Search Results

Search found 31536 results on 1262 pages for 'database driven'.

Page 21/1262 | < Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >

  • correct approach to store in database

    - by John
    I'm developing an online website (using Django and Mysql). I have a Tests table and User table. I have 50 tests within the table and each user completes them at their own pace. How do I store the status of the tests in my DB? One idea that came to my mind is to create an additional column in User table. That column containing testid's separated by comma or any other delimiter. userid | username | testscompleted 1 john 1, 5, 34 2 tom 1, 10, 23, 25 Another idea was to create a seperate table to store userid and testid. So, I'll have only 2 columns but thousands of rows (no of tests * no of users) and they will always continue to increase. userid | testid 1 1 1 5 2 1 1 34 2 10

    Read the article

  • How to map to tables in database PHPMyAdmin

    - by thegrede
    I'm working now on a project which a user can save their own coupon codes on the websites, so I want to know what is the best to do that, Lets say, I have 1 table with the users, like this, userId | firstName | lastName | codeId and then I have a table of the coupon codes, like this, codeId | codeNumber So what I can do is to connect the codeId to userId so when someone saves the coupons goes the codeId from the coupon table into the codeId of the users table, But now what if when a user have multiple coupons what do I do it should be connected to the user? I have 2 options what to do, Option 1, Saving the codeId from coupons table into the codeId of users table like 1,2,3,4,5, Option 2 To make a new row into the coupons table and to connect the user to the code with adding another field in the coupon table userId and putting into it the user which has added the coupon his userId of the users table, So what of the two options is better to do? Thanks you guys.

    Read the article

  • friendship database schema

    - by Daniel Hertz
    I'm creating a db schema that involves users that can be friends, and I was wondering what the best way to model the ability for these friends to have friendships. Should it be its own table that simply has two columns that each represent a user? Thanks!

    Read the article

  • Database table relationships: Always also relate to specified value (Linq to SQL in .NET Framework)

    - by sinni800
    I really can not describe my question better in the title. If anyone has suggestions: Please tell! I use the Linq to SQL framework in .NET. I ran into something which could be easily solved if the framework supported this, it would be a lot of extra coding otherwise: I have a n to n relation with a helper table in between. Those tables are: Items, places and the connection table which relates items to places and the other way. One item can be found in many places, so can one place have many items. Now of course there will be many items which will be in ALL places. Now there is a problem: Places can always be added. So I need a place-ID which encompasses ALL places, always. Like maybe a place-id "0". If the helper table has a row with the place-id of zero, this should be visible in all places. In SQL this would be a simple "Where [...] or place-id = 0", but how do I do this in Linq relations? Also, for a little side question: How could I manage "all but this place" kind of exclusions?

    Read the article

  • Database Modelling - Conceptually different entities with near identical fields

    - by Andrew Shepherd
    Suppose you have two sets of conceptual entities: MarketPriceDataSet which has multiple ForwardPriceEntries PoolPriceForecastDataSet which has multiple PoolPriceForecastEntry Both different child objects have near identical fields: ForwardPriceEntry has StartDate EndDate SimulationItemId ForwardPrice MarketPriceDataSetId (foreign key to parent table) PoolPriceForecastEntry has StartDate EndDate SimulationItemId ForecastPoolPrice PoolPriceForecastDataSetId (foreign key to parent table) If I modelled them as separate tables, the only difference would be the foreign key, and the name of the price field. There has been a debate as to whether the two near identical tables should be merged into one. Options I've thought of to model this is: Just keep them as two independent, separate tables Have both sets in the one table with an additional "type" field, and a parent_id equalling a foreign key to either parent table. This would sacrifice referential integrity checks. Have both sets in the one table with an additional "type" field, and create a complicated sequence of joining tables to maintain referential integrity. What do you think I should do, and why?

