } } /* * only change the def member var if it is in its initial state */ void Entry::setDefPtr(char *d_ptr) { if(m_def_ptr == NULL) { m_word_ptr = d_ptr; } }

    Read the article

  • Designing an API with compile-time option to remove first parameter to most functions and use a glob

    - by tomlogic
    I'm trying to design a portable API in ANSI C89/ISO C90 to access a wireless networking device on a serial interface. The library will have multiple network layers, and various versions need to run on embedded devices as small as an 8-bit micro with 32K of code and 2K of data, on up to embedded devices with a megabyte or more of code and data. In most cases, the target processor will have a single network interface and I'll want to use a single global structure with all state information for that device. I don't want to pass a pointer to that structure through the network layers. In a few cases (e.g., device with more resources that needs to live on two networks) I will interface to multiple devices, each with their own global state, and will need to pass a pointer to that state (or an index to a state array) through the layers. I came up with two possible solutions, but neither one is particularly pretty. Keep in mind that the full driver will potentially be 20,000 lines or more, cover multiple files, and contain hundreds of functions. The first solution requires a macro that discards the first parameter for every function that needs to access the global state: // network.h typedef struct dev_t { int var; long othervar; char name[20]; } dev_t; #ifdef IF_MULTI #define foo_function( x, a, b, c) _foo_function( x, a, b, c) #define bar_function( x) _bar_function( x) #else extern dev_t DEV; #define IFACE (&DEV) #define foo_function( x, a, b, c) _foo_function( a, b, c) #define bar_function( x) _bar_function( ) #endif int bar_function( dev_t *IFACE); int foo_function( dev_t *IFACE, int a, long b, char *c); // network.c #ifndef IF_MULTI dev_t DEV; #endif int bar_function( dev_t *IFACE) { memset( IFACE, 0, sizeof *IFACE); return 0; } int foo_function( dev_t *IFACE, int a, long b, char *c) { bar_function( IFACE); IFACE->var = a; IFACE->othervar = b; strcpy( IFACE->name, c); return 0; } The second solution defines macros to use in the function declarations: // network.h typedef struct dev_t { int var; long othervar; char name[20]; } dev_t; #ifdef IF_MULTI #define DEV_PARAM_ONLY dev_t *IFACE #define DEV_PARAM DEV_PARAM_ONLY, #else extern dev_t DEV; #define IFACE (&DEV) #define DEV_PARAM_ONLY void #define DEV_PARAM #endif int bar_function( DEV_PARAM_ONLY); // I don't like the missing comma between DEV_PARAM and arg2... int foo_function( DEV_PARAM int a, long b, char *c); // network.c #ifndef IF_MULTI dev_t DEV; #endif int bar_function( DEV_PARAM_ONLY) { memset( IFACE, 0, sizeof *IFACE); return 0; } int foo_function( DEV_PARAM int a, long b, char *c) { bar_function( IFACE); IFACE->var = a; IFACE->othervar = b; strcpy( IFACE->name, c); return 0; } The C code to access either method remains the same: // multi.c - example of multiple interfaces #define IF_MULTI #include "network.h" dev_t if0, if1; int main() { foo_function( &if0, -1, 3.1415926, "public"); foo_function( &if1, 42, 3.1415926, "private"); return 0; } // single.c - example of a single interface #include "network.h" int main() { foo_function( 11, 1.0, "network"); return 0; } Is there a cleaner method that I haven't figured out? I lean toward the second since it should be easier to maintain, and it's clearer that there's some macro magic in the parameters to the function. Also, the first method requires prefixing the function names with "_" when I want to use them as function pointers. I really do want to remove the parameter in the "single interface" case to eliminate unnecessary code to push the parameter onto the stack, and to allow the function to access the first "real" parameter in a register instead of loading it from the stack. And, if at all possible, I don't want to have to maintain two separate codebases. Thoughts? Ideas? Examples of something similar in existing code? (Note that using C++ isn't an option, since some of the planned targets don't have a C++ compiler available.)

    Read the article

  • Linked lists in Java - Help with writing methods

    - by user368241
    Representation of a string in linked lists In every intersection in the list there will be 3 fields : The letter itself. The number of times it appears consecutively. A pointer to the next intersection in the list. The following class CharNode represents a intersection in the list : public class CharNode { private char _data; private int _value; private charNode _next; public CharNode (char c, int val, charNode n) { _data = c; _value = val; _next = n; } public charNode getNext() { return _next; } public void setNext (charNode node) { _next = node; } public int getValue() { return _value; } public void setValue (int v) { value = v; } public char getData() { return _data; } public void setData (char c) { _data = c; } } The class StringList represents the whole list : public class StringList { private charNode _head; public StringList() { _head = null; } public StringList (CharNode node) { _head = node; } } Add methods to the class StringList according to the details : (I will add methods gradually according to my specific questions) (Pay attention, these are methods from the class String and we want to fulfill them by the representation of a string by a list as explained above) Pay attention to all the possible error cases. Write what is the time complexity and space complexity of every method that you wrote. Make sure the methods you wrote are effective. It is NOT allowed to use ready classes of Java. It is NOT allowed to move to string and use string operations. 1) public int indexOf (int ch) - returns the index in the string it is operated on of the first appeareance of the char "ch". If the char "ch" doesn't appear in the string, returns -1. If the value of fromIndex isn't in the range, returns -1. Here is my try : public int indexOf (int ch) { int count = 0; charNode pos = _head; if (pos == null ) { return -1; } for (pos = _head; pos!=null && pos.getData()!=ch; pos = pos.getNext()) { count = count + pos.getValue(); } if (pos==null) return -1; return count; } Time complexity = O(N) Space complexity = O(1) EDIT : I have a problem. I tested it in BlueJ and if the char ch doesn't appear it returns -1 but if it does, it always returns 0 and I don't understand why... I am confused. How can the compiler know that the value is the number of times the letter appears consecutively? Can I assume this because its given on the question or what? If it's true and I can assume this, then my code should be correct right? Ok I just spoke with my instructor and she said it isn't required to write it in the exercise but in order for me to test that it indeed works, I need to open a new class and write a code for making a list so that the the value of every node is the number of times the letter appears consecutively. Can someone please assist me? So I will copy+paste to BlueJ and this way I will be able to test all the methods. Meanwhile I am moving on to the next methods. 2) public int indexOf (int ch, int fromIndex) - returns the index in the string it is operated on of the first appeareance of the char "ch", as the search begins in the index "fromIndex". If the char "ch" doesn't appear in the string, returns -1. If the value of fromIndex doesn't appear in the range, returns -1. Here is my try: public int indexOf (int ch, int fromIndex) { int count = 0, len=0, i; charNode pos = _head; CharNode cur = _head; for (pos = _head; pos!=null; pos = pos.getNext()) { len = len+1; } if (fromIndex<0 || fromIndex>=len) return -1; for (i=0; i<fromIndex; i++) { cur = cur.getNext(); } if (cur == null ) { return -1; } for (cur = _head; cur!=null && cur.getData()!=ch; cur = cur.getNext()) { count = count + cur.getValue(); } if (cur==null) return -1; return count; } Time complexity = O(N) ? Space complexity = O(1) 3) public StringList concat (String str) - returns a string that consists of the string that it is operated on and in its end the string "str" is concatenated. Here is my try : public StringList concat (String str) { String str = ""; charNode pos = _head; if (str == null) return -1; for (pos = _head; pos!=null; pos = pos.getNext()) { str = str + pos.getData(); } str = str + "str"; return str; } Time complexity = O(N) Space complexity = O(1)

    Read the article

  • what is mistakes/errors in this code c++ tell me the correction ??

    - by jeje
    hello all here in this code the compiler print error : 132 C:.... `createlist' undeclared (first use this function) (Each undeclared identifier is reported only once for each function it appears in.) and repeat it again in all calls in main function :( what's the problem ?? plzzzz help me #include<iostream> #include<string> using namespace std; template <typename T> struct Node { T num; struct Node<T> *next; // to craet list nodes void createlist(Node<T> *p) { T data; for( ; ; ) // its containue until user want to stop { cout<<"enter data number or '#' to stop\n"; cin>>data; if(data == '#') { p->next =NULL; break; } else { p->num= data; p->next = new Node<T>; p=p->next; } } } //count list to use it in sort function int countlist (Node<T> *p) { int count=0; while(p->next != NULL) { count++; p=p->next; } return count; } // sort list void sort( Node<T> *p) { Node<T> *p1, *p2; //element 1 & 2 to compare between them int i, j , n; T temp; n= countlist(p); for( i=1; i<n ; i++) { // here every loop time we put the first element in list in p1 and the second in p2 p1=p; p2=p->next; for(j=1; j<=(n-i) ; j++) { if( p1->num > p2->num) { temp=p2->num; p2->num=p1->num; p1->num=temp; } } p1= p1->next; p2= p2->next; } } //add new number in any location the user choose void insertatloc(Node<T> *p) { T n; //read new num int loc; //read the choosen location Node<T> *locadd, *newnum, *temp; cout <<" enter location you want ..! \n"; cin>>loc; locadd=NULL; //make it null to checked if there is location after read it from user ot not while(p->next !=NULL) { if( p->next==loc) { locadd=p; break; } p=p->next; } if (locadd==NULL) {cout<<" cannot find the location\n";} else //if location is right {cout<<" enter new number\n"; // new number to creat also new location for it cin>>n; newnum= new Node/*<T>*/; newnum->num=n; temp= locadd->next; locadd->next=newnum; newnum->next=temp; } locadd->num=sort(locadd); // call sort function } // display all list nodes void displaylist (Node<T> *p) { while (p->next != NULL) { cout<<" the list contain:\n"; cout<<p->num<<endl; p=p->next; } } };//end streuct int main() { cout<<"*** Welcome in Linked List Sheet 2****\n"; // defined pointer for structer Node // that value is the address of first node struct Node<int>*mynodes= new struct Node<int>; // create nodes in mynodes list cout<<"\nCreate nodes in list"; createlist(mynodes); // insert node in location insertatloc(mynodes); /* count the number of all nodes nodescount = countlist(mynodes); cout<<"\nThe number of nodes in list is: "<<nodescount;*/ // sort nodes in list sort(mynodes); // Display nodes cout<<"\nDisplay all nodes in list:\n"; displaylist(mynodes); system("pause"); return 0; }

    Read the article

  • Implicit constructor available for all types derived from Base excepted the current type?

    - by Vincent
    The following code sum up my problem : template<class Parameter> class Base {}; template<class Parameter1, class Parameter2, class Parameter> class Derived1 : public Base<Parameter> { }; template<class Parameter1, class Parameter2, class Parameter> class Derived2 : public Base<Parameter> { public : // Copy constructor Derived2(const Derived2& x); // An EXPLICIT constructor that does a special conversion for a Derived2 // with other template parameters template<class OtherParameter1, class OtherParameter2, class OtherParameter> explicit Derived2( const Derived2<OtherParameter1, OtherParameter2, OtherParameter>& x ); // Now the problem : I want an IMPLICIT constructor that will work for every // type derived from Base EXCEPT // Derived2<OtherParameter1, OtherParameter2, OtherParameter> template<class Type, class = typename std::enable_if</* SOMETHING */>::type> Derived2(const Type& x); }; How to restrict an implicit constructor to all classes derived from the parent class excepted the current class whatever its template parameters, considering that I already have an explicit constructor as in the example code ? EDIT : For the implicit constructor from Base, I can obviously write : template<class OtherParameter> Derived2(const Base<OtherParameter>& x); But in that case, do I have the guaranty that the compiler will not use this constructor as an implicit constructor for Derived2<OtherParameter1, OtherParameter2, OtherParameter> ? EDIT2: Here I have a test : (LWS here : http://liveworkspace.org/code/cd423fb44fb4c97bc3b843732d837abc) #include <iostream> template<typename Type> class Base {}; template<typename Type> class Other : public Base<Type> {}; template<typename Type> class Derived : public Base<Type> { public: Derived() {std::cout<<"empty"<<std::endl;} Derived(const Derived<Type>& x) {std::cout<<"copy"<<std::endl;} template<typename OtherType> explicit Derived(const Derived<OtherType>& x) {std::cout<<"explicit"<<std::endl;} template<typename OtherType> Derived(const Base<OtherType>& x) {std::cout<<"implicit"<<std::endl;} }; int main() { Other<int> other0; Other<double> other1; std::cout<<"1 = "; Derived<int> dint1; // <- empty std::cout<<"2 = "; Derived<int> dint2; // <- empty std::cout<<"3 = "; Derived<double> ddouble; // <- empty std::cout<<"4 = "; Derived<double> ddouble1(ddouble); // <- copy std::cout<<"5 = "; Derived<double> ddouble2(dint1); // <- explicit std::cout<<"6 = "; ddouble = other0; // <- implicit std::cout<<"7 = "; ddouble = other1; // <- implicit std::cout<<"8 = "; ddouble = ddouble2; // <- nothing (normal : default assignment) std::cout<<"\n9 = "; ddouble = Derived<double>(dint1); // <- explicit std::cout<<"10 = "; ddouble = dint2; // <- implicit : WHY ?!?! return 0; } The last line worry me. Is it ok with the C++ standard ? Is it a bug of g++ ?

