Search Results

Search found 12601 results on 505 pages for 'z index'.

Page 202/505 | < Previous Page | 198 199 200 201 202 203 204 205 206 207 208 209  | Next Page >

  • Varnish VCL - Regular Expression Evaluation

    - by Hugues ALARY
    I have been struggling for the past few days with this problem: Basically, I want to send to a client browser a cookie of the form foo[sha1oftheurl]=[randomvalue] if and only if the cookie has not already been set. e.g. If a client browser requests "/page.html", the HTTP response will be like: resp.http.Set-Cookie = "foo4c9ae249e9e061dd6e30893e03dc10a58cc40ee6=ABCD;" then, if the same client request "/index.html", the HTTP response will contain a header: resp.http.Set-Cookie = "foo14fe4559026d4c5b5eb530ee70300c52d99e70d7=QWERTY;" In the end, the client browser will have 2 cookies: foo4c9ae249e9e061dd6e30893e03dc10a58cc40ee6=ABCD foo14fe4559026d4c5b5eb530ee70300c52d99e70d7=QWERTY Now, that, is not complicated in itself. The following code does it: import digest; import random; ##This vmod does not exist, it's just for the example. sub vcl_recv() { ## We compute the sha1 of the requested URL and store it in req.http.Url-Sha1 set req.http.Url-Sha1 = digest.hash_sha1(req.url); set req.http.random-value = random.get_rand(); } sub vcl_deliver() { ## We create a cookie on the client browser by creating a "Set-Cookie" header ## In our case the cookie we create is of the form foo[sha1]=[randomvalue] ## e.g for a URL "/page.html" the cookie will be foo4c9ae249e9e061dd6e30893e03dc10a58cc40ee6=[randomvalue] set resp.http.Set-Cookie = {""} + resp.http.Set-Cookie + "foo"+req.http.Url-Sha1+"="+req.http.random-value; } However, this code does not take into account the case where the Cookie already exists. I need to check that the Cookie does not exists before generating a random value. So I thought about this code: import digest; import random; sub vcl_recv() { ## We compute the sha1 of the requested URL and store it in req.http.Url-Sha1 set req.http.Url-Sha1 = digest.hash_sha1(req.url); set req.http.random-value = random.get_rand(); set req.http.regex = "abtest"+req.http.Url-Sha1; if(!req.http.Cookie ~ req.http.regex) { set req.http.random-value = random.get_rand(); } } The problem is that Varnish does not compute Regular expression at run time. Which leads to this error when I try to compile: Message from VCC-compiler: Expected CSTR got 'req.http.regex' (program line 940), at ('input' Line 42 Pos 31) if(req.http.Cookie !~ req.http.regex) { ------------------------------##############--- Running VCC-compiler failed, exit 1 VCL compilation failed One could propose to solve my problem by matching on the "abtest" part of the cookie or even "abtest[a-fA-F0-9]{40}": if(!req.http.Cookie ~ "abtest[a-fA-F0-9]{40}") { set req.http.random-value = random.get_rand(); } But this code matches any cookie starting by 'abtest' and containing an hexadecimal string of 40 characters. Which means that if a client requests "/page.html" first, then "/index.html", the condition will evaluate to true even if the cookie for the "/index.html" has not been set. I found in bug report phk or someone else stating that computing regular expressions was extremely expensive which is why they are evaluated during compilation. Considering this, I believe that there is no way of achieving what I want the way I've been trying to. Is there any way of solving this problem, other than writting a vmod? Thanks for your help! -Hugues

    Read the article

  • .htaccess template, suggestions needed.

