Search Results

Search found 27663 results on 1107 pages for 'input mode'.

Page 210/1107 | < Previous Page | 206 207 208 209 210 211 212 213 214 215 216 217  | Next Page >

  • Multiple vulnerabilities in Thunderbird

    - by RitwikGhoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2012-1948 Denial of service (DoS) vulnerability 9.3 Thunderbird Solaris 10 SPARC: 145200-12 X86: 145201-12 CVE-2012-1950 Address spoofing vulnerability 6.4 CVE-2012-1951 Resource Management Errors vulnerability 10.0 CVE-2012-1952 Resource Management Errors vulnerability 9.3 CVE-2012-1953 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 9.3 CVE-2012-1954 Resource Management Errors vulnerability 10.0 CVE-2012-1955 Address spoofing vulnerability 6.8 CVE-2012-1957 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2012-1958 Resource Management Errors vulnerability 9.3 CVE-2012-1959 Permissions, Privileges, and Access Controls vulnerability 5.0 CVE-2012-1961 Improper Input Validation vulnerability 4.3 CVE-2012-1962 Resource Management Errors vulnerability 10.0 CVE-2012-1963 Permissions, Privileges, and Access Controls vulnerability 4.3 CVE-2012-1964 Clickjacking vulnerability 4.0 CVE-2012-1965 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2012-1966 Permissions, Privileges, and Access Controls vulnerability 4.3 CVE-2012-1967 Arbitrary code execution vulnerability 10.0 CVE-2012-1970 Denial of service (DoS) vulnerability 10.0 CVE-2012-1973 Resource Management Errors vulnerability 10.0 CVE-2012-3966 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 10.0 This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • How To Specify Bitrate, Codec and Demultiplexing for VLC Video Capture or Recording

    - by Subhash
    I capture video from old TV tuner card - Pinnacle PCTV - using VLC. The video is from the Composite input and audio is from I guess the mixer or Line in. The command I use is: vlc v4l2:///dev/video0:normal=pal:width=720:height=576:input=1 :input-slave="alsa://hw:0,0" In VLC, I have enabled the Advanced Controls toolbar, which allows me to record videos when I want to. However, these videos are uncompressed - very big and play only with VLC. Totem throws the "Could not demultiplex stream" error. I need to convert them using WinFF to reduce their size and make them playable with Totem and other software. My question is whether I can configure the recording settings - the codecs and the bitrate, and also get the stream demultiplexed. If I pass any -sout parameter with command I get a "Segmentation fault". I use 64-bit Ubuntu 10.10.

    Read the article

  • Java Alphabetize Algorithm Insertion sort vs Bubble Sort

    - by Chris Okyen
    I am supposed to "Develop a program that alphabetizes three strings. The program should allow the user to enter the three strings, and then display the strings in alphabetical order." It's instructed that I need to use the String library compareTo()/charAt()/toLowerCase() to make all the characters lowercase so the Lexicon comparison is also a alphabetical comparison. Input Pseudo Code: String input[3]; Scanner keyboard = new Scanner(System.in); System.out.println("Enter three strings: "); for(byte i = 0; i < 3; i++) input[i] = keyboard.next() The sorting would be Insertion Sort: 321 2 3 1 2 31 231 1 23 1 2 3 1 23 1 23 123 Bubble Sort 321 231 213 123 Which would be more efficient in this case? The bubble sort seems to be more efficient though they seem to have equal stats for worst best and avg case, but I read the Insertion Sort is quicker for small amounts of data like my case.

    Read the article

  • Scripting with variables from file

    - by Nooster
    I have several videos on my PC that I would like to shorten. For instance I have a 30 sec video where I want to have the section from sec 15 to 20 (a 5sec video). To cut this, I use avconv. avconv -i input.mp4 -ss 15 -acodec copy -vcodec copy -t 5 output.mp4 This command works pretty well. I have many videos I want to cut the same way. This is why I created a textfile containing the information: input-name, start of cut, length of cut, output-name. Those are written into in.txt that looks like this: input.mp4 15 5 output.mp4 input1.mp4 32 10 output1.mp4 input2.mp4 10 7 output2.mp4 ... My question is: How do I have to modify the avconv-command to cut my videos automatically? What I tried was this, but it didn't work at all: avconv -i $1 -ss $2 -acodec copy -vcodec copy -t $3 $4 < in.txt Any idea?