    Read the article

  • Database design - table relationship question

    - by iama
    I am designing schema for a simple quiz application. It has 2 tables - "Question" and "Answer Choices". Question table has 'question ID', 'question text' and 'answer id' columns. "Answer Choices" table has 'question ID', 'answer ID' and 'answer text' columns. With this simple schema it is obvious that a question can have multiple answer choices & hence the need for the answer choices table. However, a question can have only one correct answer and hence the need for the 'answer ID' in the question table. However, this 'answer ID' column in the question table provides a illusion as though there can be multiple questions for a single answer which is not correct. The other alternative to eliminate this illusion is to have another table just for correct answer that will have just 2 columns namely the question ID and the answer ID with a 1-1 relationship between the two tables. However, I think this is redundant. Any recommendation on how best to design this thereby enforcing the rules that a question can have multiple answer choices but only one correct answer? Many Thanks.

    Read the article

  • Generic version control strategy for select table data within a heavily normalized database

    - by leppie
    Hi Sorry for the long winded title, but the requirement/problem is rather specific. With reference to the following sample (but very simplified) structure (in psuedo SQL), I hope to explain it a bit better. TABLE StructureName { Id GUID PK, Name varchar(50) NOT NULL } TABLE Structure { Id GUID PK, ParentId GUID (FK to Structure), NameId GUID (FK to StructureName) NOT NULL } TABLE Something { Id GUID PK, RootStructureId GUID (FK to Structure) NOT NULL } As one can see, Structure is a simple tree structure (not worried about ordering of children for the problem). StructureName is a simplification of a translation system. Finally 'Something' is simply something referencing the tree's root structure. This is just one of many tables that need to be versioned, but this one serves as a good example for most cases. There is a requirement to version to any changes to the name and/or the tree 'layout' of the Structure table. Previous versions should always be available. There seems to be a few possibilities to tackle this issue, like copying the entire structure, but most approaches causes one to 'loose' referential integrity. Example if one followed this approach, one would have to make a duplicate of the 'Something' record, given that the root structure will be a new record, and have a new ID. Other avenues of possible solutions are looking into how Wiki's handle this or go a lot further and look how proper version control systems work. Currently, I feel a bit clueless how to proceed on this in a generic way. Any ideas will be greatly appreciated. Thanks leppie

    Read the article

  • How can I sync a database driven website to a different server

    - by tbrandao
    I have a website using cPanel on a dedicated account, I would like to be able to automatically sync the website to a second hosting company or perhaps to a local (in house ) server. Basically this is a type of replication. The website is database driven (MySQL), so Ideally it would sync everything (content, database, emails etc.) , but most importantly is syncing the website files and its database. I'm not so much looking for a fail-over solution as an automatic replication solution, so if the primary site (Server) goes off-line, I can manually bring up the replicated site quickly. I'm familiar with tools like unison and rsync, but most of these only sync file(s) and do not do too well with open database connections.

    Read the article

  • Naming of boolean column in database table

    - by Space Cracker
    I have 'Service' table and the following column description as below Is User Verification Required for service ? Is User's Email Activation Required for the service ? Is User's Mobile Activation required for the service ? I Hesitate in naming these columns as below IsVerificationRequired IsEmailActivationRequired IsMobileActivationRequired or RequireVerification RequireEmailActivation RequireMobileActivation I can't determined which way is the best .So, Is one of the above suggested name is the best or is there other better ones ?

    Read the article

  • Upgrading from SQL2000 database to SQL Express 2008 R2

    - by itwb
    Hi, We have a web application which uses a MSSQL 2000 backend database. We are currently paying a ridiculous amount for Shared Hosting, with the database costs alone costing us $150 per month (MSSQL 100mb extra space is $40 per month). Our database size is 896.38 MB I am looking at getting a Virtual Private Server and upgrading the database to a MSSQL2008 Express database. I am aware that the Express version is limited to a 10GB database (with R2), and is constrained to a single CPU. I have also been offered SQL Server 2008 Web Edition for $19/per month, but I cannot find many details on the difference between Express and Web. Any suggestions here? What I would also like to know is: If we upgrade the database to MSSQL 2008 database, is there any issues with possible data transformations in the future? I.e. Is it possible to download and mount it with SQL Server 2008 Standard edition? I'm more concerned about how to get data in and out of the database through SQL Management tools. Are there any other issues that I might face? Thanks, Mike

