Search Results

Search found 5070 results on 203 pages for 'algorithm'.

Page 203/203 | < Previous Page | 199 200 201 202 203 

  • Ideas for multiplatform encrypted java mobile storage system

    - by Fernando Miguélez
    Objective I am currently designing the API for a multiplatform storage system that would offer same interface and capabilities accross following supported mobile Java Platforms: J2ME. Minimum configuration/profile CLDC 1.1/MIDP 2.0 with support for some necessary JSRs (JSR-75 for file storage). Android. No minimum platform version decided yet, but rather likely could be API level 7. Blackberry. It would use the same base source of J2ME but taking advantage of some advaced capabilities of the platform. No minimum configuration decided yet (maybe 4.6 because of 64 KB limitation for RMS on 4.5). Basically the API would sport three kind of stores: Files. These would allow standard directory/file manipulation (read/write through streams, create, mkdir, etc.). Preferences. It is a special store that handles properties accessed through keys (Similar to plain old java properties file but supporting some improvements such as different value data types such as SharedPreferences on Android platform) Local Message Queues. This store would offer basic message queue functionality. Considerations Inspired on JSR-75, all types of stores would be accessed in an uniform way by means of an URL following RFC 1738 conventions, but with custom defined prefixes (i.e. "file://" for files, "prefs://" for preferences or "queue://" for message queues). The address would refer to a virtual location that would be mapped to a physical storage object by each mobile platform implementation. Only files would allow hierarchical storage (folders) and access to external extorage memory cards (by means of a unit name, the same way as in JSR-75, but that would not change regardless of underlying platform). The other types would only support flat storage. The system should also support a secure version of all basic types. The user would indicate it by prefixing "s" to the URL (i.e. "sfile://" instead of "file://"). The API would only require one PIN (introduced only once) to access any kind of secure object types. Implementation issues For the implementation of both plaintext and encrypted stores, I would use the functionality available on the underlying platforms: Files. These are available on all platforms (J2ME only with JSR-75, but it is mandatory for our needs). The abstract File to actual File mapping is straight except for addressing issues. RMS. This type of store available on J2ME (and Blackberry) platforms is convenient for Preferences and maybe Message Queues (though depending on performance or size requirements these could be implemented by means of normal files). SharedPreferences. This type of storage, only available on Android, would match Preferences needs. SQLite databases. This could be used for message queues on Android (and maybe Blackberry). When it comes to encryption some requirements should be met: To ease the implementation it will be carried out on read/write operations basis on streams (for files), RMS Records, SharedPreferences key-value pairs, SQLite database columns. Every underlying storage object should use the same encryption key. Handling of encrypted stores should be the same as the unencrypted counterpart. The only difference (from the user point of view) accessing an encrypted store would be the addressing. The user PIN provides access to any secure storage object, but the change of it would not require to decrypt/re-encrypt all the encrypted data. Cryptographic capabilities of underlying platform should be used whenever it is possible, so we would use: J2ME: SATSA-CRYPTO if it is available (not mandatory) or lightweight BoncyCastle cryptographic framework for J2ME. Blackberry: RIM Cryptographic API or BouncyCastle Android: JCE with integraced cryptographic provider (BouncyCastle?) Doubts Having reached this point I was struck by some doubts about what solution would be more convenient, taking into account the limitation of the plataforms. These are some of my doubts: Encryption Algorithm for data. Would AES-128 be strong and fast enough? What alternatives for such scenario would you suggest? Encryption Mode. I have read about the weakness of ECB encryption versus CBC, but in this case the first would have the advantage of random access to blocks, which is interesting for seek functionality on files. What type of encryption mode would you choose instead? Is stream encryption suitable for this case? Key generation. There could be one key generated for each storage object (file, RMS RecordStore, etc.) or just use one for all the objects of the same type. The first seems "safer", though it would require some extra space on device. In your opinion what would the trade-offs of each? Key storage. For this case using a standard JKS (or PKCS#12) KeyStore file could be suited to store encryption keys, but I could also define a smaller structure (encryption-transformation / key data / checksum) that could be attached to each storage store (i.e. using addition files with the same name and special extension for plain files or embedded inside other types of objects such as RMS Record Stores). What approach would you prefer? And when it comes to using a standard KeyStore with multiple-key generation (given this is your preference), would it be better to use a record-store per storage object or just a global KeyStore keeping all keys (i.e. using the URL identifier of abstract storage object as alias)? Master key. The use of a master key seems obvious. This key should be protected by user PIN (introduced only once) and would allow access to the rest of encryption keys (they would be encrypted by means of this master key). Changing the PIN would only require to reencrypt this key and not all the encrypted data. Where would you keep it taking into account that if this got lost all data would be no further accesible? What further considerations should I take into account? Platform cryptography support. Do SATSA-CRYPTO-enabled J2ME phones really take advantage of some dedicated hardware acceleration (or other advantage I have not foreseen) and would this approach be prefered (whenever possible) over just BouncyCastle implementation? For the same reason is RIM Cryptographic API worth the license cost over BouncyCastle? Any comments, critics, further considerations or different approaches are welcome.

    Read the article

  • Higher order function « filter » in C++

    - by Red Hyena
    Hi all. I wanted to write a higher order function filter with C++. The code I have come up with so far is as follows: #include <iostream> #include <string> #include <functional> #include <algorithm> #include <vector> #include <list> #include <iterator> using namespace std; bool isOdd(int const i) { return i % 2 != 0; } template < template <class, class> class Container, class Predicate, class Allocator, class A > Container<A, Allocator> filter(Container<A, Allocator> const & container, Predicate const & pred) { Container<A, Allocator> filtered(container); container.erase(remove_if(filtered.begin(), filtered.end(), pred), filtered.end()); return filtered; } int main() { int const a[] = {23, 12, 78, 21, 97, 64}; vector<int const> const v(a, a + 6); vector<int const> const filtered = filter(v, isOdd); copy(filtered.begin(), filtered.end(), ostream_iterator<int const>(cout, " ")); } However on compiling this code, I get the following error messages that I am unable to understand and hence get rid of: /usr/include/c++/4.3/ext/new_allocator.h: In instantiation of ‘__gnu_cxx::new_allocator<const int>’: /usr/include/c++/4.3/bits/allocator.h:84: instantiated from ‘std::allocator<const int>’ /usr/include/c++/4.3/bits/stl_vector.h:75: instantiated from ‘std::_Vector_base<const int, std::allocator<const int> >’ /usr/include/c++/4.3/bits/stl_vector.h:176: instantiated from ‘std::vector<const int, std::allocator<const int> >’ Filter.cpp:29: instantiated from here /usr/include/c++/4.3/ext/new_allocator.h:82: error: ‘const _Tp* __gnu_cxx::new_allocator<_Tp>::address(const _Tp&) const [with _Tp = const int]’ cannot be overloaded /usr/include/c++/4.3/ext/new_allocator.h:79: error: with ‘_Tp* __gnu_cxx::new_allocator<_Tp>::address(_Tp&) const [with _Tp = const int]’ Filter.cpp: In function ‘Container<A, Allocator> filter(const Container<A, Allocator>&, const Predicate&) [with Container = std::vector, Predicate = bool ()(int), Allocator = std::allocator<const int>, A = const int]’: Filter.cpp:30: instantiated from here Filter.cpp:23: error: passing ‘const std::vector<const int, std::allocator<const int> >’ as ‘this’ argument of ‘__gnu_cxx::__normal_iterator<typename std::_Vector_base<_Tp, _Alloc>::_Tp_alloc_type::pointer, std::vector<_Tp, _Alloc> > std::vector<_Tp, _Alloc>::erase(__gnu_cxx::__normal_iterator<typename std::_Vector_base<_Tp, _Alloc>::_Tp_alloc_type::pointer, std::vector<_Tp, _Alloc> >, __gnu_cxx::__normal_iterator<typename std::_Vector_base<_Tp, _Alloc>::_Tp_alloc_type::pointer, std::vector<_Tp, _Alloc> >) [with _Tp = const int, _Alloc = std::allocator<const int>]’ discards qualifiers /usr/include/c++/4.3/bits/stl_algo.h: In function ‘_FIter std::remove_if(_FIter, _FIter, _Predicate) [with _FIter = __gnu_cxx::__normal_iterator<const int*, std::vector<const int, std::allocator<const int> > >, _Predicate = bool (*)(int)]’: Filter.cpp:23: instantiated from ‘Container<A, Allocator> filter(const Container<A, Allocator>&, const Predicate&) [with Container = std::vector, Predicate = bool ()(int), Allocator = std::allocator<const int>, A = const int]’ Filter.cpp:30: instantiated from here /usr/include/c++/4.3/bits/stl_algo.h:821: error: assignment of read-only location ‘__result.__gnu_cxx::__normal_iterator<_Iterator, _Container>::operator* [with _Iterator = const int*, _Container = std::vector<const int, std::allocator<const int> >]()’ /usr/include/c++/4.3/ext/new_allocator.h: In member function ‘void __gnu_cxx::new_allocator<_Tp>::deallocate(_Tp*, size_t) [with _Tp = const int]’: /usr/include/c++/4.3/bits/stl_vector.h:150: instantiated from ‘void std::_Vector_base<_Tp, _Alloc>::_M_deallocate(_Tp*, size_t) [with _Tp = const int, _Alloc = std::allocator<const int>]’ /usr/include/c++/4.3/bits/stl_vector.h:136: instantiated from ‘std::_Vector_base<_Tp, _Alloc>::~_Vector_base() [with _Tp = const int, _Alloc = std::allocator<const int>]’ /usr/include/c++/4.3/bits/stl_vector.h:286: instantiated from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const _Alloc&) [with _InputIterator = const int*, _Tp = const int, _Alloc = std::allocator<const int>]’ Filter.cpp:29: instantiated from here /usr/include/c++/4.3/ext/new_allocator.h:98: error: invalid conversion from ‘const void*’ to ‘void*’ /usr/include/c++/4.3/ext/new_allocator.h:98: error: initializing argument 1 of ‘void operator delete(void*)’ /usr/include/c++/4.3/bits/stl_algobase.h: In function ‘_OI std::__copy_move_a(_II, _II, _OI) [with bool _IsMove = false, _II = const int*, _OI = const int*]’: /usr/include/c++/4.3/bits/stl_algobase.h:435: instantiated from ‘_OI std::__copy_move_a2(_II, _II, _OI) [with bool _IsMove = false, _II = __gnu_cxx::__normal_iterator<const int*, std::vector<const int, std::allocator<const int> > >, _OI = __gnu_cxx::__normal_iterator<const int*, std::vector<const int, std::allocator<const int> > >]’ /usr/include/c++/4.3/bits/stl_algobase.h:466: instantiated from ‘_OI std::copy(_II, _II, _OI) [with _II = __gnu_cxx::__normal_iterator<const int*, std::vector<const int, std::allocator<const int> > >, _OI = __gnu_cxx::__normal_iterator<const int*, std::vector<const int, std::allocator<const int> > >]’ /usr/include/c++/4.3/bits/vector.tcc:136: instantiated from ‘__gnu_cxx::__normal_iterator<typename std::_Vector_base<_Tp, _Alloc>::_Tp_alloc_type::pointer, std::vector<_Tp, _Alloc> > std::vector<_Tp, _Alloc>::erase(__gnu_cxx::__normal_iterator<typename std::_Vector_base<_Tp, _Alloc>::_Tp_alloc_type::pointer, std::vector<_Tp, _Alloc> >, __gnu_cxx::__normal_iterator<typename std::_Vector_base<_Tp, _Alloc>::_Tp_alloc_type::pointer, std::vector<_Tp, _Alloc> >) [with _Tp = const int, _Alloc = std::allocator<const int>]’ Filter.cpp:23: instantiated from ‘Container<A, Allocator> filter(const Container<A, Allocator>&, const Predicate&) [with Container = std::vector, Predicate = bool ()(int), Allocator = std::allocator<const int>, A = const int]’ Filter.cpp:30: instantiated from here /usr/include/c++/4.3/bits/stl_algobase.h:396: error: no matching function for call to ‘std::__copy_move<false, true, std::random_access_iterator_tag>::__copy_m(const int*&, const int*&, const int*&)’ Please tell me what I am doing wrong here and what is the correct way to achieve the kind of higher order polymorphism I want. Thanks.

    Read the article

  • Inserting Records in Ascending Order function- C homework assignment

    - by Aaron McRuer
    Good day, Stack Overflow. I have a homework assignment that I'm working on this weekend that I'm having a bit of a problem with. We have a struct "Record" (which contains information about cars for a dealership) that gets placed in a particular spot in a linked list according to 1) its make and 2) according to its model year. This is done when initially building the list, when a "int insertRecordInAscendingOrder" function is called in Main. In "insertRecordInAscendingOrder", a third function, "createRecord" is called, where the linked list is created. The function then goes to the function "compareCars" to determine what elements get put where. Depending on the value returned by this function, insertRecordInAscendingOrder then places the record where it belongs. The list is then printed out. There's more to the assignment, but I'll cross that bridge when I come to it. Ideally, and for the assignment to be considered correct, the linked list must be ordered as: Chevrolet 2012 25 Chevrolet 2013 10 Ford 2010 5 Ford 2011 3 Ford 2012 15 Honda 2011 9 Honda 2012 3 Honda 2013 12 Toyota 2009 2 Toyota 2011 7 Toyota 2013 20 from the a text file that has the data ordered the following way: Ford 2012 15 Ford 2011 3 Ford 2010 5 Toyota 2011 7 Toyota 2012 20 Toyota 2009 2 Honda 2011 9 Honda 2012 3 Honda 2013 12 Chevrolet 2013 10 Chevrolet 2012 25 Notice that the alphabetical order of the "make" field takes precedence, then, the model year is arranged from oldest to newest. However, the program produces this as the final list: Chevrolet 2012 25 Chevrolet 2013 10 Honda 2011 9 Honda 2012 3 Honda 2013 12 Toyota 2009 2 Toyota 2011 7 Toyota 2012 20 Ford 2010 5 Ford 2011 3 Ford 2012 15 I sat down with a grad student and tried to work out all of this yesterday, but we just couldn't figure out why it was kicking the Ford nodes down to the end of the list. Here's the code. As you'll notice, I included a printList call at each instance of the insertion of a node. This way, you can see just what is happening when the nodes are being put in "order". It is in ANSI C99. All function calls must be made as they are specified, so unfortunately, there's no real way of getting around this problem by creating a more efficient algorithm. #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_LINE 50 #define MAX_MAKE 20 typedef struct record { char *make; int year; int stock; struct record *next; } Record; int compareCars(Record *car1, Record *car2); void printList(Record *head); Record* createRecord(char *make, int year, int stock); int insertRecordInAscendingOrder(Record **head, char *make, int year, int stock); int main(int argc, char **argv) { FILE *inFile = NULL; char line[MAX_LINE + 1]; char *make, *yearStr, *stockStr; int year, stock, len; Record* headRecord = NULL; /*Input and file diagnostics*/ if (argc!=2) { printf ("Filename not provided.\n"); return 1; } if((inFile=fopen(argv[1], "r"))==NULL) { printf("Can't open the file\n"); return 2; } /*obtain values for linked list*/ while (fgets(line, MAX_LINE, inFile)) { make = strtok(line, " "); yearStr = strtok(NULL, " "); stockStr = strtok(NULL, " "); year = atoi(yearStr); stock = atoi(stockStr); insertRecordInAscendingOrder(&headRecord,make, year, stock); } printf("The original list in ascending order: \n"); printList(headRecord); } /*use strcmp to compare two makes*/ int compareCars(Record *car1, Record *car2) { int compStrResult; compStrResult = strcmp(car1->make, car2->make); int compYearResult = 0; if(car1->year > car2->year) { compYearResult = 1; } else if(car1->year == car2->year) { compYearResult = 0; } else { compYearResult = -1; } if(compStrResult == 0 ) { if(compYearResult == 1) { return 1; } else if(compYearResult == -1) { return -1; } else { return compStrResult; } } else if(compStrResult == 1) { return 1; } else { return -1; } } int insertRecordInAscendingOrder(Record **head, char *make, int year, int stock) { Record *previous = *head; Record *newRecord = createRecord(make, year, stock); Record *current = *head; int compResult; if(*head == NULL) { *head = newRecord; printf("Head is null, list was empty\n"); printList(*head); return 1; } else if ( compareCars(newRecord, *head)==-1) { *head = newRecord; (*head)->next = current; printf("New record was less than the head, replacing\n"); printList(*head); return 1; } else { printf("standard case, searching and inserting\n"); previous = *head; while ( current != NULL &&(compareCars(newRecord, current)==1)) { printList(*head); previous = current; current = current->next; } printList(*head); previous->next = newRecord; previous->next->next = current; } return 1; } /*creates records from info passed in from main via insertRecordInAscendingOrder.*/ Record* createRecord(char *make, int year, int stock) { printf("CreateRecord\n"); Record *theRecord; int len; if(!make) { return NULL; } theRecord = malloc(sizeof(Record)); if(!theRecord) { printf("Unable to allocate memory for the structure.\n"); return NULL; } theRecord->year = year; theRecord->stock = stock; len = strlen(make); theRecord->make = malloc(len + 1); strncpy(theRecord->make, make, len); theRecord->make[len] = '\0'; theRecord->next=NULL; return theRecord; } /*prints list. lists print.*/ void printList(Record *head) { int i; int j = 50; Record *aRecord; aRecord = head; for(i = 0; i < j; i++) { printf("-"); } printf("\n"); printf("%20s%20s%10s\n", "Make", "Year", "Stock"); for(i = 0; i < j; i++) { printf("-"); } printf("\n"); while(aRecord != NULL) { printf("%20s%20d%10d\n", aRecord->make, aRecord->year, aRecord->stock); aRecord = aRecord->next; } printf("\n"); } The text file you'll need for a command line argument can be saved under any name you like; here are the contents you'll need: Ford 2012 15 Ford 2011 3 Ford 2010 5 Toyota 2011 7 Toyota 2012 20 Toyota 2009 2 Honda 2011 9 Honda 2012 3 Honda 2013 12 Chevrolet 2013 10 Chevrolet 2012 25 Thanks in advance for your help. I shall continue to plow away at it myself.

    Read the article

  • Optimizing sorting container of objects with heap-allocated buffers - how to avoid hard-copying buff

    - by Kache4
    I was making sure I knew how to do the op= and copy constructor correctly in order to sort() properly, so I wrote up a test case. After getting it to work, I realized that the op= was hard-copying all the data_. I figure if I wanted to sort a container with this structure (its elements have heap allocated char buffer arrays), it'd be faster to just swap the pointers around. Is there a way to do that? Would I have to write my own sort/swap function? #include <deque> //#include <string> //#include <utility> //#include <cstdlib> #include <cstring> #include <iostream> //#include <algorithm> // I use sort(), so why does this still compile when commented out? #include <boost/filesystem.hpp> #include <boost/foreach.hpp> using namespace std; namespace fs = boost::filesystem; class Page { public: // constructor Page(const char* path, const char* data, int size) : path_(fs::path(path)), size_(size), data_(new char[size]) { // cout << "Creating Page..." << endl; strncpy(data_, data, size); // cout << "done creating Page..." << endl; } // copy constructor Page(const Page& other) : path_(fs::path(other.path())), size_(other.size()), data_(new char[other.size()]) { // cout << "Copying Page..." << endl; strncpy(data_, other.data(), size_); // cout << "done copying Page..." << endl; } // destructor ~Page() { delete[] data_; } // accessors const fs::path& path() const { return path_; } const char* data() const { return data_; } int size() const { return size_; } // operators Page& operator = (const Page& other) { if (this == &other) return *this; char* newImage = new char[other.size()]; strncpy(newImage, other.data(), other.size()); delete[] data_; data_ = newImage; path_ = fs::path(other.path()); size_ = other.size(); return *this; } bool operator < (const Page& other) const { return path_ < other.path(); } private: fs::path path_; int size_; char* data_; }; class Book { public: Book(const char* path) : path_(fs::path(path)) { cout << "Creating Book..." << endl; cout << "pushing back #1" << endl; pages_.push_back(Page("image1.jpg", "firstImageData", 14)); cout << "pushing back #3" << endl; pages_.push_back(Page("image3.jpg", "thirdImageData", 14)); cout << "pushing back #2" << endl; pages_.push_back(Page("image2.jpg", "secondImageData", 15)); cout << "testing operator <" << endl; cout << pages_[0].path().string() << (pages_[0] < pages_[1]? " < " : " > ") << pages_[1].path().string() << endl; cout << pages_[1].path().string() << (pages_[1] < pages_[2]? " < " : " > ") << pages_[2].path().string() << endl; cout << pages_[0].path().string() << (pages_[0] < pages_[2]? " < " : " > ") << pages_[2].path().string() << endl; cout << "sorting" << endl; BOOST_FOREACH (Page p, pages_) cout << p.path().string() << endl; sort(pages_.begin(), pages_.end()); cout << "done sorting\n"; BOOST_FOREACH (Page p, pages_) cout << p.path().string() << endl; cout << "checking datas" << endl; BOOST_FOREACH (Page p, pages_) { char data[p.size() + 1]; strncpy((char*)&data, p.data(), p.size()); data[p.size()] = '\0'; cout << p.path().string() << " " << data << endl; } cout << "done Creating Book" << endl; } private: deque<Page> pages_; fs::path path_; }; int main() { Book* book = new Book("/some/path/"); }

    Read the article

  • Incorrect output on changing sequence of declarations

    - by max
    Writing C++ code to implement Sutherland-Hodgeman polygon clipping. This order of declaration of these 2 statements gives correct output, reverse does not. int numberOfVertices = 5; Point pointList[] = { {50,50}, {200,300}, {310,110}, {130,90}, {70,40} }; I am passing the polygon vertex set to clippers in order - LEFT, RIGHT, TOP, BOTTOM. The exact error which comes when the declarations are reversed is that the bottom clipper, produces an empty set of vertices so no polygon is displayed after clipping. Correct: Incorrent: Confirmed by outputting the number of vertices produced after each pass: Correct: Incorrect: What is the reason for this error? Code: #include <iostream> #include <GL/glut.h> #define MAXVERTICES 10 #define LEFT 0 #define RIGHT 1 #define TOP 2 #define BOTTOM 3 using namespace std; /* Clipping window */ struct Window { double xmin; double xmax; double ymin; double ymax; }; struct Point { double x; double y; }; /* If I interchange these two lines, the code doesn't work. */ /**************/ int numberOfVertices = 5; Point pointList[] = { {50,50}, {200,300}, {310,110}, {130,90}, {70,40} }; /**************/ const Window w = { 100, 400, 60, 200 }; /* Checks whether a point is inside or outside a window side */ int isInside(Point p, int side) { switch(side) { case LEFT: return p.x >= w.xmin; case RIGHT: return p.x <= w.xmax; case TOP: return p.y <= w.ymax; case BOTTOM: return p.y >= w.ymin; } } /* Calculates intersection of a segment and a window side */ Point intersection(Point p1, Point p2, int side) { Point temp; double slope, intercept; bool infinite; /* Find slope and intercept of segment, taking care of inf slope */ if(p2.x - p1.x != 0) { slope = (p2.y - p1.y) / (p2.x - p1.x); infinite = false; } else { infinite = true; } intercept = p1.y - p1.x * slope; /* Calculate intersections */ switch(side) { case LEFT: temp.x = w.xmin; temp.y = temp.x * slope + intercept; break; case RIGHT: temp.x = w.xmax; temp.y = temp.x * slope + intercept; break; case TOP: temp.y = w.ymax; temp.x = infinite ? p1.x : (temp.y - intercept) / slope; break; case BOTTOM: temp.y = w.ymin; temp.x = infinite ? p1.x : (temp.y - intercept) / slope; break; } return temp; } /* Clips polygon against a side, updating the point list (called once for each side) */ void clipAgainstSide(int sideToClip) { int i, j=0; Point s,p; Point outputList[MAXVERTICES]; /* Main algorithm */ s = pointList[numberOfVertices-1]; for(i=0 ; i<numberOfVertices ; i++) { p = pointList[i]; if(isInside(p, sideToClip)) { /* p inside */ if(!isInside(s, sideToClip)) { /* p inside, s outside */ outputList[j] = intersection(p, s, sideToClip); j++; } outputList[j] = p; j++; } else if(isInside(s, sideToClip)) { /* s inside, p outside */ outputList[j] = intersection(s, p, sideToClip); j++; } s = p; } /* Updating number of points and point list */ numberOfVertices = j; /* ERROR: In last call with BOTTOM argument, numberOfVertices becomes 0 */ /* all earlier 3 calls have correct output */ cout<<numberOfVertices<<endl; for(i=0 ; i<numberOfVertices ; i++) { pointList[i] = outputList[i]; } } void SutherlandHodgemanPolygonClip() { clipAgainstSide(LEFT); clipAgainstSide(RIGHT); clipAgainstSide(TOP); clipAgainstSide(BOTTOM); } void init() { glClearColor(1,1,1,0); glMatrixMode(GL_PROJECTION); gluOrtho2D(0,1000,0,500); } void display() { glClear(GL_COLOR_BUFFER_BIT); /* Displaying ORIGINAL box and polygon */ glColor3f(0,0,1); glBegin(GL_LINE_LOOP); glVertex2i(w.xmin, w.ymin); glVertex2i(w.xmin, w.ymax); glVertex2i(w.xmax, w.ymax); glVertex2i(w.xmax, w.ymin); glEnd(); glColor3f(1,0,0); glBegin(GL_LINE_LOOP); for(int i=0 ; i<numberOfVertices ; i++) { glVertex2i(pointList[i].x, pointList[i].y); } glEnd(); /* Clipping */ SutherlandHodgemanPolygonClip(); /* Displaying CLIPPED box and polygon, 500px right */ glColor3f(0,0,1); glBegin(GL_LINE_LOOP); glVertex2i(w.xmin+500, w.ymin); glVertex2i(w.xmin+500, w.ymax); glVertex2i(w.xmax+500, w.ymax); glVertex2i(w.xmax+500, w.ymin); glEnd(); glColor3f(1,0,0); glBegin(GL_LINE_LOOP); for(int i=0 ; i<numberOfVertices ; i++) { glVertex2i(pointList[i].x+500, pointList[i].y); } glEnd(); glFlush(); } int main(int argc, char** argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(1000,500); glutCreateWindow("Sutherland-Hodgeman polygon clipping"); init(); glutDisplayFunc(display); glutMainLoop(); return 0; }