    - by purpler
    I compiled myself a .htaccess template and would like to know whether the caching and compressions is set up right, constructive suggestions and critics needed. # Defaults AddDefaultCharset UTF-8 DefaultLanguage en-US FileETag None Header unset ETag ServerSignature Off SetEnv TZ Europe/Belgrade # Rewrites Options +FollowSymLinks RewriteEngine On RewriteBase / # Redirect to WWW RewriteCond %{HTTP_HOST} ^serpentineseo.com RewriteRule (.*) http://www.serpentineseo.com/$1 [R=301,L] # Redirect index to root RewriteCond %{THE_REQUEST} ^[A-Z]{3,9}\ /.*index\.html\ HTTP/ RewriteRule ^(.*)index\.html$ /$1 [R=301,L] # Cache media files: ExpiresActive On ExpiresDefault A0 # Month <filesMatch "\.(gif|jpg|jpeg|png|ico|swf|js)$"> Header set Cache-Control "max-age=2592000, public" </filesMatch> # Week <FilesMatch "\.(css|pdf)$"> Header set Cache-Control "max-age=604800" </FilesMatch> # 10 Min <FilesMatch "\.(html|htm|txt)$"> Header set Cache-Control "max-age=600" </FilesMatch> # Do not cache <FilesMatch "\.(pl|php|cgi|spl|scgi|fcgi)$"> Header unset Cache-Control </FilesMatch> # Compress output <IfModule mod_deflate.c> <FilesMatch "\.(html|js|css)$"> SetOutputFilter DEFLATE </FilesMatch> </IfModule> # Error Documents ErrorDocument 206 /error/206.html ErrorDocument 401 /error/401.html ErrorDocument 403 /error/403.html ErrorDocument 404 /error/404.html ErrorDocument 500 /error/500.html # Prevent hotlinking RewriteCond %{HTTP_REFERER} !^$ RewriteCond %{HTTP_REFERER} !^http://(www\.)?serpentineseo.com/.*$ [NC] RewriteRule \.(gif|jpg|png)$ http://www.serpentineseo.com/images/angryman.png [R,L] # Prevent offline browsers RewriteCond %{HTTP_USER_AGENT} ^BlackWidow [OR] RewriteCond %{HTTP_USER_AGENT} ^Bot\ mailto:[email protected] [OR] RewriteCond %{HTTP_USER_AGENT} ^ChinaClaw [OR] RewriteCond %{HTTP_USER_AGENT} ^Custo [OR] RewriteCond %{HTTP_USER_AGENT} ^DISCo [OR] RewriteCond %{HTTP_USER_AGENT} ^Download\ Demon [OR] RewriteCond %{HTTP_USER_AGENT} ^eCatch [OR] RewriteCond %{HTTP_USER_AGENT} ^EirGrabber [OR] RewriteCond %{HTTP_USER_AGENT} ^EmailSiphon [OR] RewriteCond %{HTTP_USER_AGENT} ^EmailWolf [OR] RewriteCond %{HTTP_USER_AGENT} ^Express\ WebPictures [OR] RewriteCond %{HTTP_USER_AGENT} ^ExtractorPro [OR] RewriteCond %{HTTP_USER_AGENT} ^EyeNetIE [OR] RewriteCond %{HTTP_USER_AGENT} ^FlashGet [OR] RewriteCond %{HTTP_USER_AGENT} ^GetRight [OR] RewriteCond %{HTTP_USER_AGENT} ^GetWeb! [OR] RewriteCond %{HTTP_USER_AGENT} ^Go!Zilla [OR] RewriteCond %{HTTP_USER_AGENT} ^Go-Ahead-Got-It [OR] RewriteCond %{HTTP_USER_AGENT} ^GrabNet [OR] RewriteCond %{HTTP_USER_AGENT} ^Grafula [OR] RewriteCond %{HTTP_USER_AGENT} ^HMView [OR] RewriteCond %{HTTP_USER_AGENT} HTTrack [NC,OR] RewriteCond %{HTTP_USER_AGENT} ^Image\ Stripper [OR] RewriteCond %{HTTP_USER_AGENT} ^Image\ Sucker [OR] RewriteCond %{HTTP_USER_AGENT} Indy\ Library [NC,OR] RewriteCond %{HTTP_USER_AGENT} ^InterGET [OR] RewriteCond %{HTTP_USER_AGENT} ^Internet\ Ninja [OR] RewriteCond %{HTTP_USER_AGENT} ^JetCar [OR] RewriteCond %{HTTP_USER_AGENT} ^JOC\ Web\ Spider [OR] RewriteCond %{HTTP_USER_AGENT} ^larbin [OR] RewriteCond %{HTTP_USER_AGENT} ^LeechFTP [OR] RewriteCond %{HTTP_USER_AGENT} ^Mass\ Downloader [OR] RewriteCond %{HTTP_USER_AGENT} ^MIDown\ tool [OR] RewriteCond %{HTTP_USER_AGENT} ^Mister\ PiX [OR] RewriteCond %{HTTP_USER_AGENT} ^Navroad [OR] RewriteCond %{HTTP_USER_AGENT} ^NearSite [OR] RewriteCond %{HTTP_USER_AGENT} ^NetAnts [OR] RewriteCond %{HTTP_USER_AGENT} ^NetSpider [OR] RewriteCond %{HTTP_USER_AGENT} ^Net\ Vampire [OR] RewriteCond %{HTTP_USER_AGENT} ^NetZIP [OR] RewriteCond %{HTTP_USER_AGENT} ^Octopus [OR] RewriteCond %{HTTP_USER_AGENT} ^Offline\ Explorer [OR] RewriteCond %{HTTP_USER_AGENT} ^Offline\ Navigator [OR] RewriteCond %{HTTP_USER_AGENT} ^PageGrabber [OR] RewriteCond %{HTTP_USER_AGENT} ^Papa\ Foto [OR] RewriteCond %{HTTP_USER_AGENT} ^pavuk [OR] RewriteCond %{HTTP_USER_AGENT} ^pcBrowser [OR] RewriteCond %{HTTP_USER_AGENT} ^RealDownload [OR] RewriteCond %{HTTP_USER_AGENT} ^ReGet [OR] RewriteCond %{HTTP_USER_AGENT} ^SiteSnagger [OR] RewriteCond %{HTTP_USER_AGENT} ^SmartDownload [OR] RewriteCond %{HTTP_USER_AGENT} ^SuperBot [OR] RewriteCond %{HTTP_USER_AGENT} ^SuperHTTP [OR] RewriteCond %{HTTP_USER_AGENT} ^Surfbot [OR] RewriteCond %{HTTP_USER_AGENT} ^tAkeOut [OR] RewriteCond %{HTTP_USER_AGENT} ^Teleport\ Pro [OR] RewriteCond %{HTTP_USER_AGENT} ^VoidEYE [OR] RewriteCond %{HTTP_USER_AGENT} ^Web\ Image\ Collector [OR] RewriteCond %{HTTP_USER_AGENT} ^Web\ Sucker [OR] RewriteCond %{HTTP_USER_AGENT} ^WebAuto [OR] RewriteCond %{HTTP_USER_AGENT} ^WebCopier [OR] RewriteCond %{HTTP_USER_AGENT} ^WebFetch [OR] RewriteCond %{HTTP_USER_AGENT} ^WebGo\ IS [OR] RewriteCond %{HTTP_USER_AGENT} ^WebLeacher [OR] RewriteCond %{HTTP_USER_AGENT} ^WebReaper [OR] RewriteCond %{HTTP_USER_AGENT} ^WebSauger [OR] RewriteCond %{HTTP_USER_AGENT} ^Website\ eXtractor [OR] RewriteCond %{HTTP_USER_AGENT} ^Website\ Quester [OR] RewriteCond %{HTTP_USER_AGENT} ^WebStripper [OR] RewriteCond %{HTTP_USER_AGENT} ^WebWhacker [OR] RewriteCond %{HTTP_USER_AGENT} ^WebZIP [OR] RewriteCond %{HTTP_USER_AGENT} ^Wget [OR] RewriteCond %{HTTP_USER_AGENT} ^Widow [OR] RewriteCond %{HTTP_USER_AGENT} ^WWWOFFLE [OR] RewriteCond %{HTTP_USER_AGENT} ^Xaldon\ WebSpider [OR] RewriteCond %{HTTP_USER_AGENT} ^Zeus RewriteRule ^.*$ http://www.google.com [R,L] # Protect against DOS attacks by limiting file upload size LimitRequestBody 10240000 # Deny access to sensitive files <FilesMatch "\.(htaccess|psd|log)$"> Order Allow,Deny Deny from all </FilesMatch>

    Read the article

  • Hide subdomain AND subdirectory using mod_rewrite?

    - by Jeremy
    I am trying to hide a subdomain and subdirectory from users. I know it may be easier to use a virtual host but will that not change direct links pointing at our site? The site currently resides at http://mail.ctrc.sk.ca/cms/ I want www.ctrc.sk.ca and ctrc.sk.ca to access this folder but still display www.ctrc.sk.ca. If that makes any sense. Here is what our current .htaccess file looks like, we are using Joomla so there already a few rules set up. Help is appreciated. # Helicon ISAPI_Rewrite configuration file # Version 3.1.0.78 ## # @version $Id: htaccess.txt 14401 2010-01-26 14:10:00Z louis $ # @package Joomla # @copyright Copyright (C) 2005 - 2010 Open Source Matters. All rights reserved. # @license http://www.gnu.org/copyleft/gpl.html GNU/GPL # Joomla! is Free Software ## ##################################################### # READ THIS COMPLETELY IF YOU CHOOSE TO USE THIS FILE # # The line just below this section: 'Options +FollowSymLinks' may cause problems # with some server configurations. It is required for use of mod_rewrite, but may already # be set by your server administrator in a way that dissallows changing it in # your .htaccess file. If using it causes your server to error out, comment it out (add # to # beginning of line), reload your site in your browser and test your sef url's. If they work, # it has been set by your server administrator and you do not need it set here. # ##################################################### ## Can be commented out if causes errors, see notes above. #Options +FollowSymLinks # # mod_rewrite in use RewriteEngine On ########## Begin - Rewrite rules to block out some common exploits ## If you experience problems on your site block out the operations listed below ## This attempts to block the most common type of exploit `attempts` to Joomla! # ## Deny access to extension xml files (uncomment out to activate) #<Files ~ "\.xml$"> #Order allow,deny #Deny from all #Satisfy all #</Files> ## End of deny access to extension xml files RewriteCond %{QUERY_STRING} mosConfig_[a-zA-Z_]{1,21}(=|\%3D) [OR] # Block out any script trying to base64_encode crap to send via URL RewriteCond %{QUERY_STRING} base64_encode.*\(.*\) [OR] # Block out any script that includes a <script> tag in URL RewriteCond %{QUERY_STRING} (\<|%3C).*script.*(\>|%3E) [NC,OR] # Block out any script trying to set a PHP GLOBALS variable via URL RewriteCond %{QUERY_STRING} GLOBALS(=|\[|\%[0-9A-Z]{0,2}) [OR] # Block out any script trying to modify a _REQUEST variable via URL RewriteCond %{QUERY_STRING} _REQUEST(=|\[|\%[0-9A-Z]{0,2}) # Send all blocked request to homepage with 403 Forbidden error! RewriteRule ^(.*)$ index.php [F,L] # ########## End - Rewrite rules to block out some common exploits # Uncomment following line if your webserver's URL # is not directly related to physical file paths. # Update Your Joomla! Directory (just / for root) #RewriteBase / ########## Begin - Joomla! core SEF Section # RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteCond %{REQUEST_URI} !^/index.php RewriteCond %{REQUEST_URI} (/|\.php|\.html|\.htm|\.feed|\.pdf|\.raw|/[^.]*)$ [NC] RewriteRule (.*) index.php RewriteRule .* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization},L] # ########## End - Joomla! core SEF Section EDIT Yes, mail.ctrc.sk.ca/cms/ is the root directory. Currently the DNS redirects from ctrc.sk.ca and www.ctrc.sk.ca to mail.ctrc.sk.ca/cms. However when it redirects the user still sees the mail.ctrc.sk.ca/cms/ url and I want them to only see www.ctrc.sk.ca.