    Read the article

  • MySQL root user can't access database

    - by Ed Schofield
    Hi all, We have a MySQL database ('myhours') on a production database server that is accessible to one user ('edsf') only, but not to the root user. The command 'SHOW DATABASES' as the root user does not list the 'myhours' database. The same command as the 'edsf' user lists the database: mysql> SHOW DATABASES; +--------------------+ | Database | +--------------------+ | information_schema | | myhours | +--------------------+ 2 rows in set (0.01 sec) Only the 'edsf' user can access the 'myhours' database with 'USE myhours'. Neither user seems to have permission to grant further permissions for this database. My questions are: Q1. How is it that the root user does not have permission to use the database? How could this have come about? The output of SHOW GRANTS FOR 'root'@'localhost'; looks fine to me: GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' IDENTIFIED BY PASSWORD '*xxx' WITH GRANT OPTION Q2. How can I recover this situation to make this database visible to the MySQL root user and grant further permissions on it? Thanks in advance for any help! -- Ed

    Read the article

  • Getting started with Oracle Database In-Memory Part III - Querying The IM Column Store

    - by Maria Colgan
    In my previous blog posts, I described how to install, enable, and populate the In-Memory column store (IM column store). This weeks post focuses on how data is accessed within the IM column store. Let’s take a simple query “What is the most expensive air-mail order we have received to date?” SELECT Max(lo_ordtotalprice) most_expensive_order FROM lineorderWHERE  lo_shipmode = 5; The LINEORDER table has been populated into the IM column store and since we have no alternative access paths (indexes or views) the execution plan for this query is a full table scan of the LINEORDER table. You will notice that the execution plan has a new set of keywords “IN MEMORY" in the access method description in the Operation column. These keywords indicate that the LINEORDER table has been marked for INMEMORY and we may use the IM column store in this query. What do I mean by “may use”? There are a small number of cases were we won’t use the IM column store even though the object has been marked INMEMORY. This is similar to how the keyword STORAGE is used on Exadata environments. You can confirm that the IM column store was actually used by examining the session level statistics, but more on that later. For now let's focus on how the data is accessed in the IM column store and why it’s faster to access the data in the new column format, for analytical queries, rather than the buffer cache. There are four main reasons why accessing the data in the IM column store is more efficient. 1. Access only the column data needed The IM column store only has to scan two columns – lo_shipmode and lo_ordtotalprice – to execute this query while the traditional row store or buffer cache has to scan all of the columns in each row of the LINEORDER table until it reaches both the lo_shipmode and the lo_ordtotalprice column. 2. Scan and filter data in it's compressed format When data is populated into the IM column it is automatically compressed using a new set of compression algorithms that allow WHERE clause predicates to be applied against the compressed formats. This means the volume of data scanned in the IM column store for our query will be far less than the same query in the buffer cache where it will scan the data in its uncompressed form, which could be 20X larger. 3. Prune out any unnecessary data within each column The fastest read you can execute is the read you don’t do. In the IM column store a further reduction in the amount of data accessed is possible due to the In-Memory Storage Indexes(IM storage indexes) that are automatically created and maintained on each of the columns in the IM column store. IM storage indexes allow data pruning to occur based on the filter predicates supplied in a SQL statement. An IM storage index keeps track of minimum and maximum values for each column in each of the In-Memory Compression Unit (IMCU). In our query the WHERE clause predicate is on the lo_shipmode column. The IM storage index on the lo_shipdate column is examined to determine if our specified column value 5 exist in any IMCU by comparing the value 5 to the minimum and maximum values maintained in the Storage Index. If the value 5 is outside the minimum and maximum range for an IMCU, the scan of that IMCU is avoided. For the IMCUs where the value 5 does fall within the min, max range, an additional level of data pruning is possible via the metadata dictionary created when dictionary-based compression is used on IMCU. The dictionary contains a list of the unique column values within the IMCU. Since we have an equality predicate we can easily determine if 5 is one of the distinct column values or not. The combination of the IM storage index and dictionary based pruning, enables us to only scan the necessary IMCUs. 4. Use SIMD to apply filter predicates For the IMCU that need to be scanned Oracle takes advantage of SIMD vector processing (Single Instruction processing Multiple Data values). Instead of evaluating each entry in the column one at a time, SIMD vector processing allows a set of column values to be evaluated together in a single CPU instruction. The column format used in the IM column store has been specifically designed to maximize the number of column entries that can be loaded into the vector registers on the CPU and evaluated in a single CPU instruction. SIMD vector processing enables the Oracle Database In-Memory to scan billion of rows per second per core versus the millions of rows per second per core scan rate that can be achieved in the buffer cache. I mentioned earlier in this post that in order to confirm the IM column store was used; we need to examine the session level statistics. You can monitor the session level statistics by querying the performance views v$mystat and v$statname. All of the statistics related to the In-Memory Column Store begin with IM. You can see the full list of these statistics by typing: display_name format a30 SELECT display_name FROM v$statname WHERE  display_name LIKE 'IM%'; If we check the session statistics after we execute our query the results would be as follow; SELECT Max(lo_ordtotalprice) most_expensive_order FROM lineorderWHERE lo_shipmode = 5; SELECT display_name FROM v$statname WHERE  display_name IN ('IM scan CUs columns accessed',                        'IM scan segments minmax eligible',                        'IM scan CUs pruned'); As you can see, only 2 IMCUs were accessed during the scan as the majority of the IMCUs (44) in the LINEORDER table were pruned out thanks to the storage index on the lo_shipmode column. In next weeks post I will describe how you can control which queries use the IM column store and which don't. +Maria Colgan