    Read the article

  • boot issues - long delay, then "gave up waiting for root device"

    - by chazomaticus
    I've had this issue on and off for about two years now. I noticed it on a new (custom built) machine running 10.04 when that first came out, but then it went away until a few months ago. I've gone through a number of hard drive changes but I can't say specifically what if anything I changed hardware-wise to make it stop or start happening. I had assumed upgrading to a modern Ubuntu version would fix the issue, so I installed 12.04 beta on a spare partition last night, but it's still happening. Here's the issue. After grub loads and I select a kernel to boot, the screen goes blank save for a blinking cursor. It sits in this state for many long minutes before it finally gives up and gives me an initramfs shell with the message gave up waiting for root device (and lists the /dev/disk/by-uuid/... path it was waiting for) but no other specific diagnostic information. Now, here's the tricky part. For one, the problem is intermittent - sometimes it progresses from the blinking cursor to the Ubuntu splash boot screen in a few seconds, and once it gets that far it always continues booting fine. The really bizarre thing is that I can "force" it to "find" the root device by repeatedly pressing the space bar and hitting the machine's power button. If I tap those enough, eventually I will notice the hard drive light coming on, at which point it will always continue the boot process after a few seconds. Interestingly, if I wait slightly too long before pressing the power button (30s?), as soon as I press it I get the gave up waiting message and the initramfs shell. I've tried setting up /etc/fstab (and the grub menu.lst or whatever it's called nowadays) to use device names (e.g. /dev/sda1) instead of UUIDs, but I get the same effect just with the device name, not UUID, in the error message. I should also mention that when I boot to Windows 7, there is no issue. It boots slowly all the time just by virtue of being Windows, but it never hangs indefinitely. This would seem to indicate it's a problem in Ubuntu, not the hardware. It's pretty annoying to have to babysit the computer every time it boots. Any ideas? I'm at a loss. Not even sure how to diagnose the issue. Thanks! EDIT: Here's some dmesg output from 10.04. The 15 second gap is where it was doing nothing. I pressed the power button and space bar a few times, and the stuff at 16 seconds happened. Not sure what any of it means. [ 1.320250] scsi18 : ahci [ 1.320294] scsi19 : ahci [ 1.320320] ata19: SATA max UDMA/133 abar m8192@0xfd4fe000 port 0xfd4fe100 ir q 18 [ 1.320323] ata20: SATA max UDMA/133 abar m8192@0xfd4fe000 port 0xfd4fe180 ir q 18 [ 1.403886] usb 2-4: new high speed USB device using ehci_hcd and address 4 [ 1.562558] usb 2-4: configuration #1 chosen from 1 choice [ 16.477824] ata16: SATA link down (SStatus 0 SControl 300) [ 16.477843] ata19: SATA link down (SStatus 0 SControl 300) [ 16.477857] ata3: SATA link down (SStatus 0 SControl 300) [ 16.477895] ata15: SATA link down (SStatus 0 SControl 300) [ 16.477906] ata20: SATA link down (SStatus 0 SControl 300) [ 16.477977] ata17: SATA link down (SStatus 0 SControl 300) [ 16.478003] ata12: SATA link down (SStatus 0 SControl 300) [ 16.478046] ata13: SATA link down (SStatus 0 SControl 300) [ 16.478063] ata14: SATA link down (SStatus 0 SControl 300) [ 16.478108] ata11: SATA link down (SStatus 0 SControl 300) [ 16.478123] ata18: SATA link up 1.5 Gbps (SStatus 113 SControl 300) [ 16.478127] ata6: SATA link down (SStatus 0 SControl 300) [ 16.478157] ata5: SATA link down (SStatus 0 SControl 300) [ 16.478193] ata18.00: ATAPI: MARVELL VIRTUALL, 1.09, max UDMA/66 After that, it took its sweet time, and I had to keep hitting space bar to coax it along. Here's some more dmesg output from a little later in the boot process: [ 17.982291] input: BTC USB Multimedia Keyboard as /devices/pci0000:00/0000:00 :13.0/usb5/5-2/5-2:1.0/input/input4 [ 17.982335] generic-usb 0003:046E:5506.0002: input,hidraw1: USB HID v1.10 Key board [BTC USB Multimedia Keyboard] on usb-0000:00:13.0-2/input0 [ 18.005211] input: BTC USB Multimedia Keyboard as /devices/pci0000:00/0000:00 :13.0/usb5/5-2/5-2:1.1/input/input5 [ 18.005274] generic-usb 0003:046E:5506.0003: input,hiddev96,hidraw2: USB HID v1.10 Device [BTC USB Multimedia Keyboard] on usb-0000:00:13.0-2/input1 [ 22.484906] EXT4-fs (sda6): INFO: recovery required on readonly filesystem [ 22.484910] EXT4-fs (sda6): write access will be enabled during recovery [ 22.548542] EXT4-fs (sda6): recovery complete [ 22.549074] EXT4-fs (sda6): mounted filesystem with ordered data mode [ 32.516772] Adding 20482832k swap on /dev/sda5. Priority:-1 extents:1 across:20482832k [ 32.742540] udev: starting version 151 [ 33.002004] Bluetooth: Atheros AR30xx firmware driver ver 1.0 [ 33.008135] parport_pc 00:09: reported by Plug and Play ACPI [ 33.008186] parport0: PC-style at 0x378, irq 7 [PCSPP,TRISTATE] [ 33.012076] lp: driver loaded but no devices found [ 33.037271] ppdev: user-space parallel port driver [ 33.090256] lp0: using parport0 (interrupt-driven). Any clues in there?