    Read the article

  • Loop crashing program having to do with 2D arrays

    - by user450062
    I am creating an encoding program and when I instruct the program to create a 5X5 grid based on the alphabet while skipping over letters that match up to certain pre-defined variables(which are given values by user input during runtime). I have a loop that instructs the loop to keep running until the values that access the array are out of bounds, the loop seems to cause the problem. This code is standardized so there shouldn't be much trouble compiling it in another compiler. Also would it be better to seperate my program into functions? here is the code: #include<iostream> #include<fstream> #include<cstdlib> #include<string> #include<limits> using namespace std; int main(){ while (!cin.fail()) { char type[81]; char filename[20]; char key [5]; char f[2] = "q"; char g[2] = "q"; char h[2] = "q"; char i[2] = "q"; char j[2] = "q"; char k[2] = "q"; char l[2] = "q"; int a = 1; int b = 1; int c = 1; int d = 1; int e = 1; string cipherarraytemplate[5][5]= { {"a","b","c","d","e"}, {"f","g","h","i","j"}, {"k","l","m","n","o"}, {"p","r","s","t","u"}, {"v","w","x","y","z"} }; string cipherarray[5][5]= { {"a","b","c","d","e"}, {"f","g","h","i","j"}, {"k","l","m","n","o"}, {"p","r","s","t","u"}, {"v","w","x","y","z"} }; cout<<"Enter the name of a file you want to create.\n"; cin>>filename; ofstream outFile; outFile.open(filename); outFile<<fixed; outFile.precision(2); outFile.setf(ios_base::showpoint); cin.ignore(std::numeric_limits<int>::max(),'\n'); cout<<"enter your codeword(codeword can have no repeating letters)\n"; cin>>key; while (key[a] != '\0' ){ while(b < 6){ cipherarray[b][c] = key[a]; if ( f == "q" ) { cipherarray[b][c] = f; } if ( f != "q" && g == "q" ) { cipherarray[b][c] = g; } if ( g != "q" && h == "q" ) { cipherarray[b][c] = h; } if ( h != "q" && i == "q" ) { cipherarray[b][c] = i; } if ( i != "q" && j == "q" ) { cipherarray[b][c] = j; } if ( j != "q" && k == "q" ) { cipherarray[b][c] = k; } if ( k != "q" && l == "q" ) { cipherarray[b][c] = l; } a++; b++; } c++; b = 1; } while (c < 6 || b < 6){ if (cipherarraytemplate[d][e] == f || cipherarraytemplate[d][e] == g || cipherarraytemplate[d][e] == h || cipherarraytemplate[d][e] == i || cipherarraytemplate[d][e] == j || cipherarraytemplate[d][e] == k || cipherarraytemplate[d][e] == l){ d++; } else { cipherarray[b][c] = cipherarraytemplate[d][e]; d++; b++; } if (d == 6){ d = 1; e++; } if (b == 6){ c++; b = 1; } } cout<<"now enter some text."<<endl<<"To end this program press Crtl-Z\n"; while(!cin.fail()){ cin.getline(type,81); outFile<<type<<endl; } outFile.close(); } } I know there is going to be some mid-forties guy out there who is going to stumble on to this post, he's have been programming for 20-some years and he's going to look at my code and say: "what is this guy doing".

    Read the article

  • Java error starting with "log4j:WARN No appenders could be found for logger" in ZuckerReports SugarC

    - by Tom McDonnell
    Greetings all. I apologise for posting this problem here, but I do so in desperation after receiving no response on the SugarCRM forums. Even if a reader is unfamiliar with ZuckerReports or SugarCRM some general advice on Java may be of use to me. I have installed ZuckerReports v1.12 in SugarCRM 5.5.1. When I attempt to run a report I get the following error message. cmdline: javaw -classpath "custom/ZuckerReports/resources/;custom/ZuckerReports/resources/contact_counts_by_first_name.jasper_files/;modules/ZuckerReports/jasper/ant-1.7.1.jar;modules/ZuckerReports/jasper/antlr-2.7.6.jar;modules/ZuckerReports/jasper/asm-attrs.jar;modules/ZuckerReports/jasper/asm.jar;modules/ZuckerReports/jasper/barbecue-1.5-beta1.jar;modules/ZuckerReports/jasper/barcode4j-2.0.jar;modules/ZuckerReports/jasper/batik-anim.jar;modules/ZuckerReports/jasper/batik-awt-util.jar;modules/ZuckerReports/jasper/batik-bridge.jar;modules/ZuckerReports/jasper/batik-css.jar;modules/ZuckerReports/jasper/batik-dom.jar;modules/ZuckerReports/jasper/batik-ext.jar;modules/ZuckerReports/jasper/batik-gvt.jar;modules/ZuckerReports/jasper/batik-parser.jar;modules/ZuckerReports/jasper/batik-script.jar;modules/ZuckerReports/jasper/batik-svg-dom.jar;modules/ZuckerReports/jasper/batik-svggen.jar;modules/ZuckerReports/jasper/batik-util.jar;modules/ZuckerReports/jasper/batik-xml.jar;modules/ZuckerReports/jasper/bcel-5.2.jar;modules/ZuckerReports/jasper/bsh-2.0b4.jar;modules/ZuckerReports/jasper/castor-1.2.jar;modules/ZuckerReports/jasper/cglib-2.1.jar;modules/ZuckerReports/jasper/cincom-jr-xmla.jar;modules/ZuckerReports/jasper/commons-beanutils-1.8.2.jar;modules/ZuckerReports/jasper/commons-collections-3.2.1.jar;modules/ZuckerReports/jasper/commons-dbcp-1.2.2.jar;modules/ZuckerReports/jasper/commons-digester-1.7.jar;modules/ZuckerReports/jasper/commons-javaflow-20060411.jar;modules/ZuckerReports/jasper/commons-logging-1.1.jar;modules/ZuckerReports/jasper/commons-math-1.0.jar;modules/ZuckerReports/jasper/commons-pool-1.3.jar;modules/ZuckerReports/jasper/commons-vfs-1.0.jar;modules/ZuckerReports/jasper/dom4j-1.6.jar;modules/ZuckerReports/jasper/ehcache-1.1.jar;modules/ZuckerReports/jasper/eigenbase-properties-1.1.0.10924.jar;modules/ZuckerReports/jasper/eigenbase-resgen-1.3.0.11873.jar;modules/ZuckerReports/jasper/eigenbase-xom-1.3.0.11999.jar;modules/ZuckerReports/jasper/ejb3-persistence.jar;modules/ZuckerReports/jasper/groovy-all-1.5.5.jar;modules/ZuckerReports/jasper/hibernate-annotations.jar;modules/ZuckerReports/jasper/hibernate-commons-annotations.jar;modules/ZuckerReports/jasper/hibernate3.jar;modules/ZuckerReports/jasper/hsqldb-1.8.0-10.jar;modules/ZuckerReports/jasper/iText-2.1.0.jar;modules/ZuckerReports/jasper/iTextAsian.jar;modules/ZuckerReports/jasper/jakarta-bcel-20050813.jar;modules/ZuckerReports/jasper/jasperreports-3.7.1.jar;modules/ZuckerReports/jasper/jasperreports-chart-themes-3.6.2.jar;modules/ZuckerReports/jasper/jasperreports-extensions-3.5.3.jar;modules/ZuckerReports/jasper/jasperreports-fonts-3.6.1.jar;modules/ZuckerReports/jasper/javacup.jar;modules/ZuckerReports/jasper/javassist-3.4.GA.jar;modules/ZuckerReports/jasper/jaxen-1.1.1.jar;modules/ZuckerReports/jasper/jcommon-1.0.15.jar;modules/ZuckerReports/jasper/jdt-compiler-3.1.1.jar;modules/ZuckerReports/jasper/jfreechart-1.0.12.jar;modules/ZuckerReports/jasper/jpa.jar;modules/ZuckerReports/jasper/js_activation-1.1.jar;modules/ZuckerReports/jasper/js_axis-1.4patched.jar;modules/ZuckerReports/jasper/js_commons-codec-1.3.jar;modules/ZuckerReports/jasper/js_commons-discovery-0.2.jar;modules/ZuckerReports/jasper/js_commons-httpclient-3.1.jar;modules/ZuckerReports/jasper/js_jasperserver-common-ws-3.5.0.jar;modules/ZuckerReports/jasper/js_jaxrpc.jar;modules/ZuckerReports/jasper/js_mail-1.4.jar;modules/ZuckerReports/jasper/js_saaj-api-1.3.jar;modules/ZuckerReports/jasper/js_wsdl4j-1.5.1.jar;modules/ZuckerReports/jasper/jta.jar;modules/ZuckerReports/jasper/jxl-2.6.jar;modules/ZuckerReports/jasper/log4j-1.2.15.jar;modules/ZuckerReports/jasper/mondrian-3.1.1.12687-Jaspersoft.jar;modules/ZuckerReports/jasper/mysql-connector-java-3.1.11-bin.jar;modules/ZuckerReports/jasper/olap4j-0.9.7.145.jar;modules/ZuckerReports/jasper/png-encoder-1.5.jar;modules/ZuckerReports/jasper/poi-3.2-FINAL-20081019.jar;modules/ZuckerReports/jasper/rex-20080421.jar;modules/ZuckerReports/jasper/rhino-1.7R1.jar;modules/ZuckerReports/jasper/saaj-api-1.3.jar;modules/ZuckerReports/jasper/slf4j-api.jar;modules/ZuckerReports/jasper/slf4j-log4j12.jar;modules/ZuckerReports/jasper/spring.jar;modules/ZuckerReports/jasper/sqleonardo-2007.03.jar;modules/ZuckerReports/jasper/swingx-2007_10_07.jar;modules/ZuckerReports/jasper/xml-apis-ext.jar;modules/ZuckerReports/jasper/xml-apis.jar;modules/ZuckerReports/jasper/zuckerreports-1.0.jar" at.go_mobile.zuckerreports.JasperBatchMain custom/ZuckerReports/temp/aff882c1-684b-d2de-403e-4be367bc2f5f/cmd.properties 2&1 JasperBatchMain :: loading jasper design custom/ZuckerReports/resources/contact_counts_by_first_name.jasper JasperBatchMain :: getParameterValue(REPORT_PARAMETERS_MAP, java.util.Map) = null JasperBatchMain :: getParameterValue(JASPER_REPORT, net.sf.jasperreports.engine.JasperReport) = null JasperBatchMain :: getParameterValue(REPORT_CONNECTION, java.sql.Connection) = null JasperBatchMain :: getParameterValue(REPORT_MAX_COUNT, java.lang.Integer) = null JasperBatchMain :: getParameterValue(REPORT_DATA_SOURCE, net.sf.jasperreports.engine.JRDataSource) = null JasperBatchMain :: getParameterValue(REPORT_SCRIPTLET, net.sf.jasperreports.engine.JRAbstractScriptlet) = null JasperBatchMain :: getParameterValue(REPORT_LOCALE, java.util.Locale) = null JasperBatchMain :: getParameterValue(REPORT_RESOURCE_BUNDLE, java.util.ResourceBundle) = null JasperBatchMain :: getParameterValue(REPORT_TIME_ZONE, java.util.TimeZone) = null JasperBatchMain :: getParameterValue(REPORT_FORMAT_FACTORY, net.sf.jasperreports.engine.util.FormatFactory) = null JasperBatchMain :: getParameterValue(REPORT_CLASS_LOADER, java.lang.ClassLoader) = null JasperBatchMain :: getParameterValue(REPORT_URL_HANDLER_FACTORY, java.net.URLStreamHandlerFactory) = null JasperBatchMain :: getParameterValue(REPORT_FILE_RESOLVER, net.sf.jasperreports.engine.util.FileResolver) = null JasperBatchMain :: getParameterValue(REPORT_VIRTUALIZER, net.sf.jasperreports.engine.JRVirtualizer) = null JasperBatchMain :: getParameterValue(IS_IGNORE_PAGINATION, java.lang.Boolean) = null JasperBatchMain :: getParameterValue(REPORT_TEMPLATES, java.util.Collection) = null log4j:WARN No appenders could be found for logger (net.sf.jasperreports.extensions.ExtensionsEnviron ment). log4j:WARN Please initialize the log4j system properly. Exception in thread "main" java.lang.IllegalArgumentException: Null 'key' argument. at org.jfree.data.DefaultKeyedValues.setValue(Default KeyedValues.java:229) at org.jfree.data.DefaultKeyedValues2D.setValue(Defau ltKeyedValues2D.java:337) at org.jfree.data.DefaultKeyedValues2D.addValue(Defau ltKeyedValues2D.java:303) at org.jfree.data.category.DefaultCategoryDataset.add Value(DefaultCategoryDataset.java:222) at net.sf.jasperreports.charts.fill.JRFillCategoryDat aset.customIncrement(JRFillCategoryDataset.java:14 3) at net.sf.jasperreports.engine.fill.JRFillElementData set.increment(JRFillElementDataset.java:175) at net.sf.jasperreports.engine.fill.JRCalculator.calc ulateVariables(JRCalculator.java:148) at net.sf.jasperreports.engine.fill.JRVerticalFiller. fillDetail(JRVerticalFiller.java:736) at net.sf.jasperreports.engine.fill.JRVerticalFiller. fillReportContent(JRVerticalFiller.java:272) at net.sf.jasperreports.engine.fill.JRVerticalFiller. fillReport(JRVerticalFiller.java:114) at net.sf.jasperreports.engine.fill.JRBaseFiller.fill (JRBaseFiller.java:923) at net.sf.jasperreports.engine.fill.JRBaseFiller.fill (JRBaseFiller.java:826) at net.sf.jasperreports.engine.fill.JRFiller.fillRepo rt(JRFiller.java:59) at at.go_mobile.zuckerreports.JasperBatchMain.main(Ja sperBatchMain.java:126) The same report runs correctly in another SugarCRM installation on the same server. The installation in which the report runs correctly is of the same version, and has the same version of the ZuckerReports module. The report previously ran correctly on both installations. I think that the only changes that have been made on the installation in which the report now does not work since the report was last successfully run are the additions of a few custom fields in the Contacts module. These changes should have nothing to do with ZuckerReports. I have tried uninstalling and reinstalling the ZuckerReports module, but the problem remains. A google search for the warnings given in the error message ie. * log4j:WARN No appenders could be found for logger (net.sf.jasperreports.extensions.ExtensionsEnviron ment). * log4j:WARN Please initialize the log4j system properly. Returns a few links (not specific to ZuckerReports) with tips similar to the following: * log4j.properties or log4j.xml needs to be on the classpath where log4j can find it. I cannot find a file with either of those names anywhere on my server, and yet the report can be run successfully on one of my SugarCRM installations. So I figure log4j must be being configured another way. Can anyone suggest a way to solve this problem? Or explain how I might discover how log4j is configured in ZuckerReports? Or explain how I might compare the working with the non-working installation in order to help find a solution? (I have tried searching for files containing "log4j" in both installations and comparing but all I can find are .jar files (nothing I can read with a text editor), and the .jar files found in each installation appear to be the same.)