    Read the article

  • Benefits of Behavior Driven Development

    - by Aligned
    Originally posted on: http://geekswithblogs.net/Aligned/archive/2013/07/26/benefits-of-behavior-driven-development.aspxContinuing my previous article on BDD, I wanted to point out some benefits of BDD and since BDD is an extension of Test Driven Development (TDD), you get those as well. I’ll add another article on some possible downsides of this approach. There are many articles about the benefits of TDD and they apply to BDD. I’ve pointed out some here and copied some of the main points for each article, but there are many more including the book The Art of Unit Testing by Roy Osherove. http://geekswithblogs.net/leesblog/archive/2008/04/30/the-benefits-of-test-driven-development.aspx (Lee Brandt) Stability Accountability Design Ability Separated Concerns Progress Indicator http://tddftw.com/benefits-of-tdd/ Help maintainers understand the intention behind the code Bring validation and proper data handling concerns to the forefront. Writing the tests first is fun. Better APIs come from writing testable code. TDD will make you a better developer. http://www.slideshare.net/dhelper/benefit-from-unit-testing-in-the-real-world (from Typemock). Take a look at the slides, especially the extra time required for TDD (slide 10) and the next one of the bugs avoided using TDD (slide 11). Less bugs (slide 11) about testing and development (13) Increase confidence in code (14) Fearlessly change your code (14) Document Requirements (14) also see http://visualstudiomagazine.com/articles/2013/06/01/roc-rocks.aspx Discover usability issues early (14) All these points and articles are great and there are many more. The following are my additions to the benefits of BDD from using it in real projects for my company. July 2013 on MSDN - Behavior-Driven Design with SpecFlow Scott Allen did a very informative TDD and MVC module, but to me he is doing BDDCompile and Execute Requirements in Microsoft .NET ~ Video from TechEd 2012 Communication I was working through a complicated task that the decision tree kept growing. After writing out the Given, When, Then of the scenario, I was able tell QA what I had worked through for their initial test cases. They were able to add from there. It is also useful to use this language with other developers, managers, or clients to help make informed decisions on if it meets the requirements or if it can simplified to save time (money). Thinking through solutions, before starting to code This was the biggest benefit to me. I like to jump into coding to figure out the problem. Many times I don't understand my path well enough and have to do some parts over. A past supervisor told me several times during reviews that I need to get better at seeing "the forest for the trees". When I sit down and write out the behavior that I need to implement, I force myself to think things out further and catch scenarios before they get to QA. A co-worker that is new to BDD and we’ve been using it in our new project for the last 6 months, said “It really clarifies things”. It took him awhile to understand it all, but now he’s seeing the value of this approach (yes there are some downsides, but that is a different issue). Developers’ Confidence This is huge for me. With tests in place, my confidence grows that I won’t break code that I’m not directly changing. In the past, I’ve worked on projects with out tests and we would frequently find regression bugs (or worse the users would find them). That isn’t fun. We don’t catch all problems with the tests, but when QA catches one, I can write a test to make sure it doesn’t happen again. It’s also good for Releasing code, telling your manager that it’s good to go. As time goes on and the code gets older, how confident are you that checking in code won’t break something somewhere else? Merging code - pre release confidence If you’re merging code a lot, it’s nice to have the tests to help ensure you didn’t merge incorrectly. Interrupted work I had a task that I started and planned out, then was interrupted for a month because of different priorities. When I started it up again, and un-shelved my changes, I had the BDD specs and it helped me remember what I had figured out and what was left to do. It would have much more difficult without the specs and tests. Testing and verifying complicated scenarios Sometimes in the UI there are scenarios that get tricky, because there are a lot of steps involved (click here to