    Read the article

  • FreeBSD performance tuning. Sysctls, loader.conf, kernel

    - by SaveTheRbtz
    I wanted to share knowledge of tuning FreeBSD via sysctl.conf/loader.conf/KENCONF. It was initially based on Igor Sysoev's (author of nginx) presentation about FreeBSD tuning up to 100,000-200,000 active connections. Tunings are for FreeBSD-CURRENT. Since 7.2 amd64 some of them are tuned well by default. Prior 7.0 some of them are boot only (set via /boot/loader.conf) or does not exist at all. sysctl.conf: # No zero mapping feature # May break wine # (There are also reports about broken samba3) #security.bsd.map_at_zero=0 # If you have really busy webserver with apache13 you may run out of processes #kern.maxproc=10000 # Same for servers with apache2 / Pound #kern.threads.max_threads_per_proc=4096 # Max. backlog size kern.ipc.somaxconn=4096 # Shared memory // 7.2+ can use shared memory > 2Gb kern.ipc.shmmax=2147483648 # Sockets kern.ipc.maxsockets=204800 # Can cause this on older kernels: # http://old.nabble.com/Significant-performance-regression-for-increased-maxsockbuf-on-8.0-RELEASE-tt26745981.html#a26745981 ) kern.ipc.maxsockbuf=10485760 # Mbuf 2k clusters (on amd64 7.2+ 25600 is default) # For such high value vm.kmem_size must be increased to 3G kern.ipc.nmbclusters=262144 # Jumbo pagesize(_SC_PAGESIZE) clusters # Used as general packet storage for jumbo frames # can be monitored via `netstat -m` #kern.ipc.nmbjumbop=262144 # Jumbo 9k/16k clusters # If you are using them #kern.ipc.nmbjumbo9=65536 #kern.ipc.nmbjumbo16=32768 # For lower latency you can decrease scheduler's maximum time slice # default: stathz/10 (~ 13) #kern.sched.slice=1 # Increase max command-line length showed in `ps` (e.g for Tomcat/Java) # Default is PAGE_SIZE / 16 or 256 on x86 # This avoids commands to be presented as [executable] in `ps` # For more info see: http://www.freebsd.org/cgi/query-pr.cgi?pr=120749 kern.ps_arg_cache_limit=4096 # Every socket is a file, so increase them kern.maxfiles=204800 kern.maxfilesperproc=200000 kern.maxvnodes=200000 # On some systems HPET is almost 2 times faster than default ACPI-fast # Useful on systems with lots of clock_gettime / gettimeofday calls # See http://old.nabble.com/ACPI-fast-default-timecounter,-but-HPET-83--faster-td23248172.html # After revision 222222 HPET became default: http://svnweb.freebsd.org/base?view=revision&revision=222222 kern.timecounter.hardware=HPET # Small receive space, only usable on http-server, on file server this # should be increased to 65535 or even more #net.inet.tcp.recvspace=8192 # This is useful on Fat-Long-Pipes #net.inet.tcp.recvbuf_max=10485760 #net.inet.tcp.recvbuf_inc=65535 # Small send space is useful for http servers that serve small files # Autotuned since 7.x net.inet.tcp.sendspace=16384 # This is useful on Fat-Long-Pipes #net.inet.tcp.sendbuf_max=10485760 #net.inet.tcp.sendbuf_inc=65535 # Turn off receive autotuning # You can play with it. #net.inet.tcp.recvbuf_auto=0 #net.inet.tcp.sendbuf_auto=0 # This should be enabled if you going to use big spaces (>64k) # Also timestamp field is useful when using syncookies net.inet.tcp.rfc1323=1 # Turn this off on high-speed, lossless connections (LAN 1Gbit+) # If you set it there is no need in TCP_NODELAY sockopt (see man tcp) net.inet.tcp.delayed_ack=0 # This feature is useful if you are serving data over modems, Gigabit Ethernet, # or even high speed WAN links (or any other link with a high bandwidth delay product), # especially if you are also using window scaling or have configured a large send window. # Automatically disables on small RTT ( http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/tcp_subr.c?#rev1.237 ) # This sysctl was removed in 10-CURRENT: # See: http://www.mail-archive.com/[email protected]/msg06178.html #net.inet.tcp.inflight.enable=0 # TCP slowstart algorithm tunings # We assuming we have very fast clients #net.inet.tcp.slowstart_flightsize=100 #net.inet.tcp.local_slowstart_flightsize=100 # Disable randomizing of ports to avoid false RST # Before usage check SA here www.bsdcan.org/2006/papers/ImprovingTCPIP.pdf # (it's also says that port randomization auto-disables at some conn.rates, but I didn't checked it thou) #net.inet.ip.portrange.randomized=0 # Increase portrange # For outgoing connections only. Good for seed-boxes and ftp servers. net.inet.ip.portrange.first=1024 net.inet.ip.portrange.last=65535 # # stops route cache degregation during a high-bandwidth flood # http://www.freebsd.org/doc/en/books/handbook/securing-freebsd.html #net.inet.ip.rtexpire=2 net.inet.ip.rtminexpire=2 net.inet.ip.rtmaxcache=1024 # Security net.inet.ip.redirect=0 net.inet.ip.sourceroute=0 net.inet.ip.accept_sourceroute=0 net.inet.icmp.maskrepl=0 net.inet.icmp.log_redirect=0 net.inet.icmp.drop_redirect=1 net.inet.tcp.drop_synfin=1 # # There is also good example of sysctl.conf with comments: # http://www.thern.org/projects/sysctl.conf # # icmp may NOT rst, helpful for those pesky spoofed # icmp/udp floods that end up taking up your outgoing # bandwidth/ifqueue due to all that outgoing RST traffic. # #net.inet.tcp.icmp_may_rst=0 # Security net.inet.udp.blackhole=1 net.inet.tcp.blackhole=2 # IPv6 Security # For more info see http://www.fosslc.org/drupal/content/security-implications-ipv6 # Disable Node info replies # To see this vulnerability in action run `ping6 -a sglAac ::1` or `ping6 -w ::1` on unprotected node net.inet6.icmp6.nodeinfo=0 # Turn on IPv6 privacy extensions # For more info see proposal http://unix.derkeiler.com/Mailing-Lists/FreeBSD/net/2008-06/msg00103.html net.inet6.ip6.use_tempaddr=1 net.inet6.ip6.prefer_tempaddr=1 # Disable ICMP redirect net.inet6.icmp6.rediraccept=0 # Disable acceptation of RA and auto linklocal generation if you don't use them #net.inet6.ip6.accept_rtadv=0 #net.inet6.ip6.auto_linklocal=0 # Increases default TTL, sometimes useful # Default is 64 net.inet.ip.ttl=128 # Lessen max segment life to conserve resources # ACK waiting time in miliseconds # (default: 30000. RFC from 1979 recommends 120000) net.inet.tcp.msl=5000 # Max bumber of timewait sockets net.inet.tcp.maxtcptw=200000 # Don't use tw on local connections # As of 15 Apr 2009. Igor Sysoev says that nolocaltimewait has some buggy realization. # So disable it or now till get fixed #net.inet.tcp.nolocaltimewait=1 # FIN_WAIT_2 state fast recycle net.inet.tcp.fast_finwait2_recycle=1 # Time before tcp keepalive probe is sent # default is 2 hours (7200000) #net.inet.tcp.keepidle=60000 # Should be increased until net.inet.ip.intr_queue_drops is zero net.inet.ip.intr_queue_maxlen=4096 # Interrupt handling via multiple CPU, but with context switch. # You can play with it. Default is 1; #net.isr.direct=0 # This is for routers only #net.inet.ip.forwarding=1 #net.inet.ip.fastforwarding=1 # This speed ups dummynet when channel isn't saturated net.inet.ip.dummynet.io_fast=1 # Increase dummynet(4) hash #net.inet.ip.dummynet.hash_size=2048 #net.inet.ip.dummynet.max_chain_len # Should be increased when you have A LOT of files on server # (Increase until vfs.ufs.dirhash_mem becomes lower) vfs.ufs.dirhash_maxmem=67108864 # Note from commit http://svn.freebsd.org/base/head@211031 : # For systems with RAID volumes and/or virtualization envirnments, where # read performance is very important, increasing this sysctl tunable to 32 # or even more will demonstratively yield additional performance benefits. vfs.read_max=32 # Explicit Congestion Notification (see http://en.wikipedia.org/wiki/Explicit_Congestion_Notification) net.inet.tcp.ecn.enable=1 # Flowtable - flow caching mechanism # Useful for routers #net.inet.flowtable.enable=1 #net.inet.flowtable.nmbflows=65535 # Extreme polling tuning #kern.polling.burst_max=1000 #kern.polling.each_burst=1000 #kern.polling.reg_frac=100 #kern.polling.user_frac=1 #kern.polling.idle_poll=0 # IPFW dynamic rules and timeouts tuning # Increase dyn_buckets till net.inet.ip.fw.curr_dyn_buckets is lower net.inet.ip.fw.dyn_buckets=65536 net.inet.ip.fw.dyn_max=65536 net.inet.ip.fw.dyn_ack_lifetime=120 net.inet.ip.fw.dyn_syn_lifetime=10 net.inet.ip.fw.dyn_fin_lifetime=2 net.inet.ip.fw.dyn_short_lifetime=10 # Make packets pass firewall only once when using dummynet # i.e. packets going thru pipe are passing out from firewall with accept #net.inet.ip.fw.one_pass=1 # shm_use_phys Wires all shared pages, making them unswappable # Use this to lessen Virtual Memory Manager's work when using Shared Mem. # Useful for databases #kern.ipc.shm_use_phys=1 # ZFS # Enable prefetch. Useful for sequential load type i.e fileserver. # FreeBSD sets vfs.zfs.prefetch_disable to 1 on any i386 systems and # on any amd64 systems with less than 4GB of avaiable memory # For additional info check this nabble thread http://old.nabble.com/Samba-read-speed-performance-tuning-td27964534.html #vfs.zfs.prefetch_disable=0 # On highload servers you may notice following message in dmesg: # "Approaching the limit on PV entries, consider increasing either the # vm.pmap.shpgperproc or the vm.pmap.pv_entry_max tunable" vm.pmap.shpgperproc=2048 loader.conf: # Accept filters for data, http and DNS requests # Useful when your software uses select() instead of kevent/kqueue or when you under DDoS # DNS accf available on 8.0+ accf_data_load="YES" accf_http_load="YES" accf_dns_load="YES" # Async IO system calls aio_load="YES" # Linux specific devices in /dev # As for 8.1 it only /dev/full #lindev_load="YES" # Adds NCQ support in FreeBSD # WARNING! all ad[0-9]+ devices will be renamed to ada[0-9]+ # 8.0+ only #ahci_load="YES" #siis_load="YES" # FreeBSD 8.2+ # New Congestion Control for FreeBSD # http://caia.swin.edu.au/urp/newtcp/tools/cc_chd-readme-0.1.txt # http://www.ietf.org/proceedings/78/slides/iccrg-5.pdf # Initial merge commit message http://www.mail-archive.com/[email protected]/msg31410.html #cc_chd_load="YES" # Increase kernel memory size to 3G. # # Use ONLY if you have KVA_PAGES in kernel configuration, and you have more than 3G RAM # Otherwise panic will happen on next reboot! # # It's required for high buffer sizes: kern.ipc.nmbjumbop, kern.ipc.nmbclusters, etc # Useful on highload stateful firewalls, proxies or ZFS fileservers # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #vm.kmem_size="3G" # If your server has lots of swap (>4Gb) you should increase following value # according to http://lists.freebsd.org/pipermail/freebsd-hackers/2009-October/029616.html # Otherwise you'll be getting errors # "kernel: swap zone exhausted, increase kern.maxswzone" # kern.maxswzone="256M" # Older versions of FreeBSD can't tune maxfiles on the fly #kern.maxfiles="200000" # Useful for databases # Sets maximum data size to 1G # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #kern.maxdsiz="1G" # Maximum buffer size(vfs.maxbufspace) # You can check current one via vfs.bufspace # Should be lowered/upped depending on server's load-type # Usually decreased to preserve kmem # (default is 10% of mem) #kern.maxbcache="512M" # Sendfile buffers # For i386 only #kern.ipc.nsfbufs=10240 # FreeBSD 9+ # HPET "legacy route" support. It should allow HPET to work per-CPU # See http://www.mail-archive.com/[email protected]/msg03603.html #hint.atrtc.0.clock=0 #hint.attimer.0.clock=0 #hint.hpet.0.legacy_route=1 # syncache Hash table tuning net.inet.tcp.syncache.hashsize=1024 net.inet.tcp.syncache.bucketlimit=512 net.inet.tcp.syncache.cachelimit=65536 # Increased hostcache # Later host cache can be viewed via net.inet.tcp.hostcache.list hidden sysctl # Very useful for it's RTT RTTVAR # Must be power of two net.inet.tcp.hostcache.hashsize=65536 # hashsize * bucketlimit (which is 30 by default) # It allocates 255Mb (1966080*136) of RAM net.inet.tcp.hostcache.cachelimit=1966080 # TCP control-block Hash table tuning net.inet.tcp.tcbhashsize=4096 # Disable ipfw deny all # Should be uncommented when there is a chance that # kernel and ipfw binary may be out-of sync on next reboot #net.inet.ip.fw.default_to_accept=1 # # SIFTR (Statistical Information For TCP Research) is a kernel module that # logs a range of statistics on active TCP connections to a log file. # See prerelease notes http://groups.google.com/group/mailing.freebsd.current/browse_thread/thread/b4c18be6cdce76e4 # and man 4 sitfr #siftr_load="YES" # Enable superpages, for 7.2+ only # Also read http://lists.freebsd.org/pipermail/freebsd-hackers/2009-November/030094.html vm.pmap.pg_ps_enabled=1 # Usefull if you are using Intel-Gigabit NIC #hw.em.rxd=4096 #hw.em.txd=4096 #hw.em.rx_process_limit="-1" # Also if you have ALOT interrupts on NIC - play with following parameters # NOTE: You should set them for every NIC #dev.em.0.rx_int_delay: 250 #dev.em.0.tx_int_delay: 250 #dev.em.0.rx_abs_int_delay: 250 #dev.em.0.tx_abs_int_delay: 250 # There is also multithreaded version of em/igb drivers can be found here: # http://people.yandex-team.ru/~wawa/ # # for additional em monitoring and statistics use # sysctl dev.em.0.stats=1 ; dmesg # sysctl dev.em.0.debug=1 ; dmesg # Also after r209242 (-CURRENT) there is a separate sysctl for each stat variable; # Same tunings for igb #hw.igb.rxd=4096 #hw.igb.txd=4096 #hw.igb.rx_process_limit=100 # Some useful netisr tunables. See sysctl net.isr #net.isr.maxthreads=4 #net.isr.defaultqlimit=4096 #net.isr.maxqlimit: 10240 # Bind netisr threads to CPUs #net.isr.bindthreads=1 # # FreeBSD 9.x+ # Increase interface send queue length # See commit message http://svn.freebsd.org/viewvc/base?view=revision&revision=207554 #net.link.ifqmaxlen=1024 # Nicer boot logo =) loader_logo="beastie" And finally here is KERNCONF: # Just some of them, see also # cat /sys/{i386,amd64,}/conf/NOTES # This one useful only on i386 #options KVA_PAGES=512 # You can play with HZ in environments with high interrupt rate (default is 1000) # 100 is for my notebook to prolong it's battery life #options HZ=100 # Polling is goot on network loads with high packet rates and low-end NICs # NB! Do not enable it if you want more than one netisr thread #options DEVICE_POLLING # Eliminate datacopy on socket read-write # To take advantage with zero copy sockets you should have an MTU >= 4k # This req. is only for receiving data. # Read more in man zero_copy_sockets # Also this epic thread on kernel trap: # http://kerneltrap.org/node/6506 # Here Linus says that "anybody that does it that way (FreeBSD) is totally incompetent" #options ZERO_COPY_SOCKETS # Support TCP sign. Used for IPSec options TCP_SIGNATURE # There was stackoverflow found in KAME IPSec stack: # See http://secunia.com/advisories/43995/ # For quick workaround you can use `ipfw add deny proto ipcomp` options IPSEC # This ones can be loaded as modules. They described in loader.conf section #options ACCEPT_FILTER_DATA #options ACCEPT_FILTER_HTTP # Adding ipfw, also can be loaded as modules options IPFIREWALL # On 8.1+ you can disable verbose to see blocked packets on ipfw0 interface. # Also there is no point in compiling verbose into the kernel, because # now there is net.inet.ip.fw.verbose tunable. #options IPFIREWALL_VERBOSE #options IPFIREWALL_VERBOSE_LIMIT=10 options IPFIREWALL_FORWARD # Adding kernel NAT options IPFIREWALL_NAT options LIBALIAS # Traffic shaping options DUMMYNET # Divert, i.e. for userspace NAT options IPDIVERT # This is for OpenBSD's pf firewall device pf device pflog # pf's QoS - ALTQ options ALTQ options ALTQ_CBQ # Class Bases Queuing (CBQ) options ALTQ_RED # Random Early Detection (RED) options ALTQ_RIO # RED In/Out options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC) options ALTQ_PRIQ # Priority Queuing (PRIQ) options ALTQ_NOPCC # Required for SMP build # Pretty console # Manual can be found here http://forums.freebsd.org/showthread.php?t=6134 #options VESA #options SC_PIXEL_MODE # Disable reboot on Ctrl Alt Del #options SC_DISABLE_REBOOT # Change normal|kernel messages color options SC_NORM_ATTR=(FG_GREEN|BG_BLACK) options SC_KERNEL_CONS_ATTR=(FG_YELLOW|BG_BLACK) # More scroll space options SC_HISTORY_SIZE=8192 # Adding hardware crypto device device crypto device cryptodev # Useful network interfaces device vlan device tap #Virtual Ethernet driver device gre #IP over IP tunneling device if_bridge #Bridge interface device pfsync #synchronization interface for PF device carp #Common Address Redundancy Protocol device enc #IPsec interface device lagg #Link aggregation interface device stf #IPv4-IPv6 port # Also for my notebook, but may be used with Opteron device amdtemp # Same for Intel processors device coretemp # man 4 cpuctl device cpuctl # CPU control pseudo-device # Support for ECMP. More than one route for destination # Works even with default route so one can use it as LB for two ISP # For now code is unstable and panics (panic: rtfree 2) on route deletions. #options RADIX_MPATH # Multicast routing #options MROUTING #options PIM # Debug & DTrace options KDB # Kernel debugger related code options KDB_TRACE # Print a stack trace for a panic options KDTRACE_FRAME # amd64-only(?) options KDTRACE_HOOKS # all architectures - enable general DTrace hooks #options DDB #options DDB_CTF # all architectures - kernel ELF linker loads CTF data # Adaptive spining in lockmgr (8.x+) # See http://www.mail-archive.com/[email protected]/msg10782.html options ADAPTIVE_LOCKMGRS # UTF-8 in console (8.x+) #options TEKEN_UTF8 # FreeBSD 8.1+ # Deadlock resolver thread # For additional information see http://www.mail-archive.com/[email protected]/msg18124.html # (FYI: "resolution" is panic so use with caution) #options DEADLKRES # Increase maximum size of Raw I/O and sendfile(2) readahead #options MAXPHYS=(1024*1024) #options MAXBSIZE=(1024*1024) # For scheduler debug enable following option. # Debug will be available via `kern.sched.stats` sysctl # For more information see http://svnweb.freebsd.org/base/head/sys/conf/NOTES?view=markup #options SCHED_STATS If you are tuning network for maximum performance you may wish to play with ifconfig options like: # You can list all capabilities via `ifconfig -m` ifconfig [-]rxcsum [-]txcsum [-]tso [-]lro mtu In case you've enabled DDB in kernel config, you should edit your /etc/ddb.conf and add something like this to enable automatic reboot (and textdump as bonus): script kdb.enter.panic=textdump set; capture on; show pcpu; bt; ps; alltrace; capture off; call doadump; reset script kdb.enter.default=textdump set; capture on; bt; ps; capture off; call doadump; reset And do not forget to add ddb_enable="YES" to /etc/rc.conf Since FreeBSD 9 you can select to enable/disable flowcontrol on your NIC: # See http://en.wikipedia.org/wiki/Ethernet_flow_control and # http://www.mail-archive.com/[email protected]/msg07927.html for additional info ifconfig bge0 media auto mediaopt flowcontrol PS. Also most of FreeBSD's limits can be monitored by # vmstat -z and # limits PPS. variety of network counters can be monitored via # netstat -s In FreeBSD-9 netstat's -Q option appeared, try following command to display netisr stats # netstat -Q PPPS. also see # man 7 tuning PPPPS. I wanted to thank FreeBSD community, especially author of nginx - Igor Sysoev, nginx-ru@ and FreeBSD-performance@ mailing lists for providing useful information about FreeBSD tuning. FreeBSD WIP * Whats cooking for FreeBSD 7? * Whats cooking for FreeBSD 8? * Whats cooking for FreeBSD 9? So here is the question: What tunings are you using on yours FreeBSD servers? You can also post your /etc/sysctl.conf, /boot/loader.conf, kernel options, etc with description of its' meaning (do not copy-paste from sysctl -d). Don't forget to specify server type (web, smb, gateway, etc) Let's share experience!

    Read the article

  • Oracle Support Master Note for Troubleshooting Advanced Queuing and Oracle Streams Propagation Issues (Doc ID 233099.1)