    Read the article

  • Iptables Issue can't SSH Remote Machines

    - by Lonston
    I want to SSH to 192.168.1.15 Server from my machine, my ip was 192.168.1.99 Source Destination was UP, with IP 192.168.1.15. This is LAN Network there are 30 Machine's Connected to the network and working fine, I'm Playing around the local machine's cos i need to apply the same rules in Production VPS I have applied the below iptables in my machine 192.168.1.99, Now i can't receive any packets from Outside and i can't send any packets Outside, While applying the Below Chain iptables -P INPUT DROP iptables -P OUTPUT DROP iptables -P FORWARD DROP After the above CHAIN i have added the Below rules and it want to allow ssh from machine to 192.168.1.15 to access the 192.164.1.15 but still i can't access 192.168.1.15 iptables -A INPUT -p tcp -i eth0 --dport 22 -m state --state NEW,ESTABLISHED -j ACCEPT iptables -A OUTPUT -p tcp -o eth0 --sport 22 -m state --state ESTABLISHED -j ACCEPT iptables -A OUTPUT -o eth0 -p tcp --dport 22 -m state --state NEW,ESTABLISHED -j ACCEPT iptables -A INPUT -i eth0 -p tcp --sport 22 -m state --state ESTABLISHED -j ACCEPT Any one Please Check Weather my Rules are Wrigt. Still i can't access the machine 15

    Read the article

  • Which will be faster? Switching shaders or ignore that some cases don't need full code?

    - by PolGraphic
    I have two types of 2d objects: In first case (for about 70% of objects), I need that code in the shader: float2 texCoord = input.TexCoord + textureCoord.xy But in the second case I have to use: float2 texCoord = fmod(input.TexCoord, texCoordM.xy - textureCoord.xy) + textureCoord.xy I can use second code also for first case, but it will be a little slower (fmod is useless here, input.TexCoord will be always lower than textureCoord.xy - textureCoord.xy for sure). My question is, which way will be faster: Making two independent shaders for both types of rectangles, group rectangles by types and switch shaders during rendering. Make one shader and use some if statement. Make one shader and ignore that sometimes (70% of cases) I don't need to use fmod.

    Read the article

  • Mouse and keyboard stop working after suspend or screensaver lock

    - by LEo
    If I leave the computer and let it run into screensaver and lock the screen, the mouse left click won't go back to work. If I suspend the computer, the keyboard won't get back to work. It started after upgrading to Ubuntu 11.04. Any tips to solve this problem? The follwing lines I got on dmesg after the problem happened [30536.564415] psmouse.c: TouchPad at isa0060/serio1/input0 lost sync at byte 1 [30536.565725] psmouse.c: TouchPad at isa0060/serio1/input0 lost sync at byte 1 [30536.568466] psmouse.c: TouchPad at isa0060/serio1/input0 lost sync at byte 1 [30536.569790] psmouse.c: TouchPad at isa0060/serio1/input0 lost sync at byte 1 [30536.571123] psmouse.c: TouchPad at isa0060/serio1/input0 lost sync at byte 1 [30536.571126] psmouse.c: issuing reconnect request and that after I tried to plug again my USB mouse: [31570.040088] usb 6-1: USB disconnect, address 2 [31573.490095] usb 6-1: new low speed USB device using uhci_hcd and address 3 [31573.687376] input: Microsoft Basic Optical Mouse as /devices/pci0000:00/0000:00:1d.1/usb6/6-1/6-1:1.0/input/input12 [31573.687544] generic-usb 0003:045E:0084.0002: input,hidraw0: USB HID v1.10 Mouse [Microsoft Basic Optical Mouse] on usb-0000:00:1d.1-1/input0

    Read the article

  • Where is the UIM notification area icon in Unity?

    - by James
    When I was using Maverick, it was possible to switch the input method from a UIM indicator applet. Now that I have upgraded to Oneiric, I can't seem to switch the input method even when I open uim-im-switcher-gtk. This is necessary for me because I need to be able to switch back and forth between English and Tibetan and the keyboard shortcuts don't seem to work until after I've changed the input method from the panel first. Is there some way to get a UIM indicator on the Unity panel? This is a major regression for me and makes it impossible to do certain kinds of work in Ubuntu.

    Read the article

  • UIM notification area icon in Unity, Oneiric?

    - by James
    When I was using Maverick, it was possible to switch the input method from a UIM indicator applet. Now that I have upgraded to Oneiric, I can't seem to switch the input method even when I open uim-im-switcher-gtk. This is necessary for me because I need to be able to switch back and forth between English and Tibetan and the keyboard shortcuts don't seem to work until after I've changed the input method from the panel first. Is there some way to get a UIM indicator on the Unity panel? This is a major regression for me and makes it impossible to do certain kinds of work in Ubuntu.

    Read the article

  • What is your most unusual javascript concept you've ever seen ?