    Read the article

  • Apache access.log interpretation

    - by Pantelis Sopasakis
    In the log file of apache (access.log) I find log entries like the following: 10.20.30.40 - - [18/Mar/2011:02:12:44 +0200] "GET /index.php HTTP/1.1" 404 505 "-" "Opera/9.80 (Windows NT 6.1; U; en) Presto/2.7.62 Version/11.01" Whose meaning is clear: The client with IP 10.20.30.40 applied a GET HTTP method on /index.php (that is to say http://mysite.org/index.php) receiving a status code 404 using Opera as client/browser. What I don't understand is entries like the following: 174.34.231.19 - - [18/Mar/2011:02:24:56 +0200] "GET http://www.siasatema.com HTTP/1.1" 200 469 "-" "Python-urllib/2.4" So here what I see is that someone (client with IP 174.34.231.19) accessed http://www.siasatema.com and got a 200 HTTP status code(?). It doesn't make sense to me... the only interpretation I can think of is that my apache server acts like proxy! Here are some other requests that don't have my site as destination... 187.35.50.61 - - [18/Mar/2011:01:28:20 +0200] "POST http://72.26.198.222:80/log/normal/ HTTP/1.0" 404 491 "-" "Octoshape-sua/1010120" 87.117.203.177 - - [18/Mar/2011:01:29:59 +0200] "CONNECT 64.12.244.203:80 HTTP/1.0" 405 556 "-" "-" 87.117.203.177 - - [18/Mar/2011:01:29:59 +0200] "open 64.12.244.203 80" 400 506 "-" "-" 87.117.203.177 - - [18/Mar/2011:01:30:04 +0200] "telnet 64.12.244.203 80" 400 506 "-" "-" 87.117.203.177 - - [18/Mar/2011:01:30:09 +0200] "64.12.244.203 80" 400 301 "-" "-" I believe that all these are related to some kind of attack or abuse of the server. Could someone explain to may what is going on and how to cope with this situation? Update 1: I disabled mod_proxy to make sure that I don't have an open proxy: # a2dismod proxy Where from I got the message: Module proxy already disabled I made sure that there is no file proxy.conf under $APACHE/mods-enabled. Finally, I set on my browser (Mozzila) my IP as a proxy and tried to access http://google.com. I was not redirected to google.com but instead my web page appeared. The same happened with trying to access http://a.b (!). So my server does not really work as a proxy since it does not forward the requests... But I think it would be better if somehow I could configure it to return a status code 403. Here is my apache configuration file: <VirtualHost *:80> ServerName mysite.org ServerAdmin webmaster@localhost DocumentRoot /var/www/ <Directory /> Options FollowSymLinks AllowOverride None </Directory> <Directory /var/www/> Options Indexes FollowSymLinks MultiViews AllowOverride None Order allow,deny allow from all </Directory> ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all </Directory> ErrorLog /var/log/apache2/error.log LogLevel warn CustomLog /var/log/apache2/access.log combined Alias /doc/ "/usr/share/doc/" <Directory "/usr/share/doc/"> Options Indexes MultiViews FollowSymLinks AllowOverride None Order deny,allow Deny from all Allow from 127.0.0.0/255.0.0.0 ::1/128 </Directory> </VirtualHost> Update 2: Using a block, I restrict the use of other methods than GET and POST... <Limit POST PUT CONNECT HEAD OPTIONS DELETE PATCH PROPFIND PROPPATCH MKCOL COPY MOVE LOCK UNLOCK> Order deny,allow Deny from all </Limit> <LimitExcept GET> Order deny,allow Deny from all </LimitExcept> Now methods other that GET are forbidden (403). My only question now is whether there is some trick to boot those how try to use my server as a proxy out...

    Read the article

  • NGINX - CORS error affecting only Firefox

    - by wiherek
    this is an issue with Nginx that affects only firefox. I have this config: http://pastebin.com/q6Yeqxv9 upstream connect { server 127.0.0.1:8080; } server { server_name admin.example.com www.admin.example.com; listen 80; return 301 https://admin.example.com$request_uri; } server { listen 80; server_name ankieta.example.com www.ankieta.example.com; add_header Access-Control-Allow-Origin $http_origin; add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, PATCH, DELETE'; add_header 'Access-Control-Allow-Credentials' 'true'; add_header 'Access-Control-Allow-Headers' 'Access-Control-Request-Method,Access-Control-Request-Headers,Cache,Pragma,Authorization,Accept,Accept-Encoding,Accept-Language,Host,Referer,Content-Length,Origin,DNT,X-Mx-ReqToken,Keep-Alive,User-Agent,X-Requested-With,If-Modified-Since,Cache-Control,Content-Type'; return 301 https://ankieta.example.com$request_uri; } server { server_name admin.example.com; listen 443 ssl; ssl_certificate /srv/ssl/14182263.pem; ssl_certificate_key /srv/ssl/admin_i_ankieta.example.com.key; ssl_protocols SSLv3 TLSv1; ssl_ciphers ALL:!aNULL:!ADH:!eNULL:!LOW:!EXP:RC4+RSA:+HIGH:+MEDIUM; location / { proxy_pass http://connect; } } server { server_name ankieta.example.com; listen 443 ssl; ssl_certificate /srv/ssl/14182263.pem; ssl_certificate_key /srv/ssl/admin_i_ankieta.example.com.key; ssl_protocols SSLv3 TLSv1; ssl_ciphers ALL:!aNULL:!ADH:!eNULL:!LOW:!EXP:RC4+RSA:+HIGH:+MEDIUM; root /srv/limesurvey; index index.php; add_header 'Access-Control-Allow-Origin' $http_origin; add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, PATCH, DELETE'; add_header 'Access-Control-Allow-Credentials' 'true'; add_header 'Access-Control-Allow-Headers' 'Access-Control-Request-Method,Access-Control-Request-Headers,Cache,Pragma,Authorization,Accept,Accept-Encoding,Accept-Language,Host,Referer,Content-Length,Origin,DNT,X-Mx-ReqToken,Keep-Alive,User-Agent,X-Requested-With,If-Modified-Since,Cache-Control,Content-Type'; client_max_body_size 4M; location / { try_files $uri $uri/ /index.php?q=$uri&$args; } location ~ /*.php$ { fastcgi_split_path_info ^(.+\.php)(/.+)$; #NOTE: You should have "cgi.fix_pathinfo = 0;" in php.ini include fastcgi_params; fastcgi_param SCRIPT_FILENAME /srv/limesurvey$fastcgi_script_name; # fastcgi_param HTTPS $https; fastcgi_intercept_errors on; fastcgi_pass 127.0.0.1:9000; } location ~* \.(js|css|png|jpg|jpeg|gif|ico)$ { expires max; log_not_found off; } } this is basically an AngularJS app and a PHP app (LimeSurvey), served under two different domains by the same webserver (Nginx). AngularJS is in fact served by ConnectJS, which is proxied to by Nginx (ConnectJS listens only on localhost). In Firefox console I get this: Cross-Origin Request Blocked: The Same Origin Policy disallows reading the remote resource at https://ankieta.example.com/admin/remotecontrol. This can be fixed by moving the resource to the same domain or enabling CORS. which of course is annoying. Other browsers work fine (Chrome, IE). Any suggestions on this?