    Read the article

  • Hadoop hdfs namenode is throwing an error

    - by KarmicDice
    Full list of error: hb@localhost:/etc/hadoop/conf$ sudo service hadoop-hdfs-namenode start * Starting Hadoop namenode: starting namenode, logging to /var/log/hadoop-hdfs/hadoop-hdfs-namenode-localhost.out 12/09/10 14:41:09 INFO namenode.NameNode: STARTUP_MSG: /************************************************************ STARTUP_MSG: Starting NameNode STARTUP_MSG: host = localhost/127.0.0.1 STARTUP_MSG: args = [] STARTUP_MSG: version = 2.0.0-cdh4.0.1 STARTUP_MSG: classpath = /etc/hadoop/conf:/usr/lib/hadoop/lib/xmlenc-0.52.jar:/usr/lib/hadoop/lib/protobuf-java-2.4.0a.jar:/usr/lib/hadoop/lib/kfs-0.3.jar:/usr/lib/hadoop/lib/asm-3.2.jar:/usr/lib/hadoop/lib/commons-logging-api-1.1.jar:/usr/lib/hadoop/lib/jasper-compiler-5.5.23.jar:/usr/lib/hadoop/lib/stax-api-1.0.1.jar:/usr/lib/hadoop/lib/commons-configuration-1.6.jar:/usr/lib/hadoop/lib/jets3t-0.6.1.jar:/usr/lib/hadoop/lib/jersey-server-1.8.jar:/usr/lib/hadoop/lib/oro-2.0.8.jar:/usr/lib/hadoop/lib/aspectjrt-1.6.5.jar:/usr/lib/hadoop/lib/json-simple-1.1.jar:/usr/lib/hadoop/lib/snappy-java-1.0.3.2.jar:/usr/lib/hadoop/lib/commons-httpclient-3.1.jar:/usr/lib/hadoop/lib/log4j-1.2.15.jar:/usr/lib/hadoop/lib/servlet-api-2.5.jar:/usr/lib/hadoop/lib/jackson-xc-1.8.8.jar:/usr/lib/hadoop/lib/jersey-json-1.8.jar:/usr/lib/hadoop/lib/jackson-mapper-asl-1.8.8.jar:/usr/lib/hadoop/lib/commons-el-1.0.jar:/usr/lib/hadoop/lib/slf4j-api-1.6.1.jar:/usr/lib/hadoop/lib/commons-collections-3.2.1.jar:/usr/lib/hadoop/lib/commons-logging-1.1.1.jar:/usr/lib/hadoop/lib/jackson-core-asl-1.8.8.jar:/usr/lib/hadoop/lib/jersey-core-1.8.jar:/usr/lib/hadoop/lib/commons-codec-1.4.jar:/usr/lib/hadoop/lib/jsr305-1.3.9.jar:/usr/lib/hadoop/lib/commons-cli-1.2.jar:/usr/lib/hadoop/lib/activation-1.1.jar:/usr/lib/hadoop/lib/jaxb-impl-2.2.3-1.jar:/usr/lib/hadoop/lib/jetty-util-6.1.26.cloudera.1.jar:/usr/lib/hadoop/lib/jasper-runtime-5.5.23.jar:/usr/lib/hadoop/lib/commons-beanutils-1.7.0.jar:/usr/lib/hadoop/lib/commons-lang-2.5.jar:/usr/lib/hadoop/lib/commons-digester-1.8.jar:/usr/lib/hadoop/lib/commons-io-2.1.jar:/usr/lib/hadoop/lib/jsp-api-2.1.jar:/usr/lib/hadoop/lib/guava-11.0.2.jar:/usr/lib/hadoop/lib/jetty-6.1.26.cloudera.1.jar:/usr/lib/hadoop/lib/jsch-0.1.42.jar:/usr/lib/hadoop/lib/zookeeper-3.4.3-cdh4.0.1.jar:/usr/lib/hadoop/lib/avro-1.5.4.jar:/usr/lib/hadoop/lib/core-3.1.1.jar:/usr/lib/hadoop/lib/paranamer-2.3.jar:/usr/lib/hadoop/lib/jettison-1.1.jar:/usr/lib/hadoop/lib/jackson-jaxrs-1.8.8.jar:/usr/lib/hadoop/lib/slf4j-log4j12-1.6.1.jar:/usr/lib/hadoop/lib/commons-beanutils-core-1.8.0.jar:/usr/lib/hadoop/lib/commons-net-3.1.jar:/usr/lib/hadoop/lib/jaxb-api-2.2.2.jar:/usr/lib/hadoop/lib/commons-math-2.1.jar:/usr/lib/hadoop/lib/jline-0.9.94.jar:/usr/lib/hadoop/.//hadoop-annotations.jar:/usr/lib/hadoop/.//hadoop-annotations-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop/.//hadoop-common-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop/.//hadoop-auth-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop/.//hadoop-common.jar:/usr/lib/hadoop/.//hadoop-auth.jar:/usr/lib/hadoop/.//hadoop-common-2.0.0-cdh4.0.1-tests.jar:/usr/lib/hadoop-hdfs/./:/usr/lib/hadoop-hdfs/lib/protobuf-java-2.4.0a.jar:/usr/lib/hadoop-hdfs/lib/snappy-java-1.0.3.2.jar:/usr/lib/hadoop-hdfs/lib/log4j-1.2.15.jar:/usr/lib/hadoop-hdfs/lib/jackson-mapper-asl-1.8.8.jar:/usr/lib/hadoop-hdfs/lib/slf4j-api-1.6.1.jar:/usr/lib/hadoop-hdfs/lib/commons-logging-1.1.1.jar:/usr/lib/hadoop-hdfs/lib/jackson-core-asl-1.8.8.jar:/usr/lib/hadoop-hdfs/lib/commons-daemon-1.0.3.jar:/usr/lib/hadoop-hdfs/lib/zookeeper-3.4.3-cdh4.0.1.jar:/usr/lib/hadoop-hdfs/lib/avro-1.5.4.jar:/usr/lib/hadoop-hdfs/lib/paranamer-2.3.jar:/usr/lib/hadoop-hdfs/lib/jline-0.9.94.jar:/usr/lib/hadoop-hdfs/.//hadoop-hdfs-2.0.0-cdh4.0.1-tests.jar:/usr/lib/hadoop-hdfs/.//hadoop-hdfs-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-hdfs/.//hadoop-hdfs.jar:/usr/lib/hadoop-yarn/lib/protobuf-java-2.4.0a.jar:/usr/lib/hadoop-yarn/lib/asm-3.2.jar:/usr/lib/hadoop-yarn/lib/netty-3.2.3.Final.jar:/usr/lib/hadoop-yarn/lib/javax.inject-1.jar:/usr/lib/hadoop-yarn/lib/jersey-server-1.8.jar:/usr/lib/hadoop-yarn/lib/jersey-guice-1.8.jar:/usr/lib/hadoop-yarn/lib/snappy-java-1.0.3.2.jar:/usr/lib/hadoop-yarn/lib/log4j-1.2.15.jar:/usr/lib/hadoop-yarn/lib/guice-3.0.jar:/usr/lib/hadoop-yarn/lib/jackson-mapper-asl-1.8.8.jar:/usr/lib/hadoop-yarn/lib/junit-4.8.2.jar:/usr/lib/hadoop-yarn/lib/jackson-core-asl-1.8.8.jar:/usr/lib/hadoop-yarn/lib/jersey-core-1.8.jar:/usr/lib/hadoop-yarn/lib/jdiff-1.0.9.jar:/usr/lib/hadoop-yarn/lib/guice-servlet-3.0.jar:/usr/lib/hadoop-yarn/lib/aopalliance-1.0.jar:/usr/lib/hadoop-yarn/lib/commons-io-2.1.jar:/usr/lib/hadoop-yarn/lib/avro-1.5.4.jar:/usr/lib/hadoop-yarn/lib/paranamer-2.3.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-web-proxy.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-nodemanager.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-resourcemanager-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-common.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-common.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-applications-distributedshell-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-web-proxy-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-api.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-resourcemanager.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-common-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-nodemanager-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-site.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-api-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-common-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-applications-distributedshell.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-site-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-mapreduce/.//* STARTUP_MSG: build = file:///var/lib/jenkins/workspace/generic-package-ubuntu64-12-04/CDH4.0.1-Packaging-Hadoop-2012-06-28_17-01-57/hadoop-2.0.0+91-1.cdh4.0.1.p0.1~precise/src/hadoop-common-project/hadoop-common -r 4d98eb718ec0cce78a00f292928c5ab6e1b84695; compiled by 'jenkins' on Thu Jun 28 17:39:19 PDT 2012 ************************************************************/ 12/09/10 14:41:10 WARN impl.MetricsConfig: Cannot locate configuration: tried hadoop-metrics2-namenode.properties,hadoop-metrics2.properties hdfs-site.xml: hb@localhost:/etc/hadoop/conf$ cat hdfs-site.xml <?xml version="1.0" encoding="UTF-8"?> <!--Autogenerated by Cloudera CM on 2012-09-03T10:13:30.628Z--> <configuration> <property> <name>dfs.https.address</name> <value>localhost:50470</value> </property> <property> <name>dfs.https.port</name> <value>50470</value> </property> <property> <name>dfs.namenode.http-address</name> <value>localhost:50070</value> </property> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.blocksize</name> <value>134217728</value> </property> <property> <name>dfs.client.use.datanode.hostname</name> <value>false</value> </property> </configuration>