    - by Cybrix
    Hi, I've learned javascript at school but since I'm working with it and study about it every day, I've found very particular aspect of javascript that I didn't know about. Which at first, was very hard to understand for me and finally, I found it very usefull and easy to implement. And in the final, it gives to my code some kind of "beauty". An example I've once seen: function getter( input ) { result = { foo1 : 'bar1', foo2 : 'bar2', foo3 : 'bar3' }[input] || input || "default"; return result; } Do you guys have other examples of particular use you make of Javascript ? Thank you PS: I use the term particular use because it might be unusual for any Javascript beginner. I believe this question is most likely to belong to the community wiki.

    Read the article

  • iptables allow dyndns domain name and auto update rules

    - by user3215
    I have registered with dyndns domain for my dynamically changing public ip address to use with iptable rules. On a server I've allowed some ports for this domain in the iptables configuration like the below entries: -A INPUT -s mycompany.dyndns.com -p tcp -m tcp --dport 22 -j ACCEPT -A INPUT -s mycompany.dyndns.com -p tcp -m tcp --dport 3306 -j ACCEPT -A INPUT -s mycompany.dyndns.com -p tcp -m tcp --dport 21 -j ACCEPT But when ever my modem restarts, I couldn't connect to these allowed ports as public ip changes with modem restart and are not updated in the iptables on the server. Is there any option to automatically update iptable rules on server.

    Read the article

  • Unity: Assigning String value in inspector

    - by Marc Pilgaard
    I got an issue with Unity I can't seem to comprehend, and it is possibly very simple: I am trying to write a simple piece of code in JavaScript where a button toggles the activation of a shield, by dragging a prefab with Resources.load("ActivateShieldPreFab") and destroying it again (Haven't implemented that yet). I wish to assign this button through the inspector, so I have created a string variable which appears as intended in the inspector. Though it doesn't seem to register the inspector input, even though I changed the value through the inspector. It only provides the error: "Input Key named: is unknown" When the button name is assigned within the code, there is no issues. Code as follows: var ShieldOn = false; var stringbutton : String; function Start(){ } function Update () { if(Input.GetKey(stringbutton) && ShieldOn != true) { Instantiate(Resources.load("ActivateShieldPreFab"), Vector3 (0, 0, 0), Quaternion.identity); ShieldOn = true; } } Hope somebody can help, in advance... Thanks

    Read the article

  • Is deserializing complex objects instead of creating them a good idea, in test setup?

    - by Chris Bye
    I'm writing tests for a component that takes very complex objects as input. These tests are mixes of tests against already existing components, and test-first tests for new features. Instead of re-creating my input objects (this would be a large chunk of code) or reading one from our data store, I had the thought to serialize a live instance of one of these objects, and just deserialize it into test setup. I can't decide if this is a reasonable idea that will save effort in long run, or whether it's the worst idea that I've ever had, causing those that will maintain this code will hunt me down as soon as they read it. Is deserialization of inputs a valid means of test setup in some cases? To give a sense of scale of what I'm dealing with, the size of serialization output for one of these input objects is 93KB. Obtained by, in C#: new BinaryFormatter().Serialize((Stream)fileStream, myObject);

    Read the article

  • External classes positions don't work?

    - by SystemNetworks
    I have an external class which reads the user's mouse clicks. I gave a position where the user have to click, and when the user clicks on that position, it would turn my boolean "mouse" to true. But when I connect that to my game(state based) class, it does not work. Here's the code: External class public void UI(Input input, GameContainer gc, float posX, float posY) { int x = Mouse.getX(); int y = Mouse.getY(); if(posX<=100 && posY<=100) { if(Mouse.isButtonDown(1)) { mouse = true; } } } Game class(main) public void update(GameContainer gc, StateBasedGame sbg, int delta) throws SlickException { int x = Mouse.getX(); int y = Mouse.getY(); civ.UI(input, gc, x,y); } The problem is when I click my mouse at posX<=100 && posY<=100. It does not work.

    Read the article

  • Loading from Multiple Data Sources with Oracle Loader for Hadoop

    - by mannamal
    Oracle Loader for Hadoop can be used to load data from multiple data sources (for example Hive, HBase), and data in multiple formats (for example Apache weblogs, JSON files).   There are two ways to do this: (1) Use an input format implementation.  Oracle Loader for Hadoop includes several input format implementations.  In addition, a user can develop their own input format implementation for proprietary data sources and formats. (2) Leverage the capabilities of Hive, and use Oracle Loader for Hadoop to load from Hive. These approaches are discussed in our Oracle Open World 2013 presentation. 