    - by faye.todd(at)oracle.com
    Master Note for Troubleshooting Advanced Queuing and Oracle Streams Propagation Issues (Doc ID 233099.1) Copyright (c) 2010, Oracle Corporation. All Rights Reserved. In this Document  Purpose  Last Review Date  Instructions for the Reader  Troubleshooting Details     1. Scope and Application      2. Definitions and Classifications     3. How to Use This Guide     4. Basic AQ Propagation Troubleshooting     5. Additional Troubleshooting Steps for AQ Propagation of User-Enqueued and Dequeued Messages     6. Additional Troubleshooting Steps for Propagation in an Oracle Streams Environment     7. Performance Issues  References Applies to: Oracle Server - Enterprise Edition - Version: 8.1.7.0 to 11.2.0.2 - Release: 8.1.7 to 11.2Information in this document applies to any platform. Purpose This document presents a step-by-step methodology for troubleshooting and resolving problems with Advanced Queuing Propagation in both Streams and basic Advanced Queuing environments. It also serves as a master reference for other more specific notes on Oracle Streams Propagation and Advanced Queuing Propagation issues. Last Review Date December 20, 2010 Instructions for the Reader A Troubleshooting Guide is provided to assist in debugging a specific issue. When possible, diagnostic tools are included in the document to assist in troubleshooting. Troubleshooting Details 1. Scope and Application This note is intended for Database Administrators of Oracle databases where issues are being encountered with propagating messages between advanced queues, whether the queues are used for user-created messaging systems or for Oracle Streams. It contains troubleshooting steps and links to notes for further problem resolution.It can also be used a template to document a problem when it is necessary to engage Oracle Support Services. Knowing what is NOT happening can frequently speed up the resolution process by focusing solely on the pertinent problem area. This guide is divided into five parts: Section 2: Definitions and Classifications (discusses the different types and features of propagations possible - helpful for understanding the rest of the guide) Section 3: How to Use this Guide (to be used as a start part for determining the scope of the problem and what sections to consult) Section 4. Basic AQ propagation troubleshooting (applies to both AQ propagation of user enqueued and dequeued messages as well as Oracle Streams propagations) Section 5. Additional troubleshooting steps for AQ propagation of user enqueued and dequeued messages Section 6. Additional troubleshooting steps for Oracle Streams propagation Section 7. Performance issues 2. Definitions and Classifications Given the potential scope of issues that can be encountered with AQ propagation, the first recommended step is to do some basic diagnosis to determine the type of problem that is being encountered. 2.1. What Type of Propagation is Being Used? 2.1.1. Buffered Messaging For an advanced queue, messages can be maintained on disk (persistent messaging) or in memory (buffered messaging). To determine if a queue is buffered or not, reference the GV_$BUFFERED_QUEUES view. If the queue does not appear in this view, it is persistent. 2.1.2. Propagation mode - queue-to-dblink vs queue-to-queue As of 10.2, an AQ propagation can also be defined as queue-to-dblink, or queue-to-queue: queue-to-dblink: The propagation delivers messages or events from the source queue to all subscribing queues at the destination database identified by the dblink. A single propagation schedule is used to propagate messages to all subscribing queues. Hence any changes made to this schedule will affect message delivery to all the subscribing queues. This mode does not support multiple propagations from the same source queue to the same target database. queue-to-queue: Added in 10.2, this propagation mode delivers messages or events from the source queue to a specific destination queue identified on the database link. This allows the user to have fine-grained control on the propagation schedule for message delivery. This new propagation mode also supports transparent failover when propagating to a destination Oracle RAC system. With queue-to-queue propagation, you are no longer required to re-point a database link if the owner instance of the queue fails on Oracle RAC. This mode supports multiple propagations to the same target database if the target queues are different. The default is queue-to-dblink. To verify if queue-to-queue propagation is being used, in non-Streams environments query DBA_QUEUE_SCHEDULES.DESTINATION - if a remote queue is listed along with the remote database link, then queue-to-queue propagation is being used. For Streams environments, the DBA_PROPAGATION.QUEUE_TO_QUEUE column can be checked.See the following note for a method to switch between the two modes:Document 827473.1 How to alter propagation from queue-to-queue to queue-to-dblink 2.1.3. Combined Capture and Apply (CCA) for Streams In 11g Oracle Streams environments, an optimization called Combined Capture and Apply (CCA) is implemented by default when possible. Although a propagation is configured in this case, Streams does not use it; instead it passes information directly from capture to an apply receiver. To see if CCA is in use: COLUMN CAPTURE_NAME HEADING 'Capture Name' FORMAT A30COLUMN OPTIMIZATION HEADING 'CCA Mode?' FORMAT A10SELECT CAPTURE_NAME, DECODE(OPTIMIZATION,0, 'No','Yes') OPTIMIZATIONFROM V$STREAMS_CAPTURE; Also, see the following note:Document 463820.1 Streams Combined Capture and Apply in 11g 2.2. Queue Table Compatibility There are three types of queue table compatibility. In more recent databases, queue tables may be present in all three modes of compatibility: 8.0 - earliest version, deprecated in 10.2 onwards 8.1 - support added for RAC, asynchronous notification, secure queues, queue level access control, rule-based subscribers, separate storage of history information 10.0 - if the database is in 10.1-compatible mode, then the default value for queue table compatibility is 10.0 2.3. Single vs Multiple Consumer Queue Tables If more than one recipient can dequeue a message from a queue, then its queue table is multiple consumer. You can propagate messages from a multiple-consumer queue to a single-consumer queue. Propagation from a single-consumer queue to a multiple-consumer queue is not possible. 3. How to Use This Guide 3.1. Are Messages Being Propagated at All, or is the Propagation Just Slow? Run the following query on the source database for the propagation (assuming that it is running): select TOTAL_NUMBER from DBA_QUEUE_SCHEDULES where QNAME='<source_queue_name>'; If TOTAL_NUMBER is increasing, then propagation is most likely functioning, although it may be slow. For performance issues, see Section 7. 3.2. Propagation Between Persistent User-Created Queues See Sections 4 and 5 (and optionally Section 6 if performance is an issue). 3.3. Propagation Between Buffered User-Created Queues See Sections 4, 5, and 6 (and optionally Section 7 if performance is an issue). 3.4. Propagation between Oracle Streams Queues (without Combined Capture and Apply (CCA) Optimization) See Sections 4 and 6 (and optionally Section 7 if performance is an issue). 3.5. Propagation between Oracle Streams Queues (with Combined Capture and Apply (CCA) Optimization) Although an AQ propagation is not used directly in this case, some characteristics of the message transfer are inferred from the propagation parameters used. Some parts of Sections 4 and 6 still apply. 3.6. Messaging Gateway Propagations This note does not apply to Messaging Gateway propagations. 4. Basic AQ Propagation Troubleshooting 4.1. Double-check Your Code Make sure that you are consistent in your usage of the database link(s) names, queue names, etc. It may be useful to plot a diagram of which queues are connected via which database links to make sure that the logical structure is correct. 4.2. Verify that Job Queue Processes are Running 4.2.1. Versions 10.2 and Lower - DBA_JOBS Package For versions 10.2 and lower, a scheduled propagation is managed by DBMS_JOB package. The propagation is performed by job queue process background processes. Therefore we need to verify that there are sufficient processes available for the propagation process. We should have at least 4 job queue processes running and preferably more depending on the number of other jobs running in the database. It should be noted that for AQ specific work, AQ will only ever use half of the job queue processes available.An issue caused by an inadequate job queue processes parameter setting is described in the following note:Document 298015.1 Kwqjswproc:Excep After Loop: Assigning To Self 4.2.1.1. Job Queue Processes in Initalization Parameter File The parameter JOB_QUEUE_PROCESSES in the init.ora/spfile should be > 0. The value can be changed dynamically via connect / as sysdbaalter system set JOB_QUEUE_PROCESSES=10; 4.2.1.2. Job Queue Processes in Memory The following command will show how many job queue processes are currentlyin use by this instance (this may be different than what is in the init.ora/spfile): connect / as sysdbashow parameter job; 4.2.1.3. OS PIDs Corresponding to Job Queue Processes Identify the operating system process ids (spids) of job queue processes involved in propagation via select p.SPID, p.PROGRAM from V$PROCESS p, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j where s.SID=jr.SID and s.PADDR=p.ADDR and jr.JOB=j.JOBand j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%'; and these SPIDs can be used to check at the operating system level that they exist.In 8i a job queue process will have a name similar to: ora_snp1_<instance_name>.In 9i onwards you will see a coordinator process: ora_cjq0_ and multiple slave processes: ora_jnnn_<instance_name>, where nnn is an integer between 1 and 999. 4.2.2. Version 11.1 and Above - Oracle Scheduler In version 11.1 and above, Oracle Scheduler is used to perform AQ and Streams propagations. Oracle Scheduler automatically tunes the number of slave processes for these jobs based on the load on the computer system, and the JOB_QUEUE_PROCESSES initialization parameter is only used to specify the maximum number of slave processes. Therefore, the JOB_QUEUE_PROCESSES initialization parameter does not need to be set (it defaults to a very high number), unless you want to limit the number of slaves that can be created. If JOB_QUEUE_PROCESSES = 0, no propagation jobs will run.See the following note for a discussion of Oracle Streams 11g and Oracle Scheduler:Document 1083608.1 11g Streams and Oracle Scheduler 4.2.2.1. Job Queue Processes in Initalization Parameter File The parameter JOB_QUEUE_PROCESSES in the init.ora/spfile should be > 0, and preferably be left at its default value. The value can be changed dynamically via connect / as sysdbaalter system set JOB_QUEUE_PROCESSES=10; To set the JOB_QUEUE_PROCESSES parameter to its default value, run: connect / as sysdbaalter system reset JOB_QUEUE_PROCESSES; and then bounce the instance. 4.2.2.2. Job Queue Processes in Memory The following command will show how many job queue processes are currently in use by this instance (this may be different than what is in the init.ora/spfile): connect / as sysdbashow parameter job; 4.2.2.3. OS PIDs Corresponding to Job Queue Processes Identify the operating system process ids (SPIDs) of job queue processes involved in propagation via col PROGRAM for a30select p.SPID, p.PROGRAM, j.JOB_namefrom v$PROCESS p, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j where s.SID=jr.SESSION_ID and s.PADDR=p.ADDRand jr.JOB_name=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%'; and these SPIDs can be used to check at the operating system level that they exist.You will see a coordinator process: ora_cjq0_ and multiple slave processes: ora_jnnn_<instance_name>, where nnn is an integer between 1 and 999. 4.3. Check the Alert Log and Any Associated Trace Files The first place to check for propagation failures is the alert logs at all sites (local and if relevant all remote sites). When a job queue process attempts to execute a schedule and fails it will always write an error stack to the alert log. This error stack will also be written in a job queue process trace file, which will be written to the BACKGROUND_DUMP_DEST location for 10.2 and below, and in the DIAGNOSTIC_DEST location for 11g. The fact that errors are written to the alert log demonstrates that the schedule is executing. This means that the problem could be with the set up of the schedule. In this example the ORA-02068 demonstrates that the failure was at the remote site. Further investigation revealed that the remote database was not open, hence the ORA-03114 error. Starting the database resolved the problem. Thu Feb 14 10:40:05 2002 Propagation Schedule for (AQADM.MULTIPLEQ, SHANE816.WORLD) encountered following error:ORA-04052: error occurred when looking up Remote object [email protected]: error occurred at recursive SQL level 4ORA-02068: following severe error from SHANE816ORA-03114: not connected to ORACLEORA-06512: at "SYS.DBMS_AQADM_SYS", line 4770ORA-06512: at "SYS.DBMS_AQADM", line 548ORA-06512: at line 1 Other potential errors that may be written to the alert log can be found in the following notes:Document 827184.1 AQ Propagation with CLOB data types Fails with ORA-22990 (11.1)Document 846297.1 AQ Propagation Fails : ORA-00600[kope2upic2954] or Ora-00600[Kghsstream_copyn] (10.2, 11.1)Document 731292.1 ORA-25215 Reported on Local Propagation When Using Transformation with ANYDATA queue tables (10.2, 11.1, 11.2)Document 365093.1 ORA-07445 [kwqppay2aqe()+7360] Reported on Propagation of a Transformed Message (10.1, 10.2)Document 219416.1 Advanced Queuing Propagation Fails with ORA-22922 (9.0)Document 1203544.1 AQ Propagation Aborted with ORA-600 [ociksin: invalid status] on SYS.DBMS_AQADM_SYS.AQ$_PROPAGATION_PROCEDURE After Upgrade (11.1, 11.2)Document 1087324.1 ORA-01405 ORA-01422 reported by Advanced Queuing Propagation schedules after RAC reconfiguration (10.2)Document 1079577.1 Advanced Queuing Propagation Fails With "ORA-22370 incorrect usage of method" (9.2, 10.2, 11.1, 11.2)Document 332792.1 ORA-04061 error relating to SYS.DBMS_PRVTAQIP reported when setting up Statspack (8.1, 9.0, 9.2, 10.1)Document 353325.1 ORA-24056: Internal inconsistency for QUEUE <queue_name> and destination <dblink> (8.1, 9.0, 9.2, 10.1, 10.2, 11.1, 11.2)Document 787367.1 ORA-22275 reported on Propagating Messages with LOB component when propagating between 10.1 and 10.2 (10.1, 10.2)Document 566622.1 ORA-22275 when propagating >4K AQ$_JMS_TEXT_MESSAGEs from 9.2.0.8 to 10.2.0.1 (9.2, 10.1)Document 731539.1 ORA-29268: HTTP client error 401 Unauthorized Error when the AQ Servlet attempts to Propagate a message via HTTP (9.0, 9.2, 10.1, 10.2, 11.1)Document 253131.1 Concurrent Writes May Corrupt LOB Segment When Using Auto Segment Space Management (ORA-1555) (9.2)Document 118884.1 How to unschedule a propagation schedule stuck in pending stateDocument 222992.1 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE Returns ORA-24082Document 282987.1 Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueDocument 1204080.1 AQ Propagation Failing With ORA-25329 After Upgraded From 8i or 9i to 10g or 11g.Document 1233675.1 AQ Propagation stops after upgrade to 11.2.0.1 ORA-30757 4.3.1. Errors Related to Incorrect Network Configuration The most common propagation errors result from an incorrect network configuration. The list below contains common errors caused by tnsnames.ora file or database links being configured incorrectly: - ORA-12154: TNS:could not resolve service name- ORA-12505: TNS:listener does not currently know of SID given in connect descriptor- ORA-12514: TNS:listener could not resolve SERVICE_NAME - ORA-12541: TNS-12541 TNS:no listener 4.4. Check the Database Links Exist and are Functioning Correctly For schedules to remote databases confirm the database link exists via. SQL> col DBLINK for a45SQL> select QNAME, NVL(REGEXP_SUBSTR(DESTINATION, '[^@]+', 1, 2), DESTINATION) dblink2 from DBA_QUEUE_SCHEDULES3 where MESSAGE_DELIVERY_MODE = 'PERSISTENT';QNAME DBLINK------------------------------ ---------------------------------------------MY_QUEUE ORCL102B.WORLD Connect as the owner of the link and select across it to verify it works and connects to the database we expect. i.e. select * from ALL_QUEUES@ ORCL102B.WORLD; You need to ensure that the userid that scheduled the propagation (using DBMS_AQADM.SCHEDULE_PROPAGATION or DBMS_PROPAGATION_ADM.CREATE_PROPAGATION if using Streams) has access to the database link for the destination. 4.5. Has Propagation Been Correctly Scheduled? Check that the propagation schedule has been created and that a job queue process has been assigned. Look for the entry in DBA_QUEUE_SCHEDULES and SYS.AQ$_SCHEDULES for your schedule. For 10g and below, check that it has a JOBNO entry in SYS.AQ$_SCHEDULES, and that there is an entry in DBA_JOBS with that JOBNO. For 11g and above, check that the schedule has a JOB_NAME entry in SYS.AQ$_SCHEDULES, and that there is an entry in DBA_SCHEDULER_JOBS with that JOB_NAME. Check the destination is as intended and spelled correctly. SQL> select SCHEMA, QNAME, DESTINATION, SCHEDULE_DISABLED, PROCESS_NAME from DBA_QUEUE_SCHEDULES;SCHEMA QNAME DESTINATION S PROCESS------- ---------- ------------------ - -----------AQADM MULTIPLEQ AQ$_LOCAL N J000 AQ$_LOCAL in the destination column shows that the queue to which we are propagating to is in the same database as the source queue. If the propagation was to a remote (different) database, a database link will be in the DESTINATION column. The entry in the SCHEDULE_DISABLED column, N, means that the schedule is NOT disabled. If Y (yes) appears in this column, propagation is disabled and the schedule will not be executed. If not using Oracle Streams, propagation should resume once you have enabled the schedule by invoking DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE (for 10.2 Oracle Streams and above, the DBMS_PROPAGATION_ADM.START_PROPAGATION procedure should be used). The PROCESS_NAME is the name of the job queue process currently allocated to execute the schedule. This process is allocated dynamically at execution time. If the PROCESS_NAME column is null (empty) the schedule is not currently executing. You may need to execute this statement a number of times to verify if a process is being allocated. If a process is at some time allocated to the schedule, it is attempting to execute. SQL> select SCHEMA, QNAME, LAST_RUN_DATE, NEXT_RUN_DATE from DBA_QUEUE_SCHEDULES;SCHEMA QNAME LAST_RUN_DATE NEXT_RUN_DATE------ ----- ----------------------- ----------------------- AQADM MULTIPLEQ 13-FEB-2002 13:18:57 13-FEB-2002 13:20:30 In 11g, these dates are expressed in TIMESTAMP WITH TIME ZONE datatypes. If the NEXT_RUN_DATE and NEXT_RUN_TIME columns are null when this statement is executed, the scheduled propagation is currently in progress. If they never change it would suggest that the schedule itself is never executing. If the next scheduled execution is too far away, change the NEXT_TIME parameter of the schedule so that schedules are executed more frequently (assuming that the window is not set to be infinite). Parameters of a schedule can be changed using the DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE call. In 10g and below, scheduling propagation posts a job in the DBA_JOBS view. The columns are more or less the same as DBA_QUEUE_SCHEDULES so you just need to recognize the job and verify that it exists. SQL> select JOB, WHAT from DBA_JOBS where WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%';JOB WHAT---- ----------------- 720 next_date := sys.dbms_aqadm.aq$_propaq(job); For 11g, scheduling propagation posts a job in DBA_SCHEDULER_JOBS instead: SQL> select JOB_NAME from DBA_SCHEDULER_JOBS where JOB_NAME like 'AQ_JOB$_%';JOB_NAME------------------------------AQ_JOB$_41 If no job exists, check DBA_QUEUE_SCHEDULES to make sure that the schedule has not been disabled. For 10g and below, the job number is dynamic for AQ propagation schedules. The procedure that is executed to expedite a propagation schedule runs, removes itself from DBA_JOBS, and then reposts a new job for the next scheduled propagation. The job number should therefore always increment unless the schedule has been set up to run indefinitely. 4.6. Is the Schedule Executing but Failing to Complete? Run the following query: SQL> select FAILURES, LAST_ERROR_MSG from DBA_QUEUE_SCHEDULES;FAILURES LAST_ERROR_MSG------------ -----------------------1 ORA-25207: enqueue failed, queue AQADM.INQ is disabled from enqueueingORA-02063: preceding line from SHANE816 The failures column shows how many times we have attempted to execute the schedule and failed. Oracle will attempt to execute the schedule 16 times after which it will be removed from the DBA_JOBS or DBA_SCHEDULER_JOBS view and the schedule will become disabled. The column DBA_QUEUE_SCHEDULES.SCHEDULE_DISABLED will show 'Y'. For 11g and above, the DBA_SCHEDULER_JOBS.STATE column will show 'BROKEN' for the job corresponding to DBA_QUEUE_SCHEDULES.JOB_NAME. Prior to 10g the back off algorithm for failures was exponential, whereas from 10g onwards it is linear. The propagation will become disabled on the 17th attempt. Only the last execution failure will be reflected in the LAST_ERROR_MSG column. That is, if the schedule fails 5 times for 5 different reasons, only the last set of errors will be recorded in DBA_QUEUE_SCHEDULES. Any errors need to be resolved to allow propagation to continue. If propagation has also become disabled due to 17 failures, first resolve the reason for the error and then re-enable the schedule using the DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE procedure, or DBMS_PROPAGATION_ADM.START_PROPAGATION if using 10.2 or above Oracle Streams. As soon as the schedule executes successfully the error message entries will be deleted. Oracle does not keep a history of past failures. However, when using Oracle Streams, the errors will be retained in the DBA_PROPAGATION view even after the schedule resumes successfully. See the following note for instructions on how to clear out the errors from the DBA_PROPAGATION view:Document 808136.1 How to clear the old errors from DBA_PROPAGATION view?If a schedule is active and no errors are being reported then the source queue may not have any messages to be propagated. 4.7. Do the Propagation Notification Queue Table and Queue Exist? Check to see that the propagation notification queue table and queue exist and are enabled for enqueue and dequeue. Propagation makes use of the propagation notification queue for handling propagation run-time events, and the messages in this queue are stored in a SYS-owned queue table. This queue should never be stopped or dropped and the corresponding queue table never be dropped. 10g and belowThe propagation notification queue table is of the format SYS.AQ$_PROP_TABLE_n, where 'n' is the RAC instance number, i.e. '1' for a non-RAC environment. This queue and queue table are created implicitly when propagation is first scheduled. If propagation has been scheduled and these objects do not exist, try unscheduling and rescheduling propagation. If they still do not exist contact Oracle Support. SQL> select QUEUE_TABLE from DBA_QUEUE_TABLES2 where QUEUE_TABLE like '%PROP_TABLE%' and OWNER = 'SYS';QUEUE_TABLE------------------------------AQ$_PROP_TABLE_1SQL> select NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED2 from DBA_QUEUES where owner='SYS'3 and QUEUE_TABLE like '%PROP_TABLE%';NAME ENQUEUE DEQUEUE------------------------------ ------- -------AQ$_PROP_NOTIFY_1 YES YESAQ$_AQ$_PROP_TABLE_1_E NO NO If the AQ$_PROP_NOTIFY_1 queue is not enabled for enqueue or dequeue, it should be so enabled using DBMS_AQADM.START_QUEUE. However, the exception queue AQ$_AQ$_PROP_TABLE_1_E should not be enabled for enqueue or dequeue.11g and aboveThe propagation notification queue table is of the format SYS.AQ_PROP_TABLE, and is created when the database is created. If they do not exist, contact Oracle Support. SQL> select QUEUE_TABLE from DBA_QUEUE_TABLES2 where QUEUE_TABLE like '%PROP_TABLE%' and OWNER = 'SYS';QUEUE_TABLE------------------------------AQ_PROP_TABLESQL> select NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED2 from DBA_QUEUES where owner='SYS'3 and QUEUE_TABLE like '%PROP_TABLE%';NAME ENQUEUE DEQUEUE------------------------------ ------- -------AQ_PROP_NOTIFY YES YESAQ$_AQ_PROP_TABLE_E NO NO If the AQ_PROP_NOTIFY queue is not enabled for enqueue or dequeue, it should be so enabled using DBMS_AQADM.START_QUEUE. However, the exception queue AQ$_AQ$_PROP_TABLE_E should not be enabled for enqueue or dequeue. 4.8. Does the Remote Queue Exist and is it Enabled for Enqueueing? Check that the remote queue the propagation is transferring messages to exists and is enabled for enqueue: SQL> select DESTINATION from USER_QUEUE_SCHEDULES where QNAME = 'OUTQ';DESTINATION-----------------------------------------------------------------------------"AQADM"."INQ"@M2V102.ESSQL> select OWNER, NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED from [email protected];OWNER NAME ENQUEUE DEQUEUE-------- ------ ----------- -----------AQADM INQ YES YES 4.9. Do the Target and Source Database Charactersets Differ? If a message fails to propagate, check the database charactersets of the source and target databases. Investigate whether the same message can propagate between the databases with the same characterset or it is only a particular combination of charactersets which causes a problem. 4.10. Check the Queue Table Type Agreement Propagation is not possible between queue tables which have types that differ in some respect. One way to determine if this is the case is to run the DBMS_AQADM.VERIFY_QUEUE_TYPES procedure for the two queues that the propagation operates on. If the types do not agree, DBMS_AQADM.VERIFY_QUEUE_TYPES will return '0'.For AQ propagation between databases which have different NLS_LENGTH_SEMANTICS settings, propagation will not work, unless the queues are Oracle Streams ANYDATA queues.See the following notes for issues caused by lack of type agreement:Document 1079577.1 Advanced Queuing Propagation Fails With "ORA-22370: incorrect usage of method"Document 282987.1 Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueDocument 353754.1 Streams Messaging Propagation Fails between Single and Multi-byte Charactersets when using Chararacter Length Semantics in the ADT 4.11. Enable Propagation Tracing 4.11.1. System Level This is set it in the init.ora/spfile as follows: event="24040 trace name context forever, level 10" and restart the instanceThis event cannot be set dynamically with an alter system command until version 10.2: SQL> alter system set events '24040 trace name context forever, level 10'; To unset the event: SQL> alter system set events '24040 trace name context off'; Debugging information will be logged to job queue trace file(s) (jnnn) as propagation takes place. You can check the trace file for errors, and for statements indicating that messages have been sent. For the most part the trace information is understandable. This trace should also be uploaded to Oracle Support if a service request is created. 4.11.2. Attaching to a Specific Process We can also attach to an existing job queue processes that is running a propagation schedule and trace it individually using the oradebug utility, as follows:10.2 and below connect / as sysdbaselect p.SPID, p.PROGRAM from v$PROCESS p, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j where s.SID=jr.SID and s.PADDR=p.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%';-- For the process id (SPID) attach to it via oradebug and generate the following traceoradebug setospid <SPID>oradebug unlimitoradebug Event 10046 trace name context forever, level 12oradebug Event 24040 trace name context forever, level 10-- Trace the process for 5 minutesoradebug Event 10046 trace name context offoradebug Event 24040 trace name context off-- The following command returns the pathname/filename to the file being written tooradebug tracefile_name 11g connect / as sysdbacol PROGRAM for a30select p.SPID, p.PROGRAM, j.JOB_NAMEfrom v$PROCESS p, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j where s.SID=jr.SESSION_ID and s.PADDR=p.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%';-- For the process id (SPID) attach to it via oradebug and generate the following traceoradebug setospid <SPID>oradebug unlimitoradebug Event 10046 trace name context forever, level 12oradebug Event 24040 trace name context forever, level 10-- Trace the process for 5 minutesoradebug Event 10046 trace name context offoradebug Event 24040 trace name context off-- The following command returns the pathname/filename to the file being written tooradebug tracefile_name 4.11.3. Further Tracing The previous tracing steps only trace the job queue process executing the propagation on the source. At times it is useful to trace the propagation receiver process (the session which is enqueueing the messages into the target queue) on the target database which is associated with the job queue process on the source database.These following queries provide ways of identifying the processes involved in propagation so that you can attach to them via oradebug to generate trace information.In order to identify the propagation receiver process you need to execute the query as a user with privileges to access the v$ views in both the local and remote databases so the database link must connect as a user with those privileges in the remote database. The <DBLINK> in the queries should be replaced by the appropriate database link.The queries have two forms due to the differences between operating systems. The value returned by 'Rem Process' is the operating system identifier of the propagation receiver on the remote database. Once identified, this process can be attached to and traced on the remote database using the commands given in Section 4.11.2.10.2 and below - Windows select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from v$PROCESS pl, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SID and s.PADDR=pl.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%' and pl.SPID=substr(sr.PROCESS, instr(sr.PROCESS,':')+1); 10.2 and below - Unix select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SID and s.PADDR=pl.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%' and pl.SPID=sr.PROCESS; 11g - Windows select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SESSION_ID and s.PADDR=pl.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%%' and pl.SPID=substr(sr.PROCESS, instr(sr.PROCESS,':')+1); 11g - Unix select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SESSION_ID and s.PADDR=pl.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%%' and pl.SPID=sr.PROCESS;   5. Additional Troubleshooting Steps for AQ Propagation of User-Enqueued and Dequeued Messages 5.1. Check the Privileges of All Users Involved Ensure that the owner of the database link has the necessary privileges on the aq packages. SQL> select TABLE_NAME, PRIVILEGE from USER_TAB_PRIVS;TABLE_NAME PRIVILEGE------------------------------ ----------------------------------------DBMS_LOCK EXECUTEDBMS_AQ EXECUTEDBMS_AQADM EXECUTEDBMS_AQ_BQVIEW EXECUTEQT52814_BUFFER SELECT Note that when queue table is created, a view called QT<nnn>_BUFFER is created in the SYS schema, and the queue table owner is given SELECT privileges on it. The <nnn> corresponds to the object_id of the associated queue table. SQL> select * from USER_ROLE_PRIVS;USERNAME GRANTED_ROLE ADM DEF OS_------------------------------ ------------------------------ ---- ---- ---AQ_USER1 AQ_ADMINISTRATOR_ROLE NO YES NOAQ_USER1 CONNECT NO YES NOAQ_USER1 RESOURCE NO YES NO It is good practice to configure central AQ administrative user. All admin and processing jobs are created, executed and administered as this user. This configuration is not mandatory however, and the database link can be owned by any existing queue user. If this latter configuration is used, ensure that the connecting user has the necessary privileges on the AQ packages and objects involved. Privileges for an AQ Administrative user Execute on DBMS_AQADM Execute on DBMS_AQ Granted the AQ_ADMINISTRATOR_ROLE Privileges for an AQ user Execute on DBMS_AQ Execute on the message payload Enqueue privileges on the remote queue Dequeue privileges on the originating queue Privileges need to be confirmed on both sites when propagation is scheduled to remote destinations. Verify that the user ID used to login to the destination through the database link has been granted privileges to use AQ. 5.2. Verify Queue Payload Types AQ will not propagate messages from one queue to another if the payload types of the two queues are not verified to be equivalent. An AQ administrator can verify if the source and destination's payload types match by executing the DBMS_AQADM.VERIFY_QUEUE_TYPES procedure. The results of the type checking will be stored in the SYS.AQ$_MESSAGE_TYPES table. This table can be accessed using the object identifier OID of the source queue and the address database link of the destination queue, i.e. [schema.]queue_name[@destination]. Prior to Oracle 9i the payload (message type) had to be the same for all the queue tables involved in propagation. From Oracle9i onwards a transformation can be used so that payloads can be converted from one type to another. The following procedural call made on the source database can verify whether we can propagate between the source and the destination queue tables. connect aq_user1/[email protected] serverout onDECLARErc_value number;BEGINDBMS_AQADM.VERIFY_QUEUE_TYPES(src_queue_name => 'AQ_USER1.Q_1', dest_queue_name => 'AQ_USER2.Q_2',destination => 'dbl_aq_user2.es',rc => rc_value);dbms_output.put_line('rc_value code is '||rc_value);END;/ If propagation is possible then the return code value will be 1. If it is 0 then propagation is not possible and further investigation of the types and transformations used by and in conjunction with the queue tables is required. With regard to comparison of the types the following sql can be used to extract the DDL for a specific type with' %' changed appropriately on the source and target. This can then be compared for the source and target. SET LONG 20000 set pagesize 50 EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM, 'STORAGE',false); SELECT DBMS_METADATA.GET_DDL('TYPE',t.type_name) from user_types t WHERE t.type_name like '%'; EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM, 'DEFAULT'); 5.3. Check Message State and Destination The first step in this process is to identify the queue table associated with the problem source queue. Although you schedule propagation for a specific queue, most of the meta-data associated with that queue is stored in the underlying queue table. The following statement finds the queue table for a given queue (note that this is a multiple-consumer queue table). SQL> select QUEUE_TABLE from DBA_QUEUES where NAME = 'MULTIPLEQ';QUEUE_TABLE --------------------MULTIPLEQTABLE For a small amount of messages in a multiple-consumer queue table, the following query can be run: SQL> select MSG_STATE, CONSUMER_NAME, ADDRESS from AQ$MULTIPLEQTABLE where QUEUE = 'MULTIPLEQ';MSG_STATE CONSUMER_NAME ADDRESS-------------- ----------------------- -------------READY AQUSER2 [email protected] AQUSER1READY AQUSER3 AQADM.INQ In this example we see 2 messages ready to be propagated to remote queues and 1 that is not. If the address column is blank, the message is not scheduled for propagation and can only be dequeued from the queue upon which it was enqueued. The MSG_STATE column values are discussed in Document 102330.1 Advanced Queueing MSG_STATE Values and their Interpretation. If the address column has a value, the message has been enqueued for propagation to another queue. The first row in the example includes a database link (@M2V102.ES). This demonstrates that the message should be propagated to a queue at a remote database. The third row does not include a database link so will be propagated to a queue that resides on the same database as the source queue. The consumer name is the intended recipient at the target queue. Note that we are not querying the base queue table directly; rather, we are querying a view that is available on top of every queue table, AQ$<queue_table_name>.A more realistic query in an environment where the queue table contains thousands of messages is8.0.3-compatible multiple-consumer queue table and all compatibility single-consumer queue tables select count(*), MSG_STATE, QUEUE from AQ$<queue_table_name>  group by MSG_STATE, QUEUE; 8.1.3 and 10.0-compatible queue tables select count(*), MSG_STATE, QUEUE, CONSUMER_NAME from AQ$<queue_table_name>group by MSG_STATE, QUEUE, CONSUMER_NAME; For multiple-consumer queue tables, if you did not see the expected CONSUMER_NAME , check the syntax of the enqueue code and verify the recipients are declared correctly. If a recipients list is not used on enqueue, check the subscriber list in the AQ$_<queue_table_name>_S view (note that a single-consumer queue table does not have a subscriber view. This view records all members of the default subscription list which were added using the DBMS_AQADM.ADD_SUBSCRIBER procedure and also those enqueued using a recipient list. SQL> select QUEUE, NAME, ADDRESS from AQ$MULTIPLEQTABLE_S;QUEUE NAME ADDRESS---------- ----------- -------------MULTIPLEQ AQUSER2 [email protected] AQUSER1 In this example we have 2 subscribers registered with the queue. We have a local subscriber AQUSER1, and a remote subscriber AQUSER2, on the queue INQ, owned by AQADM, at M2V102.ES. Unless overridden with a recipient list during enqueue every message enqueued to this queue will be propagated to INQ at M2V102.ES.For 8.1 style and above multiple consumer queue tables, you can also check the following information at the target: select CONSUMER_NAME, DEQ_TXN_ID, DEQ_TIME, DEQ_USER_ID, PROPAGATED_MSGID from AQ$<queue_table_name> where QUEUE = '<QUEUE_NAME>'; For 8.0 style queues, if the queue table supports multiple consumers you can obtain the same information from the history column of the queue table: select h.CONSUMER, h.TRANSACTION_ID, h.DEQ_TIME, h.DEQ_USER, h.PROPAGATED_MSGIDfrom AQ$<queue_table_name> t, table(t.history) h where t.Q_NAME = '<QUEUE_NAME>'; A non-NULL TRANSACTION_ID indicates that the message was successfully propagated. Further, the DEQ_TIME indicates the time of propagation, the DEQ_USER indicates the userid used for propagation, and the PROPAGATED_MSGID indicates the message ID of the message that was enqueued at the destination. 6. Additional Troubleshooting Steps for Propagation in an Oracle Streams Environment 6.1. Is the Propagation Enabled? For a propagation job to propagate messages, the propagation must be enabled. For Streams, a special view called DBA_PROPAGATION exists to convey information about Streams propagations. If messages are not being propagated by a propagation as expected, then the propagation might not be enabled. To query for this: SELECT p.PROPAGATION_NAME, DECODE(s.SCHEDULE_DISABLED, 'Y', 'Disabled','N', 'Enabled') SCHEDULE_DISABLED, s.PROCESS_NAME, s.FAILURES, s.LAST_ERROR_MSGFROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION pWHERE p.DESTINATION_DBLINK = NVL(REGEXP_SUBSTR(s.DESTINATION, '[^@]+', 1, 2), s.DESTINATION) AND s.SCHEMA = p.SOURCE_QUEUE_OWNER AND s.QNAME = p.SOURCE_QUEUE_NAME AND MESSAGE_DELIVERY_MODE = 'PERSISTENT' order by PROPAGATION_NAME; At times, the propagation job may become "broken" or fail to start after an error has been encountered or after a database restart. If an error is indicated by the above query, an attempt to disable the propagation and then re-enable it can be made. In the examples below, for the propagation named STRMADMIN_PROPAGATE where the queue name is STREAMS_QUEUE owned by STRMADMIN and the destination database link is ORCL2.WORLD, the commands would be:10.2 and above exec dbms_propagation_adm.stop_propagation('STRMADMIN_PROPAGATE'); exec dbms_propagation_adm.start_propagation('STRMADMIN_PROPAGATE'); If the above does not fix the problem, stop the propagation specifying the force parameter (2nd parameter on stop_propagation) as TRUE: exec dbms_propagation_adm.stop_propagation('STRMADMIN_PROPAGATE',true); exec dbms_propagation_adm.start_propagation('STRMADMIN_PROPAGATE'); The statistics for the propagation as well as any old error messages are cleared when the force parameter is set to TRUE. Therefore if the propagation schedule is stopped with FORCE set to TRUE, and upon restart there is still an error message in DBA_PROPAGATION, then the error message is current.9.2 or 10.1 exec dbms_aqadm.disable_propagation_schedule('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); exec dbms.aqadm.enable_propagation_schedule('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); If the above does not fix the problem, perform an unschedule of propagation and then schedule_propagation: exec dbms_aqadm.unschedule_propagation('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); exec dbms_aqadm.schedule_propagation('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); Typically if the error from the first query in Section 6.1 recurs after restarting the propagation as shown above, further troubleshooting of the error is needed. 6.2. Check Propagation Rule Sets and Transformations Inspect the configuration of the rules in the rule set that is associated with the propagation process to make sure that they evaluate to TRUE as expected. If not, then the object or schema will not be propagated. Remember that when a negative rule evaluates to TRUE, the specified object or schema will not be propagated. Finally inspect any rule-based transformations that are implemented with propagation to make sure they are changing the data in the intended way.The following query shows what rule sets are assigned to a propagation: select PROPAGATION_NAME, RULE_SET_OWNER||'.'||RULE_SET_NAME "Positive Rule Set",NEGATIVE_RULE_SET_OWNER||'.'||NEGATIVE_RULE_SET_NAME "Negative Rule Set"from DBA_PROPAGATION; The next two queries list the propagation rules and their conditions. The first is for the positive rule set, the second is for the negative rule set: set long 4000select rsr.RULE_SET_OWNER||'.'||rsr.RULE_SET_NAME RULE_SET ,rsr.RULE_OWNER||'.'||rsr.RULE_NAME RULE_NAME,r.RULE_CONDITION CONDITION fromDBA_RULE_SET_RULES rsr, DBA_RULES rwhere rsr.RULE_NAME = r.RULE_NAME and rsr.RULE_OWNER = r.RULE_OWNER and RULE_SET_NAME in(select RULE_SET_NAME from DBA_PROPAGATION) order by rsr.RULE_SET_OWNER, rsr.RULE_SET_NAME;   set long 4000select c.PROPAGATION_NAME, rsr.RULE_SET_OWNER||'.'||rsr.RULE_SET_NAME RULE_SET ,rsr.RULE_OWNER||'.'||rsr.RULE_NAME RULE_NAME,r.RULE_CONDITION CONDITION fromDBA_RULE_SET_RULES rsr, DBA_RULES r ,DBA_PROPAGATION cwhere rsr.RULE_NAME = r.RULE_NAME and rsr.RULE_OWNER = r.RULE_OWNER andrsr.RULE_SET_OWNER=c.NEGATIVE_RULE_SET_OWNER and rsr.RULE_SET_NAME=c.NEGATIVE_RULE_SET_NAMEand rsr.RULE_SET_NAME in(select NEGATIVE_RULE_SET_NAME from DBA_PROPAGATION) order by rsr.RULE_SET_OWNER, rsr.RULE_SET_NAME; 6.3. Determining the Total Number of Messages and Bytes Propagated As in Section 3.1, determining if messages are flowing can be instructive to see whether the propagation is entirely hung or just slow. If the propagation is not in flow control (see Section 6.5.2), but the statistics are incrementing slowly, there may be a performance issue. For Streams implementations two views are available that can assist with this that can show the number of messages sent by a propagation, as well as the number of acknowledgements being returned from the target site: the V$PROPAGATION_SENDER view at the Source site and the V$PROPAGATION_RECEIVER view at the destination site. It is helpful to query both to determine if messages are being delivered to the target. Look for the statistics to increase.Source: select QUEUE_SCHEMA, QUEUE_NAME, DBLINK,HIGH_WATER_MARK, ACKNOWLEDGEMENT, TOTAL_MSGS, TOTAL_BYTESfrom V$PROPAGATION_SENDER; Target: select SRC_QUEUE_SCHEMA, SRC_QUEUE_NAME, SRC_DBNAME, DST_QUEUE_SCHEMA, DST_QUEUE_NAME, HIGH_WATER_MARK, ACKNOWLEDGEMENT, TOTAL_MSGS from V$PROPAGATION_RECEIVER; 6.4. Check Buffered Subscribers The V$BUFFERED_SUBSCRIBERS view displays information about subscribers for all buffered queues in the instance. This view can be queried to make sure that the site that the propagation is propagating to is listed as a subscriber address for the site being propagated from: select QUEUE_SCHEMA, QUEUE_NAME, SUBSCRIBER_ADDRESS from V$BUFFERED_SUBSCRIBERS; The SUBSCRIBER_ADDRESS column will not be populated when the propagation is local (between queues on the same database). 6.5. Common Streams Propagation Errors 6.5.1. ORA-02082: A loopback database link must have a connection qualifier. This error can occur if you use the Streams Setup Wizard in Oracle Enterprise Manager without first configuring the GLOBAL_NAME for your database. 6.5.2. ORA-25307: Enqueue rate too high. Enable flow control DBA_QUEUE_SCHEDULES will display this informational message for propagation when the automatic flow control (10g feature of Streams) has been invoked.Similar to Streams capture processes, a Streams propagation process can also go into a state of 'flow control. This is an informative message that indicates flow control has been automatically enabled to reduce the rate at which messages are being enqueued into at target queue.This typically occurs when the target site is unable to keep up with the rate of messages flowing from the source site. Other than checking that the apply process is running normally on the target site, usually no action is required by the DBA. Propagation and the capture process will be resumed automatically when the target site is able to accept more messages.The following document contains more information:Document 302109.1 Streams Propagation Error: ORA-25307 Enqueue rate too high. Enable flow controlSee the following document for one potential cause of this situation:Document 1097115.1 Oracle Streams Apply Reader is in 'Paused' State 6.5.3. ORA-25315 unsupported configuration for propagation of buffered messages This error typically occurs when the target database is RAC and usually indicates that an attempt was made to propagate buffered messages with the database link pointing to an instance in the destination database which is not the owner instance of the destination queue. To resolve the problem, use queue-to-queue propagation for buffered messages. 6.5.4. ORA-600 [KWQBMCRCPTS101] after dropping / recreating propagation For cause/fixes refer to:Document 421237.1 ORA-600 [KWQBMCRCPTS101] reported by a Qmon slave process after dropping a Streams Propagation 6.5.5. Stopping or Dropping a Streams Propagation Hangs See the following note:Document 1159787.1 Troubleshooting Streams Propagation When It is Not Functioning and Attempts to Stop It Hang 6.6. Streams Propagation-Related Notes for Common Issues Document 437838.1 Streams Specific PatchesDocument 749181.1 How to Recover Streams After Dropping PropagationDocument 368912.1 Queue to Queue Propagation Schedule encountered ORA-12514 in a RAC environmentDocument 564649.1 ORA-02068/ORA-03114/ORA-03113 Errors From Streams Propagation Process - Remote Database is Available and Unschedule/Reschedule Does Not ResolveDocument 553017.1 Stream Propagation Process Errors Ora-4052 Ora-6554 From 11g To 10201Document 944846.1 Streams Propagation Fails Ora-7445 [kohrsmc]Document 745601.1 ORA-23603 'STREAMS enqueue aborted due to low SGA' Error from Streams Propagation, and V$STREAMS_CAPTURE.STATE Hanging on 'Enqueuing Message'Document 333068.1 ORA-23603: Streams Enqueue Aborted Eue To Low SGADocument 363496.1 Ora-25315 Propagating on RAC StreamsDocument 368237.1 Unable to Unschedule Propagation. Streams Queue is InvalidDocument 436332.1 dbms_propagation_adm.stop_propagation hangsDocument 727389.1 Propagation Fails With ORA-12528Document 730911.1 ORA-4063 Is Reported After Dropping Negative Prop.RulesetDocument 460471.1 Propagation Blocked by Qmon Process - Streams_queue_table / 'library cache lock' waitsDocument 1165583.1 ORA-600 [kwqpuspse0-ack] In Streams EnvironmentDocument 1059029.1 Combined Capture and Apply (CCA) : Capture aborts : ORA-1422 after schedule_propagationDocument 556309.1 Changing Propagation/ queue_to_queue : false -> true does does not work; no LCRs propagatedDocument 839568.1 Propagation failing with error: ORA-01536: space quota exceeded for tablespace ''Document 311021.1 Streams Propagation Process : Ora 12154 After Reboot with Transparent Application Failover TAF configuredDocument 359971.1 STREAMS propagation to Primary of physical Standby configuation errors with Ora-01033, Ora-02068Document 1101616.1 DBMS_PROPAGATION_ADM.DROP_PROPAGATION FAILS WITH ORA-1747 7. Performance Issues A propagation may seem to be slow if the queries from Sections 3.1 and 6.3 show that the message statistics are not changing quickly. In Oracle Streams, this more usually is due to a slow apply process at the target rather than a slow propagation. Propagation could be inferred to be slow if the message statistics are changing, and the state of a capture process according to V$STREAMS_CAPTURE.STATE is PAUSED FOR FLOW CONTROL, but an ORA-25307 'Enqueue rate too high. Enable flow control' warning is NOT observed in DBA_QUEUE_SCHEDULES per Section 6.5.2. If this is the case, see the following notes / white papers for suggestions to increase performance:Document 335516.1 Master Note for Streams Performance RecommendationsDocument 730036.1 Overview for Troubleshooting Streams Performance IssuesDocument 780733.1 Streams Propagation Tuning with Network ParametersWhite Paper: http://www.oracle.com/technetwork/database/features/availability/maa-wp-10gr2-streams-performance-130059.pdfWhite Paper: Oracle Streams Configuration Best Practices: Oracle Database 10g Release 10.2, http://www.oracle.com/technetwork/database/features/availability/maa-10gr2-streams-configuration-132039.pdf, See APPENDIX A: USING STREAMS CONFIGURATIONS OVER A NETWORKFor basic AQ propagation, the network tuning in the aforementioned Appendix A of the white paper 'Oracle Streams Configuration Best Practices: Oracle Database 10g Release 10.2' is applicable. References NOTE:102330.1 - Advanced Queueing MSG_STATE Values and their InterpretationNOTE:102771.1 - Advanced Queueing Propagation using PL/SQLNOTE:1059029.1 - Combined Capture and Apply (CCA) : Capture aborts : ORA-1422 after schedule_propagationNOTE:1079577.1 - Advanced Queuing Propagation Fails With "ORA-22370: incorrect usage of method"NOTE:1083608.1 - 11g Streams and Oracle SchedulerNOTE:1087324.1 - ORA-01405 ORA-01422 reported by Adavanced Queueing Propagation schedules after RAC reconfigurationNOTE:1097115.1 - Oracle Streams Apply Reader is in 'Paused' StateNOTE:1101616.1 - DBMS_PROPAGATION_ADM.DROP_PROPAGATION FAILS WITH ORA-1747NOTE:1159787.1 - Troubleshooting Streams Propagation When It is Not Functioning and Attempts to Stop It HangNOTE:1165583.1 - ORA-600 [kwqpuspse0-ack] In Streams EnvironmentNOTE:118884.1 - How to unschedule a propagation schedule stuck in pending stateNOTE:1203544.1 - AQ PROPAGATION ABORTED WITH ORA-600[OCIKSIN: INVALID STATUS] ON SYS.DBMS_AQADM_SYS.AQ$_PROPAGATION_PROCEDURE AFTER UPGRADENOTE:1204080.1 - AQ Propagation Failing With ORA-25329 After Upgraded From 8i or 9i to 10g or 11g.NOTE:219416.1 - Advanced Queuing Propagation fails with ORA-22922NOTE:222992.1 - DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE Returns ORA-24082NOTE:253131.1 - Concurrent Writes May Corrupt LOB Segment When Using Auto Segment Space Management (ORA-1555)NOTE:282987.1 - Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueNOTE:298015.1 - Kwqjswproc:Excep After Loop: Assigning To SelfNOTE:302109.1 - Streams Propagation Error: ORA-25307 Enqueue rate too high. Enable flow controlNOTE:311021.1 - Streams Propagation Process : Ora 12154 After Reboot with Transparent Application Failover TAF configuredNOTE:332792.1 - ORA-04061 error relating to SYS.DBMS_PRVTAQIP reported when setting up StatspackNOTE:333068.1 - ORA-23603: Streams Enqueue Aborted Eue To Low SGANOTE:335516.1 - Master Note for Streams Performance RecommendationsNOTE:353325.1 - ORA-24056: Internal inconsistency for QUEUE and destination NOTE:353754.1 - Streams Messaging Propagation Fails between Single and Multi-byte Charactersets when using Chararacter Length Semantics in the ADT.NOTE:359971.1 - STREAMS propagation to Primary of physical Standby configuation errors with Ora-01033, Ora-02068NOTE:363496.1 - Ora-25315 Propagating on RAC StreamsNOTE:365093.1 - ORA-07445 [kwqppay2aqe()+7360] reported on Propagation of a Transformed MessageNOTE:368237.1 - Unable to Unschedule Propagation. Streams Queue is InvalidNOTE:368912.1 - Queue to Queue Propagation Schedule encountered ORA-12514 in a RAC environmentNOTE:421237.1 - ORA-600 [KWQBMCRCPTS101] reported by a Qmon slave process after dropping a Streams PropagationNOTE:436332.1 - dbms_propagation_adm.stop_propagation hangsNOTE:437838.1 - Streams Specific PatchesNOTE:460471.1 - Propagation Blocked by Qmon Process - Streams_queue_table / 'library cache lock' waitsNOTE:463820.1 - Streams Combined Capture and Apply in 11gNOTE:553017.1 - Stream Propagation Process Errors Ora-4052 Ora-6554 From 11g To 10201NOTE:556309.1 - Changing Propagation/ queue_to_queue : false -> true does does not work; no LCRs propagatedNOTE:564649.1 - ORA-02068/ORA-03114/ORA-03113 Errors From Streams Propagation Process - Remote Database is Available and Unschedule/Reschedule Does Not ResolveNOTE:566622.1 - ORA-22275 when propagating >4K AQ$_JMS_TEXT_MESSAGEs from 9.2.0.8 to 10.2.0.1NOTE:727389.1 - Propagation Fails With ORA-12528NOTE:730036.1 - Overview for Troubleshooting Streams Performance IssuesNOTE:730911.1 - ORA-4063 Is Reported After Dropping Negative Prop.RulesetNOTE:731292.1 - ORA-25215 Reported On Local Propagation When Using Transformation with ANYDATA queue tablesNOTE:731539.1 - ORA-29268: HTTP client error 401 Unauthorized Error when the AQ Servlet attempts to Propagate a message via HTTPNOTE:745601.1 - ORA-23603 'STREAMS enqueue aborted due to low SGA' Error from Streams Propagation, and V$STREAMS_CAPTURE.STATE Hanging on 'Enqueuing Message'NOTE:749181.1 - How to Recover Streams After Dropping PropagationNOTE:780733.1 - Streams Propagation Tuning with Network ParametersNOTE:787367.1 - ORA-22275 reported on Propagating Messages with LOB component when propagating between 10.1 and 10.2NOTE:808136.1 - How to clear the old errors from DBA_PROPAGATION view ?NOTE:827184.1 - AQ Propagation with CLOB data types Fails with ORA-22990NOTE:827473.1 - How to alter propagation from queue_to_queue to queue_to_dblinkNOTE:839568.1 - Propagation failing with error: ORA-01536: space quota exceeded for tablespace ''NOTE:846297.1 - AQ Propagation Fails : ORA-00600[kope2upic2954] or Ora-00600[Kghsstream_copyn]NOTE:944846.1 - Streams Propagation Fails Ora-7445 [kohrsmc]