    Read the article

  • website connection reset on first load

    - by Tar
    i'm using nginx with php-cgi. lately a problem has arose where if you don't view my site for a while, like 3-4 minutes, and then open it again, the first request you send will return connection reset by peer in the browser. if you refresh, operation is normal for all subsequent requests. this happens every time and it isn't just an isolated incident, it happens to everyone using my site. i've tried to restart nginx and php-cgi but to no avail. does anyone know what the problem could be? i can provide whatever information necessary. it's worth noting that there's nothing in error log besides that message about client closing the connection early. nginx.conf user nobody; worker_processes 4; error_log /var/log/nginx/error.log; pid /var/run/nginx.pid; events { worker_connections 2048; } http { include /etc/nginx/mime.types; error_page 404 /404.html; error_page 403 /403.html; error_page 444 /444.html; error_page 502 /502.html; default_type application/octet-stream; log_format main '$remote_addr - $remote_user [$time_local] "$request" ' '$status $body_bytes_sent "$http_referer" ' '"$http_user_agent" "$http_x_forwarded_for"'; access_log /var/log/nginx/access.log main; large_client_header_buffers 8 8k; sendfile on; tcp_nopush on; tcp_nodelay on; keepalive_timeout 30; server_tokens off; gzip on; gzip_proxied any; gzip_comp_level 6; gzip_buffers 64 8k; gzip_min_length 1024; gzip_http_version 1.1; gzip_types text/plain text/css application/json application/x-javascript text/xml application/xml application/xml+rss text/javascript; include /etc/nginx/conf.d/*.conf; } default.conf server { listen 80; server_name domain.com; error_log /var/log/nginx/error.log debug; access_log /var/log/nginx/access.log; location / { if ($request_method !~ ^(GET|HEAD|POST)$ ) { return 444; } if ($http_user_agent ~* Havij|hvj|acunetix|wget|HTtrack) { return 403; } root /home/admin06/public_html; autoindex off; index index.php; # Images and static content is treated different location ~* ^.+.(jpg|jpeg|gif|css|png|js|ico|xml)$ { access_log off; expires 30d; root /home/admin06/public_html; } location /nginx_status { stub_status on; access_log off;] deny all; } location ~ \.php$ { fastcgi_split_path_info ^(.+\.php)(/.*)$; #try_files $uri =404; fastcgi_pass backend; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME /home/site/public_html$fastcgi_script_name; include fastcgi_params; fastcgi_param QUERY_STRING $query_string; fastcgi_param REQUEST_METHOD $request_method; fastcgi_param CONTENT_TYPE $content_type; fastcgi_param CONTENT_LENGTH $content_length; fastcgi_intercept_errors on; fastcgi_ignore_client_abort off; fastcgi_connect_timeout 60; fastcgi_send_timeout 60; fastcgi_read_timeout 60; fastcgi_buffer_size 128k; fastcgi_buffers 4 256k; fastcgi_busy_buffers_size 256k; fastcgi_temp_file_write_size 256k; } ## Disable viewing .htaccess & .htpassword location ~ /\.ht { deny all; } location ~ error_log { deny all; } location ~ access_log { deny all; } location ~ \.cgi { deny all; } location ~ \.db { deny all; } }

    Read the article

  • I am getting a 400 Bad Request error when using Nginx and PHP-FPM, why?

    - by Bob
    I am trying to run a website (that requires PHP - it technically doesn't require MySQL at this time, but it may sometime in the near future as I continue developing it, so I went ahead and installed that as well) using nginx 1.2.4 and PHP-FPM 5.3.3 on Ubuntu 12.04.1 LTS. As far as I know, I haven't done anything wrong, but clearly something is not quite right - I seem to be getting a 400 Bad Request error whenever I try to browse to my website. I've been mostly following one guide, and I've done more or less everything it recommends, except for not setting up PHP-FPM to use a Unix Socket and I used service as opposed to /etc/init.d/ when starting/stopping nginx, PHP, and MySQL. Anyways, here are my relevant configuration files (I have only censored personal/sensitive details, like my domain name - which contains my real name): /etc/nginx/nginx.conf user www-data; worker_processes 4; pid /var/run/nginx.pid; events { worker_connections 768; # multi_accept on; } http { ## # Basic Settings ## sendfile on; tcp_nopush on; tcp_nodelay on; keepalive_timeout 15; types_hash_max_size 2048; # server_tokens off; # server_names_hash_bucket_size 64; # server_name_in_redirect off; include /etc/nginx/mime.types; default_type application/octet-stream; ## # Logging Settings ## access_log /var/log/nginx/access.log; error_log /var/log/nginx/error.log; ## # Gzip Settings ## gzip on; gzip_disable "msie6"; # gzip_vary on; # gzip_proxied any; # gzip_comp_level 6; # gzip_buffers 16 8k; # gzip_http_version 1.1; # gzip_types text/plain text/css application/json application/x-javascript text/xml application/xml application/xml+rss text/javascript; ## # nginx-naxsi config ## # Uncomment it if you installed nginx-naxsi ## #include /etc/nginx/naxsi_core.rules; ## # nginx-passenger config ## # Uncomment it if you installed nginx-passenger ## #passenger_root /usr; #passenger_ruby /usr/bin/ruby; ## # Virtual Host Configs ## include /etc/nginx/conf.d/*.conf; include /etc/nginx/sites-enabled/*; } /etc/nginx/sites-enabled/subdomain.mydomain.net server { listen 80; # listen for IPv4 listen [::]:80; # listen for IPv6 server_name www.subdomain.mydomain.net subdomain.mydomain.net; access_log /srv/www/subdomain.mydomain.net/logs/access.log; error_log /srv/www/subdomain.mydomain.net/logs/error.log; location / { root /srv/www/subdomain.mydomain.net/public; index index.php; } location ~ \.php$ { try_files $uri =400; include fastcgi_params; fastcgi_split_path_info ^(.+\.php)(/.+)$; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME /srv/www/subdomain.mydomain.net/public$fastcgi_script_name; } } All the directories listed in the configuration files above are correct on my server (to the extent of my knowledge). I have not included /etc/php5/fpm/pool.d/www.conf or /etc/php5/fpm/php.ini in this post as they're rather long, but I have posted them on Pastebin: http://pastebin.com/ensErJD8 and http://pastebin.com/T23dt7vM, respectively. Although, the only thing I've changed in either of the two files was in php.ini, where I set expose_php to off so as to hide the .php file extension from users. What can I do to resolve my issue? Please let me know if I need to supply any additional details.