    Read the article

  • New to Java Programming - Error help

    - by JJJ
    I am going through a Java book and drafting the examples and have run into the following error when compiling this code. Any help would be appreciated thank you. Error: Main.java:3: class Addition is public, should be declared in a file named Addition.java public class Addition        ^ 1 error Code: import java.io.*; import java.util.Scanner; public class Addition {   public static void main(String[] args) { java.util.Scanner input = new java.util.Scanner(System.in);  int number1; int number2; int sum; System.out.print( "Enter first digit: " ); number1 = input.nextInt(); System.out.print( "Enter second digit:" ); number2 = input.nextInt(); sum = number1 + number2; System.out.printf( "Sum is %d\n, sum" );      } }

    Read the article

  • Multiple vulnerabilities in Firefox web browser

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2011-3062 Numeric Errors vulnerability 6.8 Firefox web browser Solaris 11 11/11 SRU 9.5 Solaris 10 SPARC: 145080-11 X86: 145081-10 CVE-2012-0467 Denial of service (DoS) vulnerability 10.0 CVE-2012-0468 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 10.0 CVE-2012-0469 Resource Management Errors vulnerability 10.0 CVE-2012-0470 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 10.0 CVE-2012-0471 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2012-0473 Numeric Errors vulnerability 5.0 CVE-2012-0474 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2012-0477 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability 4.3 CVE-2012-0478 Permissions, Privileges, and Access Controls vulnerability 9.3 CVE-2012-0479 Identity spoofing vulnerability 4.3 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • How would you tackle a pattern-finding program?

    - by Neil
    Just to be clear, I don't think this should be question better suited for stackoverflow.com simply because there's not a single answer but a wide range of possible solutions, making this question far more subjective in nature. I was curious how you guys would tackle a pattern-finding program, which is to say I'd do the following operations: I enter in some input. Program predicts my next input based on all previous inputs. Rinse. Repeat. Since the amount of input I could provide is so varied, including empty strings, conventional means such as switches or regular expressions are out, since it would require you to have an inkling of information about what to expect. I was thinking about some form of genetic algorithm, yet even then I don't have a clue as to how to approach a problem of this caliber. I think some feedback mechanism would be necessary as well as to let the program know how close it was. Anyone had to do a similar type program before?

    Read the article

  • Recognizing text fields according to their label value

    - by Pierpaolo Bagnasco
    I have an application who has text fields (not select, not checkbox or other types) where an user can enter some value, like this: ISBN and E-Mail are the label of each input. Now I have to automatically test these inputs according to their label. The question is: how to recognize that, for example, the first input requires an ISBN code? I programmed something like this: turn the label value to lowercase check if the label value contains isbn if so set the field value to a random ISBN code (i.e.: 1234567890), else set it to a random value (default) For the email field: turn the label value to lowercase check if the label value contains e-mail or email or mail if so set the field value to a random email (i.e.: [email protected]), else set it to a random value (default) And so on for each text field I encounter. Is that reliable? How can I improve the "recognizing part"? I know only the label value and the field value (what is already written in the field by default) for each text input.

    Read the article

  • Test if char is '0'-'9' [migrated]

    - by Chris Okyen
    My Java code is // if the first character is not 0-9 if( (((input.substring(0,0)).compareTo("1")) < 0 || (((input.substring(0,0)).compareTo("9")) < 0)); { System.out.println("Error: The first digit of the temperature is not 1-9. Force Exiting Program. "); System.exit(1); // exit the program } But it slips through even with input like '1123' or '912' or '222', and gives this error message. Whether I have it 0 for first and < 0 for the second, or 0 and 0, or < 0 and < 0, or even < o and 0... How come?

    Read the article

  • Steganography : Encoded audio and video file not being played, getting corrupted. What is the issue