open the dialog, enter the information, make sure it’s valid, when I click cancel it should do {x}, when I click ok it should close and do {y}, then do this, etc….). With BDD I can avoid some of the mouse clicking define the scenarios and have them re-run quickly, without using a mouse. UI testing is still needed, but this helps a bunch. The same can be true for tricky server logic. Documentation of Assumptions and Specifications The BDD spec tests (Jasmine or SpecFlow or other tool) also work as documentation and show what the original developer was trying to accomplish. It’s not a different Word document, so developers will keep this up to date, instead of letting it become obsolete. What happens if you leave the project (consulting, new job, etc) with no specs or at the least good comments in the code? Sometimes I think of a new scenario, so I add a failing spec and continue in the same stream of thought (don’t forget it because it was on a piece of paper or in a notepad). Then later I can come back and handle it and have it documented. Jasmine tests and JavaScript –> help deal with the non-typed system I like JavaScript, but I also dislike working with JavaScript. I miss C# telling me if a property doesn’t actually exist at build time. I like the idea of TypeScript and hope to use it more in the future. I also use KnockoutJs, which has observables that need to be called with ending (), since the observable is a function. It’s hard to remember when to use () or not and the Jasmine specs/tests help ensure the correct usage.   This should give you an idea of the benefits that I see in using the BDD approach. I’m sure there are more. It talks a lot of practice, investment and experimentation to figure out how to approach this and to get comfortable with it. I agree with Scott Allen in the video I linked above “Remember that TDD can take some practice. So if you're not doing test-driven design right now? You can start and practice and get better. And you'll reach a point where you'll never want to get back.”

    Read the article

  • Problems locating Redmine database

    - by zordor
    I have an active redmine but I can not find the database where it is running right now. It should be on PostgreSQL but the database where it should be running is empty. Does anybody have any idea how to check current database used by redmine? Please let me know if you need any extra information. Thank you EDIT: Ok I know the database it is using. On the database.yml I have project_redmine but it is using the database project I dont know why. That database it is used by developers for the actual project. So that is getting me problems of course. I am unable to run it on the right DB (project_redmine) any ideas? :S

    Read the article

  • Centrally managing 100+ websites without bankrupting a small company

    - by palintropos
    I'm mainly interested in opinions on the trade-offs between having a single central server all the websites connect to as opposed to each website mirroring a subset of the master database with all the products in it. For example, will I run into severe performance issues (or even security issues, or restrictions) making queries to an offsite database? Will we hit scalability issues we can't handle early on from the sheer bandwidth required to maintain this? If we do go with something like a script that keeps smaller databases (each containing a subset of the central master data) in sync, what sorts of issues will we likely encounter there? I would really like the opinions of people far more knowledgeable than I am regarding the pros and cons of both setups and what headaches we are likely to encounter. CLARIFICATION: This should not be viewed as a question about whether we should implement one database vs multiple databases. This question has been answered numerous times. The question is regarding the pros and cons for a deployment like this having the ability to manage all the websites centrally (one server) vs trying to keep them all in sync if they each have their own db (multiple servers). REAL-WORLD EXAMPLE: We are a t-shirt company, and we have individual websites for our different kinds of t-shirts, but we're looking at a central order management integrated with our single shopping cart (which is ColdFusion + MySQL). Now, let's say we have a t-shirt that's on 10 of our websites and we change an image for it. Ideally we would change that in one place and the change would propagate, but how would we set this up?