    Read the article

  • NullPointerException when linking to Service that uses ContentProvider

    - by Danny Chia
    H.i everyone, this is my first post here! Anyways, I'm trying to write a "todo list" application. It stores the data in a ContentProvider, which is accessed via a Service. However, my app crashes at launch. My code is below: Manifest file: <?xml version="1.0" encoding="utf-8"?> <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.examples.todolist" android:versionCode="1" android:versionName="1.0"> <application android:icon="@drawable/icon" android:label="@string/app_name" android:debuggable="True"> <activity android:name=".ToDoList" android:label="@string/app_name" android:theme="@style/ToDoTheme"> <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> <service android:name="TodoService"/> <provider android:name="TodoProvider" android:authorities="com.examples.provider.todolist" /> </application> <uses-sdk android:minSdkVersion="7" /> </manifest> ToDoList.java: package com.examples.todolist; import com.examples.todolist.TodoService.LocalBinder; import java.util.ArrayList; import java.util.Date; import android.app.Activity; import android.content.SharedPreferences; import android.database.Cursor; import android.os.AsyncTask; import android.os.Bundle; import android.view.ContextMenu; import android.content.ComponentName; import android.content.Context; import android.content.Intent; import android.content.ServiceConnection; import android.os.IBinder; import android.view.KeyEvent; import android.view.Menu; import android.view.MenuItem; import android.view.View; import android.view.View.OnKeyListener; import android.widget.AdapterView; import android.widget.EditText; import android.widget.ListView; import android.widget.Toast; public class ToDoList extends Activity { static final private int ADD_NEW_TODO = Menu.FIRST; static final private int REMOVE_TODO = Menu.FIRST + 1; private static final String TEXT_ENTRY_KEY = "TEXT_ENTRY_KEY"; private static final String ADDING_ITEM_KEY = "ADDING_ITEM_KEY"; private static final String SELECTED_INDEX_KEY = "SELECTED_INDEX_KEY"; private boolean addingNew = false; private ArrayList<ToDoItem> todoItems; private ListView myListView; private EditText myEditText; private ToDoItemAdapter aa; int entries = 0; int notifs = 0; //ToDoDBAdapter toDoDBAdapter; Cursor toDoListCursor; TodoService mService; boolean mBound = false; /** Called when the activity is first created. */ public void onCreate(Bundle icicle) { super.onCreate(icicle); setContentView(R.layout.main); myListView = (ListView)findViewById(R.id.myListView); myEditText = (EditText)findViewById(R.id.myEditText); todoItems = new ArrayList<ToDoItem>(); int resID = R.layout.todolist_item; aa = new ToDoItemAdapter(this, resID, todoItems); myListView.setAdapter(aa); myEditText.setOnKeyListener(new OnKeyListener() { public boolean onKey(View v, int keyCode, KeyEvent event) { if (event.getAction() == KeyEvent.ACTION_DOWN) if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) { ToDoItem newItem = new ToDoItem(myEditText.getText().toString(), 0); mService.insertTask(newItem); updateArray(); myEditText.setText(""); entries++; Toast.makeText(ToDoList.this, "Entry added", Toast.LENGTH_SHORT).show(); aa.notifyDataSetChanged(); cancelAdd(); return true; } return false; } }); registerForContextMenu(myListView); restoreUIState(); populateTodoList(); } private void populateTodoList() { // Get all the todo list items from the database. toDoListCursor = mService. getAllToDoItemsCursor(); startManagingCursor(toDoListCursor); // Update the array. updateArray(); Toast.makeText(this, "Todo list retrieved", Toast.LENGTH_SHORT).show(); } private void updateArray() { toDoListCursor.requery(); todoItems.clear(); if (toDoListCursor.moveToFirst()) do { String task = toDoListCursor.getString(toDoListCursor.getColumnIndex(ToDoDBAdapter.KEY_TASK)); long created = toDoListCursor.getLong(toDoListCursor.getColumnIndex(ToDoDBAdapter.KEY_CREATION_DATE)); int taskid = toDoListCursor.getInt(toDoListCursor.getColumnIndex(ToDoDBAdapter.KEY_ID)); ToDoItem newItem = new ToDoItem(task, new Date(created), taskid); todoItems.add(0, newItem); } while(toDoListCursor.moveToNext()); aa.notifyDataSetChanged(); } private void restoreUIState() { // Get the activity preferences object. SharedPreferences settings = getPreferences(0); // Read the UI state values, specifying default values. String text = settings.getString(TEXT_ENTRY_KEY, ""); Boolean adding = settings.getBoolean(ADDING_ITEM_KEY, false); // Restore the UI to the previous state. if (adding) { addNewItem(); myEditText.setText(text); } } @Override public void onSaveInstanceState(Bundle outState) { outState.putInt(SELECTED_INDEX_KEY, myListView.getSelectedItemPosition()); super.onSaveInstanceState(outState); } @Override public void onRestoreInstanceState(Bundle savedInstanceState) { int pos = -1; if (savedInstanceState != null) if (savedInstanceState.containsKey(SELECTED_INDEX_KEY)) pos = savedInstanceState.getInt(SELECTED_INDEX_KEY, -1); myListView.setSelection(pos); } @Override protected void onPause() { super.onPause(); // Get the activity preferences object. SharedPreferences uiState = getPreferences(0); // Get the preferences editor. SharedPreferences.Editor editor = uiState.edit(); // Add the UI state preference values. editor.putString(TEXT_ENTRY_KEY, myEditText.getText().toString()); editor.putBoolean(ADDING_ITEM_KEY, addingNew); // Commit the preferences. editor.commit(); } @Override public boolean onCreateOptionsMenu(Menu menu) { super.onCreateOptionsMenu(menu); // Create and add new menu items. MenuItem itemAdd = menu.add(0, ADD_NEW_TODO, Menu.NONE, R.string.add_new); MenuItem itemRem = menu.add(0, REMOVE_TODO, Menu.NONE, R.string.remove); // Assign icons itemAdd.setIcon(R.drawable.add_new_item); itemRem.setIcon(R.drawable.remove_item); // Allocate shortcuts to each of them. itemAdd.setShortcut('0', 'a'); itemRem.setShortcut('1', 'r'); return true; } @Override public boolean onPrepareOptionsMenu(Menu menu) { super.onPrepareOptionsMenu(menu); int idx = myListView.getSelectedItemPosition(); String removeTitle = getString(addingNew ? R.string.cancel : R.string.remove); MenuItem removeItem = menu.findItem(REMOVE_TODO); removeItem.setTitle(removeTitle); removeItem.setVisible(addingNew || idx > -1); return true; } @Override public void onCreateContextMenu(ContextMenu menu, View v, ContextMenu.ContextMenuInfo menuInfo) { super.onCreateContextMenu(menu, v, menuInfo); menu.setHeaderTitle("Selected To Do Item"); menu.add(0, REMOVE_TODO, Menu.NONE, R.string.remove); } @Override public boolean onOptionsItemSelected(MenuItem item) { super.onOptionsItemSelected(item); int index = myListView.getSelectedItemPosition(); switch (item.getItemId()) { case (REMOVE_TODO): { if (addingNew) { cancelAdd(); } else { removeItem(index); } return true; } case (ADD_NEW_TODO): { addNewItem(); return true; } } return false; } @Override public boolean onContextItemSelected(MenuItem item) { super.onContextItemSelected(item); switch (item.getItemId()) { case (REMOVE_TODO): { AdapterView.AdapterContextMenuInfo menuInfo; menuInfo =(AdapterView.AdapterContextMenuInfo)item.getMenuInfo(); int index = menuInfo.position; removeItem(index); return true; } } return false; } @Override public void onDestroy() { super.onDestroy(); } private void cancelAdd() { addingNew = false; myEditText.setVisibility(View.GONE); } private void addNewItem() { addingNew = true; myEditText.setVisibility(View.VISIBLE); myEditText.requestFocus(); } private void removeItem(int _index) { // Items are added to the listview in reverse order, so invert the index. //toDoDBAdapter.removeTask(todoItems.size()-_index); ToDoItem item = todoItems.get(_index); final long selectedId = item.getTaskId(); mService.removeTask(selectedId); entries--; Toast.makeText(this, "Entry deleted", Toast.LENGTH_SHORT).show(); updateArray(); } @Override protected void onStart() { super.onStart(); Intent intent = new Intent(this, TodoService.class); bindService(intent, mConnection, Context.BIND_AUTO_CREATE); } @Override protected void onStop() { super.onStop(); // Unbind from the service if (mBound) { unbindService(mConnection); mBound = false; } } private ServiceConnection mConnection = new ServiceConnection() { public void onServiceConnected(ComponentName className, IBinder service) { LocalBinder binder = (LocalBinder) service; mService = binder.getService(); mBound = true; } public void onServiceDisconnected(ComponentName arg0) { mBound = false; } }; public class TimedToast extends AsyncTask<Long, Integer, Integer> { @Override protected Integer doInBackground(Long... arg0) { if (notifs < 15) { try { Toast.makeText(ToDoList.this, entries + " entries left", Toast.LENGTH_SHORT).show(); notifs++; Thread.sleep(20000); } catch (InterruptedException e) { } } return 0; } } } TodoService.java: package com.examples.todolist; import android.app.Service; import android.content.ContentResolver; import android.content.ContentValues; import android.content.Intent; import android.database.Cursor; import android.os.Binder; import android.os.IBinder; public class TodoService extends Service { private final IBinder mBinder = new LocalBinder(); @Override public IBinder onBind(Intent arg0) { return mBinder; } public class LocalBinder extends Binder { TodoService getService() { return TodoService.this; } } public void insertTask(ToDoItem _task) { ContentResolver cr = getContentResolver(); ContentValues values = new ContentValues(); values.put(TodoProvider.KEY_CREATION_DATE, _task.getCreated().getTime()); values.put(TodoProvider.KEY_TASK, _task.getTask()); cr.insert(TodoProvider.CONTENT_URI, values); } public void updateTask(ToDoItem _task) { long tid = _task.getTaskId(); ContentResolver cr = getContentResolver(); ContentValues values = new ContentValues(); values.put(TodoProvider.KEY_TASK, _task.getTask()); cr.update(TodoProvider.CONTENT_URI, values, TodoProvider.KEY_ID + "=" + tid, null); } public void removeTask(long tid) { ContentResolver cr = getContentResolver(); cr.delete(TodoProvider.CONTENT_URI, TodoProvider.KEY_ID + "=" + tid, null); } public Cursor getAllToDoItemsCursor() { ContentResolver cr = getContentResolver(); return cr.query(TodoProvider.CONTENT_URI, null, null, null, null); } } TodoProvider.java: package com.examples.todolist; import android.content.*; import android.database.Cursor; import android.database.SQLException; import android.database.sqlite.SQLiteOpenHelper; import android.database.sqlite.SQLiteDatabase; import android.database.sqlite.SQLiteQueryBuilder; import android.database.sqlite.SQLiteDatabase.CursorFactory; import android.net.Uri; import android.text.TextUtils; import android.util.Log; public class TodoProvider extends ContentProvider { public static final Uri CONTENT_URI = Uri.parse("content://com.examples.provider.todolist/todo"); @Override public boolean onCreate() { Context context = getContext(); todoHelper dbHelper = new todoHelper(context, DATABASE_NAME, null, DATABASE_VERSION); todoDB = dbHelper.getWritableDatabase(); return (todoDB == null) ? false : true; } @Override public Cursor query(Uri uri, String[] projection, String selection, String[] selectionArgs, String sort) { SQLiteQueryBuilder tb = new SQLiteQueryBuilder(); tb.setTables(TODO_TABLE); // If this is a row query, limit the result set to the passed in row. switch (uriMatcher.match(uri)) { case TASK_ID: tb.appendWhere(KEY_ID + "=" + uri.getPathSegments().get(1)); break; default: break; } // If no sort order is specified sort by date / time String orderBy; if (TextUtils.isEmpty(sort)) { orderBy = KEY_ID; } else { orderBy = sort; } // Apply the query to the underlying database. Cursor c = tb.query(todoDB, projection, selection, selectionArgs, null, null, orderBy); // Register the contexts ContentResolver to be notified if // the cursor result set changes. c.setNotificationUri(getContext().getContentResolver(), uri); // Return a cursor to the query result. return c; } @Override public Uri insert(Uri _uri, ContentValues _initialValues) { // Insert the new row, will return the row number if // successful. long rowID = todoDB.insert(TODO_TABLE, "task", _initialValues); // Return a URI to the newly inserted row on success. if (rowID > 0) { Uri uri = ContentUris.withAppendedId(CONTENT_URI, rowID); getContext().getContentResolver().notifyChange(uri, null); return uri; } throw new SQLException("Failed to insert row into " + _uri); } @Override public int delete(Uri uri, String where, String[] whereArgs) { int count; switch (uriMatcher.match(uri)) { case TASKS: count = todoDB.delete(TODO_TABLE, where, whereArgs); break; case TASK_ID: String segment = uri.getPathSegments().get(1); count = todoDB.delete(TODO_TABLE, KEY_ID + "=" + segment + (!TextUtils.isEmpty(where) ? " AND (" + where + ')' : ""), whereArgs); break; default: throw new IllegalArgumentException("Unsupported URI: " + uri); } getContext().getContentResolver().notifyChange(uri, null); return count; } @Override public int update(Uri uri, ContentValues values, String where, String[] whereArgs) { int count; switch (uriMatcher.match(uri)) { case TASKS: count = todoDB.update(TODO_TABLE, values, where, whereArgs); break; case TASK_ID: String segment = uri.getPathSegments().get(1); count = todoDB.update(TODO_TABLE, values, KEY_ID + "=" + segment + (!TextUtils.isEmpty(where) ? " AND (" + where + ')' : ""), whereArgs); break; default: throw new IllegalArgumentException("Unknown URI " + uri); } getContext().getContentResolver().notifyChange(uri, null); return count; } @Override public String getType(Uri uri) { switch (uriMatcher.match(uri)) { case TASKS: return "vnd.android.cursor.dir/vnd.examples.task"; case TASK_ID: return "vnd.android.cursor.item/vnd.examples.task"; default: throw new IllegalArgumentException("Unsupported URI: " + uri); } } // Create the constants used to differentiate between the different URI // requests. private static final int TASKS = 1; private static final int TASK_ID = 2; private static final UriMatcher uriMatcher; // Allocate the UriMatcher object, where a URI ending in 'tasks' will // correspond to a request for all tasks, and 'tasks' with a // trailing '/[rowID]' will represent a single task row. static { uriMatcher = new UriMatcher(UriMatcher.NO_MATCH); uriMatcher.addURI("com.examples.provider.Todolist", "tasks", TASKS); uriMatcher.addURI("com.examples.provider.Todolist", "tasks/#", TASK_ID); } //The underlying database private SQLiteDatabase todoDB; private static final String TAG = "TodoProvider"; private static final String DATABASE_NAME = "todolist.db"; private static final int DATABASE_VERSION = 1; private static final String TODO_TABLE = "todolist"; // Column Names public static final String KEY_ID = "_id"; public static final String KEY_TASK = "task"; public static final String KEY_CREATION_DATE = "date"; public long insertTask(ToDoItem _task) { // Create a new row of values to insert. ContentValues newTaskValues = new ContentValues(); // Assign values for each row. newTaskValues.put(KEY_TASK, _task.getTask()); newTaskValues.put(KEY_CREATION_DATE, _task.getCreated().getTime()); // Insert the row. return todoDB.insert(TODO_TABLE, null, newTaskValues); } public boolean updateTask(long _rowIndex, String _task) { ContentValues newValue = new ContentValues(); newValue.put(KEY_TASK, _task); return todoDB.update(TODO_TABLE, newValue, KEY_ID + "=" + _rowIndex, null) > 0; } public boolean removeTask(long _rowIndex) { return todoDB.delete(TODO_TABLE, KEY_ID + "=" + _rowIndex, null) > 0; } // Helper class for opening, creating, and managing database version control private static class todoHelper extends SQLiteOpenHelper { private static final String DATABASE_CREATE = "create table " + TODO_TABLE + " (" + KEY_ID + " integer primary key autoincrement, " + KEY_TASK + " TEXT, " + KEY_CREATION_DATE + " INTEGER);"; public todoHelper(Context cn, String name, CursorFactory cf, int ver) { super(cn, name, cf, ver); } @Override public void onCreate(SQLiteDatabase db) { db.execSQL(DATABASE_CREATE); } @Override public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) { Log.w(TAG, "Upgrading database from version " + oldVersion + " to " + newVersion + ", which will destroy all old data"); db.execSQL("DROP TABLE IF EXISTS " + TODO_TABLE); onCreate(db); } } } I've omitted the other files as I'm sure they are correct. When I run the program, LogCat shows that the NullPointerException occurs in populateTodoList(), at toDoListCursor = mService.getAllToDoItemsCursor(). mService is the Cursor object returned by TodoService. I've added the service to the Manifest file, but I still cannot find out why it's causing an exception. Thanks in advance.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Red Gate Coder interviews: Robin Hellen