    Read the article

  • Adding DTrace Probes to PHP Extensions

    - by cj
    The powerful DTrace tracing facility has some PHP-specific probes that can be enabled with --enable-dtrace. DTrace for Linux is being created by Oracle and is currently in tech preview. Currently it doesn't support userspace tracing so, in the meantime, Systemtap can be used to monitor the probes implemented in PHP. This was recently outlined in David Soria Parra's post Probing PHP with Systemtap on Linux. My post shows how DTrace probes can be added to PHP extensions and traced on Linux. I was using Oracle Linux 6.3. Not all Linux kernels are built with Systemtap, since this can impact stability. Check whether your running kernel (or others installed) have Systemtap enabled, and reboot with such a kernel: # grep CONFIG_UTRACE /boot/config-`uname -r` # grep CONFIG_UTRACE /boot/config-* When you install Systemtap itself, the package systemtap-sdt-devel is needed since it provides the sdt.h header file: # yum install systemtap-sdt-devel You can now install and build PHP as shown in David's article. Basically the build is with: $ cd ~/php-src $ ./configure --disable-all --enable-dtrace $ make (For me, running 'make' a second time failed with an error. The workaround is to do 'git checkout Zend/zend_dtrace.d' and then rerun 'make'. See PHP Bug 63704) David's article shows how to trace the probes already implemented in PHP. You can also use Systemtap to trace things like userspace PHP function calls. For example, create test.php: <?php $c = oci_connect('hr', 'welcome', 'localhost/orcl'); $s = oci_parse($c, "select dbms_xmlgen.getxml('select * from dual') xml from dual"); $r = oci_execute($s); $row = oci_fetch_array($s, OCI_NUM); $x = $row[0]->load(); $row[0]->free(); echo $x; ?> The normal output of this file is the XML form of Oracle's DUAL table: $ ./sapi/cli/php ~/test.php <?xml version="1.0"?> <ROWSET> <ROW> <DUMMY>X</DUMMY> </ROW> </ROWSET> To trace the PHP function calls, create the tracing file functrace.stp: probe process("sapi/cli/php").function("zif_*") { printf("Started function %s\n", probefunc()); } probe process("sapi/cli/php").function("zif_*").return { printf("Ended function %s\n", probefunc()); } This makes use of the way PHP userspace functions (not builtins) like oci_connect() map to C functions with a "zif_" prefix. Login as root, and run System tap on the PHP script: # cd ~cjones/php-src # stap -c 'sapi/cli/php ~cjones/test.php' ~cjones/functrace.stp Started function zif_oci_connect Ended function zif_oci_connect Started function zif_oci_parse Ended function zif_oci_parse Started function zif_oci_execute Ended function zif_oci_execute Started function zif_oci_fetch_array Ended function zif_oci_fetch_array Started function zif_oci_lob_load <?xml version="1.0"?> <ROWSET> <ROW> <DUMMY>X</DUMMY> </ROW> </ROWSET> Ended function zif_oci_lob_load Started function zif_oci_free_descriptor Ended function zif_oci_free_descriptor Each call and return is logged. The Systemtap scripting language allows complex scripts to be built. There are many examples on the web. To augment this generic capability and the PHP probes in PHP, other extensions can have probes too. Below are the steps I used to add probes to OCI8: I created a provider file ext/oci8/oci8_dtrace.d, enabling three probes. The first one will accept a parameter that runtime tracing can later display: provider php { probe oci8__connect(char *username); probe oci8__nls_start(); probe oci8__nls_done(); }; I updated ext/oci8/config.m4 with the PHP_INIT_DTRACE macro. The patch is at the end of config.m4. The macro takes the provider prototype file, a name of the header file that 'dtrace' will generate, and a list of sources files with probes. When --enable-dtrace is used during PHP configuration, then the outer $PHP_DTRACE check is true and my new probes will be enabled. I've chosen to define an OCI8 specific macro, HAVE_OCI8_DTRACE, which can be used in the OCI8 source code: diff --git a/ext/oci8/config.m4 b/ext/oci8/config.m4 index 34ae76c..f3e583d 100644 --- a/ext/oci8/config.m4 +++ b/ext/oci8/config.m4 @@ -341,4 +341,17 @@ if test "$PHP_OCI8" != "no"; then PHP_SUBST_OLD(OCI8_ORACLE_VERSION) fi + + if test "$PHP_DTRACE" = "yes"; then + AC_CHECK_HEADERS([sys/sdt.h], [ + PHP_INIT_DTRACE([ext/oci8/oci8_dtrace.d], + [ext/oci8/oci8_dtrace_gen.h],[ext/oci8/oci8.c]) + AC_DEFINE(HAVE_OCI8_DTRACE,1, + [Whether to enable DTrace support for OCI8 ]) + ], [ + AC_MSG_ERROR( + [Cannot find sys/sdt.h which is required for DTrace support]) + ]) + fi + fi In ext/oci8/oci8.c, I added the probes at, for this example, semi-arbitrary places: diff --git a/ext/oci8/oci8.c b/ext/oci8/oci8.c index e2241cf..ffa0168 100644 --- a/ext/oci8/oci8.c +++ b/ext/oci8/oci8.c @@ -1811,6 +1811,12 @@ php_oci_connection *php_oci_do_connect_ex(char *username, int username_len, char } } +#ifdef HAVE_OCI8_DTRACE + if (DTRACE_OCI8_CONNECT_ENABLED()) { + DTRACE_OCI8_CONNECT(username); + } +#endif + /* Initialize global handles if they weren't initialized before */ if (OCI_G(env) == NULL) { php_oci_init_global_handles(TSRMLS_C); @@ -1870,11 +1876,22 @@ php_oci_connection *php_oci_do_connect_ex(char *username, int username_len, char size_t rsize = 0; sword result; +#ifdef HAVE_OCI8_DTRACE + if (DTRACE_OCI8_NLS_START_ENABLED()) { + DTRACE_OCI8_NLS_START(); + } +#endif PHP_OCI_CALL_RETURN(result, OCINlsEnvironmentVariableGet, (&charsetid_nls_lang, 0, OCI_NLS_CHARSET_ID, 0, &rsize)); if (result != OCI_SUCCESS) { charsetid_nls_lang = 0; } smart_str_append_unsigned_ex(&hashed_details, charsetid_nls_lang, 0); + +#ifdef HAVE_OCI8_DTRACE + if (DTRACE_OCI8_NLS_DONE_ENABLED()) { + DTRACE_OCI8_NLS_DONE(); + } +#endif } timestamp = time(NULL); The oci_connect(), oci_pconnect() and oci_new_connect() calls all use php_oci_do_connect_ex() internally. The first probe simply records that the PHP application made a connection call. I already showed a way to do this without needing a probe, but adding a specific probe lets me record the username. The other two probes can be used to time how long the globalization initialization takes. The relationships between the oci8_dtrace.d names like oci8__connect, the probe guards like DTRACE_OCI8_CONNECT_ENABLED() and probe names like DTRACE_OCI8_CONNECT() are obvious after seeing the pattern of all three probes. I included the new header that will be automatically created by the dtrace tool when PHP is built. I did this in ext/oci8/php_oci8_int.h: diff --git a/ext/oci8/php_oci8_int.h b/ext/oci8/php_oci8_int.h index b0d6516..c81fc5a 100644 --- a/ext/oci8/php_oci8_int.h +++ b/ext/oci8/php_oci8_int.h @@ -44,6 +44,10 @@ # endif # endif /* osf alpha */ +#ifdef HAVE_OCI8_DTRACE +#include "oci8_dtrace_gen.h" +#endif + #if defined(min) #undef min #endif Now PHP can be rebuilt: $ cd ~/php-src $ rm configure && ./buildconf --force $ ./configure --disable-all --enable-dtrace \ --with-oci8=instantclient,/home/cjones/instantclient $ make If 'make' fails, do the 'git checkout Zend/zend_dtrace.d' trick I mentioned. The new probes can be seen by logging in as root and running: # stap -l 'process.provider("php").mark("oci8*")' -c 'sapi/cli/php -i' process("sapi/cli/php").provider("php").mark("oci8__connect") process("sapi/cli/php").provider("php").mark("oci8__nls_done") process("sapi/cli/php").provider("php").mark("oci8__nls_start") To test them out, create a new trace file, oci.stp: global numconnects; global start; global numcharlookups = 0; global tottime = 0; probe process.provider("php").mark("oci8-connect") { printf("Connected as %s\n", user_string($arg1)); numconnects += 1; } probe process.provider("php").mark("oci8-nls_start") { start = gettimeofday_us(); numcharlookups++; } probe process.provider("php").mark("oci8-nls_done") { tottime += gettimeofday_us() - start; } probe end { printf("Connects: %d, Charset lookups: %ld\n", numconnects, numcharlookups); printf("Total NLS charset initalization time: %ld usecs/connect\n", (numcharlookups 0 ? tottime/numcharlookups : 0)); } This calculates the average time that the NLS character set lookup takes. It also prints out the username of each connection, as an example of using parameters. Login as root and run Systemtap over the PHP script: # cd ~cjones/php-src # stap -c 'sapi/cli/php ~cjones/test.php' ~cjones/oci.stp Connected as cj <?xml version="1.0"?> <ROWSET> <ROW> <DUMMY>X</DUMMY> </ROW> </ROWSET> Connects: 1, Charset lookups: 1 Total NLS charset initalization time: 164 usecs/connect This shows the time penalty of making OCI8 look up the default character set. This time would be zero if a character set had been passed as the fourth argument to oci_connect() in test.php.