    - by Shantanu Gupta
    I have made a steganography program to encrypt/Decrypt some text under image audio and video. I used image as bmp(54 byte header) file, audio as wav(44 byte header) file and video as avi(56 byte header) file formats. When I tries to encrypt text under all these file then it gets encrypted successfully and are also getting decrypted correctly. But it is creating a problem with audio and video i.e these files are not being played after encrypted result. What can be the problem. I am working on Turbo C++ compiler. I know it is super outdated compiler but I have to do it in this only. Here is my code to encrypt. int Binary_encode(char *txtSourceFileName, char *binarySourceFileName, char *binaryTargetFileName,const short headerSize) { long BinarySourceSize=0,TextSourceSize=0; char *Buffer; long BlockSize=10240, i=0; ifstream ReadTxt, ReadBinary; //reads ReadTxt.open(txtSourceFileName,ios::binary|ios::in);//file name, mode of open, here input mode i.e. read only if(!ReadTxt) { cprintf("\nFile can not be opened."); return 0; } ReadBinary.open(binarySourceFileName,ios::binary|ios::in);//file name, mode of open, here input mode i.e. read only if(!ReadBinary) { ReadTxt.close();//closing opened file cprintf("\nFile can not be opened."); return 0; } ReadBinary.seekg(0,ios::end);//setting pointer to a file at the end of file. ReadTxt.seekg(0,ios::end); BinarySourceSize=(long )ReadBinary.tellg(); //returns the position of pointer TextSourceSize=(long )ReadTxt.tellg(); //returns the position of pointer ReadBinary.seekg(0,ios::beg); //sets the pointer to the begining of file ReadTxt.seekg(0,ios::beg); //sets the pointer to the begining of file if(BinarySourceSize<TextSourceSize*50) //Minimum size of an image should be 50 times the size of file to be encrypted { cout<<"\n\n"; cprintf("Binary File size should be bigger than text file size."); ReadBinary.close(); ReadTxt.close(); return 0; } cout<<"\n"; cprintf("\n\nSize of Source Image/Audio File is : "); cout<<(float)BinarySourceSize/1024; cprintf("KB"); cout<<"\n"; cprintf("Size of Text File is "); cout<<TextSourceSize; cprintf(" Bytes"); cout<<"\n"; getch(); //write header to file without changing else file will not open //bmp image's header size is 53 bytes Buffer=new char[headerSize]; ofstream WriteBinary; // writes to file WriteBinary.open(binaryTargetFileName,ios::binary|ios::out|ios::trunc);//file will be created or truncated if already exists ReadBinary.read(Buffer,headerSize);//reads no of bytes and stores them into mem, size contains no of bytes in a file WriteBinary.write(Buffer,headerSize);//writes header to 2nd image delete[] Buffer;//deallocate memory /* Buffer = new char[sizeof(long)]; Buffer = (char *)(&TextSourceSize); cout<<Buffer; */ WriteBinary.write((char *)(&TextSourceSize),sizeof(long)); //writes no of byte to be written in image immediate after header ends //to decrypt file if(!(Buffer=new char[TextSourceSize])) { cprintf("Enough Memory could not be assigned."); return 0; } ReadTxt.read(Buffer,TextSourceSize);//read all data from text file ReadTxt.close();//file no more needed WriteBinary.write(Buffer,TextSourceSize);//writes all text file data into image delete[] Buffer;//deallocate memory //replace Tsize+1 below with Tsize and run the program to see the change //this is due to the reason that 50-54 byte no are of colors which we will be changing ReadBinary.seekg(TextSourceSize+1,ios::cur);//move pointer to the location-current loc i.e. 53+content of text file //write remaining image content to image file while(i<BinarySourceSize-headerSize-TextSourceSize+1) { i=i+BlockSize; Buffer=new char[BlockSize]; ReadBinary.read(Buffer,BlockSize);//reads no of bytes and stores them into mem, size contains no of bytes in a file WriteBinary.write(Buffer,BlockSize); delete[] Buffer; //clear memory, else program can fail giving correct output } ReadBinary.close(); WriteBinary.close(); //Encoding Completed return 0; } Code to decrypt int Binary_decode(char *binarySourceFileName, char *txtTargetFileName, const short headerSize) { long TextDestinationSize=0; char *Buffer; long BlockSize=10240; ifstream ReadBinary; ofstream WriteText; ReadBinary.open(binarySourceFileName,ios::binary|ios::in);//file will be appended if(!ReadBinary) { cprintf("File can not be opened"); return 0; } ReadBinary.seekg(headerSize,ios::beg); Buffer=new char[4]; ReadBinary.read(Buffer,4); TextDestinationSize=*((long *)Buffer); delete[] Buffer; cout<<"\n\n"; cprintf("Size of the File that will be created is : "); cout<<TextDestinationSize; cprintf(" Bytes"); cout<<"\n\n"; sleep(1); WriteText.open(txtTargetFileName,ios::binary|ios::out|ios::trunc);//file will be created if not exists else truncate its data while(TextDestinationSize>0) { if(TextDestinationSize<BlockSize) BlockSize=TextDestinationSize; Buffer= new char[BlockSize]; ReadBinary.read(Buffer,BlockSize); WriteText.write(Buffer,BlockSize); delete[] Buffer; TextDestinationSize=TextDestinationSize-BlockSize; } ReadBinary.close(); WriteText.close(); return 0; } int text_encode(char *SourcefileName, char *DestinationfileName) { ifstream fr; //reads ofstream fw; // writes to file char c; int random; clrscr(); fr.open(SourcefileName,ios::binary);//file name, mode of open, here input mode i.e. read only if(!fr) { cprintf("File can not be opened."); getch(); return 0; } fw.open(DestinationfileName,ios::binary|ios::out|ios::trunc);//file will be created or truncated if already exists while(fr) { int i; while(fr!=0) { fr.get(c); //reads a character from file and increments its pointer char ch; ch=c; ch=ch+1; fw<<ch; //appends character in c to a file } } fr.close(); fw.close(); return 0; } int text_decode(char *SourcefileName, char *DestinationName) { ifstream fr; //reads ofstream fw; // wrrites to file char c; int random; clrscr(); fr.open(SourcefileName,ios::binary);//file name, mode of open, here input mode i.e. read only if(!fr) { cprintf("File can not be opened."); return 0; } fw.open(DestinationName,ios::binary|ios::out|ios::trunc);//file will be created or truncated if already exists while(fr) { int i; while(fr!=0) { fr.get(c); //reads a character from file and increments its pointer char ch; ch=c; ch=ch-1; fw<<ch; //appends character in c to a file } } fr.close(); fw.close(); return 0; }