    Read the article

  • What&rsquo;s New in ASP.NET 4.0 Part Two: WebForms and Visual Studio Enhancements

    - by Rick Strahl
    In the last installment I talked about the core changes in the ASP.NET runtime that I’ve been taking advantage of. In this column, I’ll cover the changes to the Web Forms engine and some of the cool improvements in Visual Studio that make Web and general development easier. WebForms The WebForms engine is the area that has received most significant changes in ASP.NET 4.0. Probably the most widely anticipated features are related to managing page client ids and of ViewState on WebForm pages. Take Control of Your ClientIDs Unique ClientID generation in ASP.NET has been one of the most complained about “features” in ASP.NET. Although there’s a very good technical reason for these unique generated ids - they guarantee unique ids for each and every server control on a page - these unique and generated ids often get in the way of client-side JavaScript development and CSS styling as it’s often inconvenient and fragile to work with the long, generated ClientIDs. In ASP.NET 4.0 you can now specify an explicit client id mode on each control or each naming container parent control to control how client ids are generated. By default, ASP.NET generates mangled client ids for any control contained in a naming container (like a Master Page, or a User Control for example). The key to ClientID management in ASP.NET 4.0 are the new ClientIDMode and ClientIDRowSuffix properties. ClientIDMode supports four different ClientID generation settings shown below. For the following examples, imagine that you have a Textbox control named txtName inside of a master page control container on a WebForms page. <%@Page Language="C#"      MasterPageFile="~/Site.Master"     CodeBehind="WebForm2.aspx.cs"     Inherits="WebApplication1.WebForm2"  %> <asp:Content ID="content"  ContentPlaceHolderID="content"               runat="server"               ClientIDMode="Static" >       <asp:TextBox runat="server" ID="txtName" /> </asp:Content> The four available ClientIDMode values are: AutoID This is the existing behavior in ASP.NET 1.x-3.x where full naming container munging takes place. <input name="ctl00$content$txtName" type="text"        id="ctl00_content_txtName" /> This should be familiar to any ASP.NET developer and results in fairly unpredictable client ids that can easily change if the containership hierarchy changes. For example, removing the master page changes the name in this case, so if you were to move a block of script code that works against the control to a non-Master page, the script code immediately breaks. Static This option is the most deterministic setting that forces the control’s ClientID to use its ID value directly. No naming container naming at all is applied and you end up with clean client ids: <input name="ctl00$content$txtName"         type="text" id="txtName" /> Note that the name property which is used for postback variables to the server still is munged, but the ClientID property is displayed simply as the ID value that you have assigned to the control. This option is what most of us want to use, but you have to be clear on that because it can potentially cause conflicts with other controls on the page. If there are several instances of the same naming container (several instances of the same user control for example) there can easily be a client id naming conflict. Note that if you assign Static to a data-bound control, like a list child control in templates, you do not get unique ids either, so for list controls where you rely on unique id for child controls, you’ll probably want to use Predictable rather than Static. I’ll write more on this a little later when I discuss ClientIDRowSuffix. Predictable The previous two values are pretty self-explanatory. Predictable however, requires some explanation. To me at least it’s not in the least bit predictable. MSDN defines this value as follows: This algorithm is used for controls that are in data-bound controls. The ClientID value is generated by concatenating the ClientID value of the parent naming container with the ID value of the control. If the control is a data-bound control that generates multiple rows, the value of the data field specified in the ClientIDRowSuffix property is added at the end. For the GridView control, multiple data fields can be specified. If the ClientIDRowSuffix property is blank, a sequential number is added at the end instead of a data-field value. Each segment is separated by an underscore character (_). The key that makes this value a bit confusing is that it relies on the parent NamingContainer’s ClientID to build its own ClientID value. This effectively means that the value is not predictable at all but rather very tightly coupled to the parent naming container’s ClientIDMode setting. For my simple textbox example, if the ClientIDMode property of the parent naming container (Page in this case) is set to “Predictable” you’ll get this: <input name="ctl00$content$txtName" type="text"         id="content_txtName" /> which gives an id that based on walking up to the currently active naming container (the MasterPage content container) and starting the id formatting from there downward. Think of this as a semi unique name that’s guaranteed unique only for the naming container. If, on the other hand, the Page is set to “AutoID” you get the following with Predictable on txtName: <input name="ctl00$content$txtName" type="text"         id="ctl00_content_txtName" /> The latter is effectively the same as if you specified AutoID because it inherits the AutoID naming from the Page and Content Master Page control of the page. But again - predictable behavior always depends on the parent naming container and how it generates its id, so the id may not always be exactly the same as the AutoID generated value because somewhere in the NamingContainer chain the ClientIDMode setting may be set to a different value. For example, if you had another naming container in the middle that was set to Static you’d end up effectively with an id that starts with the NamingContainers id rather than the whole ctl000_content munging. The most common use for Predictable is likely to be for data-bound controls, which results in each data bound item getting a unique ClientID. Unfortunately, even here the behavior can be very unpredictable depending on which data-bound control you use - I found significant differences in how template controls in a GridView behave from those that are used in a ListView control. For example, GridView creates clean child ClientIDs, while ListView still has a naming container in the ClientID, presumably because of the template container on which you can’t set ClientIDMode. Predictable is useful, but only if all naming containers down the chain use this setting. Otherwise you’re right back to the munged ids that are pretty unpredictable. Another property, ClientIDRowSuffix, can be used in combination with ClientIDMode of Predictable to force a suffix onto list client controls. For example: <asp:GridView runat="server" ID="gvItems"              AutoGenerateColumns="false"             ClientIDMode="Static"              ClientIDRowSuffix="Id">     <Columns>     <asp:TemplateField>         <ItemTemplate>             <asp:Label runat="server" id="txtName"                        Text='<%# Eval("Name") %>'                   ClientIDMode="Predictable"/>         </ItemTemplate>     </asp:TemplateField>     <asp:TemplateField>         <ItemTemplate>         <asp:Label runat="server" id="txtId"                     Text='<%# Eval("Id") %>'                     ClientIDMode="Predictable" />         </ItemTemplate>     </asp:TemplateField>     </Columns>  </asp:GridView> generates client Ids inside of a column in the master page described earlier: <td>     <span id="txtName_0">Rick</span> </td> where the value after the underscore is the ClientIDRowSuffix field - in this case “Id” of the item data bound to the control. Note that all of the child controls require ClientIDMode=”Predictable” in order for the ClientIDRowSuffix to be applied, and the parent GridView controls need to be set to Static either explicitly or via Naming Container inheritance to give these simple names. It’s a bummer that ClientIDRowSuffix doesn’t work with Static to produce this automatically. Another real problem is that other controls process the ClientIDMode differently. For example, a ListView control processes the Predictable ClientIDMode differently and produces the following with the Static ListView and Predictable child controls: <span id="ctrl0_txtName_0">Rick</span> I couldn’t even figure out a way using ClientIDMode to get a simple ID that also uses a suffix short of falling back to manually generated ids using <%= %> expressions instead. Given the inconsistencies inside of list controls using <%= %>, ids for the ListView might not be a bad idea anyway. Inherit The final setting is Inherit, which is the default for all controls except Page. This means that controls by default inherit the parent naming container’s ClientIDMode setting. For more detailed information on ClientID behavior and different scenarios you can check out a blog post of mine on this subject: http://www.west-wind.com/weblog/posts/54760.aspx. ClientID Enhancements Summary The ClientIDMode property is a welcome addition to ASP.NET 4.0. To me this is probably the most useful WebForms feature as it allows me to generate clean IDs simply by setting ClientIDMode="Static" on either the page or inside of Web.config (in the Pages section) which applies the setting down to the entire page which is my 95% scenario. For the few cases when it matters - for list controls and inside of multi-use user controls or custom server controls) - I can use Predictable or even AutoID to force controls to unique names. For application-level page development, this is easy to accomplish and provides maximum usability for working with client script code against page controls. ViewStateMode Another area of large criticism for WebForms is ViewState. ViewState is used internally by ASP.NET to persist page-level changes to non-postback properties on controls as pages post back to the server. It’s a useful mechanism that works great for the overall mechanics of WebForms, but it can also cause all sorts of overhead for page operation as ViewState can very quickly get out of control and consume huge amounts of bandwidth in your page content. ViewState can also wreak havoc with client-side scripting applications that modify control properties that are tracked by ViewState, which can produce very unpredictable results on a Postback after client-side updates. Over the years in my own development, I’ve often turned off ViewState on pages to reduce overhead. Yes, you lose some functionality, but you can easily implement most of the common functionality in non-ViewState workarounds. Relying less on heavy ViewState controls and sticking with simpler controls or raw HTML constructs avoids getting around ViewState problems. In ASP.NET 3.x and prior, it wasn’t easy to control ViewState - you could turn it on or off and if you turned it off at the page or web.config level, you couldn’t turn it back on for specific controls. In short, it was an all or nothing approach. With ASP.NET 4.0, the new ViewStateMode property gives you more control. It allows you to disable ViewState globally either on the page or web.config level and then turn it back on for specific controls that might need it. ViewStateMode only works when EnableViewState="true" on the page or web.config level (which is the default). You can then use ViewStateMode of Disabled, Enabled or Inherit to control the ViewState settings on the page. If you’re shooting for minimal ViewState usage, the ideal situation is to set ViewStateMode to disabled on the Page or web.config level and only turn it back on particular controls: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"        ClientIDMode="Static"                ViewStateMode="Disabled"     EnableViewState="true"  %> <!-- this control has viewstate  --> <asp:TextBox runat="server" ID="txtName"  ViewStateMode="Enabled" />       <!-- this control has no viewstate - it inherits  from parent container --> <asp:TextBox runat="server" ID="txtAddress" /> Note that the EnableViewState="true" at the Page level isn’t required since it’s the default, but it’s important that the value is true. ViewStateMode has no effect if EnableViewState="false" at the page level. The main benefit of ViewStateMode is that it allows you to more easily turn off ViewState for most of the page and enable only a few key controls that might need it. For me personally, this is a perfect combination as most of my WebForm apps can get away without any ViewState at all. But some controls - especially third party controls - often don’t work well without ViewState enabled, and now it’s much easier to selectively enable controls rather than the old way, which required you to pretty much turn off ViewState for all controls that you didn’t want ViewState on. Inline HTML Encoding HTML encoding is an important feature to prevent cross-site scripting attacks in data entered by users on your site. In order to make it easier to create HTML encoded content, ASP.NET 4.0 introduces a new Expression syntax using <%: %> to encode string values. The encoding expression syntax looks like this: <%: "<script type='text/javascript'>" +     "alert('Really?');</script>" %> which produces properly encoded HTML: &lt;script type=&#39;text/javascript&#39; &gt;alert(&#39;Really?&#39;);&lt;/script&gt; Effectively this is a shortcut to: <%= HttpUtility.HtmlEncode( "<script type='text/javascript'>" + "alert('Really?');</script>") %> Of course the <%: %> syntax can also evaluate expressions just like <%= %> so the more common scenario applies this expression syntax against data your application is displaying. Here’s an example displaying some data model values: <%: Model.Address.Street %> This snippet shows displaying data from your application’s data store or more importantly, from data entered by users. Anything that makes it easier and less verbose to HtmlEncode text is a welcome addition to avoid potential cross-site scripting attacks. Although I listed Inline HTML Encoding here under WebForms, anything that uses the WebForms rendering engine including ASP.NET MVC, benefits from this feature. ScriptManager Enhancements The ASP.NET ScriptManager control in the past has introduced some nice ways to take programmatic and markup control over script loading, but there were a number of shortcomings in this control. The ASP.NET 4.0 ScriptManager has a number of improvements that make it easier to control script loading and addresses a few of the shortcomings that have often kept me from using the control in favor of manual script loading. The first is the AjaxFrameworkMode property which finally lets you suppress loading the ASP.NET AJAX runtime. Disabled doesn’t load any ASP.NET AJAX libraries, but there’s also an Explicit mode that lets you pick and choose the library pieces individually and reduce the footprint of ASP.NET AJAX script included if you are using the library. There’s also a new EnableCdn property that forces any script that has a new WebResource attribute CdnPath property set to a CDN supplied URL. If the script has this Attribute property set to a non-null/empty value and EnableCdn is enabled on the ScriptManager, that script will be served from the specified CdnPath. [assembly: WebResource(    "Westwind.Web.Resources.ww.jquery.js",    "application/x-javascript",    CdnPath =  "http://mysite.com/scripts/ww.jquery.min.js")] Cool, but a little too static for my taste since this value can’t be changed at runtime to point at a debug script as needed, for example. Assembly names for loading scripts from resources can now be simple names rather than fully qualified assembly names, which make it less verbose to reference scripts from assemblies loaded from your bin folder or the assembly reference area in web.config: <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <Scripts>         <asp:ScriptReference          Name="Westwind.Web.Resources.ww.jquery.js"         Assembly="Westwind.Web" />     </Scripts>        </asp:ScriptManager> The ScriptManager in 4.0 also supports script combining via the CompositeScript tag, which allows you to very easily combine scripts into a single script resource served via ASP.NET. Even nicer: You can specify the URL that the combined script is served with. Check out the following script manager markup that combines several static file scripts and a script resource into a single ASP.NET served resource from a static URL (allscripts.js): <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <CompositeScript          Path="~/scripts/allscripts.js">         <Scripts>             <asp:ScriptReference                    Path="~/scripts/jquery.js" />             <asp:ScriptReference                    Path="~/scripts/ww.jquery.js" />             <asp:ScriptReference            Name="Westwind.Web.Resources.editors.js"                 Assembly="Westwind.Web" />         </Scripts>     </CompositeScript> </asp:ScriptManager> When you render this into HTML, you’ll see a single script reference in the page: <script src="scripts/allscripts.debug.js"          type="text/javascript"></script> All you need to do to make this work is ensure that allscripts.js and allscripts.debug.js exist in the scripts folder of your application - they can be empty but the file has to be there. This is pretty cool, but you want to be real careful that you use unique URLs for each combination of scripts you combine or else browser and server caching will easily screw you up royally. The script manager also allows you to override native ASP.NET AJAX scripts now as any script references defined in the Scripts section of the ScriptManager trump internal references. So if you want custom behavior or you want to fix a possible bug in the core libraries that normally are loaded from resources, you can now do this simply by referencing the script resource name in the Name property and pointing at System.Web for the assembly. Not a common scenario, but when you need it, it can come in real handy. Still, there are a number of shortcomings in this control. For one, the ScriptManager and ClientScript APIs still have no common entry point so control developers are still faced with having to check and support both APIs to load scripts so that controls can work on pages that do or don’t have a ScriptManager on the page. The CdnUrl is static and compiled in, which is very restrictive. And finally, there’s still no control over where scripts get loaded on the page - ScriptManager still injects scripts into the middle of the HTML markup rather than in the header or optionally the footer. This, in turn, means there is little control over script loading order, which can be problematic for control developers. MetaDescription, MetaKeywords Page Properties There are also a number of additional Page properties that correspond to some of the other features discussed in this column: ClientIDMode, ClientTarget and ViewStateMode. Another minor but useful feature is that you can now directly access the MetaDescription and MetaKeywords properties on the Page object to set the corresponding meta tags programmatically. Updating these values programmatically previously required either <%= %> expressions in the page markup or dynamic insertion of literal controls into the page. You can now just set these properties programmatically on the Page object in any Control derived class on the page or the Page itself: Page.MetaKeywords = "ASP.NET,4.0,New Features"; Page.MetaDescription = "This article discusses the new features in ASP.NET 4.0"; Note, that there’s no corresponding ASP.NET tag for the HTML Meta element, so the only way to specify these values in markup and access them is via the @Page tag: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"      ClientIDMode="Static"                MetaDescription="Article that discusses what's                      new in ASP.NET 4.0"     MetaKeywords="ASP.NET,4.0,New Features" %> Nothing earth shattering but quite convenient. Visual Studio 2010 Enhancements for Web Development For Web development there are also a host of editor enhancements in Visual Studio 2010. Some of these are not Web specific but they are useful for Web developers in general. Text Editors Throughout Visual Studio 2010, the text editors have all been updated to a new core engine based on WPF which provides some interesting new features for various code editors including the nice ability to zoom in and out with Ctrl-MouseWheel to quickly change the size of text. There are many more API options to control the editor and although Visual Studio 2010 doesn’t yet use many of these features, we can look forward to enhancements in add-ins and future editor updates from the various language teams that take advantage of the visual richness that WPF provides to editing. On the negative side, I’ve noticed that occasionally the code editor and especially the HTML and JavaScript editors will lose the ability to use various navigation keys like arrows, back and delete keys, which requires closing and reopening the documents at times. This issue seems to be well documented so I suspect this will be addressed soon with a hotfix or within the first service pack. Overall though, the code editors work very well, especially given that they were re-written completely using WPF, which was one of my big worries when I first heard about the complete redesign of the editors. Multi-Targeting Visual Studio now targets all versions of the .NET framework from 2.0 forward. You can use Visual Studio 2010 to work on your ASP.NET 2, 3.0 and 3.5 applications which is a nice way to get your feet wet with the new development environment without having to make changes to existing applications. It’s nice to have one tool to work in for all the different versions. Multi-Monitor Support One cool feature of Visual Studio 2010 is the ability to drag windows out of the Visual Studio environment and out onto the desktop including onto another monitor easily. Since Web development often involves working with a host of designers at the same time - visual designer, HTML markup window, code behind and JavaScript editor - it’s really nice to be able to have a little more screen real estate to work on each of these editors. Microsoft made a welcome change in the environment. IntelliSense Snippets for HTML and JavaScript Editors The HTML and JavaScript editors now finally support IntelliSense scripts to create macro-based template expansions that have been in the core C# and Visual Basic code editors since Visual Studio 2005. Snippets allow you to create short XML-based template definitions that can act as static macros or real templates that can have replaceable values that can be embedded into the expanded text. The XML syntax for these snippets is straight forward and it’s pretty easy to create custom snippets manually. You can easily create snippets using XML and store them in your custom snippets folder (C:\Users\rstrahl\Documents\Visual Studio 2010\Code Snippets\Visual Web Developer\My HTML Snippets and My JScript Snippets), but it helps to use one of the third-party tools that exist to simplify the process for you. I use SnippetEditor, by Bill McCarthy, which makes short work of creating snippets interactively (http://snippeteditor.codeplex.com/). Note: You may have to manually add the Visual Studio 2010 User specific Snippet folders to this tool to see existing ones you’ve created. Code snippets are some of the biggest time savers and HTML editing more than anything deals with lots of repetitive tasks that lend themselves to text expansion. Visual Studio 2010 includes a slew of built-in snippets (that you can also customize!) and you can create your own very easily. If you haven’t done so already, I encourage you to spend a little time examining your coding patterns and find the repetitive code that you write and convert it into snippets. I’ve been using CodeRush for this for years, but now you can do much of the basic expansion natively for HTML and JavaScript snippets. jQuery Integration Is Now Native jQuery is a popular JavaScript library and recently Microsoft has recently stated that it will become the primary client-side scripting technology to drive higher level script functionality in various ASP.NET Web projects that Microsoft provides. In Visual Studio 2010, the default full project template includes jQuery as part of a new project including the support files that provide IntelliSense (-vsdoc files). IntelliSense support for jQuery is now also baked into Visual Studio 2010, so unlike Visual Studio 2008 which required a separate download, no further installs are required for a rich IntelliSense experience with jQuery. Summary ASP.NET 4.0 brings many useful improvements to the platform, but thankfully most of the changes are incremental changes that don’t compromise backwards compatibility and they allow developers to ease into the new features one feature at a time. None of the changes in ASP.NET 4.0 or Visual Studio 2010 are monumental or game changers. The bigger features are language and .NET Framework changes that are also optional. This ASP.NET and tools release feels more like fine tuning and getting some long-standing kinks worked out of the platform. It shows that the ASP.NET team is dedicated to paying attention to community feedback and responding with changes to the platform and development environment based on this feedback. If you haven’t gotten your feet wet with ASP.NET 4.0 and Visual Studio 2010, there’s no reason not to give it a shot now - the ASP.NET 4.0 platform is solid and Visual Studio 2010 works very well for a brand new release. Check it out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Squid + Dans Guardian (simple configuration)