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Google chrome cannot be installed

    - by Zxy
    I downloaded latest version of google chrome and then tried to install it. However it gave me errors. I searched through the net and noticed that most of the people's problem solved when they installed missing dependecies. Therefore I tried to install them too but seems like it does not work. zero@ubuntu:~/Downloads$ sudo apt-get install -f Reading package lists... Done Building dependency tree Reading state information... Done Correcting dependencies... Done The following packages will be REMOVED: google-chrome-stable:i386 0 upgraded, 0 newly installed, 1 to remove and 23 not upgraded. 1 not fully installed or removed. After this operation, 116 MB disk space will be freed. Do you want to continue [Y/n]? Y (Reading database ... 169296 files and directories currently installed.) Removing google-chrome-stable:i386 ... Processing triggers for man-db ... Processing triggers for desktop-file-utils ... Processing triggers for bamfdaemon ... Rebuilding /usr/share/applications/bamf.index... Processing triggers for gnome-menus ... zero@ubuntu:~/Downloads$ sudo dpkg -i google-chrome-stable_current_i386.deb Selecting previously unselected package google-chrome-stable:i386. (Reading database ... 169201 files and directories currently installed.) Unpacking google-chrome-stable:i386 (from google-chrome-stable_current_i386.deb) ... dpkg: dependency problems prevent configuration of google-chrome-stable:i386: google-chrome-stable:i386 depends on xdg-utils (>= 1.0.2). dpkg: error processing google-chrome-stable:i386 (--install): dependency problems - leaving unconfigured Processing triggers for desktop-file-utils ... Processing triggers for bamfdaemon ... Rebuilding /usr/share/applications/bamf.index... Processing triggers for gnome-menus ... Processing triggers for man-db ... Errors were encountered while processing: google-chrome-stable:i386 Could you please help me? Thanks.

    Read the article

  • Xobni Free Powers Up Outlook’s Search and Contacts

    - by Matthew Guay
    Want to find out more about your contacts, discover email trends, and even sync Yahoo! email accounts in Outlook?  Here’s how you can do this and more with Xobni Free. Email is one of the most important communications mediums today, but even with all of the advances in Outlook over the years it can still be difficult to keep track of conversations, files, and contacts.  Xobni makes it easy by indexing your emails and organizing them by sender.  You can use its powerful search to quickly find any email, find related messages, and then view more information about that contact with information from social networks.  And, to top it off, it even lets you view your Yahoo! emails directly in Outlook without upgrading to a Yahoo! Plus account.  Xobni runs in Outlook 2003, 2007, and 2010, including the 64 bit version of Outlook 2010, and users of older versions will especially enjoy the new features Xobni brings for free. Getting started Download the Xobni Free installer (link below), and run to start the installation.  Make sure to exit Outlook before installing.  Xobni may need to download additional files which may take a few moments. When the download is finished, proceed with the install as normal.  You can opt out of the Product Improvement Program at the end of the installation by unchecking the box.  Additionally, you are asked to share Xobni with your friends on social networks, but this is not required.   Next time you open Outlook, you’ll notice the new Xobni sidebar in Outlook.  You can choose to watch an introduction video that will help you quickly get up to speed on how Xobni works. While this is playing, Xobni is working at indexing your email in the background.  Once the first indexing is finished, click Let’s Go! to start using Xobni. Here’s how Xobni looks in Outlook 2010: Advanced Email Information Select an email, and now you can see lots of info about it in your new Xobni sidebar.   On the top of the sidebar, select the graph icon to see when and how often you email with a contact.  Each contact is given an Xobni rank so you can quickly see who you email the most.   You can see all related emails sorted into conversations, and also all attachments in the conversation, not just this email. Xobni can also show you all scheduled appointments and links exchanged with a contact, but this is only available in the Plus version.  If you’d rather not see the tab for a feature you can’t use, click Don’t show this tab to banish it from Xobni for good.   Searching emails from the Xobni toolbar is very fast, and you can preview a message by simply hovering over it from the search pane. Get More Information About Your Contacts Xobni’s coolest feature is its social integration.  Whenever you select an email, you may see a brief bio, picture, and more, all pulled from social networks.   Select one of the tabs to find more information.  You may need to login to view information on your contacts from certain networks. The Twitter tab lets you see recent tweets.  Xobni will search for related Twitter accounts, and will ask you to confirm if the choice is correct.   Now you can see this contact’s recent Tweets directly from Outlook.   The Hoovers tab can give you interesting information about the businesses you’re in contact with. If the information isn’t correct, you can edit it and add your own information.  Click the Edit button, and the add any information you want.   You can also remove a network you don’t wish to see.  Right-click on the network tabs, select Manage Extensions, and uncheck any you don’t want to see. But sometimes online contact just doesn’t cut it.  For these times, click on the orange folder button to request a contact’s phone number or schedule a time with them. This will open a new email message ready to send with the information you want.  Edit as you please, and send. Add Yahoo! Email to Outlook for Free One of Xobni’s neatest features is that it let’s you add your Yahoo! email account to Outlook for free.  Click the gear icon in the bottom of the Xobni sidebar and select Options to set it up. Select the Integration tab, and click Enable to add Yahoo! mail to Xobni. Sign in with your Yahoo! account, and make sure to check the Keep me signed in box. Note that you may have to re-signin every two weeks to keep your Yahoo! account connected.  Select I agree to finish setting it up. Xobni will now download and index your recent Yahoo! mail. Your Yahoo! messages will only show up in the Xobni sidebar.  Whenever you select a contact, you will see related messages from your Yahoo! account as well.  Or, you can search from the sidebar to find individual messages from your Yahoo! account.  Note the Y! logo beside Yahoo! messages.   Select a message to read it in the Sidebar.  You can open the email in Yahoo! in your browser, or can reply to it using your default Outlook email account. If you have many older messages in your Yahoo! account, make sure to go back to the Integration tab and select Index Yahoo! Mail to index all of your emails. Conclusion Xobni is a great tool to help you get more out of your daily Outlook experience.  Whether you struggle to find attachments a coworker sent you or want to access Yahoo! email from Outlook, Xobni might be the perfect tool for you.  And with the extra things you learn about your contacts with the social network integration, you might boost your own PR skills without even trying! Link Download Xobni Similar Articles Productive Geek Tips Speed up Windows Vista Start Menu Search By Limiting ResultsFix for New Contact Group Button Not Displaying in VistaGet Maps and Directions to Your Contacts in Outlook 2007Backup Windows Mail Messages and Contacts in VistaHow to Import Gmail Contacts Into Outlook 2007 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows iFixit Offers Gadget Repair Manuals Online Vista style sidebar for Windows 7 Create Nice Charts With These Web Based Tools Track Daily Goals With 42Goals Video Toolbox is a Superb Online Video Editor Fun with 47 charts and graphs

    Read the article

  • Understanding SARGability (to make your queries run faster)