    - by Michael Williamson
    Robin Hellen is a test engineer here at Red Gate, and is also the latest coder I’ve interviewed. We chatted about debugging code, the roles of software engineers and testers, and why Vala is currently his favourite programming language. How did you get started with programming?It started when I was about six. My dad’s a professional programmer, and he gave me and my sister one of his old computers and taught us a bit about programming. It was an old Amiga 500 with a variant of BASIC. I don’t think I ever successfully completed anything! It was just faffing around. I didn’t really get anywhere with it.But then presumably you did get somewhere with it at some point.At some point. The PC emerged as the dominant platform, and I learnt a bit of Visual Basic. I didn’t really do much, just a couple of quick hacky things. A bit of demo animation. Took me a long time to get anywhere with programming, really.When did you feel like you did start to get somewhere?I think it was when I started doing things for someone else, which was my sister’s final year of university project. She called up my dad two days before she was due to submit, saying “We need something to display a graph!”. Dad says, “I’m too busy, go talk to your brother”. So I hacked up this ugly piece of code, sent it off and they won a prize for that project. Apparently, the graph, the bit that I wrote, was the reason they won a prize! That was when I first felt that I’d actually done something that was worthwhile. That was my first real bit of code, and the ugliest code I’ve ever written. It’s basically an array of pre-drawn line elements that I shifted round the screen to draw a very spikey graph.When did you decide that programming might actually be something that you wanted to do as a career?It’s not really a decision I took, I always wanted to do something with computers. And I had to take a gap year for uni, so I was looking for twelve month internships. I applied to Red Gate, and they gave me a job as a tester. And that’s where I really started having to write code well. To a better standard that I had been up to that point.How did you find coming to Red Gate and working with other coders?I thought it was really nice. I learnt so much just from other people around. I think one of the things that’s really great is that people are just willing to help you learn. Instead of “Don’t you know that, you’re so stupid”, it’s “You can just do it this way”.If you could go back to the very start of that internship, is there something that you would tell yourself?Write shorter code. I have a tendency to write massive, many-thousand line files that I break out of right at the end. And then half-way through a project I’m doing something, I think “Where did I write that bit that does that thing?”, and it’s almost impossible to find. I wrote some horrendous code when I started. Just that principle, just keep things short. Even if looks a bit crazy to be jumping around all over the place all of the time, it’s actually a lot more understandable.And how do you hold yourself to that?Generally, if a function’s going off my screen, it’s probably too long. That’s what I tell myself, and within the team here we have code reviews, so the guys I’m with at the moment are pretty good at pulling me up on, “Doesn’t that look like it’s getting a bit long?”. It’s more just the subjective standard of readability than anything.So you’re an advocate of code review?Yes, definitely. Both to spot errors that you might have made, and to improve your knowledge. The person you’re reviewing will say “Oh, you could have done it that way”. That’s how we learn, by talking to others, and also just sharing knowledge of how your project works around the team, or even outside the team. Definitely a very firm advocate of code reviews.Do you think there’s more we could do with them?I don’t know. We’re struggling with how to add them as part of the process without it becoming too cumbersome. We’ve experimented with a few different ways, and we’ve not found anything that just works.To get more into the nitty gritty: how do you like to debug code?The first thing is to do it in my head. I’ll actually think what piece of code is likely to have caused that error, and take a quick look at it, just to see if there’s anything glaringly obvious there. The next thing I’ll probably do is throw in print statements, or throw some exceptions from various points, just to check: is it going through the code path I expect it to? A last resort is to actually debug code using a debugger.Why is the debugger the last resort?Probably because of the environments I learnt programming in. VB and early BASIC didn’t have much of a debugger, the only way to find out what your program was doing was to add print statements. Also, because a lot of the stuff I tend to work with is non-interactive, if it’s something that takes a long time to run, I can throw in the print statements, set a run off, go and do something else, and look at it again later, rather than trying to remember what happened at that point when I was debugging through it. So it also gives me the record of what happens. I hate just sitting there pressing F5, F5, continually. If you’re having to find out what your code is doing at each line, you’ve probably got a very wrong mental model of what your code’s doing, and you can find that out just as easily by inspecting a couple of values through the print statements.If I were on some codebase that you were also working on, what should I do to make it as easy as possible to understand?I’d say short and well-named methods. The one thing I like to do when I’m looking at code is to find out where a value comes from, and the more layers of indirection there are, particularly DI [dependency injection] frameworks, the harder it is to find out where something’s come from. I really hate that. I want to know if the value come from the user here or is a constant here, and if I can’t find that out, that makes code very hard to understand for me.As a tester, where do you think the split should lie between software engineers and testers?I think the split is less on areas of the code you write and more what you’re designing and creating. The developers put a structure on the code, while my major role is to say which tests we should have, whether we should test that, or it’s not worth testing that because it’s a tiny function in code that nobody’s ever actually going to see. So it’s not a split in the code, it’s a split in what you’re thinking about. Saying what code we should write, but alternatively what code we should take out.In your experience, do the software engineers tend to do much testing themselves?They tend to control the lowest layer of tests. And, depending on how the balance of people is in the team, they might write some of the higher levels of test. Or that might go to the testers. I’m the only tester on my team with three other developers, so they’ll be writing quite a lot of the actual test code, with input from me as to whether we should test that functionality, whereas on other teams, where it’s been more equal numbers, the testers have written pretty much all of the high level tests, just because that’s the best use of resource.If you could shuffle resources around however you liked, do you think that the developers should be writing those high-level tests?I think they should be writing them occasionally. It helps when they have an understanding of how testing code works and possibly what assumptions we’ve made in tests, and they can say “actually, it doesn’t work like that under the hood so you’ve missed this whole area”. It’s one of those agile things that everyone on the team should be at least comfortable doing the various jobs. So if the developers can write test code then I think that’s a very good thing.So you think testers should be able to write production code?Yes, although given most testers skills at coding, I wouldn’t advise it too much! I have written a few things, and I did make a few changes that have actually gone into our production code base. They’re not necessarily running every time but they are there. I think having that mix of skill sets is really useful. In some ways we’re using our own product to test itself, so being able to make those changes where it’s not working saves me a round-trip through the developers. It can be really annoying if the developers have no time to make a change, and I can’t touch the code.If the software engineers are consistently writing tests at all levels, what role do you think the role of a tester is?I think on a team like that, those distinctions aren’t quite so useful. There’ll be two cases. There’s either the case where the developers think they’ve written good tests, but you still need someone with a test engineer mind-set to go through the tests and validate that it’s a useful set, or the correct set for that code. Or they won’t actually be pure developers, they’ll have that mix of test ability in there.I think having slightly more distinct roles is useful. When it starts to blur, then you lose that view of the tests as a whole. The tester job is not to create tests, it’s to validate the quality of the product, and you don’t do that just by writing tests. There’s more things you’ve got to keep in your mind. And I think when you blur the roles, you start to lose that end of the tester.So because you’re working on those features, you lose that holistic view of the whole system?Yeah, and anyone who’s worked on the feature shouldn’t be testing it. You always need to have it tested it by someone who didn’t write it. Otherwise you’re a bit too close and you assume “yes, people will only use it that way”, but the tester will come along and go “how do people use this? How would our most idiotic user use this?”. I might not test that because it might be completely irrelevant. But it’s coming in and trying to have a different set of assumptions.Are you a believer that it should all be automated if possible?Not entirely. So an automated test is always better than a manual test for the long-term, but there’s still nothing that beats a human sitting in front of the application and thinking “What could I do at this point?”. The automated test is very good but they follow that strict path, and they never check anything off the path. The human tester will look at things that they weren’t expecting, whereas the automated test can only ever go “Is that value correct?” in many respects, and it won’t notice that on the other side of the screen you’re showing something completely wrong. And that value might have been checked independently, but you always find a few odd interactions when you’re going through something manually, and you always need to go through something manually to start with anyway, otherwise you won’t know where the important bits to write your automation are.When you’re doing that manual testing, do you think it’s important to do that across the entire product, or just the bits that you’ve touched recently?I think it’s important to do it mostly on the bits you’ve touched, but you can’t ignore the rest of the product. Unless you’re dealing with a very, very self-contained bit, you’re almost always encounter other bits of the product along the way. Most testers I know, even if they are looking at just one path, they’ll keep open and move around a bit anyway, just because they want to find something that’s broken. If we find that your path is right, we’ll go out and hunt something else.How do you think this fits into the idea of continuously deploying, so long as the tests pass?With deploying a website it’s a bit different because you can always pull it back. If you’re deploying an application to customers, when you’ve released it, it’s out there, you can’t pull it back. Someone’s going to keep it, no matter how hard you try there will be a few installations that stay around. So I’d always have at least a human element on that path. With websites, you could probably automate straight out, or at least straight out to an internal environment or a single server in a cloud of fifty that will serve some people. But I don’t think you should release to everyone just on automated tests passing.You’ve already mentioned using BASIC and C# — are there any other languages that you’ve used?I’ve used a few. That’s something that has changed more recently, I’ve become familiar with more languages. Before I started at Red Gate I learnt a bit of C. Then last year, I taught myself Python which I actually really enjoyed using. I’ve also come across another language called Vala, which is sort of a C#-like language. It’s basically a pre-processor for C, but it has very nice syntax. I think that’s currently my favourite language.Any particular reason for trying Vala?I have a completely Linux environment at home, and I’ve been looking for a nice language, and C# just doesn’t cut it because I won’t touch Mono. So, I was looking for something like C# but that was useable in an open source environment, and Vala’s what I found. C#’s got a few features that Vala doesn’t, and Vala’s got a few features where I think “It would be awesome if C# had that”.What are some of the features that it’s missing?Extension methods. And I think that’s the only one that really bugs me. I like to use them when I’m writing C# because it makes some things really easy, especially with libraries that you can’t touch the internals of. It doesn’t have method overloading, which is sometimes annoying.Where it does win over C#?Everything is non-nullable by default, you never have to check that something’s unexpectedly null.Also, Vala has code contracts. This is starting to come in C# 4, but the way it works in Vala is that you specify requirements in short phrases as part of your function signature and they stick to the signature, so that when you inherit it, it has exactly the same code contract as the base one, or when you inherit from an interface, you have to match the signature exactly. Just using those makes you think a bit more about how you’re writing your method, it’s not an afterthought when you’ve got contracts from base classes given to you, you can’t change it. Which I think is a lot nicer than the way C# handles it. When are those actually checked?They’re checked both at compile and run-time. The compile-time checking isn’t very strong yet, it’s quite a new feature in the compiler, and because it compiles down to C, you can write C code and interface with your methods, so you can bypass that compile-time check anyway. So there’s an extra runtime check, and if you violate one of the contracts at runtime, it’s game over for your program, there’s no exception to catch, it’s just goodbye!One thing I dislike about C# is the exceptions. You write a bit of code and fifty exceptions could come from any point in your ten lines, and you can’t mentally model how those exceptions are going to come out, and you can’t even predict them based on the functions you’re calling, because if you’ve accidentally got a derived class there instead of a base class, that can throw a completely different set of exceptions. So I’ve got no way of mentally modelling those, whereas in Vala they’re checked like Java, so you know only these exceptions can come out. You know in advance the error conditions.I think Raymond Chen on Old New Thing says “the only thing you know when you throw an exception is that you’re in an invalid state somewhere in your program, so just kill it and be done with it!”You said you’ve also learnt bits of Python. How did you find that compared to Vala and C#?Very different because of the dynamic typing. I’ve been writing a website for my own use. I’m quite into photography, so I take photos off my camera, post-process them, dump them in a file, and I get a webpage with all my thumbnails. So sort of like Picassa, but written by myself because I wanted something to learn Python with. There are some things that are really nice, I just found it really difficult to cope with the fact that I’m not quite sure what this object type that I’m passed is, I might not ever be sure, so it can randomly blow up on me. But once I train myself to ignore that and just say “well, I’m fairly sure it’s going to be something that looks like this, so I’ll use it like this”, then it’s quite nice.Any particular features that you’ve appreciated?I don’t like any particular feature, it’s just very straightforward to work with. It’s very quick to write something in, particularly as you don’t have to worry that you’ve changed something that affects a different part of the program. If you have, then that part blows up, but I can get this part working right now.If you were doing a big project, would you be willing to do it in Python rather than C# or Vala?I think I might be willing to try something bigger or long term with Python. We’re currently doing an ASP.NET MVC project on C#, and I don’t like the amount of reflection. There’s a lot of magic that pulls values out, and it’s all done under the scenes. It’s almost managed to put a dynamic type system on top of C#, which in many ways destroys the language to me, whereas if you’re already in a dynamic language, having things done dynamically is much more natural. In many ways, you get the worst of both worlds. I think for web projects, I would go with Python again, whereas for anything desktop, command-line or GUI-based, I’d probably go for C# or Vala, depending on what environment I’m in.It’s the fact that you can gain from the strong typing in ways that you can’t so much on the web app. Or, in a web app, you have to use dynamic typing at some point, or you have to write a hell of a lot of boilerplate, and I’d rather use the dynamic typing than write the boilerplate.What do you think separates great programmers from everyone else?Probably design choices. Choosing to write it a piece of code one way or another. For any given program you ask me to write, I could probably do it five thousand ways. A programmer who is capable will see four or five of them, and choose one of the better ones. The excellent programmer will see the largest proportion and manage to pick the best one very quickly without having to think too much about it. I think that’s probably what separates, is the speed at which they can see what’s the best path to write the program in. More Red Gater Coder interviews