    - by The Digital Ninja
    I just built a new proxy server and compiled the latest versions of squid and dansguardian. We use basic authentication to select what users are allowed outside of our network. It seems squid is working just fine and accepts my username and password and lets me out. But if i connect to dans guardian, it prompts for username and password and then displays a message saying my username is not allowed to access the internet. Its pulling my username for the error message so i know it knows who i am. The part i get confused on is i thought that part was handled all by squid, and squid is working flawlessly. Can someone please double check my config files and tell me if i'm missing something or there is some new option i must set to get this to work. dansguardian.conf # Web Access Denied Reporting (does not affect logging) # # -1 = log, but do not block - Stealth mode # 0 = just say 'Access Denied' # 1 = report why but not what denied phrase # 2 = report fully # 3 = use HTML template file (accessdeniedaddress ignored) - recommended # reportinglevel = 3 # Language dir where languages are stored for internationalisation. # The HTML template within this dir is only used when reportinglevel # is set to 3. When used, DansGuardian will display the HTML file instead of # using the perl cgi script. This option is faster, cleaner # and easier to customise the access denied page. # The language file is used no matter what setting however. # languagedir = '/etc/dansguardian/languages' # language to use from languagedir. language = 'ukenglish' # Logging Settings # # 0 = none 1 = just denied 2 = all text based 3 = all requests loglevel = 3 # Log Exception Hits # Log if an exception (user, ip, URL, phrase) is matched and so # the page gets let through. Can be useful for diagnosing # why a site gets through the filter. on | off logexceptionhits = on # Log File Format # 1 = DansGuardian format 2 = CSV-style format # 3 = Squid Log File Format 4 = Tab delimited logfileformat = 1 # Log file location # # Defines the log directory and filename. #loglocation = '/var/log/dansguardian/access.log' # Network Settings # # the IP that DansGuardian listens on. If left blank DansGuardian will # listen on all IPs. That would include all NICs, loopback, modem, etc. # Normally you would have your firewall protecting this, but if you want # you can limit it to only 1 IP. Yes only one. filterip = # the port that DansGuardian listens to. filterport = 8080 # the ip of the proxy (default is the loopback - i.e. this server) proxyip = 127.0.0.1 # the port DansGuardian connects to proxy on proxyport = 3128 # accessdeniedaddress is the address of your web server to which the cgi # dansguardian reporting script was copied # Do NOT change from the default if you are not using the cgi. # accessdeniedaddress = 'http://YOURSERVER.YOURDOMAIN/cgi-bin/dansguardian.pl' # Non standard delimiter (only used with accessdeniedaddress) # Default is enabled but to go back to the original standard mode dissable it. nonstandarddelimiter = on # Banned image replacement # Images that are banned due to domain/url/etc reasons including those # in the adverts blacklists can be replaced by an image. This will, # for example, hide images from advert sites and remove broken image # icons from banned domains. # 0 = off # 1 = on (default) usecustombannedimage = 1 custombannedimagefile = '/etc/dansguardian/transparent1x1.gif' # Filter groups options # filtergroups sets the number of filter groups. A filter group is a set of content # filtering options you can apply to a group of users. The value must be 1 or more. # DansGuardian will automatically look for dansguardianfN.conf where N is the filter # group. To assign users to groups use the filtergroupslist option. All users default # to filter group 1. You must have some sort of authentication to be able to map users # to a group. The more filter groups the more copies of the lists will be in RAM so # use as few as possible. filtergroups = 1 filtergroupslist = '/etc/dansguardian/filtergroupslist' # Authentication files location bannediplist = '/etc/dansguardian/bannediplist' exceptioniplist = '/etc/dansguardian/exceptioniplist' banneduserlist = '/etc/dansguardian/banneduserlist' exceptionuserlist = '/etc/dansguardian/exceptionuserlist' # Show weighted phrases found # If enabled then the phrases found that made up the total which excedes # the naughtyness limit will be logged and, if the reporting level is # high enough, reported. on | off showweightedfound = on # Weighted phrase mode # There are 3 possible modes of operation: # 0 = off = do not use the weighted phrase feature. # 1 = on, normal = normal weighted phrase operation. # 2 = on, singular = each weighted phrase found only counts once on a page. # weightedphrasemode = 2 # Positive result caching for text URLs # Caches good pages so they don't need to be scanned again # 0 = off (recommended for ISPs with users with disimilar browsing) # 1000 = recommended for most users # 5000 = suggested max upper limit urlcachenumber = # # Age before they are stale and should be ignored in seconds # 0 = never # 900 = recommended = 15 mins urlcacheage = # Smart and Raw phrase content filtering options # Smart is where the multiple spaces and HTML are removed before phrase filtering # Raw is where the raw HTML including meta tags are phrase filtered # CPU usage can be effectively halved by using setting 0 or 1 # 0 = raw only # 1 = smart only # 2 = both (default) phrasefiltermode = 2 # Lower casing options # When a document is scanned the uppercase letters are converted to lower case # in order to compare them with the phrases. However this can break Big5 and # other 16-bit texts. If needed preserve the case. As of version 2.7.0 accented # characters are supported. # 0 = force lower case (default) # 1 = do not change case preservecase = 0 # Hex decoding options # When a document is scanned it can optionally convert %XX to chars. # If you find documents are getting past the phrase filtering due to encoding # then enable. However this can break Big5 and other 16-bit texts. # 0 = disabled (default) # 1 = enabled hexdecodecontent = 0 # Force Quick Search rather than DFA search algorithm # The current DFA implementation is not totally 16-bit character compatible # but is used by default as it handles large phrase lists much faster. # If you wish to use a large number of 16-bit character phrases then # enable this option. # 0 = off (default) # 1 = on (Big5 compatible) forcequicksearch = 0 # Reverse lookups for banned site and URLs. # If set to on, DansGuardian will look up the forward DNS for an IP URL # address and search for both in the banned site and URL lists. This would # prevent a user from simply entering the IP for a banned address. # It will reduce searching speed somewhat so unless you have a local caching # DNS server, leave it off and use the Blanket IP Block option in the # bannedsitelist file instead. reverseaddresslookups = off # Reverse lookups for banned and exception IP lists. # If set to on, DansGuardian will look up the forward DNS for the IP # of the connecting computer. This means you can put in hostnames in # the exceptioniplist and bannediplist. # It will reduce searching speed somewhat so unless you have a local DNS server, # leave it off. reverseclientiplookups = off # Build bannedsitelist and bannedurllist cache files. # This will compare the date stamp of the list file with the date stamp of # the cache file and will recreate as needed. # If a bsl or bul .processed file exists, then that will be used instead. # It will increase process start speed by 300%. On slow computers this will # be significant. Fast computers do not need this option. on | off createlistcachefiles = on # POST protection (web upload and forms) # does not block forms without any file upload, i.e. this is just for # blocking or limiting uploads # measured in kibibytes after MIME encoding and header bumph # use 0 for a complete block # use higher (e.g. 512 = 512Kbytes) for limiting # use -1 for no blocking #maxuploadsize = 512 #maxuploadsize = 0 maxuploadsize = -1 # Max content filter page size # Sometimes web servers label binary files as text which can be very # large which causes a huge drain on memory and cpu resources. # To counter this, you can limit the size of the document to be # filtered and get it to just pass it straight through. # This setting also applies to content regular expression modification. # The size is in Kibibytes - eg 2048 = 2Mb # use 0 for no limit maxcontentfiltersize = # Username identification methods (used in logging) # You can have as many methods as you want and not just one. The first one # will be used then if no username is found, the next will be used. # * proxyauth is for when basic proxy authentication is used (no good for # transparent proxying). # * ntlm is for when the proxy supports the MS NTLM authentication # protocol. (Only works with IE5.5 sp1 and later). **NOT IMPLEMENTED** # * ident is for when the others don't work. It will contact the computer # that the connection came from and try to connect to an identd server # and query it for the user owner of the connection. usernameidmethodproxyauth = on usernameidmethodntlm = off # **NOT IMPLEMENTED** usernameidmethodident = off # Preemptive banning - this means that if you have proxy auth enabled and a user accesses # a site banned by URL for example they will be denied straight away without a request # for their user and pass. This has the effect of requiring the user to visit a clean # site first before it knows who they are and thus maybe an admin user. # This is how DansGuardian has always worked but in some situations it is less than # ideal. So you can optionally disable it. Default is on. # As a side effect disabling this makes AD image replacement work better as the mime # type is know. preemptivebanning = on # Misc settings # if on it adds an X-Forwarded-For: <clientip> to the HTTP request # header. This may help solve some problem sites that need to know the # source ip. on | off forwardedfor = on # if on it uses the X-Forwarded-For: <clientip> to determine the client # IP. This is for when you have squid between the clients and DansGuardian. # Warning - headers are easily spoofed. on | off usexforwardedfor = off # if on it logs some debug info regarding fork()ing and accept()ing which # can usually be ignored. These are logged by syslog. It is safe to leave # it on or off logconnectionhandlingerrors = on # Fork pool options # sets the maximum number of processes to sporn to handle the incomming # connections. Max value usually 250 depending on OS. # On large sites you might want to try 180. maxchildren = 180 # sets the minimum number of processes to sporn to handle the incomming connections. # On large sites you might want to try 32. minchildren = 32 # sets the minimum number of processes to be kept ready to handle connections. # On large sites you might want to try 8. minsparechildren = 8 # sets the minimum number of processes to sporn when it runs out # On large sites you might want to try 10. preforkchildren = 10 # sets the maximum number of processes to have doing nothing. # When this many are spare it will cull some of them. # On large sites you might want to try 64. maxsparechildren = 64 # sets the maximum age of a child process before it croaks it. # This is the number of connections they handle before exiting. # On large sites you might want to try 10000. maxagechildren = 5000 # Process options # (Change these only if you really know what you are doing). # These options allow you to run multiple instances of DansGuardian on a single machine. # Remember to edit the log file path above also if that is your intention. # IPC filename # # Defines IPC server directory and filename used to communicate with the log process. ipcfilename = '/tmp/.dguardianipc' # URL list IPC filename # # Defines URL list IPC server directory and filename used to communicate with the URL # cache process. urlipcfilename = '/tmp/.dguardianurlipc' # PID filename # # Defines process id directory and filename. #pidfilename = '/var/run/dansguardian.pid' # Disable daemoning # If enabled the process will not fork into the background. # It is not usually advantageous to do this. # on|off ( defaults to off ) nodaemon = off # Disable logging process # on|off ( defaults to off ) nologger = off # Daemon runas user and group # This is the user that DansGuardian runs as. Normally the user/group nobody. # Uncomment to use. Defaults to the user set at compile time. # daemonuser = 'nobody' # daemongroup = 'nobody' # Soft restart # When on this disables the forced killing off all processes in the process group. # This is not to be confused with the -g run time option - they are not related. # on|off ( defaults to off ) softrestart = off maxcontentramcachescansize = 2000 maxcontentfilecachescansize = 20000 downloadmanager = '/etc/dansguardian/downloadmanagers/default.conf' authplugin = '/etc/dansguardian/authplugins/proxy-basic.conf' Squid.conf http_port 3128 hierarchy_stoplist cgi-bin ? acl QUERY urlpath_regex cgi-bin \? cache deny QUERY acl apache rep_header Server ^Apache #broken_vary_encoding allow apache access_log /squid/var/logs/access.log squid hosts_file /etc/hosts auth_param basic program /squid/libexec/ncsa_auth /squid/etc/userbasic.auth auth_param basic children 5 auth_param basic realm proxy auth_param basic credentialsttl 2 hours auth_param basic casesensitive off refresh_pattern ^ftp: 1440 20% 10080 refresh_pattern ^gopher: 1440 0% 1440 refresh_pattern . 0 20% 4320 acl NoAuthNec src <HIDDEN FOR SECURITY> acl BrkRm src <HIDDEN FOR SECURITY> acl Dials src <HIDDEN FOR SECURITY> acl Comps src <HIDDEN FOR SECURITY> acl whsws dstdom_regex -i .opensuse.org .novell.com .suse.com mirror.mcs.an1.gov mirrors.kernerl.org www.suse.de suse.mirrors.tds.net mirrros.usc.edu ftp.ale.org suse.cs.utah.edu mirrors.usc.edu mirror.usc.an1.gov linux.nssl.noaa.gov noaa.gov .kernel.org ftp.ale.org ftp.gwdg.de .medibuntu.org mirrors.xmission.com .canonical.com .ubuntu. acl opensites dstdom_regex -i .mbsbooks.com .bowker.com .usps.com .usps.gov .ups.com .fedex.com go.microsoft.com .microsoft.com .apple.com toolbar.msn.com .contacts.msn.com update.services.openoffice.org fms2.pointroll.speedera.net services.wmdrm.windowsmedia.com windowsupdate.com .adobe.com .symantec.com .vitalbook.com vxn1.datawire.net vxn.datawire.net download.lavasoft.de .download.lavasoft.com .lavasoft.com updates.ls-servers.com .canadapost. .myyellow.com minirick symantecliveupdate.com wm.overdrive.com www.overdrive.com productactivation.one.microsoft.com www.update.microsoft.com testdrive.whoson.com www.columbia.k12.mo.us banners.wunderground.com .kofax.com .gotomeeting.com tools.google.com .dl.google.com .cache.googlevideo.com .gpdl.google.com .clients.google.com cache.pack.google.com kh.google.com maps.google.com auth.keyhole.com .contacts.msn.com .hrblock.com .taxcut.com .merchantadvantage.com .jtv.com .malwarebytes.org www.google-analytics.com dcs.support.xerox.com .dhl.com .webtrendslive.com javadl-esd.sun.com javadl-alt.sun.com .excelsior.edu .dhlglobalmail.com .nessus.org .foxitsoftware.com foxit.vo.llnwd.net installshield.com .mindjet.com .mediascouter.com media.us.elsevierhealth.com .xplana.com .govtrack.us sa.tulsacc.edu .omniture.com fpdownload.macromedia.com webservices.amazon.com acl password proxy_auth REQUIRED acl all src all acl manager proto cache_object acl localhost src 127.0.0.1/255.255.255.255 acl to_localhost dst 127.0.0.0/8 acl SSL_ports port 443 563 631 2001 2005 8731 9001 9080 10000 acl Safe_ports port 80 # http acl Safe_ports port 21 # ftp acl Safe_ports port # https, snews 443 563 acl Safe_ports port 70 # gopher acl Safe_ports port 210 # wais acl Safe_ports port # unregistered ports 1936-65535 acl Safe_ports port 280 # http-mgmt acl Safe_ports port 488 # gss-http acl Safe_ports port 10000 acl Safe_ports port 631 acl Safe_ports port 901 # SWAT acl purge method PURGE acl CONNECT method CONNECT acl UTubeUsers proxy_auth "/squid/etc/utubeusers.list" acl RestrictUTube dstdom_regex -i youtube.com acl RestrictFacebook dstdom_regex -i facebook.com acl FacebookUsers proxy_auth "/squid/etc/facebookusers.list" acl BuemerKEC src 10.10.128.0/24 acl MBSsortnet src 10.10.128.0/26 acl MSNExplorer browser -i MSN acl Printers src <HIDDEN FOR SECURITY> acl SpecialFolks src <HIDDEN FOR SECURITY> # streaming download acl fails rep_mime_type ^.*mms.* acl fails rep_mime_type ^.*ms-hdr.* acl fails rep_mime_type ^.*x-fcs.* acl fails rep_mime_type ^.*x-ms-asf.* acl fails2 urlpath_regex dvrplayer mediastream mms:// acl fails2 urlpath_regex \.asf$ \.afx$ \.flv$ \.swf$ acl deny_rep_mime_flashvideo rep_mime_type -i video/flv acl deny_rep_mime_shockwave rep_mime_type -i ^application/x-shockwave-flash$ acl x-type req_mime_type -i ^application/octet-stream$ acl x-type req_mime_type -i application/octet-stream acl x-type req_mime_type -i ^application/x-mplayer2$ acl x-type req_mime_type -i application/x-mplayer2 acl x-type req_mime_type -i ^application/x-oleobject$ acl x-type req_mime_type -i application/x-oleobject acl x-type req_mime_type -i application/x-pncmd acl x-type req_mime_type -i ^video/x-ms-asf$ acl x-type2 rep_mime_type -i ^application/octet-stream$ acl x-type2 rep_mime_type -i application/octet-stream acl x-type2 rep_mime_type -i ^application/x-mplayer2$ acl x-type2 rep_mime_type -i application/x-mplayer2 acl x-type2 rep_mime_type -i ^application/x-oleobject$ acl x-type2 rep_mime_type -i application/x-oleobject acl x-type2 rep_mime_type -i application/x-pncmd acl x-type2 rep_mime_type -i ^video/x-ms-asf$ acl RestrictHulu dstdom_regex -i hulu.com acl broken dstdomain cms.montgomerycollege.edu events.columbiamochamber.com members.columbiamochamber.com public.genexusserver.com acl RestrictVimeo dstdom_regex -i vimeo.com acl http_port port 80 #http_reply_access deny deny_rep_mime_flashvideo #http_reply_access deny deny_rep_mime_shockwave #streaming files #http_access deny fails #http_reply_access deny fails #http_access deny fails2 #http_reply_access deny fails2 #http_access deny x-type #http_reply_access deny x-type #http_access deny x-type2 #http_reply_access deny x-type2 follow_x_forwarded_for allow localhost acl_uses_indirect_client on log_uses_indirect_client on http_access allow manager localhost http_access deny manager http_access allow purge localhost http_access deny purge http_access allow SpecialFolks http_access deny CONNECT !SSL_ports http_access allow whsws http_access allow opensites http_access deny BuemerKEC !MBSsortnet http_access deny BrkRm RestrictUTube RestrictFacebook RestrictVimeo http_access allow RestrictUTube UTubeUsers http_access deny RestrictUTube http_access allow RestrictFacebook FacebookUsers http_access deny RestrictFacebook http_access deny RestrictHulu http_access allow NoAuthNec http_access allow BrkRm http_access allow FacebookUsers RestrictVimeo http_access deny RestrictVimeo http_access allow Comps http_access allow Dials http_access allow Printers http_access allow password http_access deny !Safe_ports http_access deny SSL_ports !CONNECT http_access allow http_port http_access deny all http_reply_access allow all icp_access allow all access_log /squid/var/logs/access.log squid visible_hostname proxy.site.com forwarded_for off coredump_dir /squid/cache/ #header_access Accept-Encoding deny broken #acl snmppublic snmp_community mysecretcommunity #snmp_port 3401 #snmp_access allow snmppublic all cache_mem 3 GB #acl snmppublic snmp_community mbssquid #snmp_port 3401 #snmp_access allow snmppublic all

    Read the article

  • Adding Functions to an Implementation of Vector

    - by Meursault
    I have this implementation of vector that I've been working on for a few days using examples from a textbook: #include <iostream> #include <string> #include <cassert> #include <algorithm> #include <cstring> // Vector.h using namespace std; template <class T> class Vector { public: typedef T * iterator; Vector(); Vector(unsigned int size); Vector(unsigned int size, const T & initial); Vector(const Vector<T> & v); // copy constructor ~Vector(); unsigned int capacity() const; // return capacity of vector (in elements) unsigned int size() const; // return the number of elements in the vector bool empty() const; iterator begin(); // return an iterator pointing to the first element iterator end(); // return an iterator pointing to one past the last element T & front(); // return a reference to the first element T & back(); // return a reference to the last element void push_back(const T & value); // add a new element void pop_back(); // remove the last element void reserve(unsigned int capacity); // adjust capacity void resize(unsigned int size); // adjust size void erase(unsigned int size); // deletes an element from the vector T & operator[](unsigned int index); // return reference to numbered element Vector<T> & operator=(const Vector<T> &); private: unsigned int my_size; unsigned int my_capacity; T * buffer; }; template<class T>// Vector<T>::Vector() { my_capacity = 0; my_size = 0; buffer = 0; } template<class T> Vector<T>::Vector(const Vector<T> & v) { my_size = v.my_size; my_capacity = v.my_capacity; buffer = new T[my_size]; for (int i = 0; i < my_size; i++) buffer[i] = v.buffer[i]; } template<class T>// Vector<T>::Vector(unsigned int size) { my_capacity = size; my_size = size; buffer = new T[size]; } template<class T>// Vector<T>::Vector(unsigned int size, const T & initial) { my_size = size; //added = size my_capacity = size; buffer = new T [size]; for (int i = 0; i < size; i++) buffer[i] = initial; } template<class T>// Vector<T> & Vector<T>::operator = (const Vector<T> & v) { delete[ ] buffer; my_size = v.my_size; my_capacity = v.my_capacity; buffer = new T [my_size]; for (int i = 0; i < my_size; i++) buffer[i] = v.buffer[i]; return *this; } template<class T>// typename Vector<T>::iterator Vector<T>::begin() { return buffer; } template<class T>// typename Vector<T>::iterator Vector<T>::end() { return buffer + size(); } template<class T>// T& Vector<T>::Vector<T>::front() { return buffer[0]; } template<class T>// T& Vector<T>::Vector<T>::back() { return buffer[size - 1]; } template<class T> void Vector<T>::push_back(const T & v) { if (my_size >= my_capacity) reserve(my_capacity +5); buffer [my_size++] = v; } template<class T>// void Vector<T>::pop_back() { my_size--; } template<class T>// void Vector<T>::reserve(unsigned int capacity) { if(buffer == 0) { my_size = 0; my_capacity = 0; } if (capacity <= my_capacity) return; T * new_buffer = new T [capacity]; assert(new_buffer); copy (buffer, buffer + my_size, new_buffer); my_capacity = capacity; delete[] buffer; buffer = new_buffer; } template<class T>// unsigned int Vector<T>::size()const { return my_size; } template<class T>// void Vector<T>::resize(unsigned int size) { reserve(size); my_size = size; } template<class T>// T& Vector<T>::operator[](unsigned int index) { return buffer[index]; } template<class T>// unsigned int Vector<T>::capacity()const { return my_capacity; } template<class T>// Vector<T>::~Vector() { delete[]buffer; } template<class T> void Vector<T>::erase(unsigned int size) { } int main() { Vector<int> v; v.reserve(2); assert(v.capacity() == 2); Vector<string> v1(2); assert(v1.capacity() == 2); assert(v1.size() == 2); assert(v1[0] == ""); assert(v1[1] == ""); v1[0] = "hi"; assert(v1[0] == "hi"); Vector<int> v2(2, 7); assert(v2[1] == 7); Vector<int> v10(v2); assert(v10[1] == 7); Vector<string> v3(2, "hello"); assert(v3.size() == 2); assert(v3.capacity() == 2); assert(v3[0] == "hello"); assert(v3[1] == "hello"); v3.resize(1); assert(v3.size() == 1); assert(v3[0] == "hello"); Vector<string> v4 = v3; assert(v4.size() == 1); assert(v4[0] == v3[0]); v3[0] = "test"; assert(v4[0] != v3[0]); assert(v4[0] == "hello"); v3.pop_back(); assert(v3.size() == 0); Vector<int> v5(7, 9); Vector<int>::iterator it = v5.begin(); while (it != v5.end()) { assert(*it == 9); ++it; } Vector<int> v6; v6.push_back(100); assert(v6.size() == 1); assert(v6[0] == 100); v6.push_back(101); assert(v6.size() == 2); assert(v6[0] == 100); v6.push_back(101); cout << "SUCCESS\n"; } So far it works pretty well, but I want to add a couple of functions to it that I can't find examples for, a SWAP function that would look at two elements of the vector and switch their values and and an ERASE function that would delete a specific value or range of values in the vector. How should I begin implementing the two extra functions?

    Read the article

  • java inserting special characters with preparedstatement fails

    - by phill
    I am using an HTML form which sends <input type=hidden name=longdesc value='SMARTNET%^" 8X5XNBD'> this is done by the following javascript code: function masinsert(id) { var currentTime=new Date(); var button = document.getElementById("m"+id); button.onclick=""; button.value="Inserting"; var itemdescription = document.getElementById("itemdescription"+id).value; function handleHttpResponse() { if (http.readyState == 4) { button.value="Item Added"; } } var http = getHTTPObject(); // We create the HTTP Object var tempUrl = "\AInsert"; tempUrl += "itemdescription="+itemdescription+"&"+"itemshortdescription="+itemdescription.substring(0,37)+; alert(tempUrl); http.open("GET", tempUrl, true); http.onreadystatechange = handleHttpResponse; http.send(null); } to a java servlet. AInsert.java in the AInsert.java file, I do a String itemdescription = request.getParameter("longdesc"); which then sends the value to a preparedstatement to run an insert query. In the query, there are sometimes special characters which throw it off. For example, when I run the following insert into itemdescription (longdesc) values ('SMARTNET%^" 8X5XNBD') here is the actual snippet: PreparedStatement ps = conn.prepareStatement("INSERT INTO itemdescription (longdesc) values(?)"); ps.setString(1, itemdescription); ps.executeUpdate(); It will produce an error saying : Cannot insert the value NULL into column 'LongDesc', table 'App.dbo.itemdescription'; column does not allow nulls. Insert fails I have tried urlencode/urldecode String encodedString = URLEncoder.encode(longdesc, "UTF-8"); String decitemdescription = URLDecoder.decode(itemdescription, "UTF-8"); and i've also tried these functions //BEGIN URL Encoder final static String[] hex = { "%00", "%01", "%02", "%03", "%04", "%05", "%06", "%07", "%08", "%09", "%0a", "%0b", "%0c", "%0d", "%0e", "%0f", "%10", "%11", "%12", "%13", "%14", "%15", "%16", "%17", "%18", "%19", "%1a", "%1b", "%1c", "%1d", "%1e", "%1f", "%20", "%21", "%22", "%23", "%24", "%25", "%26", "%27", "%28", "%29", "%2a", "%2b", "%2c", "%2d", "%2e", "%2f", "%30", "%31", "%32", "%33", "%34", "%35", "%36", "%37", "%38", "%39", "%3a", "%3b", "%3c", "%3d", "%3e", "%3f", "%40", "%41", "%42", "%43", "%44", "%45", "%46", "%47", "%48", "%49", "%4a", "%4b", "%4c", "%4d", "%4e", "%4f", "%50", "%51", "%52", "%53", "%54", "%55", "%56", "%57", "%58", "%59", "%5a", "%5b", "%5c", "%5d", "%5e", "%5f", "%60", "%61", "%62", "%63", "%64", "%65", "%66", "%67", "%68", "%69", "%6a", "%6b", "%6c", "%6d", "%6e", "%6f", "%70", "%71", "%72", "%73", "%74", "%75", "%76", "%77", "%78", "%79", "%7a", "%7b", "%7c", "%7d", "%7e", "%7f", "%80", "%81", "%82", "%83", "%84", "%85", "%86", "%87", "%88", "%89", "%8a", "%8b", "%8c", "%8d", "%8e", "%8f", "%90", "%91", "%92", "%93", "%94", "%95", "%96", "%97", "%98", "%99", "%9a", "%9b", "%9c", "%9d", "%9e", "%9f", "%a0", "%a1", "%a2", "%a3", "%a4", "%a5", "%a6", "%a7", "%a8", "%a9", "%aa", "%ab", "%ac", "%ad", "%ae", "%af", "%b0", "%b1", "%b2", "%b3", "%b4", "%b5", "%b6", "%b7", "%b8", "%b9", "%ba", "%bb", "%bc", "%bd", "%be", "%bf", "%c0", "%c1", "%c2", "%c3", "%c4", "%c5", "%c6", "%c7", "%c8", "%c9", "%ca", "%cb", "%cc", "%cd", "%ce", "%cf", "%d0", "%d1", "%d2", "%d3", "%d4", "%d5", "%d6", "%d7", "%d8", "%d9", "%da", "%db", "%dc", "%dd", "%de", "%df", "%e0", "%e1", "%e2", "%e3", "%e4", "%e5", "%e6", "%e7", "%e8", "%e9", "%ea", "%eb", "%ec", "%ed", "%ee", "%ef", "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", "%f8", "%f9", "%fa", "%fb", "%fc", "%fd", "%fe", "%ff" }; /** * Encode a string to the "x-www-form-urlencoded" form, enhanced * with the UTF-8-in-URL proposal. This is what happens: * * <ul> * <li><p>The ASCII characters 'a' through 'z', 'A' through 'Z', * and '0' through '9' remain the same. * * <li><p>The unreserved characters - _ . ! ~ * ' ( ) remain the same. * * <li><p>The space character ' ' is converted into a plus sign '+'. * * <li><p>All other ASCII characters are converted into the * 3-character string "%xy", where xy is * the two-digit hexadecimal representation of the character * code * * <li><p>All non-ASCII characters are encoded in two steps: first * to a sequence of 2 or 3 bytes, using the UTF-8 algorithm; * secondly each of these bytes is encoded as "%xx". * </ul> * * @param s The string to be encoded * @return The encoded string */ public static String encode(String s) { StringBuffer sbuf = new StringBuffer(); int len = s.length(); for (int i = 0; i < len; i++) { int ch = s.charAt(i); if ('A' <= ch && ch <= 'Z') { // 'A'..'Z' sbuf.append((char)ch); } else if ('a' <= ch && ch <= 'z') { // 'a'..'z' sbuf.append((char)ch); } else if ('0' <= ch && ch <= '9') { // '0'..'9' sbuf.append((char)ch); } else if (ch == ' ') { // space sbuf.append('+'); } else if (ch == '-' || ch == '_' // unreserved || ch == '.' || ch == '!' || ch == '~' || ch == '*' || ch == '\'' || ch == '(' || ch == ')') { sbuf.append((char)ch); } else if (ch <= 0x007f) { // other ASCII sbuf.append(hex[ch]); } else if (ch <= 0x07FF) { // non-ASCII <= 0x7FF sbuf.append(hex[0xc0 | (ch >> 6)]); sbuf.append(hex[0x80 | (ch & 0x3F)]); } else { // 0x7FF < ch <= 0xFFFF sbuf.append(hex[0xe0 | (ch >> 12)]); sbuf.append(hex[0x80 | ((ch >> 6) & 0x3F)]); sbuf.append(hex[0x80 | (ch & 0x3F)]); } } return sbuf.toString(); } //end encode and //decode url private static String unescape(String s) { StringBuffer sbuf = new StringBuffer () ; int l = s.length() ; int ch = -1 ; int b, sumb = 0; for (int i = 0, more = -1 ; i < l ; i++) { /* Get next byte b from URL segment s */ switch (ch = s.charAt(i)) { case '%': ch = s.charAt (++i) ; int hb = (Character.isDigit ((char) ch) ? ch - '0' : 10+Character.toLowerCase((char) ch) - 'a') & 0xF ; ch = s.charAt (++i) ; int lb = (Character.isDigit ((char) ch) ? ch - '0' : 10+Character.toLowerCase ((char) ch)-'a') & 0xF ; b = (hb << 4) | lb ; break ; case '+': b = ' ' ; break ; default: b = ch ; } /* Decode byte b as UTF-8, sumb collects incomplete chars */ if ((b & 0xc0) == 0x80) { // 10xxxxxx (continuation byte) sumb = (sumb << 6) | (b & 0x3f) ; // Add 6 bits to sumb if (--more == 0) sbuf.append((char) sumb) ; // Add char to sbuf } else if ((b & 0x80) == 0x00) { // 0xxxxxxx (yields 7 bits) sbuf.append((char) b) ; // Store in sbuf } else if ((b & 0xe0) == 0xc0) { // 110xxxxx (yields 5 bits) sumb = b & 0x1f; more = 1; // Expect 1 more byte } else if ((b & 0xf0) == 0xe0) { // 1110xxxx (yields 4 bits) sumb = b & 0x0f; more = 2; // Expect 2 more bytes } else if ((b & 0xf8) == 0xf0) { // 11110xxx (yields 3 bits) sumb = b & 0x07; more = 3; // Expect 3 more bytes } else if ((b & 0xfc) == 0xf8) { // 111110xx (yields 2 bits) sumb = b & 0x03; more = 4; // Expect 4 more bytes } else /*if ((b & 0xfe) == 0xfc)*/ { // 1111110x (yields 1 bit) sumb = b & 0x01; more = 5; // Expect 5 more bytes } /* We don't test if the UTF-8 encoding is well-formed */ } return sbuf.toString() ; } but the decoding doesn't change it back to the original special characters. Any ideas? thanks in advance UPDATE: I tried adding these two statements to grab the request String itemdescription = URLDecoder.decode(request.getParameter("itemdescription"), "UTF-8"); String itemshortdescription = URLDecoder.decode(request.getParameter("itemshortdescription"), "UTF-8"); System.out.println("processRequest | short descrip "); and this is failing as well if that helps. UPDATE2: I created an html form and did a direct insert with the encoded itemdescription such as and the insertion works correctly with the special charaters and everything. I guess there is something going on with my javascript submit. Any ideas on this?

    Read the article

  • Accelerated C++, problem 5-6 (copying values from inside a vector to the front)

    - by Darel
    Hello, I'm working through the exercises in Accelerated C++ and I'm stuck on question 5-6. Here's the problem description: (somewhat abbreviated, I've removed extraneous info.) 5-6. Write the extract_fails function so that it copies the records for the passing students to the beginning of students, and then uses the resize function to remove the extra elements from the end of students. (students is a vector of student structures. student structures contain an individual student's name and grades.) More specifically, I'm having trouble getting the vector.insert function to properly copy the passing student structures to the start of the vector students. Here's the extract_fails function as I have it so far (note it doesn't resize the vector yet, as directed by the problem description; that should be trivial once I get past my current issue.) // Extract the students who failed from the "students" vector. void extract_fails(vector<Student_info>& students) { typedef vector<Student_info>::size_type str_sz; typedef vector<Student_info>::iterator iter; iter it = students.begin(); str_sz i = 0, count = 0; while (it != students.end()) { // fgrade tests wether or not the student failed if (!fgrade(*it)) { // if student passed, copy to front of vector students.insert(students.begin(), it, it); // tracks of the number of passing students(so we can properly resize the array) count++; } cout << it->name << endl; // output to verify that each student is iterated to it++; } } The code compiles and runs, but the students vector isn't adding any student structures to its front. My program's output displays that the students vector is unchanged. Here's my complete source code, followed by a sample input file (I redirect input from the console by typing " < grades" after the compiled program name at the command prompt.) #include <iostream> #include <string> #include <algorithm> // to get the declaration of `sort' #include <stdexcept> // to get the declaration of `domain_error' #include <vector> // to get the declaration of `vector' //driver program for grade partitioning examples using std::cin; using std::cout; using std::endl; using std::string; using std::domain_error; using std::sort; using std::vector; using std::max; using std::istream; struct Student_info { std::string name; double midterm, final; std::vector<double> homework; }; bool compare(const Student_info&, const Student_info&); std::istream& read(std::istream&, Student_info&); std::istream& read_hw(std::istream&, std::vector<double>&); double median(std::vector<double>); double grade(double, double, double); double grade(double, double, const std::vector<double>&); double grade(const Student_info&); bool fgrade(const Student_info&); void extract_fails(vector<Student_info>& v); int main() { vector<Student_info> vs; Student_info s; string::size_type maxlen = 0; while (read(cin, s)) { maxlen = max(maxlen, s.name.size()); vs.push_back(s); } sort(vs.begin(), vs.end(), compare); extract_fails(vs); // display the new, modified vector - it should be larger than // the input vector, due to some student structures being // added to the front of the vector. cout << "count: " << vs.size() << endl << endl; vector<Student_info>::iterator it = vs.begin(); while (it != vs.end()) cout << it++->name << endl; return 0; } // Extract the students who failed from the "students" vector. void extract_fails(vector<Student_info>& students) { typedef vector<Student_info>::size_type str_sz; typedef vector<Student_info>::iterator iter; iter it = students.begin(); str_sz i = 0, count = 0; while (it != students.end()) { // fgrade tests wether or not the student failed if (!fgrade(*it)) { // if student passed, copy to front of vector students.insert(students.begin(), it, it); // tracks of the number of passing students(so we can properly resize the array) count++; } cout << it->name << endl; // output to verify that each student is iterated to it++; } } bool compare(const Student_info& x, const Student_info& y) { return x.name < y.name; } istream& read(istream& is, Student_info& s) { // read and store the student's name and midterm and final exam grades is >> s.name >> s.midterm >> s.final; read_hw(is, s.homework); // read and store all the student's homework grades return is; } // read homework grades from an input stream into a `vector<double>' istream& read_hw(istream& in, vector<double>& hw) { if (in) { // get rid of previous contents hw.clear(); // read homework grades double x; while (in >> x) hw.push_back(x); // clear the stream so that input will work for the next student in.clear(); } return in; } // compute the median of a `vector<double>' // note that calling this function copies the entire argument `vector' double median(vector<double> vec) { typedef vector<double>::size_type vec_sz; vec_sz size = vec.size(); if (size == 0) throw domain_error("median of an empty vector"); sort(vec.begin(), vec.end()); vec_sz mid = size/2; return size % 2 == 0 ? (vec[mid] + vec[mid-1]) / 2 : vec[mid]; } // compute a student's overall grade from midterm and final exam grades and homework grade double grade(double midterm, double final, double homework) { return 0.2 * midterm + 0.4 * final + 0.4 * homework; } // compute a student's overall grade from midterm and final exam grades // and vector of homework grades. // this function does not copy its argument, because `median' does so for us. double grade(double midterm, double final, const vector<double>& hw) { if (hw.size() == 0) throw domain_error("student has done no homework"); return grade(midterm, final, median(hw)); } double grade(const Student_info& s) { return grade(s.midterm, s.final, s.homework); } // predicate to determine whether a student failed bool fgrade(const Student_info& s) { return grade(s) < 60; } Sample input file: Moo 100 100 100 100 100 100 100 100 Fail1 45 55 65 80 90 70 65 60 Moore 75 85 77 59 0 85 75 89 Norman 57 78 73 66 78 70 88 89 Olson 89 86 70 90 55 73 80 84 Peerson 47 70 82 73 50 87 73 71 Baker 67 72 73 40 0 78 55 70 Davis 77 70 82 65 70 77 83 81 Edwards 77 72 73 80 90 93 75 90 Fail2 55 55 65 50 55 60 65 60 Thanks to anyone who takes the time to look at this!

    Read the article

  • error in finding out the lexems and no of lines of a text file in C

    - by mekasperasky
    #include<stdio.h> #include<ctype.h> #include<string.h> int main() { int i=0,j,k,lines_count[2]={1,1},operand_count[2]={0},operator_count[2]={0},uoperator_count[2]={0},control_count[2]={0,0},cl[13]={0},variable_dec[2]={0,0},l,p[2]={0},ct,variable_used[2]={0,0},constant_count[2],s[2]={0},t[2]={0}; char a,b[100],c[100]; char d[100]={0}; j=30; FILE *fp1[2],*fp2; fp1[0]=fopen("program1.txt","r"); fp1[1]=fopen("program2.txt","r"); //the source file is opened in read only mode which will passed through the lexer fp2=fopen("ccv1ouput.txt","wb"); //now lets remove all the white spaces and store the rest of the words in a file if(fp1[0]==NULL) { perror("failed to open program1.txt"); //return EXIT_FAILURE; } if(fp1[1]==NULL) { perror("failed to open program2.txt"); //return EXIT_FAILURE; } i=0; k=0; ct=0; while(ct!=2) { while(!feof(fp1[ct])) { a=fgetc(fp1[ct]); if(a!=' '&&a!='\n') { if (!isalpha(a) && !isdigit(a)) { switch(a) { case '+':{ i=0; cl[0]=1; operator_count[ct]=operator_count[ct]+1;break;} case '-':{ cl[1]=1; operator_count[ct]=operator_count[ct]+1;i=0;break;} case '*':{ cl[2]=1; operator_count[ct]=operator_count[ct]+1;i=0;break;} case '/':{ cl[3]=1; operator_count[ct]=operator_count[ct]+1;i=0;break;} case '=':{a=fgetc(fp1[ct]); if (a=='='){cl[4]=1; operator_count[ct]=operator_count[ct]+1; operand_count[ct]=operand_count[ct]+1;} else { cl[5]=1; operator_count[ct]=operator_count[ct]+1; operand_count[ct]=operand_count[ct]+1; ungetc(1,fp1[ct]); } break;} case '%':{ cl[6]=1; operator_count[ct]=operator_count[ct]+1;i=0;break;} case '<':{ a=fgetc(fp1[ct]); if (a=='=') {cl[7]=1; operator_count[ct]=operator_count[ct]+1;} else { cl[8]=1; operator_count[ct]=operator_count[ct]+1; ungetc(1,fp1[ct]); } break; } case '>':{ ; a=fgetc(fp1[ct]); if (a=='='){cl[9]=1; operator_count[ct]=operator_count[ct]+1;} else { cl[10]=1; operator_count[ct]=operator_count[ct]+1; ungetc(1,fp1[ct]); } break;} case '&':{ cl[11]=1; a=fgetc(fp1[ct]); operator_count[ct]=operator_count[ct]+1; operand_count[ct]=operand_count[ct]+1; variable_used[ct]=variable_used[ct]-1; break; } case '|':{ cl[12]=1; a=fgetc(fp1[ct]); operator_count[ct]=operator_count[ct]+1; operand_count[ct]=operand_count[ct]+1; variable_used[ct]=variable_used[ct]-1; break; } case '#':{ while(a!='\n') { a=fgetc(fp1[ct]); } } } } else { d[i]=a; i=i+1; k=k+1; } } else { //printf("%s \n",d); if((strcmp(d,"if")==0)){ memset ( d, 0, 100 ); i=0; control_count[ct]=control_count[ct]+1; } else if(strcmp(d,"then")==0){ i=0;memset ( d, 0, 100 );control_count[ct]=control_count[ct]+1;} else if(strcmp(d,"else")==0){ i=0;memset ( d, 0, 100 );control_count[ct]=control_count[ct]+1;} else if(strcmp(d,"while")==0){ i=0;memset ( d, 0, 100 );control_count[ct]=control_count[ct]+1;} else if(strcmp(d,"int")==0){ while(a != '\n') { a=fgetc(fp1[ct]); if (isalpha(a) ) variable_dec[ct]=variable_dec[ct]+1; } memset ( d, 0, 100 ); lines_count[ct]=lines_count[ct]+1; } else if(strcmp(d,"char")==0){while(a != '\n') { a=fgetc(fp1[ct]); if (isalpha(a) ) variable_dec[ct]=variable_dec[ct]+1; } memset ( d, 0, 100 ); lines_count[ct]=lines_count[ct]+1; } else if(strcmp(d,"float")==0){while(a != '\n') { a=fgetc(fp1[ct]); if (isalpha(a) ) variable_dec[ct]=variable_dec[ct]+1; } memset ( d, 0, 100 ); lines_count[ct]=lines_count[ct]+1; } else if(strcmp(d,"printf")==0){while(a!='\n') a=fgetc(fp1[ct]); memset(d,0,100); } else if(strcmp(d,"scanf")==0){while(a!='\n') a=fgetc(fp1[ct]); memset(d,0,100);} else if (isdigit(d[i-1])) { memset ( d, 0, 100 ); i=0; constant_count[ct]=constant_count[ct]+1; operand_count[ct]=operand_count[ct]+1; } else if (isalpha(d[i-1]) && strcmp(d,"int")!=0 && strcmp(d,"char")!=0 && strcmp(d,"float")!=0 && (strcmp(d,"if")!=0) && strcmp(d,"then")!=0 && strcmp(d,"else")!=0 && strcmp(d,"while")!=0 && strcmp(d,"printf")!=0 && strcmp(d,"scanf")!=0) { memset ( d, 0, 100 ); i=0; operand_count[ct]=operand_count[ct]+1; } else if(a=='\n') { lines_count[ct]=lines_count[ct]+1; memset ( d, 0, 100 ); } } } fclose(fp1[ct]); operand_count[ct]=operand_count[ct]-5; variable_used[0]=operand_count[0]-constant_count[0]; variable_used[1]=operand_count[1]-constant_count[1]; for(j=0;j<12;j++) uoperator_count[ct]=uoperator_count[ct]+cl[j]; fprintf(fp2,"\n statistics of program %d",ct+1); fprintf(fp2,"\n the no of lines ---> %d",lines_count[ct]); fprintf(fp2,"\n the no of operands --->%d",operand_count[ct]); fprintf(fp2,"\n the no of operator --->%d",operator_count[ct]); fprintf(fp2,"\n the no of control statments --->%d",control_count[ct]); fprintf(fp2,"\n the no of unique operators --->%d",uoperator_count[ct]); fprintf(fp2,"\n the no of variables declared--->%d",variable_dec[ct]); fprintf(fp2,"\n the no of variables used--->%d",variable_used[ct]); fprintf(fp2,"\n ---------------------------------"); fprintf(fp2,"\n \t \t \t"); ct=ct+1; } t[0]=lines_count[0]+control_count[0]+uoperator_count[0]; t[1]=lines_count[1]+control_count[1]+uoperator_count[1]; s[0]=operator_count[0]+operand_count[0]+variable_dec[0]+variable_used[0]; s[1]=operator_count[1]+operand_count[1]+variable_dec[1]+variable_used[1]; fprintf(fp2,"\n the time complexity of program 1 is %d",t[0]); fprintf(fp2,"\n the time complexity of program 2 is %d",t[1]); fprintf(fp2,"\n the space complexity of program 1 is %d",s[0]); fprintf(fp2,"\n the space complexity of program 2 is %d",s[1]); if((t[0]>t[1]) && (s[0] >s[1])) fprintf(fp2,"\n the efficiency of program 2 is greater than program 1"); else if(t[0]<t[1] && s[0] < s[1]) fprintf(fp2,"\n the efficiency of program 1 is greater than program 2 " ); else if (t[0]+s[0] > t[1]+s[1]) fprintf(fp2,"\n the efficiency of program 1 is greater than program 2"); else if (t[0]+s[0] < t[1]+s[1]) fprintf(fp2,"\n the efficiency of program 2 is greater than program 1"); else if (t[0]+s[0] == t[1]+s[1]) fprintf(fp2,"\n the efficiency of program 1 is equal to that of program 2"); fclose(fp2); return 0; } this code basically compares two c codes and finds out the no. of variables declared , used , no. of control statements , no. of lines and no. of unique operators , and operands , so as to find out the time complexity and space complexity of of the two programs given in the text file program1.txt and program2.txt ... Lets say program1.txt is this #include<stdio.h> #include<math.h> int main () { FILE *fp; fp=fopen("output.txt","w"); long double t,y=0,x=0,e=5,f=1,w=1; for (t=0;t<10;t=t+0.01) { //if (isnan(y) || isinf(y)) //break; fprintf(fp,"%ld\t%ld\n",y,x); y = y + ((e*(1 - (x*x))*y) - x + f*cos(w*0.1))*0.1; x = x + y*0.1; } fclose(fp); return (0); } i havent indented it as its just a text file . But my output is totally faulty . Its not able to find the any of the ouput that i need . Where is the bug in this ? I am not able to figure out as the algorithm looks fine .

    Read the article

  • Converting "A* Search" code from C++ to Java [on hold]

    - by mr5
    Updated! I get this code from this site It's A* Search Algorithm(finding shortest path with heuristics) I modify most of variable names and some if conditions from the original version to satisfy my syntactic taste. It works in C++ (as I can't see any trouble with it) but fails in Java version. Java Code: String findPath(int startX, int startY, int finishX, int finishY) { @SuppressWarnings("unchecked") LinkedList<Node>[] nodeList = (LinkedList<Node>[]) new LinkedList<?>[2]; nodeList[0] = new LinkedList<Node>(); nodeList[1] = new LinkedList<Node>(); Node n0; Node m0; int nlIndex = 0; // queueList index // reset the node maps for(int y = 0;y < ROW_COUNT; ++y) { for(int x = 0;x < COL_COUNT; ++x) { close_nodes_map[y][x] = 0; open_nodes_map[y][x] = 0; } } // create the start node and push into list of open nodes n0 = new Node( startX, startY, 0, 0 ); n0.updatePriority( finishX, finishY ); nodeList[nlIndex].push( n0 ); open_nodes_map[startY][startX] = n0.getPriority(); // mark it on the open nodes map // A* search while( !nodeList[nlIndex].isEmpty() ) { LinkedList<Node> pq = nodeList[nlIndex]; // get the current node w/ the highest priority // from the list of open nodes n0 = new Node( pq.peek().getX(), pq.peek().getY(), pq.peek().getIterCount(), pq.peek().getPriority()); int x = n0.getX(); int y = n0.getY(); nodeList[nlIndex].pop(); // remove the node from the open list open_nodes_map[y][x] = 0; // mark it on the closed nodes map close_nodes_map[y][x] = 1; // quit searching when the goal state is reached //if((*n0).estimate(finishX, finishY) == 0) if( x == finishX && y == finishY ) { // generate the path from finish to start // by following the directions String path = ""; while( !( x == startX && y == startY) ) { int j = dir_map[y][x]; int c = '0' + ( j + Node.DIRECTION_COUNT / 2 ) % Node.DIRECTION_COUNT; path = (char)c + path; x += DIR_X[j]; y += DIR_Y[j]; } return path; } // generate moves (child nodes) in all possible directions for(int i = 0; i < Node.DIRECTION_COUNT; ++i) { int xdx = x + DIR_X[i]; int ydy = y + DIR_Y[i]; // boundary check if (!(xdx >= 0 && xdx < COL_COUNT && ydy >= 0 && ydy < ROW_COUNT)) continue; if ( ( gridMap.getData( ydy, xdx ) == GridMap.WALKABLE || gridMap.getData( ydy, xdx ) == GridMap.FINISH) && close_nodes_map[ydy][xdx] != 1 ) { // generate a child node m0 = new Node( xdx, ydy, n0.getIterCount(), n0.getPriority() ); m0.nextLevel( i ); m0.updatePriority( finishX, finishY ); // if it is not in the open list then add into that if( open_nodes_map[ydy][xdx] == 0 ) { open_nodes_map[ydy][xdx] = m0.getPriority(); nodeList[nlIndex].push( m0 ); // mark its parent node direction dir_map[ydy][xdx] = ( i + Node.DIRECTION_COUNT / 2 ) % Node.DIRECTION_COUNT; } else if( open_nodes_map[ydy][xdx] > m0.getPriority() ) { // update the priority info open_nodes_map[ydy][xdx] = m0.getPriority(); // update the parent direction info dir_map[ydy][xdx] = ( i + Node.DIRECTION_COUNT / 2 ) % Node.DIRECTION_COUNT; // replace the node // by emptying one queueList to the other one // except the node to be replaced will be ignored // and the new node will be pushed in instead while( !(nodeList[nlIndex].peek().getX() == xdx && nodeList[nlIndex].peek().getY() == ydy ) ) { nodeList[1 - nlIndex].push( nodeList[nlIndex].pop() ); } nodeList[nlIndex].pop(); // remove the wanted node // empty the larger size queueList to the smaller one if( nodeList[nlIndex].size() > nodeList[ 1 - nlIndex ].size() ) nlIndex = 1 - nlIndex; while( !nodeList[nlIndex].isEmpty() ) { nodeList[1 - nlIndex].push( nodeList[nlIndex].pop() ); } nlIndex = 1 - nlIndex; nodeList[nlIndex].push( m0 ); // add the better node instead } } } } return ""; // no route found } Output1: Legends . = PATH ? = START X = FINISH 3,2,1 = OBSTACLES (Misleading path) Output2: Changing these lines: n0 = new Node( a, b, c, d ); m0 = new Node( e, f, g, h ); to n0.set( a, b, c, d ); m0.set( e, f, g, h ); I get (I'm really confused) C++ Code: std::string A_Star::findPath(int startX, int startY, int finishX, int finishY) { typedef std::queue<Node> List_Container; List_Container nodeList[2]; // list of open (not-yet-tried) nodes Node n0; Node m0; int pqIndex = 0; // nodeList index // reset the node maps for(int y = 0;y < ROW_COUNT; ++y) { for(int x = 0;x < COL_COUNT; ++x) { close_nodes_map[y][x] = 0; open_nodes_map[y][x] = 0; } } // create the start node and push into list of open nodes n0 = Node( startX, startY, 0, 0 ); n0.updatePriority( finishX, finishY ); nodeList[pqIndex].push( n0 ); open_nodes_map[startY][startX] = n0.getPriority(); // mark it on the open nodes map // A* search while( !nodeList[pqIndex].empty() ) { List_Container &pq = nodeList[pqIndex]; // get the current node w/ the highest priority // from the list of open nodes n0 = Node( pq.front().getX(), pq.front().getY(), pq.front().getIterCount(), pq.front().getPriority()); int x = n0.getX(); int y = n0.getY(); nodeList[pqIndex].pop(); // remove the node from the open list open_nodes_map[y][x] = 0; // mark it on the closed nodes map close_nodes_map[y][x] = 1; // quit searching when the goal state is reached //if((*n0).estimate(finishX, finishY) == 0) if( x == finishX && y == finishY ) { // generate the path from finish to start // by following the directions std::string path = ""; while( !( x == startX && y == startY) ) { int j = dir_map[y][x]; char c = '0' + ( j + DIRECTION_COUNT / 2 ) % DIRECTION_COUNT; path = c + path; x += DIR_X[j]; y += DIR_Y[j]; } return path; } // generate moves (child nodes) in all possible directions for(int i = 0; i < DIRECTION_COUNT; ++i) { int xdx = x + DIR_X[i]; int ydy = y + DIR_Y[i]; // boundary check if (!( xdx >= 0 && xdx < COL_COUNT && ydy >= 0 && ydy < ROW_COUNT)) continue; if ( ( pGrid->getData(ydy,xdx) == WALKABLE || pGrid->getData(ydy, xdx) == FINISH) && close_nodes_map[ydy][xdx] != 1 ) { // generate a child node m0 = Node( xdx, ydy, n0.getIterCount(), n0.getPriority() ); m0.nextLevel( i ); m0.updatePriority( finishX, finishY ); // if it is not in the open list then add into that if( open_nodes_map[ydy][xdx] == 0 ) { open_nodes_map[ydy][xdx] = m0.getPriority(); nodeList[pqIndex].push( m0 ); // mark its parent node direction dir_map[ydy][xdx] = ( i + DIRECTION_COUNT / 2 ) % DIRECTION_COUNT; } else if( open_nodes_map[ydy][xdx] > m0.getPriority() ) { // update the priority info open_nodes_map[ydy][xdx] = m0.getPriority(); // update the parent direction info dir_map[ydy][xdx] = ( i + DIRECTION_COUNT / 2 ) % DIRECTION_COUNT; // replace the node // by emptying one nodeList to the other one // except the node to be replaced will be ignored // and the new node will be pushed in instead while ( !( nodeList[pqIndex].front().getX() == xdx && nodeList[pqIndex].front().getY() == ydy ) ) { nodeList[1 - pqIndex].push( nodeList[pqIndex].front() ); nodeList[pqIndex].pop(); } nodeList[pqIndex].pop(); // remove the wanted node // empty the larger size nodeList to the smaller one if( nodeList[pqIndex].size() > nodeList[ 1 - pqIndex ].size() ) pqIndex = 1 - pqIndex; while( !nodeList[pqIndex].empty() ) { nodeList[1-pqIndex].push(nodeList[pqIndex].front()); nodeList[pqIndex].pop(); } pqIndex = 1 - pqIndex; nodeList[pqIndex].push( m0 ); // add the better node instead } } } } return ""; // no route found } Output: Legends . = PATH ? = START X = FINISH 3,2,1 = OBSTACLES (Just right) From what I read about Java's documentation, I came up with the conclusion: C++'s std::queue<T>::front() == Java's LinkedList<T>.peek() Java's LinkedList<T>.pop() == C++'s std::queue<T>::front() + std::queue<T>::pop() What might I be missing in my Java version? In what way does it became different algorithmically from the C++ version?

    Read the article

  • Delphi: EInvalidOp in neural network class (TD-lambda)

    - by user89818
    I have the following draft for a neural network class. This neural network should learn with TD-lambda. It is started by calling the getRating() function. But unfortunately, there is an EInvalidOp (invalid floading point operation) error after about 1000 iterations in the following lines: neuronsHidden[j] := neuronsHidden[j]+neuronsInput[t][i]*weightsInput[i][j]; // input -> hidden weightsHidden[j][k] := weightsHidden[j][k]+LEARNING_RATE_HIDDEN*tdError[k]*eligibilityTraceOutput[j][k]; // adjust hidden->output weights according to TD-lambda Why is this error? I can't find the mistake in my code :( Can you help me? Thank you very much in advance! unit uNeuronalesNetz; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, ExtCtrls, StdCtrls, Grids, Menus, Math; const NEURONS_INPUT = 43; // number of neurons in the input layer NEURONS_HIDDEN = 60; // number of neurons in the hidden layer NEURONS_OUTPUT = 1; // number of neurons in the output layer NEURONS_TOTAL = NEURONS_INPUT+NEURONS_HIDDEN+NEURONS_OUTPUT; // total number of neurons in the network MAX_TIMESTEPS = 42; // maximum number of timesteps possible (after 42 moves: board is full) LEARNING_RATE_INPUT = 0.25; // in ideal case: decrease gradually in course of training LEARNING_RATE_HIDDEN = 0.15; // in ideal case: decrease gradually in course of training GAMMA = 0.9; LAMBDA = 0.7; // decay parameter for eligibility traces type TFeatureVector = Array[1..43] of SmallInt; // definition of the array type TFeatureVector TArtificialNeuralNetwork = class // definition of the class TArtificialNeuralNetwork private // GENERAL SETTINGS START learningMode: Boolean; // does the network learn and change its weights? // GENERAL SETTINGS END // NETWORK CONFIGURATION START neuronsInput: Array[1..MAX_TIMESTEPS] of Array[1..NEURONS_INPUT] of Extended; // array of all input neurons (their values) for every timestep neuronsHidden: Array[1..NEURONS_HIDDEN] of Extended; // array of all hidden neurons (their values) neuronsOutput: Array[1..NEURONS_OUTPUT] of Extended; // array of output neurons (their values) weightsInput: Array[1..NEURONS_INPUT] of Array[1..NEURONS_HIDDEN] of Extended; // array of weights: input->hidden weightsHidden: Array[1..NEURONS_HIDDEN] of Array[1..NEURONS_OUTPUT] of Extended; // array of weights: hidden->output // NETWORK CONFIGURATION END // LEARNING SETTINGS START outputBefore: Array[1..NEURONS_OUTPUT] of Extended; // the network's output value in the last timestep (the one before) eligibilityTraceHidden: Array[1..NEURONS_INPUT] of Array[1..NEURONS_HIDDEN] of Array[1..NEURONS_OUTPUT] of Extended; // array of eligibility traces: hidden layer eligibilityTraceOutput: Array[1..NEURONS_TOTAL] of Array[1..NEURONS_TOTAL] of Extended; // array of eligibility traces: output layer reward: Array[1..MAX_TIMESTEPS] of Array[1..NEURONS_OUTPUT] of Extended; // the reward value for all output neurons in every timestep tdError: Array[1..NEURONS_OUTPUT] of Extended; // the network's error value for every single output neuron t: Byte; // current timestep cyclesTrained: Integer; // number of cycles trained so far (learning rates could be decreased accordingly) last50errors: Array[1..50] of Extended; // LEARNING SETTINGS END public constructor Create; // create the network object and do the initialization procedure UpdateEligibilityTraces; // update the eligibility traces for the hidden and output layer procedure tdLearning; // learning algorithm: adjust the network's weights procedure ForwardPropagation; // propagate the input values through the network to the output layer function getRating(state: TFeatureVector; explorative: Boolean): Extended; // get the rating for a given state (feature vector) function HyperbolicTangent(x: Extended): Extended; // calculate the hyperbolic tangent [-1;1] procedure StartNewCycle; // start a new cycle with everything set to default except for the weights procedure setLearningMode(activated: Boolean=TRUE); // switch the learning mode on/off procedure setInputs(state: TFeatureVector); // transfer the given feature vector to the input layer (set input neurons' values) procedure setReward(currentReward: SmallInt); // set the reward for the current timestep (with learning then or without) procedure nextTimeStep; // increase timestep t function getCyclesTrained(): Integer; // get the number of cycles trained so far procedure Visualize(imgHidden: Pointer); // visualize the neural network's hidden layer end; implementation procedure TArtificialNeuralNetwork.UpdateEligibilityTraces; var i, j, k: Integer; begin // how worthy is a weight to be adjusted? for j := 1 to NEURONS_HIDDEN do begin for k := 1 to NEURONS_OUTPUT do begin eligibilityTraceOutput[j][k] := LAMBDA*eligibilityTraceOutput[j][k]+(neuronsOutput[k]*(1-neuronsOutput[k]))*neuronsHidden[j]; for i := 1 to NEURONS_INPUT do begin eligibilityTraceHidden[i][j][k] := LAMBDA*eligibilityTraceHidden[i][j][k]+(neuronsOutput[k]*(1-neuronsOutput[k]))*weightsHidden[j][k]*neuronsHidden[j]*(1-neuronsHidden[j])*neuronsInput[t][i]; end; end; end; end; procedure TArtificialNeuralNetwork.setReward; VAR i: Integer; begin for i := 1 to NEURONS_OUTPUT do begin // +1 = player A wins // 0 = draw // -1 = player B wins reward[t][i] := currentReward; end; end; procedure TArtificialNeuralNetwork.tdLearning; var i, j, k: Integer; begin if learningMode then begin for k := 1 to NEURONS_OUTPUT do begin if reward[t][k] = 0 then begin tdError[k] := GAMMA*neuronsOutput[k]-outputBefore[k]; // network's error value when reward is 0 end else begin tdError[k] := reward[t][k]-outputBefore[k]; // network's error value in the final state (reward received) end; for j := 1 to NEURONS_HIDDEN do begin weightsHidden[j][k] := weightsHidden[j][k]+LEARNING_RATE_HIDDEN*tdError[k]*eligibilityTraceOutput[j][k]; // adjust hidden->output weights according to TD-lambda for i := 1 to NEURONS_INPUT do begin weightsInput[i][j] := weightsInput[i][j]+LEARNING_RATE_INPUT*tdError[k]*eligibilityTraceHidden[i][j][k]; // adjust input->hidden weights according to TD-lambda end; end; end; end; end; procedure TArtificialNeuralNetwork.ForwardPropagation; var i, j, k: Integer; begin for j := 1 to NEURONS_HIDDEN do begin neuronsHidden[j] := 0; for i := 1 to NEURONS_INPUT do begin neuronsHidden[j] := neuronsHidden[j]+neuronsInput[t][i]*weightsInput[i][j]; // input -> hidden end; neuronsHidden[j] := HyperbolicTangent(neuronsHidden[j]); // activation of hidden neuron j end; for k := 1 to NEURONS_OUTPUT do begin neuronsOutput[k] := 0; for j := 1 to NEURONS_HIDDEN do begin neuronsOutput[k] := neuronsOutput[k]+neuronsHidden[j]*weightsHidden[j][k]; // hidden -> output end; neuronsOutput[k] := HyperbolicTangent(neuronsOutput[k]); // activation of output neuron k end; end; procedure TArtificialNeuralNetwork.setLearningMode; begin learningMode := activated; end; constructor TArtificialNeuralNetwork.Create; var i, j, k: Integer; begin inherited Create; Randomize; // initialize random numbers generator learningMode := TRUE; cyclesTrained := -2; // only set to -2 because it will be increased twice in the beginning StartNewCycle; for j := 1 to NEURONS_HIDDEN do begin for k := 1 to NEURONS_OUTPUT do begin weightsHidden[j][k] := abs(Random-0.5); // initialize weights: 0 <= random < 0.5 end; for i := 1 to NEURONS_INPUT do begin weightsInput[i][j] := abs(Random-0.5); // initialize weights: 0 <= random < 0.5 end; end; for i := 1 to 50 do begin last50errors[i] := 0; end; end; procedure TArtificialNeuralNetwork.nextTimeStep; begin t := t+1; end; procedure TArtificialNeuralNetwork.StartNewCycle; var i, j, k, m: Integer; begin t := 1; // start in timestep 1 cyclesTrained := cyclesTrained+1; // increase the number of cycles trained so far for j := 1 to NEURONS_HIDDEN do begin neuronsHidden[j] := 0; for k := 1 to NEURONS_OUTPUT do begin eligibilityTraceOutput[j][k] := 0; outputBefore[k] := 0; neuronsOutput[k] := 0; for m := 1 to MAX_TIMESTEPS do begin reward[m][k] := 0; end; end; for i := 1 to NEURONS_INPUT do begin for k := 1 to NEURONS_OUTPUT do begin eligibilityTraceHidden[i][j][k] := 0; end; end; end; end; function TArtificialNeuralNetwork.getCyclesTrained; begin result := cyclesTrained; end; procedure TArtificialNeuralNetwork.setInputs; var k: Integer; begin for k := 1 to NEURONS_INPUT do begin neuronsInput[t][k] := state[k]; end; end; function TArtificialNeuralNetwork.getRating; begin setInputs(state); ForwardPropagation; result := neuronsOutput[1]; if not explorative then begin tdLearning; // adjust the weights according to TD-lambda ForwardPropagation; // calculate the network's output again outputBefore[1] := neuronsOutput[1]; // set outputBefore which will then be used in the next timestep UpdateEligibilityTraces; // update the eligibility traces for the next timestep nextTimeStep; // go to the next timestep end; end; function TArtificialNeuralNetwork.HyperbolicTangent; begin if x > 5500 then // prevent overflow result := 1 else result := (Exp(2*x)-1)/(Exp(2*x)+1); end; end.

    Read the article

  • Choosing a VS project type (C++)

    - by typoknig
    Hi all, I do not use C++ much (I try to stick to the easier stuff like Java and VB.NET), but the lately I have not had a choice. When I am picking a project type in VS for some C++ source I download, what project type should I pick? I had just been sticking with Win32 Console Applications, but I just downloaded some code (below) that will not work right even when it compiles with out errors. I have tried to use a CLR Console Application and an empty project too, and have changed many variables along the way, but I cannot get this code to work. I noticed that this code does not have "int main()" at its beginning, does that have something to do with it? Anyways, here is the code, got it from here: /* Demo of modified Lucas-Kanade optical flow algorithm. See the printf below */ #ifdef _CH_ #pragma package <opencv> #endif #ifndef _EiC #include "cv.h" #include "highgui.h" #include <stdio.h> #include <ctype.h> #endif #include <windows.h> #define FULL_IMAGE_AS_OUTPUT_FILE #define cvMirror cvFlip //IplImage *image = 0, *grey = 0, *prev_grey = 0, *pyramid = 0, *prev_pyramid = 0, *swap_temp; IplImage **buf = 0; IplImage *image1 = 0; IplImage *imageCopy=0; IplImage *image = 0; int win_size = 10; const int MAX_COUNT = 500; CvPoint2D32f* points[2] = {0,0}, *swap_points; char* status = 0; //int count = 0; //int need_to_init = 0; //int night_mode = 0; int flags = 0; //int add_remove_pt = 0; bool bLButtonDown = false; //bool bstopLoop = false; CvPoint pt, pt1,pt2; //IplImage* img1; FILE* FileDest; char* strImageDir = "E:\\Projects\\TSCreator\\Images"; char* strItemName = "b"; int imageCount=0; int bFirstFace = 1; // flag for first face int mode = 1; // Mode 1 - Haar Traing Sample Creation, 2 - HMM sample creation, Mode = 3 - Both Harr and HMM. //int startImgeNo = 1; bool isEqualRation = false; //Weidth to height ratio is equal //Selected Image data IplImage *selectedImage = 0; int selectedX = 0, selectedY = 0, currentImageNo = 0, selectedWidth = 0, selectedHeight= 0; CvRect selectedROI; void saveFroHarrTraining(IplImage *src, int x, int y, int width, int height, int imageCount); void saveForHMMTraining(IplImage *src, CvRect roi,int imageCount); // Code for draw ROI Cropping Image void on_mouse( int event, int x, int y, int flags, void* param ) { char f[200]; CvRect reg; if( !image ) return; if( event == CV_EVENT_LBUTTONDOWN ) { bLButtonDown = true; pt1.x = x; pt1.y = y; } else if ( event == CV_EVENT_MOUSEMOVE ) //Draw the selected area rectangle { pt2.x = x; pt2.y = y; if(bLButtonDown) { if( !image1 ) { /* allocate all the buffers */ image1 = cvCreateImage( cvGetSize(image), 8, 3 ); image1->origin = image->origin; points[0] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0])); points[1] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0])); status = (char*)cvAlloc(MAX_COUNT); flags = 0; } cvCopy( image, image1, 0 ); //Equal Weight-Height Ratio if(isEqualRation) { pt2.y = pt1.y + (pt2.x-pt1.x); } //Max Height and Width is the image width and height if(pt2.x>image->width) { pt2.x = image->width; } if(pt2.y>image->height) { pt2.y = image->height; } CvPoint InnerPt1 = pt1; CvPoint InnerPt2 = pt2; if ( InnerPt1.x > InnerPt2.x) { int tempX = InnerPt1.x; InnerPt1.x = InnerPt2.x; InnerPt2.x = tempX; } if ( pt2.y < InnerPt1.y ) { int tempY = InnerPt1.y; InnerPt1.y = InnerPt2.y; InnerPt2.y = tempY; } InnerPt1.y = image->height - InnerPt1.y; InnerPt2.y = image->height - InnerPt2.y; CvFont font; double hScale=1.0; double vScale=1.0; int lineWidth=1; cvInitFont(&font,CV_FONT_HERSHEY_SIMPLEX|CV_FONT_ITALIC, hScale,vScale,0,lineWidth); char size [200]; reg.x = pt1.x; reg.y = image->height - pt2.y; reg.height = abs (pt2.y - pt1.y); reg.width = InnerPt2.x -InnerPt1.x; //print width and heght of the selected reagion sprintf(size, "(%dx%d)",reg.width, reg.height); cvPutText (image1,size,cvPoint(10,10), &font, cvScalar(255,255,0)); cvRectangle(image1, InnerPt1, InnerPt2, CV_RGB(255,0,0), 1); //Mark Selected Reagion selectedImage = image; selectedX = pt1.x; selectedY = pt1.y; selectedWidth = reg.width; selectedHeight = reg.height; selectedROI = reg; //Show the modified image cvShowImage("HMM-Harr Positive Image Creator",image1); } } else if ( event == CV_EVENT_LBUTTONUP ) { bLButtonDown = false; // pt2.x = x; // pt2.y = y; // // if ( pt1.x > pt2.x) // { // int tempX = pt1.x; // pt1.x = pt2.x; // pt2.x = tempX; // } // // if ( pt2.y < pt1.y ) // { // int tempY = pt1.y; // pt1.y = pt2.y; // pt2.y = tempY; // // } // //reg.x = pt1.x; //reg.y = image->height - pt2.y; // //reg.height = abs (pt2.y - pt1.y); ////reg.width = reg.height/3; //reg.width = pt2.x -pt1.x; ////reg.height = (2 * reg.width)/3; #ifdef FULL_IMAGE_AS_OUTPUT_FILE CvRect FullImageRect; FullImageRect.x = 0; FullImageRect.y = 0; FullImageRect.width = image->width; FullImageRect.height = image->height; IplImage *regionFullImage =0; regionFullImage = cvCreateImage(cvSize (FullImageRect.width, FullImageRect.height), image->depth, image->nChannels); image->roi = NULL; //cvSetImageROI (image, FullImageRect); //cvCopy (image, regionFullImage, 0); #else IplImage *region =0; region = cvCreateImage(cvSize (reg.width, reg.height), image1->depth, image1->nChannels); image->roi = NULL; cvSetImageROI (image1, reg); cvCopy (image1, region, 0); #endif //cvNamedWindow("Result", CV_WINDOW_AUTOSIZE); //selectedImage = image; //selectedX = pt1.x; //selectedY = pt1.y; //selectedWidth = reg.width; //selectedHeight = reg.height; ////currentImageNo = startImgeNo; //selectedROI = reg; /*if(mode == 1) { saveFroHarrTraining(image,pt1.x,pt1.y,reg.width,reg.height,startImgeNo); } else if(mode == 2) { saveForHMMTraining(image,reg,startImgeNo); } else if(mode ==3) { saveFroHarrTraining(image,pt1.x,pt1.y,reg.width,reg.height,startImgeNo); saveForHMMTraining(image,reg,startImgeNo); } else { printf("Invalid mode."); } startImgeNo++;*/ } } /* Save popsitive samples for Harr Training. Also add an entry to the PositiveSample.txt with the location of the item of interest. */ void saveFroHarrTraining(IplImage *src, int x, int y, int width, int height, int imageCount) { char f[255] ; sprintf(f,"%s\\%s\\harr_%s%d%d.jpg",strImageDir,strItemName,strItemName,imageCount/10, imageCount%10); cvNamedWindow("Harr", CV_WINDOW_AUTOSIZE); cvShowImage("Harr", src); cvSaveImage(f, src); printf("output%d%d \t ", imageCount/10, imageCount%10); printf("width %d \t", width); printf("height %d \t", height); printf("x1 %d \t", x); printf("y1 %d \t\n", y); char f1[255]; sprintf(f1,"%s\\PositiveSample.txt",strImageDir); FileDest = fopen(f1, "a"); fprintf(FileDest, "%s\\harr_%s%d.jpg 1 %d %d %d %d \n",strItemName,strItemName, imageCount, x, y, width, height); fclose(FileDest); } /* Create Sample Images for HMM recognition algorythm trai ning. */ void saveForHMMTraining(IplImage *src, CvRect roi,int imageCount) { char f[255] ; printf("x=%d, y=%d, w= %d, h= %d\n",roi.x,roi.y,roi.width,roi.height); //Create the file name sprintf(f,"%s\\%s\\hmm_%s%d.pgm",strImageDir,strItemName,strItemName, imageCount); //Create storage for grayscale image IplImage* gray = cvCreateImage(cvSize(roi.width,roi.height), 8, 1); //Create storage for croped reagon IplImage* regionFullImage = cvCreateImage(cvSize(roi.width,roi.height),8,3); //Croped marked region cvSetImageROI(src,roi); cvCopy(src,regionFullImage); cvResetImageROI(src); //Flip croped image - otherwise it will saved upside down cvConvertImage(regionFullImage, regionFullImage, CV_CVTIMG_FLIP); //Convert croped image to gray scale cvCvtColor(regionFullImage,gray, CV_BGR2GRAY); //Show final grayscale image cvNamedWindow("HMM", CV_WINDOW_AUTOSIZE); cvShowImage("HMM", gray); //Save final grayscale image cvSaveImage(f, gray); } int maina( int argc, char** argv ) { CvCapture* capture = 0; //if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0]))) // capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 ); //else if( argc == 2 ) // capture = cvCaptureFromAVI( argv[1] ); char* video; if(argc ==7) { mode = atoi(argv[1]); strImageDir = argv[2]; strItemName = argv[3]; video = argv[4]; currentImageNo = atoi(argv[5]); int a = atoi(argv[6]); if(a==1) { isEqualRation = true; } else { isEqualRation = false; } } else { printf("\nUsage: TSCreator.exe <Mode> <Sample Image Save Path> <Sample Image Save Directory> <Video File Location> <Start Image No> <Is Equal Ratio>\n"); printf("Mode = 1 - Haar Traing Sample Creation. \nMode = 2 - HMM sample creation.\nMode = 3 - Both Harr and HMM\n"); printf("Is Equal Ratio = 0 or 1. 1 - Equal weidth and height, 0 - custom."); printf("Note: You have to create the image save directory in correct path first.\n"); printf("Eg: TSCreator.exe 1 E:\Projects\TSCreator\Images A 11.avi 1 1\n\n"); return 0; } capture = cvCaptureFromAVI(video); if( !capture ) { fprintf(stderr,"Could not initialize capturing...\n"); return -1; } cvNamedWindow("HMM-Harr Positive Image Creator", CV_WINDOW_AUTOSIZE); cvSetMouseCallback("HMM-Harr Positive Image Creator", on_mouse, 0); //cvShowImage("Test", image1); for(;;) { IplImage* frame = 0; int i, k, c; frame = cvQueryFrame( capture ); if( !frame ) break; if( !image ) { /* allocate all the buffers */ image = cvCreateImage( cvGetSize(frame), 8, 3 ); image->origin = frame->origin; //grey = cvCreateImage( cvGetSize(frame), 8, 1 ); //prev_grey = cvCreateImage( cvGetSize(frame), 8, 1 ); //pyramid = cvCreateImage( cvGetSize(frame), 8, 1 ); // prev_pyramid = cvCreateImage( cvGetSize(frame), 8, 1 ); points[0] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0])); points[1] = (CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0])); status = (char*)cvAlloc(MAX_COUNT); flags = 0; } cvCopy( frame, image, 0 ); // cvCvtColor( image, grey, CV_BGR2GRAY ); cvShowImage("HMM-Harr Positive Image Creator", image); cvSetMouseCallback("HMM-Harr Positive Image Creator", on_mouse, 0); c = cvWaitKey(0); if((char)c == 's') { //Save selected reagion as training data if(selectedImage) { printf("Selected Reagion Saved\n"); if(mode == 1) { saveFroHarrTraining(selectedImage,selectedX,selectedY,selectedWidth,selectedHeight,currentImageNo); } else if(mode == 2) { saveForHMMTraining(selectedImage,selectedROI,currentImageNo); } else if(mode ==3) { saveFroHarrTraining(selectedImage,selectedX,selectedY,selectedWidth,selectedHeight,currentImageNo); saveForHMMTraining(selectedImage,selectedROI,currentImageNo); } else { printf("Invalid mode."); } currentImageNo++; } } } cvReleaseCapture( &capture ); //cvDestroyWindow("HMM-Harr Positive Image Creator"); cvDestroyAllWindows(); return 0; } #ifdef _EiC main(1,"lkdemo.c"); #endif If I put... #include "stdafx.h" int _tmain(int argc, _TCHAR* argv[]) { return 0; } ... before the previous code (and link it to the correct OpenCV .lib files) it compiles without errors, but does nothing at the command line. How do I make it work?

    Read the article

  • C++/boost generator module, feedback/critic please

    - by aaa
    hello. I wrote this generator, and I think to submit to boost people. Can you give me some feedback about it it basically allows to collapse multidimensional loops to flat multi-index queue. Loop can be boost lambda expressions. Main reason for doing this is to make parallel loops easier and separate algorithm from controlling structure (my fieldwork is computational chemistry where deep loops are common) 1 #ifndef _GENERATOR_HPP_ 2 #define _GENERATOR_HPP_ 3 4 #include <boost/array.hpp> 5 #include <boost/lambda/lambda.hpp> 6 #include <boost/noncopyable.hpp> 7 8 #include <boost/mpl/bool.hpp> 9 #include <boost/mpl/int.hpp> 10 #include <boost/mpl/for_each.hpp> 11 #include <boost/mpl/range_c.hpp> 12 #include <boost/mpl/vector.hpp> 13 #include <boost/mpl/transform.hpp> 14 #include <boost/mpl/erase.hpp> 15 16 #include <boost/fusion/include/vector.hpp> 17 #include <boost/fusion/include/for_each.hpp> 18 #include <boost/fusion/include/at_c.hpp> 19 #include <boost/fusion/mpl.hpp> 20 #include <boost/fusion/include/as_vector.hpp> 21 22 #include <memory> 23 24 /** 25 for loop generator which can use lambda expressions. 26 27 For example: 28 @code 29 using namespace generator; 30 using namespace boost::lambda; 31 make_for(N, N, range(bind(std::max<int>, _1, _2), N), range(_2, _3+1)); 32 // equivalent to pseudocode 33 // for l=0,N: for k=0,N: for j=max(l,k),N: for i=k,j 34 @endcode 35 36 If range is given as upper bound only, 37 lower bound is assumed to be default constructed 38 Lambda placeholders may only reference first three indices. 39 */ 40 41 namespace generator { 42 namespace detail { 43 44 using boost::lambda::constant_type; 45 using boost::lambda::constant; 46 47 /// lambda expression identity 48 template<class E, class enable = void> 49 struct lambda { 50 typedef E type; 51 }; 52 53 /// transform/construct constant lambda expression from non-lambda 54 template<class E> 55 struct lambda<E, typename boost::disable_if< 56 boost::lambda::is_lambda_functor<E> >::type> 57 { 58 struct constant : boost::lambda::constant_type<E>::type { 59 typedef typename boost::lambda::constant_type<E>::type base_type; 60 constant() : base_type(boost::lambda::constant(E())) {} 61 constant(const E &e) : base_type(boost::lambda::constant(e)) {} 62 }; 63 typedef constant type; 64 }; 65 66 /// range functor 67 template<class L, class U> 68 struct range_ { 69 typedef boost::array<int,4> index_type; 70 range_(U upper) : bounds_(typename lambda<L>::type(), upper) {} 71 range_(L lower, U upper) : bounds_(lower, upper) {} 72 73 template< typename T, size_t N> 74 T lower(const boost::array<T,N> &index) { 75 return bound<0>(index); 76 } 77 78 template< typename T, size_t N> 79 T upper(const boost::array<T,N> &index) { 80 return bound<1>(index); 81 } 82 83 private: 84 template<bool b, typename T> 85 T bound(const boost::array<T,1> &index) { 86 return (boost::fusion::at_c<b>(bounds_))(index[0]); 87 } 88 89 template<bool b, typename T> 90 T bound(const boost::array<T,2> &index) { 91 return (boost::fusion::at_c<b>(bounds_))(index[0], index[1]); 92 } 93 94 template<bool b, typename T, size_t N> 95 T bound(const boost::array<T,N> &index) { 96 using boost::fusion::at_c; 97 return (at_c<b>(bounds_))(index[0], index[1], index[2]); 98 } 99 100 boost::fusion::vector<typename lambda<L>::type, 101 typename lambda<U>::type> bounds_; 102 }; 103 104 template<typename T, size_t N> 105 struct for_base { 106 typedef boost::array<T,N> value_type; 107 virtual ~for_base() {} 108 virtual value_type next() = 0; 109 }; 110 111 /// N-index generator 112 template<typename T, size_t N, class R, class I> 113 struct for_ : for_base<T,N> { 114 typedef typename for_base<T,N>::value_type value_type; 115 typedef R range_tuple; 116 for_(const range_tuple &r) : r_(r), state_(true) { 117 boost::fusion::for_each(r_, initialize(index)); 118 } 119 /// @return new generator 120 for_* new_() { return new for_(r_); } 121 /// @return next index value and increment 122 value_type next() { 123 value_type next; 124 using namespace boost::lambda; 125 typename value_type::iterator n = next.begin(); 126 typename value_type::iterator i = index.begin(); 127 boost::mpl::for_each<I>(*(var(n))++ = var(i)[_1]); 128 129 state_ = advance<N>(r_, index); 130 return next; 131 } 132 /// @return false if out of bounds, true otherwise 133 operator bool() { return state_; } 134 135 private: 136 /// initialize indices 137 struct initialize { 138 value_type &index_; 139 mutable size_t i_; 140 initialize(value_type &index) : index_(index), i_(0) {} 141 template<class R_> void operator()(R_& r) const { 142 index_[i_++] = r.lower(index_); 143 } 144 }; 145 146 /// advance index[0:M) 147 template<size_t M> 148 struct advance { 149 /// stop recursion 150 struct stop { 151 stop(R r, value_type &index) {} 152 }; 153 /// advance index 154 /// @param r range tuple 155 /// @param index index array 156 advance(R &r, value_type &index) : index_(index), i_(0) { 157 namespace fusion = boost::fusion; 158 index[M-1] += 1; // increment index 159 fusion::for_each(r, *this); // update indices 160 state_ = index[M-1] >= fusion::at_c<M-1>(r).upper(index); 161 if (state_) { // out of bounds 162 typename boost::mpl::if_c<(M > 1), 163 advance<M-1>, stop>::type(r, index); 164 } 165 } 166 /// apply lower bound of range to index 167 template<typename R_> void operator()(R_& r) const { 168 if (i_ >= M) index_[i_] = r.lower(index_); 169 ++i_; 170 } 171 /// @return false if out of bounds, true otherwise 172 operator bool() { return state_; } 173 private: 174 value_type &index_; ///< index array reference 175 mutable size_t i_; ///< running index 176 bool state_; ///< out of bounds state 177 }; 178 179 value_type index; 180 range_tuple r_; 181 bool state_; 182 }; 183 184 185 /// polymorphic generator template base 186 template<typename T,size_t N> 187 struct For : boost::noncopyable { 188 typedef boost::array<T,N> value_type; 189 /// @return next index value and increment 190 value_type next() { return for_->next(); } 191 /// @return false if out of bounds, true otherwise 192 operator bool() const { return for_; } 193 protected: 194 /// reset smart pointer 195 void reset(for_base<T,N> *f) { for_.reset(f); } 196 std::auto_ptr<for_base<T,N> > for_; 197 }; 198 199 /// range [T,R) type 200 template<typename T, typename R> 201 struct range_type { 202 typedef range_<T,R> type; 203 }; 204 205 /// range identity specialization 206 template<typename T, class L, class U> 207 struct range_type<T, range_<L,U> > { 208 typedef range_<L,U> type; 209 }; 210 211 namespace fusion = boost::fusion; 212 namespace mpl = boost::mpl; 213 214 template<typename T, size_t N, class R1, class R2, class R3, class R4> 215 struct range_tuple { 216 // full range vector 217 typedef typename mpl::vector<R1,R2,R3,R4> v; 218 typedef typename mpl::end<v>::type end; 219 typedef typename mpl::advance_c<typename mpl::begin<v>::type, N>::type pos; 220 // [0:N) range vector 221 typedef typename mpl::erase<v, pos, end>::type t; 222 // transform into proper range fusion::vector 223 typedef typename fusion::result_of::as_vector< 224 typename mpl::transform<t,range_type<T, mpl::_1> >::type 225 >::type type; 226 }; 227 228 229 template<typename T, size_t N, 230 class R1, class R2, class R3, class R4, 231 class O> 232 struct for_type { 233 typedef typename range_tuple<T,N,R1,R2,R3,R4>::type range_tuple; 234 typedef for_<T, N, range_tuple, O> type; 235 }; 236 237 } // namespace detail 238 239 240 /// default index order, [0:N) 241 template<size_t N> 242 struct order { 243 typedef boost::mpl::range_c<size_t,0, N> type; 244 }; 245 246 /// N-loop generator, 0 < N <= 5 247 /// @tparam T index type 248 /// @tparam N number of indices/loops 249 /// @tparam R1,... range types 250 /// @tparam O index order 251 template<typename T, size_t N, 252 class R1, class R2 = void, class R3 = void, class R4 = void, 253 class O = typename order<N>::type> 254 struct for_ : detail::for_type<T, N, R1, R2, R3, R4, O>::type { 255 typedef typename detail::for_type<T, N, R1, R2, R3, R4, O>::type base_type; 256 typedef typename base_type::range_tuple range_tuple; 257 for_(const range_tuple &range) : base_type(range) {} 258 }; 259 260 /// loop range [L:U) 261 /// @tparam L lower bound type 262 /// @tparam U upper bound type 263 /// @return range 264 template<class L, class U> 265 detail::range_<L,U> range(L lower, U upper) { 266 return detail::range_<L,U>(lower, upper); 267 } 268 269 /// make 4-loop generator with specified index ordering 270 template<typename T, class R1, class R2, class R3, class R4, class O> 271 for_<T, 4, R1, R2, R3, R4, O> 272 make_for(R1 r1, R2 r2, R3 r3, R4 r4, const O&) { 273 typedef for_<T, 4, R1, R2, R3, R4, O> F; 274 return F(F::range_tuple(r1, r2, r3, r4)); 275 } 276 277 /// polymorphic generator template forward declaration 278 template<typename T,size_t N> 279 struct For; 280 281 /// polymorphic 4-loop generator 282 template<typename T> 283 struct For<T,4> : detail::For<T,4> { 284 /// generator with default index ordering 285 template<class R1, class R2, class R3, class R4> 286 For(R1 r1, R2 r2, R3 r3, R4 r4) { 287 this->reset(make_for<T>(r1, r2, r3, r4).new_()); 288 } 289 /// generator with specified index ordering 290 template<class R1, class R2, class R3, class R4, class O> 291 For(R1 r1, R2 r2, R3 r3, R4 r4, O o) { 292 this->reset(make_for<T>(r1, r2, r3, r4, o).new_()); 293 } 294 }; 295 296 } 297 298 299 #endif /* _GENERATOR_HPP_ */

    Read the article

  • Find out CRC or CHECKSUM of RS232 data

    - by Carlos Alloatti
    I need to communicate with a RS232 device, I have no specs or information available. I send a 16 byte command and get a 16 byte result back. The last byte looks like some kind of crc or checksum, I have tried using this http://miscel.dk/MiscEl/miscelCRCandChecksum.html with no luck. Anyone can reverse engineer the crc/checksum algorithm? here is some data captured with an RS-232 monitor program: 01 80 42 00 00 00 00 00 00 00 00 00 00 00 01 B3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 02 51 01 80 42 00 00 00 00 00 00 00 00 00 00 00 03 0F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 04 8C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 05 D2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 06 30 01 80 42 00 00 00 00 00 00 00 00 00 00 00 07 6E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 08 2F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 09 71 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0A 93 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0B CD 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0C 4E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0D 10 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0E F2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0F AC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 10 70 01 80 42 00 00 00 00 00 00 00 00 00 00 00 11 2E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 12 CC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 13 92 01 80 42 00 00 00 00 00 00 00 00 00 00 00 14 11 01 80 42 00 00 00 00 00 00 00 00 00 00 00 15 4F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 16 AD 01 80 42 00 00 00 00 00 00 00 00 00 00 00 17 F3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 18 B2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 19 EC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1A 0E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1B 50 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1C D3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1D 8D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1E 6F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1F 31 01 80 42 00 00 00 00 00 00 00 00 00 00 00 20 CE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 21 90 01 80 42 00 00 00 00 00 00 00 00 00 00 00 22 72 01 80 42 00 00 00 00 00 00 00 00 00 00 00 23 2C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 24 AF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 25 F1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 26 13 01 80 42 00 00 00 00 00 00 00 00 00 00 00 27 4D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 28 0C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 29 52 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2A B0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2B EE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2C 6D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2D 33 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2E D1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2F 8F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 30 53 01 80 42 00 00 00 00 00 00 00 00 00 00 00 31 0D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 32 EF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 33 B1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 34 32 01 80 42 00 00 00 00 00 00 00 00 00 00 00 35 6C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 36 8E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 37 D0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 38 91 01 80 42 00 00 00 00 00 00 00 00 00 00 00 39 CF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3A 2D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3B 73 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3C F0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3D AE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3E 4C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3F 12 01 80 42 00 00 00 00 00 00 00 00 00 00 00 40 AB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 41 F5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 42 17 01 80 42 00 00 00 00 00 00 00 00 00 00 00 43 49 01 80 42 00 00 00 00 00 00 00 00 00 00 00 44 CA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 45 94 01 80 42 00 00 00 00 00 00 00 00 00 00 00 46 76 01 80 42 00 00 00 00 00 00 00 00 00 00 00 47 28 01 80 42 00 00 00 00 00 00 00 00 00 00 00 48 69 01 80 42 00 00 00 00 00 00 00 00 00 00 00 49 37 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4A D5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4B 8B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4C 08 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4D 56 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4E B4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4F EA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 50 36 01 80 42 00 00 00 00 00 00 00 00 00 00 00 51 68 01 80 42 00 00 00 00 00 00 00 00 00 00 00 52 8A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 53 D4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 54 57 01 80 42 00 00 00 00 00 00 00 00 00 00 00 55 09 01 80 42 00 00 00 00 00 00 00 00 00 00 00 56 EB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 57 B5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 58 F4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 59 AA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5A 48 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5B 16 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5C 95 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5D CB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5E 29 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5F 77 01 80 42 00 00 00 00 00 00 00 00 00 00 00 60 88 01 80 42 00 00 00 00 00 00 00 00 00 00 00 61 D6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 62 34 01 80 42 00 00 00 00 00 00 00 00 00 00 00 63 6A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 64 E9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 65 B7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 66 55 01 80 42 00 00 00 00 00 00 00 00 00 00 00 67 0B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 68 4A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 69 14 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6A F6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6B A8 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6C 2B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6D 75 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6E 97 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6F C9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 70 15 01 80 42 00 00 00 00 00 00 00 00 00 00 00 71 4B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 72 A9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 73 F7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 74 74 01 80 42 00 00 00 00 00 00 00 00 00 00 00 75 2A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 76 C8 01 80 42 00 00 00 00 00 00 00 00 00 00 00 77 96 01 80 42 00 00 00 00 00 00 00 00 00 00 00 78 D7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 79 89 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7A 6B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7B 35 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7C B6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7D E8 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7E 0A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7F 54 01 80 42 00 00 00 00 00 00 00 00 00 00 00 80 61 01 80 42 00 00 00 00 00 00 00 00 00 00 00 81 3F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 82 DD 01 80 42 00 00 00 00 00 00 00 00 00 00 00 83 83 01 80 42 00 00 00 00 00 00 00 00 00 00 00 84 00 01 80 42 00 00 00 00 00 00 00 00 00 00 00 85 5E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 86 BC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 87 E2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 88 A3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 89 FD 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8A 1F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8B 41 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8C C2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8D 9C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8E 7E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8F 20 01 80 42 00 00 00 00 00 00 00 00 00 00 00 90 FC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 91 A2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 92 40 01 80 42 00 00 00 00 00 00 00 00 00 00 00 93 1E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 94 9D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 95 C3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 96 21 01 80 42 00 00 00 00 00 00 00 00 00 00 00 97 7F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 98 3E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 99 60 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9A 82 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9B DC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9C 5F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9D 01 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9E E3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9F BD 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A0 42 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A1 1C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A2 FE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A3 A0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A4 23 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A5 7D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A6 9F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A7 C1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A8 80 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A9 DE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AA 3C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AB 62 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AC E1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AD BF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AE 5D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AF 03 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B0 DF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B1 81 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B2 63 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B3 3D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B4 BE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B5 E0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B6 02 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B7 5C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B8 1D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B9 43 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BA A1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BB FF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BC 7C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BD 22 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BE C0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BF 9E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C0 27 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C1 79 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C2 9B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C3 C5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C4 46 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C5 18 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C6 FA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C7 A4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C8 E5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C9 BB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CA 59 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CB 07 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CC 84 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CD DA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CE 38 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CF 66 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D0 BA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D1 E4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D2 06 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D3 58 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D4 DB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D5 85 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D6 67 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D7 39 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D8 78 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D9 26 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DA C4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DB 9A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DC 19 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DD 47 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DE A5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DF FB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E0 04 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E1 5A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E2 B8 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E3 E6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E4 65 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E5 3B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E6 D9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E7 87 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E8 C6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E9 98 01 80 42 00 00 00 00 00 00 00 00 00 00 00 EA 7A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 EB 24 01 80 42 00 00 00 00 00 00 00 00 00 00 00 EC A7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 ED F9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 EE 1B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 EF 45 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F0 99 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F1 C7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F2 25 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F3 7B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F4 F8 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F5 A6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F6 44 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F7 1A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F8 5B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F9 05 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FA E7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FB B9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FC 3A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FD 64 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FE 86 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FF D8 The second to last byte seems to be a sequential number that starts over at 00 when it reaches FF. I have included the whole range from 00 to FF to make it easier to guess the crc/checksum method.

    Read the article

  • Compile error C++: could not deduce template argument for 'T'

    - by OneShot
    I'm trying to read binary data to load structs back into memory so I can edit them and save them back to the .dat file. readVector() attempts to read the file, and return the vectors that were serialized. But i'm getting this compile error when I try and run it. What am I doing wrong with my templates? ***** EDIT ************** Code: // Project 5.cpp : main project file. #include "stdafx.h" #include <iostream> #include <fstream> #include <string> #include <vector> #include <algorithm> using namespace System; using namespace std; #pragma hdrstop int checkCommand (string line); template<typename T> void writeVector(ofstream &out, const vector<T> &vec); template<typename T> vector<T> readVector(ifstream &in); struct InventoryItem { string Item; string Description; int Quantity; int wholesaleCost; int retailCost; int dateAdded; } ; int main(void) { cout << "Welcome to the Inventory Manager extreme! [Version 1.0]" << endl; ifstream in("data.dat"); vector<InventoryItem> structList; readVector<InventoryItem>( in ); while (1) { string line = ""; cout << endl; cout << "Commands: " << endl; cout << "1: Add a new record " << endl; cout << "2: Display a record " << endl; cout << "3: Edit a current record " << endl; cout << "4: Exit the program " << endl; cout << endl; cout << "Enter a command 1-4: "; getline(cin , line); int rValue = checkCommand(line); if (rValue == 1) { cout << "You've entered a invalid command! Try Again." << endl; } else if (rValue == 2){ cout << "Error calling command!" << endl; } else if (!rValue) { break; } } system("pause"); return 0; } int checkCommand (string line) { int intReturn = atoi(line.c_str()); int status = 3; switch (intReturn) { case 1: break; case 2: break; case 3: break; case 4: status = 0; break; default: status = 1; break; } return status; } template<typename T> void writeVector(ofstream &out, const vector<T> &vec) { out << vec.size(); for(vector<T>::const_iterator i = vec.begin(); i != vec.end(); i++) { out << *i; } } ostream& operator<<(std::ostream &strm, const InventoryItem &i) { return strm << i.Item << " (" << i.Description << ")"; } template<typename T> vector<T> readVector(ifstream &in) { size_t size; in >> size; vector<T> vec; vec.reserve(size); for(int i = 0; i < size; i++) { T tmp; in >> tmp; vec.push_back(tmp); } return vec; } Compiler errors: 1>------ Build started: Project: Project 5, Configuration: Debug Win32 ------ 1>Compiling... 1>Project 5.cpp 1>.\Project 5.cpp(124) : warning C4018: '<' : signed/unsigned mismatch 1> .\Project 5.cpp(40) : see reference to function template instantiation 'std::vector<_Ty> readVector<InventoryItem>(std::ifstream &)' being compiled 1> with 1> [ 1> _Ty=InventoryItem 1> ] 1>.\Project 5.cpp(127) : error C2679: binary '>>' : no operator found which takes a right-hand operand of type 'InventoryItem' (or there is no acceptable conversion) 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(1144): could be 'std::basic_istream<_Elem,_Traits> &std::operator >><std::char_traits<char>>(std::basic_istream<_Elem,_Traits> &,signed char *)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(1146): or 'std::basic_istream<_Elem,_Traits> &std::operator >><std::char_traits<char>>(std::basic_istream<_Elem,_Traits> &,signed char &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(1148): or 'std::basic_istream<_Elem,_Traits> &std::operator >><std::char_traits<char>>(std::basic_istream<_Elem,_Traits> &,unsigned char *)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(1150): or 'std::basic_istream<_Elem,_Traits> &std::operator >><std::char_traits<char>>(std::basic_istream<_Elem,_Traits> &,unsigned char &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(155): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(std::basic_istream<_Elem,_Traits> &(__cdecl *)(std::basic_istream<_Elem,_Traits> &))' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(161): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(std::basic_ios<_Elem,_Traits> &(__cdecl *)(std::basic_ios<_Elem,_Traits> &))' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(168): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(std::ios_base &(__cdecl *)(std::ios_base &))' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(175): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(std::_Bool &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(194): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(short &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(228): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(unsigned short &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(247): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(int &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(273): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(unsigned int &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(291): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(long &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(309): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(__w64 unsigned long &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(329): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(__int64 &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(348): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(unsigned __int64 &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(367): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(float &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(386): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(double &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(404): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(long double &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(422): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(void *&)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(441): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(std::basic_streambuf<_Elem,_Traits> *)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> while trying to match the argument list '(std::ifstream, InventoryItem)' 1>Build log was saved at "file://c:\Users\Owner\Documents\Visual Studio 2008\Projects\Project 5\Project 5\Debug\BuildLog.htm" 1>Project 5 - 1 error(s), 1 warning(s) ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ========== Oh my god...I fixed that error I think and now I got another one. Will you PLEASE just help me on this one too! What the heck does this mean ??

    Read the article

  • Steganography Experiment - Trouble hiding message bits in DCT coefficients

    - by JohnHankinson
    I have an application requiring me to be able to embed loss-less data into an image. As such I've been experimenting with steganography, specifically via modification of DCT coefficients as the method I select, apart from being loss-less must also be relatively resilient against format conversion, scaling/DSP etc. From the research I've done thus far this method seems to be the best candidate. I've seen a number of papers on the subject which all seem to neglect specific details (some neglect to mention modification of 0 coefficients, or modification of AC coefficient etc). After combining the findings and making a few modifications of my own which include: 1) Using a more quantized version of the DCT matrix to ensure we only modify coefficients that would still be present should the image be JPEG'ed further or processed (I'm using this in place of simply following a zig-zag pattern). 2) I'm modifying bit 4 instead of the LSB and then based on what the original bit value was adjusting the lower bits to minimize the difference. 3) I'm only modifying the blue channel as it should be the least visible. This process must modify the actual image and not the DCT values stored in file (like jsteg) as there is no guarantee the file will be a JPEG, it may also be opened and re-saved at a later stage in a different format. For added robustness I've included the message multiple times and use the bits that occur most often, I had considered using a QR code as the message data or simply applying the reed-solomon error correction, but for this simple application and given that the "message" in question is usually going to be between 10-32 bytes I have plenty of room to repeat it which should provide sufficient redundancy to recover the true bits. No matter what I do I don't seem to be able to recover the bits at the decode stage. I've tried including / excluding various checks (even if it degrades image quality for the time being). I've tried using fixed point vs. double arithmetic, moving the bit to encode, I suspect that the message bits are being lost during the IDCT back to image. Any thoughts or suggestions on how to get this working would be hugely appreciated. (PS I am aware that the actual DCT/IDCT could be optimized from it's naive On4 operation using row column algorithm, or an FDCT like AAN, but for now it just needs to work :) ) Reference Papers: http://www.lokminglui.com/dct.pdf http://arxiv.org/ftp/arxiv/papers/1006/1006.1186.pdf Code for the Encode/Decode process in C# below: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Drawing.Imaging; using System.Drawing; namespace ImageKey { public class Encoder { public const int HIDE_BIT_POS = 3; // use bit position 4 (1 << 3). public const int HIDE_COUNT = 16; // Number of times to repeat the message to avoid error. // JPEG Standard Quantization Matrix. // (to get higher quality multiply by (100-quality)/50 .. // for lower than 50 multiply by 50/quality. Then round to integers and clip to ensure only positive integers. public static double[] Q = {16,11,10,16,24,40,51,61, 12,12,14,19,26,58,60,55, 14,13,16,24,40,57,69,56, 14,17,22,29,51,87,80,62, 18,22,37,56,68,109,103,77, 24,35,55,64,81,104,113,92, 49,64,78,87,103,121,120,101, 72,92,95,98,112,100,103,99}; // Maximum qauality quantization matrix (if all 1's doesn't modify coefficients at all). public static double[] Q2 = {1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1}; public static Bitmap Encode(Bitmap b, string key) { Bitmap response = new Bitmap(b.Width, b.Height, PixelFormat.Format32bppArgb); uint imgWidth = ((uint)b.Width) & ~((uint)7); // Maximum usable X resolution (divisible by 8). uint imgHeight = ((uint)b.Height) & ~((uint)7); // Maximum usable Y resolution (divisible by 8). // Start be transferring the unmodified image portions. // As we'll be using slightly less width/height for the encoding process we'll need the edges to be populated. for (int y = 0; y < b.Height; y++) for (int x = 0; x < b.Width; x++) { if( (x >= imgWidth && x < b.Width) || (y>=imgHeight && y < b.Height)) response.SetPixel(x, y, b.GetPixel(x, y)); } // Setup the counters and byte data for the message to encode. StringBuilder sb = new StringBuilder(); for(int i=0;i<HIDE_COUNT;i++) sb.Append(key); byte[] codeBytes = System.Text.Encoding.ASCII.GetBytes(sb.ToString()); int bitofs = 0; // Current bit position we've encoded too. int totalBits = (codeBytes.Length * 8); // Total number of bits to encode. for (int y = 0; y < imgHeight; y += 8) { for (int x = 0; x < imgWidth; x += 8) { int[] redData = GetRedChannelData(b, x, y); int[] greenData = GetGreenChannelData(b, x, y); int[] blueData = GetBlueChannelData(b, x, y); int[] newRedData; int[] newGreenData; int[] newBlueData; if (bitofs < totalBits) { double[] redDCT = DCT(ref redData); double[] greenDCT = DCT(ref greenData); double[] blueDCT = DCT(ref blueData); int[] redDCTI = Quantize(ref redDCT, ref Q2); int[] greenDCTI = Quantize(ref greenDCT, ref Q2); int[] blueDCTI = Quantize(ref blueDCT, ref Q2); int[] blueDCTC = Quantize(ref blueDCT, ref Q); HideBits(ref blueDCTI, ref blueDCTC, ref bitofs, ref totalBits, ref codeBytes); double[] redDCT2 = DeQuantize(ref redDCTI, ref Q2); double[] greenDCT2 = DeQuantize(ref greenDCTI, ref Q2); double[] blueDCT2 = DeQuantize(ref blueDCTI, ref Q2); newRedData = IDCT(ref redDCT2); newGreenData = IDCT(ref greenDCT2); newBlueData = IDCT(ref blueDCT2); } else { newRedData = redData; newGreenData = greenData; newBlueData = blueData; } MapToRGBRange(ref newRedData); MapToRGBRange(ref newGreenData); MapToRGBRange(ref newBlueData); for(int dy=0;dy<8;dy++) { for(int dx=0;dx<8;dx++) { int col = (0xff<<24) + (newRedData[dx+(dy*8)]<<16) + (newGreenData[dx+(dy*8)]<<8) + (newBlueData[dx+(dy*8)]); response.SetPixel(x+dx,y+dy,Color.FromArgb(col)); } } } } if (bitofs < totalBits) throw new Exception("Failed to encode data - insufficient cover image coefficients"); return (response); } public static void HideBits(ref int[] DCTMatrix, ref int[] CMatrix, ref int bitofs, ref int totalBits, ref byte[] codeBytes) { int tempValue = 0; for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { if ( (u != 0 || v != 0) && CMatrix[v+(u*8)] != 0 && DCTMatrix[v+(u*8)] != 0) { if (bitofs < totalBits) { tempValue = DCTMatrix[v + (u * 8)]; int bytePos = (bitofs) >> 3; int bitPos = (bitofs) % 8; byte mask = (byte)(1 << bitPos); byte value = (byte)((codeBytes[bytePos] & mask) >> bitPos); // 0 or 1. if (value == 0) { int a = DCTMatrix[v + (u * 8)] & (1 << HIDE_BIT_POS); if (a != 0) DCTMatrix[v + (u * 8)] |= (1 << HIDE_BIT_POS) - 1; DCTMatrix[v + (u * 8)] &= ~(1 << HIDE_BIT_POS); } else if (value == 1) { int a = DCTMatrix[v + (u * 8)] & (1 << HIDE_BIT_POS); if (a == 0) DCTMatrix[v + (u * 8)] &= ~((1 << HIDE_BIT_POS) - 1); DCTMatrix[v + (u * 8)] |= (1 << HIDE_BIT_POS); } if (DCTMatrix[v + (u * 8)] != 0) bitofs++; else DCTMatrix[v + (u * 8)] = tempValue; } } } } } public static void MapToRGBRange(ref int[] data) { for(int i=0;i<data.Length;i++) { data[i] += 128; if(data[i] < 0) data[i] = 0; else if(data[i] > 255) data[i] = 255; } } public static int[] GetRedChannelData(Bitmap b, int sx, int sy) { int[] data = new int[8 * 8]; for (int y = sy; y < (sy + 8); y++) { for (int x = sx; x < (sx + 8); x++) { uint col = (uint)b.GetPixel(x,y).ToArgb(); data[(x - sx) + ((y - sy) * 8)] = (int)((col >> 16) & 0xff) - 128; } } return (data); } public static int[] GetGreenChannelData(Bitmap b, int sx, int sy) { int[] data = new int[8 * 8]; for (int y = sy; y < (sy + 8); y++) { for (int x = sx; x < (sx + 8); x++) { uint col = (uint)b.GetPixel(x, y).ToArgb(); data[(x - sx) + ((y - sy) * 8)] = (int)((col >> 8) & 0xff) - 128; } } return (data); } public static int[] GetBlueChannelData(Bitmap b, int sx, int sy) { int[] data = new int[8 * 8]; for (int y = sy; y < (sy + 8); y++) { for (int x = sx; x < (sx + 8); x++) { uint col = (uint)b.GetPixel(x, y).ToArgb(); data[(x - sx) + ((y - sy) * 8)] = (int)((col >> 0) & 0xff) - 128; } } return (data); } public static int[] Quantize(ref double[] DCTMatrix, ref double[] Q) { int[] DCTMatrixOut = new int[8*8]; for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { DCTMatrixOut[v + (u * 8)] = (int)Math.Round(DCTMatrix[v + (u * 8)] / Q[v + (u * 8)]); } } return(DCTMatrixOut); } public static double[] DeQuantize(ref int[] DCTMatrix, ref double[] Q) { double[] DCTMatrixOut = new double[8*8]; for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { DCTMatrixOut[v + (u * 8)] = (double)DCTMatrix[v + (u * 8)] * Q[v + (u * 8)]; } } return(DCTMatrixOut); } public static double[] DCT(ref int[] data) { double[] DCTMatrix = new double[8 * 8]; for (int v = 0; v < 8; v++) { for (int u = 0; u < 8; u++) { double cu = 1; if (u == 0) cu = (1.0 / Math.Sqrt(2.0)); double cv = 1; if (v == 0) cv = (1.0 / Math.Sqrt(2.0)); double sum = 0.0; for (int y = 0; y < 8; y++) { for (int x = 0; x < 8; x++) { double s = data[x + (y * 8)]; double dctVal = Math.Cos((2 * y + 1) * v * Math.PI / 16) * Math.Cos((2 * x + 1) * u * Math.PI / 16); sum += s * dctVal; } } DCTMatrix[u + (v * 8)] = (0.25 * cu * cv * sum); } } return (DCTMatrix); } public static int[] IDCT(ref double[] DCTMatrix) { int[] Matrix = new int[8 * 8]; for (int y = 0; y < 8; y++) { for (int x = 0; x < 8; x++) { double sum = 0; for (int v = 0; v < 8; v++) { for (int u = 0; u < 8; u++) { double cu = 1; if (u == 0) cu = (1.0 / Math.Sqrt(2.0)); double cv = 1; if (v == 0) cv = (1.0 / Math.Sqrt(2.0)); double idctVal = (cu * cv) / 4.0 * Math.Cos((2 * y + 1) * v * Math.PI / 16) * Math.Cos((2 * x + 1) * u * Math.PI / 16); sum += (DCTMatrix[u + (v * 8)] * idctVal); } } Matrix[x + (y * 8)] = (int)Math.Round(sum); } } return (Matrix); } } public class Decoder { public static string Decode(Bitmap b, int expectedLength) { expectedLength *= Encoder.HIDE_COUNT; uint imgWidth = ((uint)b.Width) & ~((uint)7); // Maximum usable X resolution (divisible by 8). uint imgHeight = ((uint)b.Height) & ~((uint)7); // Maximum usable Y resolution (divisible by 8). // Setup the counters and byte data for the message to decode. byte[] codeBytes = new byte[expectedLength]; byte[] outBytes = new byte[expectedLength / Encoder.HIDE_COUNT]; int bitofs = 0; // Current bit position we've decoded too. int totalBits = (codeBytes.Length * 8); // Total number of bits to decode. for (int y = 0; y < imgHeight; y += 8) { for (int x = 0; x < imgWidth; x += 8) { int[] blueData = ImageKey.Encoder.GetBlueChannelData(b, x, y); double[] blueDCT = ImageKey.Encoder.DCT(ref blueData); int[] blueDCTI = ImageKey.Encoder.Quantize(ref blueDCT, ref Encoder.Q2); int[] blueDCTC = ImageKey.Encoder.Quantize(ref blueDCT, ref Encoder.Q); if (bitofs < totalBits) GetBits(ref blueDCTI, ref blueDCTC, ref bitofs, ref totalBits, ref codeBytes); } } bitofs = 0; for (int i = 0; i < (expectedLength / Encoder.HIDE_COUNT) * 8; i++) { int bytePos = (bitofs) >> 3; int bitPos = (bitofs) % 8; byte mask = (byte)(1 << bitPos); List<int> values = new List<int>(); int zeroCount = 0; int oneCount = 0; for (int j = 0; j < Encoder.HIDE_COUNT; j++) { int val = (codeBytes[bytePos + ((expectedLength / Encoder.HIDE_COUNT) * j)] & mask) >> bitPos; values.Add(val); if (val == 0) zeroCount++; else oneCount++; } if (oneCount >= zeroCount) outBytes[bytePos] |= mask; bitofs++; values.Clear(); } return (System.Text.Encoding.ASCII.GetString(outBytes)); } public static void GetBits(ref int[] DCTMatrix, ref int[] CMatrix, ref int bitofs, ref int totalBits, ref byte[] codeBytes) { for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { if ((u != 0 || v != 0) && CMatrix[v + (u * 8)] != 0 && DCTMatrix[v + (u * 8)] != 0) { if (bitofs < totalBits) { int bytePos = (bitofs) >> 3; int bitPos = (bitofs) % 8; byte mask = (byte)(1 << bitPos); int value = DCTMatrix[v + (u * 8)] & (1 << Encoder.HIDE_BIT_POS); if (value != 0) codeBytes[bytePos] |= mask; bitofs++; } } } } } } } UPDATE: By switching to using a QR Code as the source message and swapping a pair of coefficients in each block instead of bit manipulation I've been able to get the message to survive the transform. However to get the message to come through without corruption I have to adjust both coefficients as well as swap them. For example swapping (3,4) and (4,3) in the DCT matrix and then respectively adding 8 and subtracting 8 as an arbitrary constant seems to work. This survives a re-JPEG'ing of 96 but any form of scaling/cropping destroys the message again. I was hoping that by operating on mid to low frequency values that the message would be preserved even under some light image manipulation.

    Read the article

< Previous Page | 199 200 201 202 203