    - by simonsabin
    Rob Farley is doing a live meeting this month on understanding what SARGable means. It is at 1pm BST and so if you are in the UK will be a very useful hour spent. for more details go to http://www.sqlpass.org/Events/ctl/ViewEvent/mid/521.aspx?ID=341 The description of the session  is Understanding SARGability (to make your queries run faster) SARGable means Search ARGument able. It relates to the ability to search through an index for a value, but unfortunately, many database professionals don...(read more)

    Read the article

  • A couple of nice features when using OracleTextSearch

    - by kyle.hatlestad
    If you have your UCM/URM instance configured to use the Oracle 11g database as the search engine, you can be using OracleTextSearch as the search definition. OracleTextSearch uses the advanced features of Oracle Text for indexing and searching. This includes the ability to specify metadata fields to be optimized for the search index, fast rebuilding, and index optimization. If you are on 10g of UCM, then you'll need to load the OracleTextSearch component that is available in the CS10gR35UpdateBundle component on the support site (patch #6907073). If you are on 11g, no component is needed. Then you specify the search indexer name with the configuration flag of SearchIndexerEngineName=OracleTextSearch. Please see the docs for other configuration settings and setup instructions. So I thought I would highlight a couple of other unique features available with OracleTextSearch. The first is the Drill Down feature. This feature allows you to specify specific metadata fields that will break down the results of that field based on the total results. So in the above graphic, you can see how it broke down the extensions and gives a count for each. Then you just need to click on that link to then drill into that result. This setting is perfect for option list fields and ones with a distinct set of values possible. By default, it will use the fields Type, Security Group, and Account (if enabled). But you can also specify your own fields. In 10g, you can use the following configuration entry: DrillDownFields=xWebsiteObjectType,dExtension,dSecurityGroup,dDocType And in 11g, you can specify it through the Configuration Manager applet. Simply click on the Advanced Search Design, highlight the field to filter, click Edit, and check 'Is a filter category'. The other feature you get with OracleTextSearch are search snippets. These snippets show the occurrence of the search term in context of their usage. This is very similar to how Google displays its results. If you are on 10g, this is enabled by default. If you are on 11g, you need to turn on the feature. The following configuration entry will enable it: OracleTextDisableSearchSnippet=false Once enabled, you can add the snippets to your search results. Go to Change View -> Customize and add a new search result view. In the Available Fields in the Special section, select Snippet and move it to the Main or Additional Information. If you want to include the snippets with the Classic results, you can add the idoc variable of <$srfDocSnippet$> to display them. One caveat is that this can effect search performance on large collections. So plan the infrastructure accordingly.

    Read the article

  • Installation of LPRng (Ubuntu 13.04)

    - by Poulen
    I have problems with LPRng installation (I am linux beginner). http://lprng.com/LPRng-Reference/LPRng-Reference.html#INSTALLATION - installation guide http://lprng.com/PrintingCookbook/index.html#AEN1563 Could you write me here please, step by step, what I have to do (write into terminal) for succesful installation? I'm trying to do the first step of guide (h4: {4} % gunzip -c LPRng-.tgz | tar xvf -) but unsuccessfuly. (I put the source file to usr/bin, usr/sbin and usr/etc). I'm desperate, help me please :) Thank you and sorry for my english

    Read the article

  • Attention users running SQL Server 2008 & 2008 R2!

    - by AaronBertrand
    In April and May, Microsoft released cumulative updates for SQL Server 2008 and 2008 R2 (I blogged about them here and here ). They are: CU #11 for 2008 SP3 (10.00.5840) ( KB #2834048 ) CU #12 for 2008 R2 SP1 (10.50.2874) ( KB #2828727 ) CU #6 for 2008 R2 SP2 (10.50.4279) ( KB #2830140 ) Sometime after that, looks like the next day, both downloads were pulled, allegedly due to an index corruption issue (if you believe the commentary on the Release Services blog post for CU #6 ) or due to an issue...(read more)

    Read the article

  • How to fix phpMyadmin login?

    - by Ivan
    I've isnstalled phpMyAdmin with apt-get install phpmyadmin. When I open "http://localhost/phpmyadmin/", enter "root" as the user name and my MySQL root password and press go, then if I use Firefox, I get offered to download index.php file, if I use Opera 11, it says " Connection closed by remote server". What may the reason be and how to fix it? I use up-to-date Xubuntu 11.04. Reinstalling phpmyadmin did not help, neither did removing AppArmor.

    Read the article

  • Unity3d Gravity script issues

    - by Joseph Le Brech
    I'm try this script out http://wiki.unity3d.com/index.php/Gravity and I'm having some issues with it (it seemed to work when I tried it with an old version of unity) the first issue is of collision, the objects (in my case spheres) will stick into each other rather than just touch. and the second is that when the objects collide one of the objects with continue it's trajectory. I'm thinking of rewriting the script from scratch unless someone can explain what's wrong with the script that i've got.

    Read the article

  • Failed to install GNOME3 with 404 error

    - by Neon
    I followed the instructions here, however I got 404 not found error checking for updates: W:Failed to fetch http://ppa.launchpad.net/ubuntugnometeam/gnome3/ubuntu/dists/natty/main/source/Sources 404 Not Found, W:Failed to fetch http://ppa.launchpad.net/ubuntugnometeam/gnome3/ubuntu/dists/natty/main/binary-i386/Packages 404 Not Found, E:Some index files failed to download. They have been ignored, or old ones used instead. , Thus I couldn't even start the installation. Anybody know how to perform a full installation?