    Read the article

  • ANTS Memory Profiler 7.0 Review

    - by Michael B. McLaughlin
    (This is my first review as a part of the GeeksWithBlogs.net Influencers program. It’s a program in which I (and the others who have been selected for it) get the opportunity to check out new products and services and write reviews about them. We don’t get paid for this, but we do generally get to keep a copy of the software or retain an account for some period of time on the service that we review. In this case I received a copy of Red Gate Software’s ANTS Memory Profiler 7.0, which was released in January. I don’t have any upgrade rights nor is my review guided, restrained, influenced, or otherwise controlled by Red Gate or anyone else. But I do get to keep the software license. I will always be clear about what I received whenever I do a review – I leave it up to you to decide whether you believe I can be objective. I believe I can be. If I used something and really didn’t like it, keeping a copy of it wouldn’t be worth anything to me. In that case though, I would simply uninstall/deactivate/whatever the software or service and tell the company what I didn’t like about it so they could (hopefully) make it better in the future. I don’t think it’d be polite to write up a terrible review, nor do I think it would be a particularly good use of my time. There are people who get paid for a living to review things, so I leave it to them to tell you what they think is bad and why. I’ll only spend my time telling you about things I think are good.) Overview of Common .NET Memory Problems When coming to land of managed memory from the wilds of unmanaged code, it’s easy to say to one’s self, “Wow! Now I never have to worry about memory problems again!” But this simply isn’t true. Managed code environments, such as .NET, make many, many things easier. You will never have to worry about memory corruption due to a bad pointer, for example (unless you’re working with unsafe code, of course). But managed code has its own set of memory concerns. For example, failing to unsubscribe from events when you are done with them leaves the publisher of an event with a reference to the subscriber. If you eliminate all your own references to the subscriber, then that memory is effectively lost since the GC won’t delete it because of the publishing object’s reference. When the publishing object itself becomes subject to garbage collection then you’ll get that memory back finally, but that could take a very long time depending of the life of the publisher. Another common source of resource leaks is failing to properly release unmanaged resources. When writing a class that contains members that hold unmanaged resources (e.g. any of the Stream-derived classes, IsolatedStorageFile, most classes ending in “Reader” or “Writer”), you should always implement IDisposable, making sure to use a properly written Dispose method. And when you are using an instance of a class that implements IDisposable, you should always make sure to use a 'using' statement in order to ensure that the object’s unmanaged resources are disposed of properly. (A ‘using’ statement is a nicer, cleaner looking, and easier to use version of a try-finally block. The compiler actually translates it as though it were a try-finally block. Note that Code Analysis warning 2202 (CA2202) will often be triggered by nested using blocks. A properly written dispose method ensures that it only runs once such that calling dispose multiple times should not be a problem. Nonetheless, CA2202 exists and if you want to avoid triggering it then you should write your code such that only the innermost IDisposable object uses a ‘using’ statement, with any outer code making use of appropriate try-finally blocks instead). Then, of course, there are situations where you are operating in a memory-constrained environment or else you want to limit or even eliminate allocations within a certain part of your program (e.g. within the main game loop of an XNA game) in order to avoid having the GC run. On the Xbox 360 and Windows Phone 7, for example, for every 1 MB of heap allocations you make, the GC runs; the added time of a GC collection can cause a game to drop frames or run slowly thereby making it look bad. Eliminating allocations (or else minimizing them and calling an explicit Collect at an appropriate time) is a common way of avoiding this (the other way is to simplify your heap so that the GC’s latency is low enough not to cause performance issues). ANTS Memory Profiler 7.0 When the opportunity to review Red Gate’s recently released ANTS Memory Profiler 7.0 arose, I jumped at it. In order to review it, I was given a free copy (which does not include upgrade rights for future versions) which I am allowed to keep. For those of you who are familiar with ANTS Memory Profiler, you can find a list of new features and enhancements here. If you are an experienced .NET developer who is familiar with .NET memory management issues, ANTS Memory Profiler is great. More importantly still, if you are new to .NET development or you have no experience or limited experience with memory profiling, ANTS Memory Profiler is awesome. From the very beginning, it guides you through the process of memory profiling. If you’re experienced and just want dive in however, it doesn’t get in your way. The help items GAHSFLASHDAJLDJA are well designed and located right next to the UI controls so that they are easy to find without being intrusive. When you first launch it, it presents you with a “Getting Started” screen that contains links to “Memory profiling video tutorials”, “Strategies for memory profiling”, and the “ANTS Memory Profiler forum”. I’m normally the kind of person who looks at a screen like that only to find the “Don’t show this again” checkbox. Since I was doing a review, though, I decided I should examine them. I was pleasantly surprised. The overview video clocks in at three minutes and fifty seconds. It begins by showing you how to get started profiling an application. It explains that profiling is done by taking memory snapshots periodically while your program is running and then comparing them. ANTS Memory Profiler (I’m just going to call it “ANTS MP” from here) analyzes these snapshots in the background while your application is running. It briefly mentions a new feature in Version 7, a new API that give you the ability to trigger snapshots from within your application’s source code (more about this below). You can also, and this is the more common way you would do it, take a memory snapshot at any time from within the ANTS MP window by clicking the “Take Memory Snapshot” button in the upper right corner. The overview video goes on to demonstrate a basic profiling session on an application that pulls information from a database and displays it. It shows how to switch which snapshots you are comparing, explains the different sections of the Summary view and what they are showing, and proceeds to show you how to investigate memory problems using the “Instance Categorizer” to track the path from an object (or set of objects) to the GC’s root in order to find what things along the path are holding a reference to it/them. For a set of objects, you can then click on it and get the “Instance List” view. This displays all of the individual objects (including their individual sizes, values, etc.) of that type which share the same path to the GC root. You can then click on one of the objects to generate an “Instance Retention Graph” view. This lets you track directly up to see the reference chain for that individual object. In the overview video, it turned out that there was an event handler which was holding on to a reference, thereby keeping a large number of strings that should have been freed in memory. Lastly the video shows the “Class List” view, which lets you dig in deeply to find problems that might not have been clear when following the previous workflow. Once you have at least one memory snapshot you can begin analyzing. The main interface is in the “Analysis” tab. You can also switch to the “Session Overview” tab, which gives you several bar charts highlighting basic memory data about the snapshots you’ve taken. If you hover over the individual bars (and the individual colors in bars that have more than one), you will see a detailed text description of what the bar is representing visually. The Session Overview is good for a quick summary of memory usage and information about the different heaps. You are going to spend most of your time in the Analysis tab, but it’s good to remember that the Session Overview is there to give you some quick feedback on basic memory usage stats. As described above in the summary of the overview video, there is a certain natural workflow to the Analysis tab. You’ll spin up your application and take some snapshots at various times such as before and after clicking a button to open a window or before and after closing a window. Taking these snapshots lets you examine what is happening with memory. You would normally expect that a lot of memory would be freed up when closing a window or exiting a document. By taking snapshots before and after performing an action like that you can see whether or not the memory is really being freed. If you already know an area that’s giving you trouble, you can run your application just like normal until just before getting to that part and then you can take a few strategic snapshots that should help you pin down the problem. Something the overview didn’t go into is how to use the “Filters” section at the bottom of ANTS MP together with the Class List view in order to narrow things down. The video tutorials page has a nice 3 minute intro video called “How to use the filters”. It’s a nice introduction and covers some of the basics. I’m going to cover a bit more because I think they’re a really neat, really helpful feature. Large programs can bring up thousands of classes. Even simple programs can instantiate far more classes than you might realize. In a basic .NET 4 WPF application for example (and when I say basic, I mean just MainWindow.xaml with a button added to it), the unfiltered Class List view will have in excess of 1000 classes (my simple test app had anywhere from 1066 to 1148 classes depending on which snapshot I was using as the “Current” snapshot). This is amazing in some ways as it shows you how in stark detail just how immensely powerful the WPF framework is. But hunting through 1100 classes isn’t productive, no matter how cool it is that there are that many classes instantiated and doing all sorts of awesome things. Let’s say you wanted to examine just the classes your application contains source code for (in my simple example, that would be the MainWindow and App). Under “Basic Filters”, click on “Classes with source” under “Show only…”. Voilà. Down from 1070 classes in the snapshot I was using as “Current” to 2 classes. If you then click on a class’s name, it will show you (to the right of the class name) two little icon buttons. Hover over them and you will see that you can click one to view the Instance Categorizer for the class and another to view the Instance List for the class. You can also show classes based on which heap they live on. If you chose both a Baseline snapshot and a Current snapshot then you can use the “Comparing snapshots” filters to show only: “New objects”; “Surviving objects”; “Survivors in growing classes”; or “Zombie objects” (if you aren’t sure what one of these means, you can click the helpful “?” in a green circle icon to bring up a popup that explains them and provides context). Remember that your selection(s) under the “Show only…” heading will still apply, so you should update those selections to make sure you are seeing the view you want. There are also links under the “What is my memory problem?” heading that can help you diagnose the problems you are seeing including one for “I don’t know which kind I have” for situations where you know generally that your application has some problems but aren’t sure what the behavior you have been seeing (OutOfMemoryExceptions, continually growing memory usage, larger memory use than expected at certain points in the program). The Basic Filters are not the only filters there are. “Filter by Object Type” gives you the ability to filter by: “Objects that are disposable”; “Objects that are/are not disposed”; “Objects that are/are not GC roots” (GC roots are things like static variables); and “Objects that implement _______”. “Objects that implement” is particularly neat. Once you check the box, you can then add one or more classes and interfaces that an object must implement in order to survive the filtering. Lastly there is “Filter by Reference”, which gives you the option to pare down the list based on whether an object is “Kept in memory exclusively by” a particular item, a class/interface, or a namespace; whether an object is “Referenced by” one or more of those choices; and whether an object is “Never referenced by” one or more of those choices. Remember that filtering is cumulative, so anything you had set in one of the filter sections still remains in effect unless and until you go back and change it. There’s quite a bit more to ANTS MP – it’s a very full featured product – but I think I touched on all of the most significant pieces. You can use it to debug: a .NET executable; an ASP.NET web application (running on IIS); an ASP.NET web application (running on Visual Studio’s built-in web development server); a Silverlight 4 browser application; a Windows service; a COM+ server; and even something called an XBAP (local XAML browser application). You can also attach to a .NET 4 process to profile an application that’s already running. The startup screen also has a large number of “Charting Options” that let you adjust which statistics ANTS MP should collect. The default selection is a good, minimal set. It’s worth your time to browse through the charting options to examine other statistics that may also help you diagnose a particular problem. The more statistics ANTS MP collects, the longer it will take to collect statistics. So just turning everything on is probably a bad idea. But the option to selectively add in additional performance counters from the extensive list could be a very helpful thing for your memory profiling as it lets you see additional data that might provide clues about a particular problem that has been bothering you. ANTS MP integrates very nicely with all versions of Visual Studio that support plugins (i.e. all of the non-Express versions). Just note that if you choose “Profile Memory” from the “ANTS” menu that it will launch profiling for whichever project you have set as the Startup project. One quick tip from my experience so far using ANTS MP: if you want to properly understand your memory usage in an application you’ve written, first create an “empty” version of the type of project you are going to profile (a WPF application, an XNA game, etc.) and do a quick profiling session on that so that you know the baseline memory usage of the framework itself. By “empty” I mean just create a new project of that type in Visual Studio then compile it and run it with profiling – don’t do anything special or add in anything (except perhaps for any external libraries you’re planning to use). The first thing I tried ANTS MP out on was a demo XNA project of an editor that I’ve been working on for quite some time that involves a custom extension to XNA’s content pipeline. The first time I ran it and saw the unmanaged memory usage I was convinced I had some horrible bug that was creating extra copies of texture data (the demo project didn’t have a lot of texture data so when I saw a lot of unmanaged memory I instantly figured I was doing something wrong). Then I thought to run an empty project through and when I saw that the amount of unmanaged memory was virtually identical, it dawned on me that the CLR itself sits in unmanaged memory and that (thankfully) there was nothing wrong with my code! Quite a relief. Earlier, when discussing the overview video, I mentioned the API that lets you take snapshots from within your application. I gave it a quick trial and it’s very easy to integrate and make use of and is a really nice addition (especially for projects where you want to know what, if any, allocations there are in a specific, complicated section of code). The only concern I had was that if I hadn’t watched the overview video I might never have known it existed. Even then it took me five minutes of hunting around Red Gate’s website before I found the “Taking snapshots from your code" article that explains what DLL you need to add as a reference and what method of what class you should call in order to take an automatic snapshot (including the helpful warning to wrap it in a try-catch block since, under certain circumstances, it can raise an exception, such as trying to call it more than 5 times in 30 seconds. The difficulty in discovering and then finding information about the automatic snapshots API was one thing I thought could use improvement. Another thing I think would make it even better would be local copies of the webpages it links to. Although I’m generally always connected to the internet, I imagine there are more than a few developers who aren’t or who are behind very restrictive firewalls. For them (and for me, too, if my internet connection happens to be down), it would be nice to have those documents installed locally or to have the option to download an additional “documentation” package that would add local copies. Another thing that I wish could be easier to manage is the Filters area. Finding and setting individual filters is very easy as is understanding what those filter do. And breaking it up into three sections (basic, by object, and by reference) makes sense. But I could easily see myself running a long profiling session and forgetting that I had set some filter a long while earlier in a different filter section and then spending quite a bit of time trying to figure out why some problem that was clearly visible in the data wasn’t showing up in, e.g. the instance list before remembering to check all the filters for that one setting that was only culling a few things from view. Some sort of indicator icon next to the filter section names that appears you have at least one filter set in that area would be a nice visual clue to remind me that “oh yeah, I told it to only show objects on the Gen 2 heap! That’s why I’m not seeing those instances of the SuperMagic class!” Something that would be nice (but that Red Gate cannot really do anything about) would be if this could be used in Windows Phone 7 development. If Microsoft and Red Gate could work together to make this happen (even if just on the WP7 emulator), that would be amazing. Especially given the memory constraints that apps and games running on mobile devices need to work within, a good memory profiler would be a phenomenally helpful tool. If anyone at Microsoft reads this, it’d be really great if you could make something like that happen. Perhaps even a (subsidized) custom version just for WP7 development. (For XNA games, of course, you can create a Windows version of the game and use ANTS MP on the Windows version in order to get a better picture of your memory situation. For Silverlight on WP7, though, there’s quite a bit of educated guess work and WeakReference creation followed by forced collections in order to find the source of a memory problem.) The only other thing I found myself wanting was a “Back” button. Between my Windows Phone 7, Zune, and other things, I’ve grown very used to having a “back stack” that lets me just navigate back to where I came from. The ANTS MP interface is surprisingly easy to use given how much it lets you do, and once you start using it for any amount of time, you learn all of the different areas such that you know where to go. And it does remember the state of the areas you were previously in, of course. So if you go to, e.g., the Instance Retention Graph from the Class List and then return back to the Class List, it will remember which class you had selected and all that other state information. Still, a “Back” button would be a welcome addition to a future release. Bottom Line ANTS Memory Profiler is not an inexpensive tool. But my time is valuable. I can easily see ANTS MP saving me enough time tracking down memory problems to justify it on a cost basis. More importantly to me, knowing what is happening memory-wise in my programs and having the confidence that my code doesn’t have any hidden time bombs in it that will cause it to OOM if I leave it running for longer than I do when I spin it up real quickly for debugging or just to see how a new feature looks and feels is a good feeling. It’s a feeling that I like having and want to continue to have. I got the current version for free in order to review it. Having done so, I’ve now added it to my must-have tools and will gladly lay out the money for the next version when it comes out. It has a 14 day free trial, so if you aren’t sure if it’s right for you or if you think it seems interesting but aren’t really sure if it’s worth shelling out the money for it, give it a try.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to create Custom ListForm WebPart