    Read the article

  • Relational vs. Dimensional Databases, what's the difference?

    - by grautur
    I'm trying to learn about OLAP and data warehousing, and I'm confused about the difference between relational and dimensional modeling. Is dimensional modeling basically relational modeling, but allowing for redundant/un-normalized data? For example, let's say I have historical sales data on (product, city, # sales). I understand that the following would be a relational point-of-view: Product | City | # Sales Apples, San Francisco, 400 Apples, Boston, 700 Apples, Seattle, 600 Oranges, San Francisco, 550 Oranges, Boston, 500 Oranges, Seattle, 600 While the following is a more dimensional point-of-view: Product | San Francisco | Boston | Seattle Apples, 400, 700, 600 Oranges, 550, 500, 600 But it seems like both points of view would nonetheless be implemented in an identical star schema: Fact table: Product ID, Region ID, # Sales Product dimension: Product ID, Product Name City dimension: City ID, City Name And it's not until you start adding some additional details to each dimension that the differences start popping up. For instance, if you wanted to track regions as well, a relational database would tend to have a separate region table, in order to keep everything normalized: City dimension: City ID, City Name, Region ID Region dimension: Region ID, Region Name, Region Manager, # Regional Stores While a dimensional database would allow for denormalization to keep the region data inside the city dimension, in order to make it easier to slice the data: City dimension: City ID, City Name, Region Name, Region Manager, # Regional Stores Is this correct?

    Read the article

  • Still Confused About Identifying vs. Non-Identifying Relationships

    - by Jason
    So, I've been reading up on identifying vs. non-identifying relationships in my database design, and a number of the answers on SO seem contradicting to me. Here are the two questions I am looking at: What's the Difference Between Identifying and Non-Identifying Relationships Trouble Deciding on Identifying or Non-Identifying Relationship Looking at the top answers from each question, I appear to get two different ideas of what an identifying relationship is. The first question's response says that an identifying relationship "describes a situation in which the existence of a row in the child table depends on a row in the parent table." An example of this that is given is, "An author can write many books (1-to-n relationship), but a book cannot exist without an author." That makes sense to me. However, when I read the response to question two, I get confused as it says, "if a child identifies its parent, it is an identifying relationship." The answer then goes on to give examples such as SSN (is identifying of a Person), but an address is not (because many people can live at an address). To me, this sounds more like a case of the decision between primary key and non-primary key. My own gut feeling (and additional research on other sites) points to the first question and its response being correct. However, I wanted to verify before I continued forward as I don't want to learn something wrong as I am working to understand database design. Thanks in advance.

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • How do you decide what kind of database to use?

    - by Jason Baker
    I really dislike the name "NoSQL", because it isn't very descriptive. It tells me what the databases aren't where I'm more interested in what the databases are. I really think that this category really encompasses several categories of database. I'm just trying to get a general idea of what job each particular database is the best tool for. A few assumptions I'd like to make (and would ask you to make): Assume that you have the capability to hire any number of brilliant engineers who are equally experienced with every database technology that has ever existed. Assume you have the technical infrastructure to support any given database (including available servers and sysadmins who can support said database). Assume that each database has the best support possible for free. Assume you have 100% buy-in from management. Assume you have an infinite amount of money to throw at the problem. Now, I realize that the above assumptions eliminate a lot of valid considerations that are involved in choosing a database, but my focus is on figuring out what database is best for the job on a purely technical level. So, given the above assumptions, the question is: what jobs are each database (including both SQL and NoSQL) the best tool for and why?

    Read the article

  • any practices ,samples for ERD?