    Read the article

  • Create PDF document using iTextSharp in ASP.Net 4.0 and MemoryMappedFile

    - by sreejukg
    In this article I am going to demonstrate how ASP.Net developers can programmatically create PDF documents using iTextSharp. iTextSharp is a software component, that allows developers to programmatically create or manipulate PDF documents. Also this article discusses the process of creating in-memory file, read/write data from/to the in-memory file utilizing the new feature MemoryMappedFile. I have a database of users, where I need to send a notice to all my users as a PDF document. The sending mail part of it is not covered in this article. The PDF document will contain the company letter head, to make it more official. I have a list of users stored in a database table named “tblusers”. For each user I need to send customized message addressed to them personally. The database structure for the users is give below. id Title Full Name 1 Mr. Sreeju Nair K. G. 2 Dr. Alberto Mathews 3 Prof. Venketachalam Now I am going to generate the pdf document that contains some message to the user, in the following format. Dear <Title> <FullName>, The message for the user. Regards, Administrator Also I have an image, bg.jpg that contains the background for the document generated. I have created .Net 4.0 empty web application project named “iTextSharpSample”. First thing I need to do is to download the iTextSharp dll from the source forge. You can find the url for the download here. http://sourceforge.net/projects/itextsharp/files/ I have extracted the Zip file and added the itextsharp.dll as a reference to my project. Also I have added a web form named default.aspx to my project. After doing all this, the solution explorer have the following view. In the default.aspx page, I inserted one grid view and associated it with a SQL Data source control that bind data from tblusers. I have added a button column in the grid view with text “generate pdf”. The output of the page in the browser is as follows. Now I am going to create a pdf document when the user clicking on the Generate PDF button. As I mentioned before, I am going to work with the file in memory, I am not going to create a file in the disk. I added an event handler for button by specifying onrowcommand event handler. My gridview source looks like <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False" DataSourceID="SqlDataSource1" Width="481px" CellPadding="4" ForeColor="#333333" GridLines="None" onrowcommand="Generate_PDF" > ………………………………………………………………………….. ………………………………………………………………………….. </asp:GridView> In the code behind, I wrote the corresponding event handler. protected void Generate_PDF(object sender, GridViewCommandEventArgs e) { // The button click event handler code. // I am going to explain the code for this section in the remaining part of the article } The Generate_PDF method is straight forward, It get the title, fullname and message to some variables, then create the pdf using these variables. The code for getting data from the grid view is as follows // get the row index stored in the CommandArgument property int index = Convert.ToInt32(e.CommandArgument); // get the GridViewRow where the command is raised GridViewRow selectedRow = ((GridView)e.CommandSource).Rows[index]; string title = selectedRow.Cells[1].Text; string fullname = selectedRow.Cells[2].Text; string msg = @"There are some changes in the company policy, due to this matter you need to submit your latest address to us. Please update your contact details / personnal details by visiting the member area of the website. ................................... "; since I don’t want to save the file in the disk, I am going the new feature introduced in .Net framework 4, called Memory-Mapped Files. Using Memory-Mapped mapped file, you can created non-persisted memory mapped files, that are not associated with a file in a disk. So I am going to create a temporary file in memory, add the pdf content to it, then write it to the output stream. To read more about MemoryMappedFile, read this msdn article http://msdn.microsoft.com/en-us/library/dd997372.aspx The below portion of the code using MemoryMappedFile object to create a test pdf document in memory and perform read/write operation on file. The CreateViewStream() object will give you a stream that can be used to read or write data to/from file. The code is very straight forward and I included comment so that you can understand the code. using (MemoryMappedFile mmf = MemoryMappedFile.CreateNew("test1.pdf", 1000000)) { // Create a new pdf document object using the constructor. The parameters passed are document size, left margin, right margin, top margin and bottom margin. iTextSharp.text.Document d = new iTextSharp.text.Document(PageSize.A4, 72,72,172,72); //get an instance of the memory mapped file to stream object so that user can write to this using (MemoryMappedViewStream stream = mmf.CreateViewStream()) { // associate the document to the stream. PdfWriter.GetInstance(d, stream); /* add an image as bg*/ iTextSharp.text.Image jpg = iTextSharp.text.Image.GetInstance(Server.MapPath("Image/bg.png")); jpg.Alignment = iTextSharp.text.Image.UNDERLYING; jpg.SetAbsolutePosition(0, 0); //this is the size of my background letter head image. the size is in points. this will fit to A4 size document. jpg.ScaleToFit(595, 842); d.Open(); d.Add(jpg); d.Add(new Paragraph(String.Format("Dear {0} {1},", title, fullname))); d.Add(new Paragraph("\n")); d.Add(new Paragraph(msg)); d.Add(new Paragraph("\n")); d.Add(new Paragraph(String.Format("Administrator"))); d.Close(); } //read the file data byte[] b; using (MemoryMappedViewStream stream = mmf.CreateViewStream()) { BinaryReader rdr = new BinaryReader(stream); b = new byte[mmf.CreateViewStream().Length]; rdr.Read(b, 0, (int)mmf.CreateViewStream().Length); } Response.Clear(); Response.ContentType = "Application/pdf"; Response.BinaryWrite(b); Response.End(); } Press ctrl + f5 to run the application. First I got the user list. Click on the generate pdf icon. The created looks as follows. Summary: Creating pdf document using iTextSharp is easy. You will get lot of information while surfing the www. Some useful resources and references are mentioned below http://itextsharp.com/ http://www.mikesdotnetting.com/Article/82/iTextSharp-Adding-Text-with-Chunks-Phrases-and-Paragraphs http://somewebguy.wordpress.com/2009/05/08/itextsharp-simplify-your-html-to-pdf-creation/ Hope you enjoyed the article.

    Read the article

  • SQLBits VI – The sixth sets

    - by Rob Farley
    My involvement stopped with the tagline, but SQLBits VI is on tomorrow. The theme of the event is Performance Tuning, which has nothing to do with Bruce Willis or dead people – unless Bruce Willis has just become a database expert and been shot for doing a dropping an index (some would say that’s a crime worthy of the death penalty). It’s a shame my involvement hasn’t been more, because it’s such a terrific event, and it would’ve been good to have been there for a second time. It’s a long way to...(read more)

    Read the article

  • SQL SERVER – Challenge – Puzzle – Usage of FAST Hint

    - by pinaldave
    I was recently working with various SQL Server Hints. After working for a day on various hints, I realize that for one hint, I am not able to come up with good example. The hint is FAST. Let us look at the definition of the FAST hint from the Book On-Line. FAST number_rows Specifies that the query is optimized for fast retrieval of the first number_rows. This is a nonnegative integer. After the first number_rows are returned, the query continues execution and produces its full result set. Now the question is in what condition this hint can be useful. I have tried so many different combination, I have found this hint does not make much performance difference, infect I did not notice any change in time taken to load the resultset. I noticed that this hint does not change number of the page read to return result. Now when there is difference in performance is expected because if you read the what FAST hint does is that it only returns first few results FAST – which does not mean there will be difference in performance. I also understand that this hint gives the guidance/suggestions/hint to query optimizer that there are only 100 rows are in expected resultset. This tricking the optimizer to think there are only 100 rows and which (may) lead to render different execution plan than the one which it would have taken in normal case (without hint). Again, not necessarily, this will happen always. Now if you read above discussion, you will find that basic understanding of the hint is very clear to me but I still feel that I am missing something. Here are my questions: 1) In what condition this hint can be useful? What is the case, when someone want to see first few rows early because my experience suggests that when first few rows are rendered remaining rows are rendered as well. 2) Is there any way application can retrieve the fast fetched rows from SQL Server? 3) Do you use this hint in your application? Why? When? and How? Here are few examples I have attempted during the my experiment and found there is no difference in execution plan except its estimated number of rows are different leading optimizer think that the cost is less but in reality that is not the case. USE AdventureWorks GO SET STATISTICS IO ON SET STATISTICS TIME ON GO --------------------------------------------- -- Table Scan with Fast Hint SELECT * FROM Sales.SalesOrderDetail GO SELECT * FROM Sales.SalesOrderDetail OPTION (FAST 100) GO --------------------------------------------- -- Table Scan with Where on Index Key SELECT * FROM Sales.SalesOrderDetail WHERE OrderQty = 14 GO SELECT * FROM Sales.SalesOrderDetail WHERE OrderQty = 14 OPTION (FAST 100) GO --------------------------------------------- -- Table Scan with Where on Index Key SELECT * FROM Sales.SalesOrderDetail WHERE SalesOrderDetailID < 1000 GO SELECT * FROM Sales.SalesOrderDetail WHERE SalesOrderDetailID < 1000 OPTION (FAST 100) GO Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Spatial data in the UK

    - by simonsabin
    I am just loving the fact that the Ordance Survey has now released a huge amount of data that can be used freely. I’ve downloaded the Panorama (tm) data http://www.ordnancesurvey.co.uk/oswebsite/products/land-form-panorama-contours/index.html . which is all the contours for the UK This I’ve loaded into SQL Server using Safe Computing’s FME ( http://www.safe.com/ ). This is because the data is a Autocad DXF file and translating that to SQL Server spatial data is not easy. The FME workbench is not...(read more)

    Read the article

  • 1 Million IOPS

    - by GrumpyOldDBA
    As a keen follower of storage performance I couldn't help but be drawn to this article in The Register http://www.theregister.co.uk/2010/04/14/lsi_million_iops/ this morning. I gave my 5 year old laptop a new lease of life with a SSD and in combination with the old drive made external managed to reduce the time of a demo query from 50 odd mins down to 6 mins. I also have 4 Silicon Power 32GB SSDs set up as a raid 0 on my home server, an overblown PC. http://www.futurestorage.co.uk/index.asp?selmanuf...(read more)

    Read the article

< Previous Page | 198 199 200 201 202 203 204 205 206 207 208 209  | Next Page >