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Tips for XNA WP7 Developers

    - by Michael B. McLaughlin
    There are several things any XNA developer should know/consider when coming to the Windows Phone 7 platform. This post assumes you are familiar with the XNA Framework and with the changes between XNA 3.1 and XNA 4.0. It’s not exhaustive; it’s simply a list of things I’ve gathered over time. I may come back and add to it over time, and I’m happy to add anything anyone else has experienced or learned as well. Display · The screen is either 800x480 or 480x800. · But you aren’t required to use only those resolutions. · The hardware scaler on the phone will scale up from 240x240. · One dimension will be capped at 800 and the other at 480; which depends on your code, but you cannot have, e.g., an 800x600 back buffer – that will be created as 800x480. · The hardware scaler will not normally change aspect ratio, though, so no unintended stretching. · Any dimension (width, height, or both) below 240 will be adjusted to 240 (without any aspect ratio adjustment such that, e.g. 200x240 will be treated as 240x240). · Dimensions below 240 will be honored in terms of calculating whether to use portrait or landscape. · If dimensions are exactly equal or if height is greater than width then game will be in portrait. · If width is greater than height, the game will be in landscape. · Landscape games will automatically flip if the user turns the phone 180°; no code required. · Default landscape is top = left. In other words a user holding a phone who starts a landscape game will see the first image presented so that the “top” of the screen is along the right edge of his/her phone, such that the natural behavior would be to turn the phone 90° so that the top of the phone will be held in the user’s left hand and the bottom would be held in the user’s right hand. · The status bar (where the clock, battery power, etc., are found) is hidden when the Game-derived class sets GraphicsDeviceManager.IsFullScreen = true. It is shown when IsFullScreen = false. The default value is false (i.e. the status bar is shown). · You should have a good reason for hiding the status bar. Users find it helpful to know what time it is, how much charge their battery has left, and whether or not their phone is in service range. This is especially true for casual games that you expect someone to play for a few minutes at a time, e.g. while waiting for some event to start, for a phone call to come in, or for a train, bus, or subway to arrive. · In portrait mode, the status bar occupies 32 pixels of space. This means that a game with a back buffer of 480x800 will be scaled down to occupy approximately 461x768 screen pixels. Setting the back buffer to 480x768 (or some resolution with the same 0.625 aspect ratio) will avoid this scaling. · In landscape mode, the status bar occupies 72 pixels of space. This means that a game with a back buffer of 800x480 will be scaled down to occupy approximately 728x437 screen pixels. Setting the back buffer to 728x480 (or some resolution with the same 1.51666667 aspect ratio) will avoid this scaling. Input · Touch input is scaled with screen size. · So if your back buffer is 600x360, a tap in the bottom right corner will come in as (599,359). You don’t need to do anything special to get this automatic scaling of touch behavior. · If you do not use full area of the screen, any touch input outside the area you use will still register as a touch input. For example, if you set a portrait resolution of 240x240, it would be scaled up to occupy a 480x480 area, centered in the screen. If you touch anywhere above this area, you will get a touch input of (X,0) where X is a number from 0 to 239 (in accordance with your 240 pixel wide back buffer). Any touch below this area will give a touch input of (X,239). · If you keep the status bar visible, touches within its area will not be passed to your game. · In general, a screen measurement is the diagonal. So a 3.5” screen is 3.5” long from the bottom right corner to the top left corner. With an aspect ratio of 0.6 (480/800 = 0.6), this means that a phone with a 3.5” screen is only approximately 1.8” wide by 3” tall. So there are approximately 267 pixels in an inch on a 3.5” screen. · Again, this time in metric! 3.5 inches is approximately 8.89 cm. So an 8.89 cm screen is 8.89 cm long from the bottom right corner to the top left corner. With an aspect ratio of 0.6, this means that a phone with an 8.89 cm screen is only approximately 4.57 cm wide by 7.62 cm tall. So there are approximately 105 pixels in a centimeter on an 8.89 cm screen. · Think about the size of your finger tip. If you do not have large hands, think about the size of the fingertip of someone with large hands. Consider that when you are sizing your touch input. Especially consider that when you are spacing two touch targets near one another. You need to judge it for yourself, but items that are next to each other and are each 100x100 should be fine when it comes to selecting items individually. Smaller targets than that are ok provided that you leave space between them. · You want your users to have a pleasant experience. Making touch controls too small or too close to one another will make them nervous about whether they will touch the right target. Take this into account when you plan out your game initially. If possible, do some quick size mockups on an actual phone using colored rectangles that you position and size where you plan to have your game controls. Adjust as necessary. · People do not have transparent hands! Nor are their hands the size of a mouse pointer icon. Consider leaving a dedicated space for input rather than forcing the user to cover up to one-third of the screen with a finger just to play the game. · Another benefit of designing your controls to use a dedicated area is that you’re less likely to have players moving their finger(s) so frantically that they accidentally hit the back button, start button, or search button (many phones have one or more of these on the screen itself – it’s easy to hit one by accident and really annoying if you hit, e.g., the search button and then quickly tap back only to find out that the game didn’t save your progress such that you just wasted all the time you spent playing). · People do not like doing somersaults in order to move something forward with accelerometer-based controls. Test your accelerometer-based controls extensively and get a lot of feedback. Very well-known games from noted publishers have created really bad accelerometer controls and been virtually unplayable as a result. Also be wary of exceptions and other possible failures that the documentation warns about. · When done properly, the accelerometer can add a nice touch to your game (see, e.g. ilomilo where the accelerometer was used to move the background; it added a nice touch without frustrating the user; I also think CarniVale does direct accelerometer controls very well). However, if done poorly, it will make your game an abomination unto the Marketplace. Days, weeks, perhaps even months of development time that you will never get back. I won’t name names; you can search the marketplace for games with terrible reviews and you’ll find them. Graphics · The maximum frame rate is 30 frames per second. This was set as a compromise between battery life and quality. · At least one model of phone is known to have a screen refresh rate that is between 59 and 60 hertz. Because of this, using a fixed time step with a target frame rate of 30 will cause a slight internal delay to build up as the framework is forced to wait slightly for the next refresh. Eventually the delay will get to the point where a draw is skipped in order to recover from the delay. (See Nick's comment below for clarification.) · To deal with that delay, you can either stay with a fixed time step and set the frame rate slightly lower or else you can go to a variable time step and make sure to adjust all of your update data (e.g. player movement distance) to take into account the elapsed time from the last update. A variable time step makes your update logic slightly more complicated but will avoid frame skips entirely. · Currently there are no custom shaders. This might change in the future (there is no hardware limitation preventing it; it simply wasn’t a feature that could be implemented in the time available before launch). · There are five built-in shaders. You can create a lot of nice effects with the built-in shaders. · There is more power on the CPU than there is on the GPU so things you might typically off-load to the GPU will instead make sense to do on the CPU side. · This is a phone. It is not a PC. It is not an Xbox 360. The emulator runs on a PC and uses the full power of your PC. It is very good for testing your code for bugs and doing early prototyping and layout. You should not use it to measure performance. Use actual phone hardware instead. · There are many phone models, each of which has slightly different performance levels for I/O, screen blitting, CPU performance, etc. Do not take your game right to the performance limit on your phone since for some other phones you might be crossing their limits and leaving players with a bad experience. Leave a cushion to account for hardware differences. · Smaller screened phones will have slightly more dots per inch (dpi). Larger screened phones will have slightly less. Either way, the dpi will be much higher than the typical 96 found on most computer screens. Make sure that whoever is doing art for your game takes this into account. · Screens are only required to have 16 bit color (65,536 colors). This is common among smart phones. Using gradients on a 16 bit display can produce an ugly artifact known as banding. Banding is when, rather than a smooth transition from one color to another, you instead see distinct lines. Be careful to avoid this when possible. Banding can be avoided through careful art creation. Its effects can be minimized and even unnoticeable when the texture in question is always moving. You should be careful not to rely on “looks good on my phone” since some phones do have 32-bit displays and thus you’ll find yourself wondering why you’re getting bad reviews that complain about the graphics. Avoid gradients; if you can’t, make sure they are 16-bit safe. Audio · Never rely on sounds as your sole signal to the player that something is happening in the game. They might have the sound off. They might be playing somewhere loud. Etc. · You have to provide controls to disable sound & music. These should be separate. · On at least one model of phone, the volume control API currently has no effect. Players can adjust sound with their hardware volume buttons, but in game selectors simply won’t work. As such, it may not be worth the effort of providing anything beyond on/off switches for sound and music. · MediaPlayer.GameHasControl will return true when a game is hooked up to a PC running Zune. When Zune is running, any attempts to do anything (beyond check GameHasControl) with MediaPlayer will cause an exception to be thrown. If this exception is thrown, catch it and disable music. Exceptions take time to propagate; you don’t want one popping up in every single run of your game’s Update method. · Remember that players can already be listening to music or using the FM radio. In this case GameHasControl will be false and you should handle this appropriately. You can, alternately, ask the player for permission to stop their current music and play your music instead, but the (current) requirement that you restore their music when done is very hard (if not impossible) to deal with. · You can still play sound effects even when the game doesn’t have control of the music, but don’t think this is a backdoor to playing music. Your game will fail certification if your “sound effect” seems to be more like music in scope and length.

    Read the article

  • Running sfc /scannow provides the error The specific error code is 0x000006ba [The RPC server is una

    - by leeand00
    I think that my mup.sys file is corrupted, I received the following error when trying to access a network share that was located on my Windows 7 box, from my Windows xp box: No network provider accepted the given network path. After reading this I attempted to follow the directions by entering my computer into safe mode. After I run "sfc /scannow" I receive the following error message: The specific error code is 0x000006ba [The RPC server is unavailable]. Additionally when I go into Services, it says that the Remote Procedure Call (RPC) service is running but that the Remote Procedure Call (RPC) Locator is not running. When I try to start the Remote Procedure Call (RPC) Locator, it gives me an error saying: Error 1084: This service cannot be started in Safe Mode So what can I do about this exactly? If it can't find the Remote Procedure Call service in safe mode?

    Read the article

< Previous Page | 206 207 208 209 210 211 212 213 214 215 216 217  | Next Page >