    - by just_name
    Q: I wanna any web sites , any books just for training on ERD and normalization ,, i wanna a lot of samples ,practices,and case studies with recommended answers, to strength myself in database design.and avoid the poor data base design i made . note:i don't need books to explain the concepts , what i need is practices ,examples,case studies with recommended answers. Thanks in advance.

    Read the article

  • Android threading and database locking

    - by Sena Gbeckor-Kove
    Hi, We are using AsyncTasks to access database tables and cursors. Unfortunately we are seeing occasional exceptions regarding the database being locked. E/SQLiteOpenHelper(15963): Couldn't open iviewnews.db for writing (will try read-only): E/SQLiteOpenHelper(15963): android.database.sqlite.SQLiteException: database is locked E/SQLiteOpenHelper(15963): at android.database.sqlite.SQLiteDatabase.native_setLocale(Native Method) E/SQLiteOpenHelper(15963): at android.database.sqlite.SQLiteDatabase.setLocale(SQLiteDatabase.java:1637) E/SQLiteOpenHelper(15963): at android.database.sqlite.SQLiteDatabase.<init>(SQLiteDatabase.java:1587) E/SQLiteOpenHelper(15963): at android.database.sqlite.SQLiteDatabase.openDatabase(SQLiteDatabase.java:638) E/SQLiteOpenHelper(15963): at android.database.sqlite.SQLiteDatabase.openOrCreateDatabase(SQLiteDatabase.java:659) E/SQLiteOpenHelper(15963): at android.database.sqlite.SQLiteDatabase.openOrCreateDatabase(SQLiteDatabase.java:652) E/SQLiteOpenHelper(15963): at android.app.ApplicationContext.openOrCreateDatabase(ApplicationContext.java:482) E/SQLiteOpenHelper(15963): at android.content.ContextWrapper.openOrCreateDatabase(ContextWrapper.java:193) E/SQLiteOpenHelper(15963): at android.database.sqlite.SQLiteOpenHelper.getWritableDatabase(SQLiteOpenHelper.java:98) E/SQLiteOpenHelper(15963): at android.database.sqlite.SQLiteOpenHelper.getReadableDatabase(SQLiteOpenHelper.java:158) E/SQLiteOpenHelper(15963): at com.iview.android.widget.IViewNewsTopStoryWidget.initData(IViewNewsTopStoryWidget.java:73) E/SQLiteOpenHelper(15963): at com.iview.android.widget.IViewNewsTopStoryWidget.updateNewsWidgets(IViewNewsTopStoryWidget.java:121) E/SQLiteOpenHelper(15963): at com.iview.android.async.GetNewsTask.doInBackground(GetNewsTask.java:338) E/SQLiteOpenHelper(15963): at com.iview.android.async.GetNewsTask.doInBackground(GetNewsTask.java:1) E/SQLiteOpenHelper(15963): at android.os.AsyncTask$2.call(AsyncTask.java:185) E/SQLiteOpenHelper(15963): at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:256) E/SQLiteOpenHelper(15963): at java.util.concurrent.FutureTask.run(FutureTask.java:122) E/SQLiteOpenHelper(15963): at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:648) E/SQLiteOpenHelper(15963): at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:673) E/SQLiteOpenHelper(15963): at java.lang.Thread.run(Thread.java:1060) Does anybody have a general example for code which writes to a database from a different thread than the one reading and how can we ensure thread safety. One suggestion I've had is to use a ContentProvider, as this would handle the access of the database from multiple threads. I am going to look at this, but is this the recommended method of handling such a problem? It seems rather heavyweight considering we're talking about in front or behind Thanks in advance.