    - by DipeshBhanani
    Mostly all who works extensively on SharePoint (including meJ) don’t like to use out-of-box list forms (DispForm.aspx, EditForm.aspx, NewForm.aspx) as interface. Actually these OOB list forms bind hands of developers for the customization. It gives headache to developers to add just one post back event, for a dropdown field and to populate other fields in NewForm.aspx or EditForm.aspx. On top of that clients always ask such stuff. So here I am going to give you guys a flight for SharePoint Customization world. In this blog, I will explain, how to create CustomListForm WebPart. In my next blogs, I am going to explain easy deployment of List Forms through features and last, guidance on using SharePoint web controls. 1.       First thing, create a class library project through Visual Studio and inherit the class with WebPart class.     public class CustomListForm : WebPart   2.       Declare the public variables and properties which we are going to use throughout the class. You will get to know these once you see them in use.         #region "Variable Declaration"           Table spTableCntl;         FormToolBar formToolBar;         Literal ltAlertMessage;         Guid SiteId;         Guid ListId;         int ItemId;         string ListName;           #endregion           #region "Properties"           SPControlMode _ControlMode = SPControlMode.New;         [Personalizable(PersonalizationScope.Shared),          WebBrowsable(true),          WebDisplayName("Control Mode"),          WebDescription("Set Control Mode"),          DefaultValue(""),          Category("Miscellaneous")]         public SPControlMode ControlMode         {             get { return _ControlMode; }             set { _ControlMode = value; }         }           #endregion     The property “ControlMode” is used to identify the mode of the List Form. The property is of type SPControlMode which is an enum type with values (Display, Edit, New and Invalid). When we will add this WebPart to DispForm.aspx, EditForm.aspx and NewForm.aspx, we will set the WebPart property “ControlMode” to Display, Edit and New respectively.     3.       Now, we need to override the CreateChildControl method and write code to manually add SharePoint Web Controls related to each list fields as well as ToolBar controls.         protected override void CreateChildControls()         {             base.CreateChildControls();               try             {                 SiteId = SPContext.Current.Site.ID;                 ListId = SPContext.Current.ListId;                 ListName = SPContext.Current.List.Title;                   if (_ControlMode == SPControlMode.Display || _ControlMode == SPControlMode.Edit)                     ItemId = SPContext.Current.ItemId;                   SPSecurity.RunWithElevatedPrivileges(delegate()                 {                     using (SPSite site = new SPSite(SiteId))                     {                         //creating a new SPSite with credentials of System Account                         using (SPWeb web = site.OpenWeb())                         {                               //<Custom Code for creating form controls>                         }                     }                 });             }             catch (Exception ex)             {                 ShowError(ex, "CreateChildControls");             }         }   Here we are assuming that we are developing this WebPart to plug into List Forms. Hence we will get the List Id and List Name from the current context. We can have Item Id only in case of Display and Edit Mode. We are putting our code into “RunWithElevatedPrivileges” to elevate privileges to System Account. Now, let’s get deep down into the main code and expand “//<Custom Code for creating form controls>”. Before initiating any SharePoint control, we need to set context of SharePoint web controls explicitly so that it will be instantiated with elevated System Account user. Following line does the job.     //To create SharePoint controls with new web object and System Account credentials     SPControl.SetContextWeb(Context, web);   First thing, let’s add main table as container for all controls.     //Table to render webpart     Table spTableMain = new Table();     spTableMain.CellPadding = 0;     spTableMain.CellSpacing = 0;     spTableMain.Width = new Unit(100, UnitType.Percentage);     this.Controls.Add(spTableMain);   Now we need to add Top toolbar with Save and Cancel button at top as you see in the below screen shot.       // Add Row and Cell for Top ToolBar     TableRow spRowTopToolBar = new TableRow();     spTableMain.Rows.Add(spRowTopToolBar);     TableCell spCellTopToolBar = new TableCell();     spRowTopToolBar.Cells.Add(spCellTopToolBar);     spCellTopToolBar.Width = new Unit(100, UnitType.Percentage);         ToolBar toolBarTop = (ToolBar)Page.LoadControl("/_controltemplates/ToolBar.ascx");     toolBarTop.CssClass = "ms-formtoolbar";     toolBarTop.ID = "toolBarTbltop";     toolBarTop.RightButtons.SeparatorHtml = "<td class=ms-separator> </td>";       if (_ControlMode != SPControlMode.Display)     {         SaveButton btnSave = new SaveButton();         btnSave.ControlMode = _ControlMode;         btnSave.ListId = ListId;           if (_ControlMode == SPControlMode.New)             btnSave.RenderContext = SPContext.GetContext(web);         else         {             btnSave.RenderContext = SPContext.GetContext(this.Context, ItemId, ListId, web);             btnSave.ItemContext = SPContext.GetContext(this.Context, ItemId, ListId, web);             btnSave.ItemId = ItemId;         }         toolBarTop.RightButtons.Controls.Add(btnSave);     }       GoBackButton goBackButtonTop = new GoBackButton();     toolBarTop.RightButtons.Controls.Add(goBackButtonTop);     goBackButtonTop.ControlMode = SPControlMode.Display;       spCellTopToolBar.Controls.Add(toolBarTop);   Here we have use “SaveButton” and “GoBackButton” which are internal SharePoint web controls for save and cancel functionality. I have set some of the properties of Save Button with if-else condition because we will not have Item Id in case of New Mode. Item Id property is used to identify which SharePoint List Item need to be saved. Now, add Form Toolbar to the page which contains “Attach File”, “Delete Item” etc buttons.       // Add Row and Cell for FormToolBar     TableRow spRowFormToolBar = new TableRow();     spTableMain.Rows.Add(spRowFormToolBar);     TableCell spCellFormToolBar = new TableCell();     spRowFormToolBar.Cells.Add(spCellFormToolBar);     spCellFormToolBar.Width = new Unit(100, UnitType.Percentage);       FormToolBar formToolBar = new FormToolBar();     formToolBar.ID = "formToolBar";     formToolBar.ListId = ListId;     if (_ControlMode == SPControlMode.New)         formToolBar.RenderContext = SPContext.GetContext(web);     else     {         formToolBar.RenderContext = SPContext.GetContext(this.Context, ItemId, ListId, web);         formToolBar.ItemContext = SPContext.GetContext(this.Context, ItemId, ListId, web);         formToolBar.ItemId = ItemId;     }     formToolBar.ControlMode = _ControlMode;     formToolBar.EnableViewState = true;       spCellFormToolBar.Controls.Add(formToolBar);     The ControlMode property will take care of which button to be displayed on the toolbar. E.g. “Attach files”, “Delete Item” in new/edit forms and “New Item”, “Edit Item”, “Delete Item”, “Manage Permissions” etc in display forms. Now add main section which contains form field controls.     //Create Form Field controls and add them in Table "spCellCntl"     CreateFieldControls(web);     //Add public variable "spCellCntl" containing all form controls to the page     spRowCntl.Cells.Add(spCellCntl);     spCellCntl.Width = new Unit(100, UnitType.Percentage);     spCellCntl.Controls.Add(spTableCntl);       //Add a Blank Row with height of 5px to render space between ToolBar table and Control table     TableRow spRowLine1 = new TableRow();     spTableMain.Rows.Add(spRowLine1);     TableCell spCellLine1 = new TableCell();     spRowLine1.Cells.Add(spCellLine1);     spCellLine1.Height = new Unit(5, UnitType.Pixel);     spCellLine1.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));       //Add Row and Cell for Form Controls Section     TableRow spRowCntl = new TableRow();     spTableMain.Rows.Add(spRowCntl);     TableCell spCellCntl = new TableCell();       //Create Form Field controls and add them in Table "spCellCntl"     CreateFieldControls(web);     //Add public variable "spCellCntl" containing all form controls to the page     spRowCntl.Cells.Add(spCellCntl);     spCellCntl.Width = new Unit(100, UnitType.Percentage);     spCellCntl.Controls.Add(spTableCntl);       TableRow spRowLine2 = new TableRow();     spTableMain.Rows.Add(spRowLine2);     TableCell spCellLine2 = new TableCell();     spRowLine2.Cells.Add(spCellLine2);     spCellLine2.CssClass = "ms-formline";     spCellLine2.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));       // Add Blank row with height of 5 pixel     TableRow spRowLine3 = new TableRow();     spTableMain.Rows.Add(spRowLine3);     TableCell spCellLine3 = new TableCell();     spRowLine3.Cells.Add(spCellLine3);     spCellLine3.Height = new Unit(5, UnitType.Pixel);     spCellLine3.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));   You can add bottom toolbar also to get same look and feel as OOB forms. I am not adding here as the blog will be much lengthy. At last, you need to write following lines to allow unsafe updates for Save and Delete button.     // Allow unsafe update on web for save button and delete button     if (this.Page.IsPostBack && this.Page.Request["__EventTarget"] != null         && (this.Page.Request["__EventTarget"].Contains("IOSaveItem")         || this.Page.Request["__EventTarget"].Contains("IODeleteItem")))     {         SPContext.Current.Web.AllowUnsafeUpdates = true;     }   So that’s all. We have finished writing Custom Code for adding field control. But something most important is skipped. In above code, I have called function “CreateFieldControls(web);” to add SharePoint field controls to the page. Let’s see the implementation of the function:     private void CreateFieldControls(SPWeb pWeb)     {         SPList listMain = pWeb.Lists[ListId];         SPFieldCollection fields = listMain.Fields;           //Main Table to render all fields         spTableCntl = new Table();         spTableCntl.BorderWidth = new Unit(0);         spTableCntl.CellPadding = 0;         spTableCntl.CellSpacing = 0;         spTableCntl.Width = new Unit(100, UnitType.Percentage);         spTableCntl.CssClass = "ms-formtable";           SPContext controlContext = SPContext.GetContext(this.Context, ItemId, ListId, pWeb);           foreach (SPField listField in fields)         {             string fieldDisplayName = listField.Title;             string fieldInternalName = listField.InternalName;               //Skip if the field is system field or hidden             if (listField.Hidden || listField.ShowInVersionHistory == false)                 continue;               //Skip if the control mode is display and field is read-only             if (_ControlMode != SPControlMode.Display && listField.ReadOnlyField == true)                 continue;               FieldLabel fieldLabel = new FieldLabel();             fieldLabel.FieldName = listField.InternalName;             fieldLabel.ListId = ListId;               BaseFieldControl fieldControl = listField.FieldRenderingControl;             fieldControl.ListId = ListId;             //Assign unique id using Field Internal Name             fieldControl.ID = string.Format("Field_{0}", fieldInternalName);             fieldControl.EnableViewState = true;               //Assign control mode             fieldLabel.ControlMode = _ControlMode;             fieldControl.ControlMode = _ControlMode;             switch (_ControlMode)             {                 case SPControlMode.New:                     fieldLabel.RenderContext = SPContext.GetContext(pWeb);                     fieldControl.RenderContext = SPContext.GetContext(pWeb);                     break;                 case SPControlMode.Edit:                 case SPControlMode.Display:                     fieldLabel.RenderContext = controlContext;                     fieldLabel.ItemContext = controlContext;                     fieldLabel.ItemId = ItemId;                       fieldControl.RenderContext = controlContext;                     fieldControl.ItemContext = controlContext;                     fieldControl.ItemId = ItemId;                     break;             }               //Add row to display a field row             TableRow spCntlRow = new TableRow();             spTableCntl.Rows.Add(spCntlRow);               //Add the cells for containing field lable and control             TableCell spCellLabel = new TableCell();             spCellLabel.Width = new Unit(30, UnitType.Percentage);             spCellLabel.CssClass = "ms-formlabel";             spCntlRow.Cells.Add(spCellLabel);             TableCell spCellControl = new TableCell();             spCellControl.Width = new Unit(70, UnitType.Percentage);             spCellControl.CssClass = "ms-formbody";             spCntlRow.Cells.Add(spCellControl);               //Add the control to the table cells             spCellLabel.Controls.Add(fieldLabel);             spCellControl.Controls.Add(fieldControl);               //Add description if there is any in case of New and Edit Mode             if (_ControlMode != SPControlMode.Display && listField.Description != string.Empty)             {                 FieldDescription fieldDesc = new FieldDescription();                 fieldDesc.FieldName = fieldInternalName;                 fieldDesc.ListId = ListId;                 spCellControl.Controls.Add(fieldDesc);             }               //Disable Name(Title) in Edit Mode             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Name")             {                 TextBox txtTitlefield = (TextBox)fieldControl.Controls[0].FindControl("TextField");                 txtTitlefield.Enabled = false;             }         }         fields = null;     }   First of all, I have declared List object and got list fields in field collection object called “fields”. Then I have added a table for the container of all controls and assign CSS class as "ms-formtable" so that it gives consistent look and feel of SharePoint. Now it’s time to navigate through all fields and add them if required. Here we don’t need to add hidden or system fields. We also don’t want to display read-only fields in new and edit forms. Following lines does this job.             //Skip if the field is system field or hidden             if (listField.Hidden || listField.ShowInVersionHistory == false)                 continue;               //Skip if the control mode is display and field is read-only             if (_ControlMode != SPControlMode.Display && listField.ReadOnlyField == true)                 continue;   Let’s move to the next line of code.             FieldLabel fieldLabel = new FieldLabel();             fieldLabel.FieldName = listField.InternalName;             fieldLabel.ListId = ListId;               BaseFieldControl fieldControl = listField.FieldRenderingControl;             fieldControl.ListId = ListId;             //Assign unique id using Field Internal Name             fieldControl.ID = string.Format("Field_{0}", fieldInternalName);             fieldControl.EnableViewState = true;               //Assign control mode             fieldLabel.ControlMode = _ControlMode;             fieldControl.ControlMode = _ControlMode;   We have used “FieldLabel” control for displaying field title. The advantage of using Field Label is, SharePoint automatically adds red star besides field label to identify it as mandatory field if there is any. Here is most important part to understand. The “BaseFieldControl”. It will render the respective web controls according to type of the field. For example, if it’s single line of text, then Textbox, if it’s look up then it renders dropdown. Additionally, the “ControlMode” property tells compiler that which mode (display/edit/new) controls need to be rendered with. In display mode, it will render label with field value. In edit mode, it will render respective control with item value and in new mode it will render respective control with empty value. Please note that, it’s not always the case when dropdown field will be rendered for Lookup field or Choice field. You need to understand which controls are rendered for which list fields. I am planning to write a separate blog which I hope to publish it very soon. Moreover, we also need to assign list field specific properties like List Id, Field Name etc to identify which SharePoint List field is attached with the control.             switch (_ControlMode)             {                 case SPControlMode.New:                     fieldLabel.RenderContext = SPContext.GetContext(pWeb);                     fieldControl.RenderContext = SPContext.GetContext(pWeb);                     break;                 case SPControlMode.Edit:                 case SPControlMode.Display:                     fieldLabel.RenderContext = controlContext;                     fieldLabel.ItemContext = controlContext;                     fieldLabel.ItemId = ItemId;                       fieldControl.RenderContext = controlContext;                     fieldControl.ItemContext = controlContext;                     fieldControl.ItemId = ItemId;                     break;             }   Here, I have separate code for new mode and Edit/Display mode because we will not have Item Id to assign in New Mode. We also need to set CSS class for cell containing Label and Controls so that those controls get rendered with SharePoint theme.             spCellLabel.CssClass = "ms-formlabel";             spCellControl.CssClass = "ms-formbody";   “FieldDescription” control is used to add field description if there is any.    Now it’s time to add some more customization,               //Disable Name(Title) in Edit Mode             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Name")             {                 TextBox txtTitlefield = (TextBox)fieldControl.Controls[0].FindControl("TextField");                 txtTitlefield.Enabled = false;             }   The above code will disable the title field in edit mode. You can add more code here to achieve more customization according to your requirement. Some of the examples are as follow:             //Adding post back event on UserField to auto populate some other dependent field             //in new mode and disable it in edit mode             if (_ControlMode != SPControlMode.Display && fieldDisplayName == "Manager")             {                 if (fieldControl.Controls[0].FindControl("UserField") != null)                 {                     PeopleEditor pplEditor = (PeopleEditor)fieldControl.Controls[0].FindControl("UserField");                     if (_ControlMode == SPControlMode.New)                         pplEditor.AutoPostBack = true;                     else                         pplEditor.Enabled = false;                 }             }               //Add JavaScript Event on Dropdown field. Don't forget to add the JavaScript function on the page.             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Designation")             {                 DropDownList ddlCategory = (DropDownList)fieldControl.Controls[0];                 ddlCategory.Attributes.Add("onchange", string.Format("javascript:DropdownChangeEvent('{0}');return false;", ddlCategory.ClientID));             }    Following are the screenshots of my Custom ListForm WebPart. Let’s play a game, check out your OOB List forms of SharePoint, compare with these screens and find out differences.   DispForm.aspx:   EditForm.aspx:   NewForm.aspx:   Enjoy the SharePoint Soup!!! ­­­­­­­­­­­­­­­­­­­­

    Read the article

  • wxWidgets in Code::Blocks

    - by Vlad
    Hello all, I'm trying to compile the minimal sample from the "Cross-Platform GUI Programming with wxWidgets" book but the following compile errors: ||=== minimal, Debug ===| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.text+0x918)||undefined reference to `__Unwind_Resume' | C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.text+0x931)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.text+0xa96)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.text+0xada)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.text+0xb1e)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_datacmn.o):datacmn.cpp:(.eh_frame+0x11)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.text+0x63a)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.text+0x696)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.text+0x6f2)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.text+0x74a)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.text+0x7a2)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.text+0x88f)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.text+0x927)||undefined reference to `__Unwind_Resume' | C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.text+0x9bf)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.text+0xb8b)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.text+0xc87)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.text+0xbc0)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.text+0xc59)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.text+0xcf5)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.text+0xda6)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.text+0xdce)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.text+0x1ff)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.text+0x257)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.text+0x2af)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.text+0x2fc)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.text+0x36d)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.text+0x4a8)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.text+0x73a)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.text+0x813)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.text+0xc06)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.text+0xd3e)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.text+0x970)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.text+0xa80)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.text+0xb8c)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.text+0xc78)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.text+0xd4f)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.text+0x2ef)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.text+0x32b)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.text+0x43d)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.text+0x586)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.text+0x601)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_app.o):app.cpp:(.text+0x1da)||undefined reference to `__Unwind_Resume'| ||More errors follow but not being shown.| ||Edit the max errors limit in compiler options...| ||=== Build finished: 50 errors, 0 warnings ===| Here's the code sample from the book: #include "wx/wx.h" #include "mondrian.xpm" // Declare the application class class MyApp : public wxApp { public: // Called on application startup virtual bool OnInit(); }; // Declare our main frame class class MyFrame : public wxFrame { public: // Constructor MyFrame(const wxString& title); // Event handlers void OnQuit(wxCommandEvent& event); void OnAbout(wxCommandEvent& event); private: // This class handles events DECLARE_EVENT_TABLE() }; // Implements MyApp& GetApp() DECLARE_APP(MyApp) // Give wxWidgets the means to create a MyApp object IMPLEMENT_APP(MyApp) // Initialize the application bool MyApp::OnInit() { // Create the main application window MyFrame *frame = new MyFrame(wxT("Minimal wxWidgets App")); // Show it frame->Show(true); // Start the event loop return true; } // Event table for MyFrame BEGIN_EVENT_TABLE(MyFrame, wxFrame) EVT_MENU(wxID_ABOUT, MyFrame::OnAbout) EVT_MENU(wxID_EXIT, MyFrame::OnQuit) END_EVENT_TABLE() void MyFrame::OnAbout(wxCommandEvent& event) { wxString msg; msg.Printf(wxT("Hello and welcome to %s"), wxVERSION_STRING); wxMessageBox(msg, wxT("About Minimal"), wxOK | wxICON_INFORMATION, this); } void MyFrame::OnQuit(wxCommandEvent& event) { // Destroy the frame Close(); } MyFrame::MyFrame(const wxString& title) : wxFrame(NULL, wxID_ANY, title) { // Set the frame icon SetIcon(wxIcon(mondrian_xpm)); // Create a menu bar wxMenu *fileMenu = new wxMenu; // The “About” item should be in the help menu wxMenu *helpMenu = new wxMenu; helpMenu->Append(wxID_ABOUT, wxT("&About...\tF1"), wxT("Show about dialog")); fileMenu->Append(wxID_EXIT, wxT("E&xit\tAlt-X"), wxT("Quit this program")); // Now append the freshly created menu to the menu bar... wxMenuBar *menuBar = new wxMenuBar(); menuBar->Append(fileMenu, wxT("&File")); menuBar->Append(helpMenu, wxT("&Help")); // ... and attach this menu bar to the frame SetMenuBar(menuBar); // Create a status bar just for fun CreateStatusBar(2); SetStatusText(wxT("Welcome to wxWidgets!")); } So what's happenning? Thanks! P.S.: I installed wxWidgets through wxPack wich afaik comes with everything precomplied and i also added the wxWidgets directory to Global variables-base in Code::Blocks so everything should be correctly set, right?

    Read the article

< Previous Page | 198 199 200 201 202 203 204  | Next Page >