    Read the article

  • Enable Automatic Code First Migrations On SQL Database in Azure Web Sites

    - by Steve Michelotti
    Now that Azure supports .NET Framework 4.5, you can use all the latest and greatest available features. A common scenario is to be able to use Entity Framework Code First Migrations with a SQL Database in Azure. Prior to Code First Migrations, Entity Framework provided database initializers. While convenient for demos and prototypes, database initializers weren’t useful for much beyond that because, if you delete and re-create your entire database when the schema changes, you lose all of your operational data. This is the void that Migrations are meant to fill. For example, if you add a column to your model, Migrations will alter the database to add the column rather than blowing away the entire database and re-creating it from scratch. Azure is becoming increasingly easier to use – especially with features like Azure Web Sites. Being able to use Entity Framework Migrations in Azure makes deployment easier than ever. In this blog post, I’ll walk through enabling Automatic Code First Migrations on Azure. I’ll use the Simple Membership provider for my example. First, we’ll create a new Azure Web site called “migrationstest” including creating a new SQL Database along with it:   Next we’ll go to the web site and download the publish profile:   In the meantime, we’ve created a new MVC 4 website in Visual Studio 2012 using the “Internet Application” template. This template is automatically configured to use the Simple Membership provider. We’ll do our initial Publish to Azure by right-clicking our project and selecting “Publish…”. From the “Publish Web” dialog, we’ll import the publish profile that we downloaded in the previous step:   Once the site is published, we’ll just click the “Register” link from the default site. Since the AccountController is decorated with the [InitializeSimpleMembership] attribute, the initializer will be called and the initial database is created.   We can verify this by connecting to our SQL Database on Azure with SQL Management Studio (after making sure that our local IP address is added to the list of Allowed IP Addresses in Azure): One interesting note is that these tables got created with the default Entity Framework initializer – which is to create the database if it doesn’t already exist. However, our database did already exist! This is because there is a new feature of Entity Framework 5 where Code First will add tables to an existing database as long as the target database doesn’t contain any of the tables from the model. At this point, it’s time to enable Migrations. We’ll open the Package Manger Console and execute the command: PM> Enable-Migrations -EnableAutomaticMigrations This will enable automatic migrations for our project. Because we used the "-EnableAutomaticMigrations” switch, it will create our Configuration class with a constructor that sets the AutomaticMigrationsEnabled property set to true: 1: public Configuration() 2: { 3: AutomaticMigrationsEnabled = true; 4: } We’ll now add our initial migration: PM> Add-Migration Initial This will create a migration class call “Initial” that contains the entire model. But we need to remove all of this code because our database already exists so we are just left with empty Up() and Down() methods. 1: public partial class Initial : DbMigration 2: { 3: public override void Up() 4: { 5: } 6: 7: public override void Down() 8: { 9: } 10: } If we don’t remove this code, we’ll get an exception the first time we attempt to run migrations that tells us: “There is already an object named 'UserProfile' in the database”. This blog post by Julie Lerman fully describes this scenario (i.e., enabling migrations on an existing database). Our next step is to add the Entity Framework initializer that will automatically use Migrations to update the database to the latest version. We will add these 2 lines of code to the Application_Start of the Global.asax: 1: Database.SetInitializer(new MigrateDatabaseToLatestVersion<UsersContext, Configuration>()); 2: new UsersContext().Database.Initialize(false); Note the Initialize() call will force the initializer to run if it has not been run before. At this point, we can publish again to make sure everything is still working as we are expecting. This time we’re going to specify in our publish profile that Code First Migrations should be executed:   Once we have re-published we can once again navigate to the Register page. At this point the database has not been changed but Migrations is now enabled on our SQL Database in Azure. We can now customize our model. Let’s add 2 new properties to the UserProfile class – Email and DateOfBirth: 1: [Table("UserProfile")] 2: public class UserProfile 3: { 4: [Key] 5: [DatabaseGeneratedAttribute(DatabaseGeneratedOption.Identity)] 6: public int UserId { get; set; } 7: public string UserName { get; set; } 8: public string Email { get; set; } 9: public DateTime DateOfBirth { get; set; } 10: } At this point all we need to do is simply re-publish. We’ll once again navigate to the Registration page and, because we had Automatic Migrations enabled, the database has been altered (*not* recreated) to add our 2 new columns. We can verify this by once again looking at SQL Management Studio:   Automatic Migrations provide a quick and easy way to keep your database in sync with your model without the worry of having to re-create your entire database and lose data. With Azure Web Sites you can set up automatic deployment with Git or TFS and automate the entire process to make it dead simple.

    Read the article

< Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >