Search Results

Search found 26908 results on 1077 pages for 'asynchronous wcf call'.

Page 216/1077 | < Previous Page | 212 213 214 215 216 217 218 219 220 221 222 223  | Next Page >

  • ajax response byte size

    - by Alex Pacurar
    Im using jQuery's getJSONP and I want to log the duration of the call and the size of the response to be able to have some statistics about the usage of my application. This is a cross domain ajax call, so I need to use JSONP, but as the JSONP call is not done with an XMLHttpRequest object, the complete callback from jquery's ajax doesnt pass the response content. So my question is how to get the response size (content lenght) from a JSONP call. $.ajaxSetup( { complete:function(x,e) { log(x.responseText.length, x.responseText); } } here x is a XMLHttpRequest object for a JSON call , but for JSONP call is undefined.

    Read the article

  • Where can I find information on the Get, Set and Address methods for multidimensional System.Array i

    - by Rob Smallshire
    System.Array serves as the base class for all arrays in the Common Language Runtime (CLR). According to this article, For each concrete array type, [the] runtime adds three special methods: Get/Set/Address. and indeed if I disassemble this C# code, int[,] x = new int[1024,1024]; x[0,0] = 1; x[1,1] = 2; x[2,2] = 3; Console.WriteLine(x[0,0]); Console.WriteLine(x[1,1]); Console.WriteLine(x[2,2]); into CIL I get, IL_0000: ldc.i4 0x400 IL_0005: ldc.i4 0x400 IL_000a: newobj instance void int32[0...,0...]::.ctor(int32, int32) IL_000f: stloc.0 IL_0010: ldloc.0 IL_0011: ldc.i4.0 IL_0012: ldc.i4.0 IL_0013: ldc.i4.1 IL_0014: call instance void int32[0...,0...]::Set(int32, int32, int32) IL_0019: ldloc.0 IL_001a: ldc.i4.1 IL_001b: ldc.i4.1 IL_001c: ldc.i4.2 IL_001d: call instance void int32[0...,0...]::Set(int32, int32, int32) IL_0022: ldloc.0 IL_0023: ldc.i4.2 IL_0024: ldc.i4.2 IL_0025: ldc.i4.3 IL_0026: call instance void int32[0...,0...]::Set(int32, int32, int32) IL_002b: ldloc.0 IL_002c: ldc.i4.0 IL_002d: ldc.i4.0 IL_002e: call instance int32 int32[0...,0...]::Get(int32, int32) IL_0033: call void [mscorlib]System.Console::WriteLine(int32) IL_0038: ldloc.0 IL_0039: ldc.i4.1 IL_003a: ldc.i4.1 IL_003b: call instance int32 int32[0...,0...]::Get(int32, int32) IL_0040: call void [mscorlib]System.Console::WriteLine(int32) IL_0045: ldloc.0 IL_0046: ldc.i4.2 IL_0047: ldc.i4.2 IL_0048: call instance int32 int32[0...,0...]::Get(int32, int32) IL_004d: call void [mscorlib]System.Console::WriteLine(int32) where the calls to the aforementioned Get and Set methods can be clearly seen. It seems the arity of these methods is related to the dimensionality of the array, which is presumably why they are created by the runtime and are not pre-declared. I couldn't locate any information about these methods on MSDN and their simple names makes them resistant to Googling. I'm writing a compiler for a language which supports multidimensional arrays, so I'd like to find some official documentation about these methods, under what conditions I can expect them to exist and what I can expect their signatures to be. In particular, I'd like to know whether its possible to get a MethodInfo object for Get or Set for use with Reflection.Emit without having to create an instance of the array with correct type and dimensionality on which to reflect, as is done in the linked example.

    Read the article

  • COM+ Connection Pooling Doesn't Appear to be working on SQL Server 2005 Cluster

    - by kmacmahon
    We have a COM+ Data Layer that utilized Connection Pooling. Its deployed to 3 clusters, 2 SQL Server 2000 and 1 SQL Server 2005 environment. We noticed today that our monitoring software is reporting Thousands of Logins per minute on the SQL Server 2005 box. I did some tracing in both environments and profiler is reporting this for the 2000 boxes: sp_reset_connection SQL CALL sp_reset_connection SQL CALL sp_reset_connection SQL CALL and this for the 2005 box: Audit Logout sp_reset_connection Audit Login SQL CALL Audit Logout sp_reset_connection Audit Login SQL CALL Audit Logout sp_reset_connection Audit Login SQL CALL Is there some sort configuration for SQL Server 2005 different from SQL Server 2000 that we might be missing that would be creating this issue?

    Read the article

  • Q about AbstractApplicationContext.getBeansOfType() and getBean()

    - by Paul Reiners
    We have the following legacy 2.0.7 Spring code: final Map<String, MyClass> secondaryFactories = (Map<String, MyClass>) context.getBeansOfType(MyClass.class, false, true); return (MyClass) context.getBean("myClass"); where context is an instance of org.springframework.context.support.AbstractApplicationContext Note that we ignore the return value of getBeansOfType(). This works just fine, but the problem is that the call to getBeansOfType() is time-consuming. However, even though we ignore the return value of this call, if we try to eliminate this call, then the instance of MyClass returned by getBean() is not fully initialized. (So, apparently, the call to getBeansOfType() is having some sort of side-effects that we need.) We suspect that the call to getBeansOfType() is overkill and we could do something more lightweight so that the instance of MyClass obtained by the call to getBean() would be fully initialized (but it's not null and no exception is thrown). So, is there a more efficient way of doing this?

    Read the article

  • "System call failed" error when trying to open "My Computer" etc. under the Start menu! What is happening?

    - by verve
    When I go to the start menu I can load program icons but if I click on Documents, My Pictures, My Computer, Default Programs...all the options on the right part--I get "System call failed". How do I solve ths? Is my HD failing? Also, I don't know if it's connected but yesterday my uTorrent stopped working in a way it has never done before. I'm not able to download torrent files. In the program I get "socket unreacheable..." Also, for the last 2 days my internet has been super-slow. I checked Kaspersky for viruses. It says: "No active threats". Windows 7 64-bit.

    Read the article

  • Need to call a script at logon based on hostname. Win 2k3 Domain and XP/7 workstations.

    - by Malocchio
    I have a user logon script. I want to install printers based on hostname. Inside this folder \domain.local\SYSVOL\domain.local\Policies{DF3F608C-8D78-934F-B79F-1965F3C4409B}\User\Scripts\Logon I have cmd files for each host/workstation and the logon.cmd. Terminal Servers are honoring the environment variable %clientname% but the workstations are not. Relevant area of logon.cmd rem Delete all existing printer connections c:\windows\system32\con2prt.exe /f rem Call workstation specific script for connecting to printers %clientname%.cmd Excerpt from clientname.cmdL: rundll32 printui,PrintUIEntry /in /n\\fileserv\PhaserPS rundll32 printui,PrintUIEntry /in /n\\fileserv\CanonIR rundll32 printui,PrintUIEntry /y /n\\fileserv\CanonIR

    Read the article

  • asynchrony is viral

    - by Daniel Moth
    It is becoming hard to write code today without introducing some form of asynchrony and, if you are using .NET (e.g. for Windows Phone 8 or Windows Store apps), that means sooner or later you have to await something and mark your method as async. My most recent examples included introducing speech recognition in my Translator By Moth phone app where I had to await mySpeechRecognizerUI.RecognizeWithUIAsync() and when moving that code base to a Windows Store project just to show a MessageBox I had to await myMessageDialog.ShowAsync(). Any time you need to invoke an asynchronous method in your code, you have a choice to make: kick off the operation but don’t wait for it to complete (otherwise known as fire-and-forget), synchronously wait for it to complete (which will entail blocking, which can be bad, especially on a UI thread), or asynchronously wait for it to complete before continuing on with the rest of the method’s work. In most cases, you want the latter, and the await keyword makes that trivial to implement.  When you use the magical await keyword in front of an API call, then you typically have to make additional changes to your code: This await usage is within a method of course, and now you have to annotate that method with async. Furthermore, you have to change the return type of the method you just annotated so it returns a Task (if it previously returned void), or Task<myOldReturnType> (if it previously returned myOldReturnType). Note that if it returns void, in some cases you could cheat and stop there. Furthermore, any method that called this method you just annotated with async will now also be invoking an asynchronous operation, so you have to make that change in the body of the caller method to introduce the await keyword before the call to the method. …you guessed it, you now have to change this caller method to be annotated with async and have its return types tweaked... …and it goes on virally… At some point you reach the root of your user code, e.g. a GUI event handler, and whoever calls that void method can already deal with the fact that you marked it as async and the viral introduction of the keywords stops there… This is all wonderful progress and a very powerful mechanism, and I just wish someone had written a refactoring tool to take care of this… anyone? I mentioned earlier that you have a choice when invoking an asynchronous operation. If the first time you encounter this you wish to localize the impact of all these changes and essentially try to turn the asynchronous behavior into synchronous by blocking - don't! For reasons why you don't want to do that, read Toub's excellent blog post (and check out the rest of his blog with gems on async programming starting with the Async FAQ). Just embrace the pattern knowing that when you use one instance of an await, you'll propagate the change all the way to the root user code method, e.g. typically an event handler. Related aside: I just finished re-writing my MessageBox wrapper class for Phone projects, including making it work in Windows Store projects, and it does expect you to use it with an await :-). I'll share that in an upcoming post for those of you that have the same need… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Oracle TimesTen In-Memory Database Performance on SPARC T4-2

    - by Brian
    The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T4 processor platforms running Oracle Solaris 11 providing unsurpassed scalability, performance, upgradability, protection of investment and return on investment. The following demonstrate the value of combining Oracle TimesTen In-Memory Database with SPARC T4 servers and Oracle Solaris 11: On a Mobile Call Processing test, the 2-socket SPARC T4-2 server outperforms: Oracle's SPARC Enterprise M4000 server (4 x 2.66 GHz SPARC64 VII+) by 34%. Oracle's SPARC T3-4 (4 x 1.65 GHz SPARC T3) by 2.7x, or 5.4x per processor. Utilizing the TimesTen Performance Throughput Benchmark (TPTBM), the SPARC T4-2 server protects investments with: 2.1x the overall performance of a 4-socket SPARC Enterprise M4000 server in read-only mode and 1.5x the performance in update-only testing. This is 4.2x more performance per processor than the SPARC64 VII+ 2.66 GHz based system. 10x more performance per processor than the SPARC T2+ 1.4 GHz server. 1.6x better performance per processor than the SPARC T3 1.65 GHz based server. In replication testing, the two socket SPARC T4-2 server is over 3x faster than the performance of a four socket SPARC Enterprise T5440 server in both asynchronous replication environment and the highly available 2-Safe replication. This testing emphasizes parallel replication between systems. Performance Landscape Mobile Call Processing Test Performance System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 218,400 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 162,900 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 80,400 TimesTen Performance Throughput Benchmark (TPTBM) Read-Only System Processor Sockets/Cores/Threads Tps SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 7.9M SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 6.5M M4000 SPARC64 VII+, 2.66 GHz 4 16 32 3.1M T5440 SPARC T2+, 1.4 GHz 4 32 256 3.1M TimesTen Performance Throughput Benchmark (TPTBM) Update-Only System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 547,800 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 363,800 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 240,500 TimesTen Replication Tests System Processor Sockets/Cores/Threads Asynchronous 2-Safe SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 38,024 13,701 SPARC T5440 SPARC T2+, 1.4 GHz 4 32 256 11,621 4,615 Configuration Summary Hardware Configurations: SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 4 x 300 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head SPARC T3-4 server 4 x SPARC T3 processors, 1.6 GHz 512 GB memory 1 x 8 Gbs FC Qlogic HBA 8 x 146 GB internal disks 1 x Sun Fire X4275 server configured as COMSTAR head SPARC Enterprise M4000 server 4 x SPARC64 VII+ processors, 2.66 GHz 128 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 2 x 146 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head Software Configuration: Oracle Solaris 11 11/11 Oracle TimesTen 11.2.2.4 Benchmark Descriptions TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The workload can test read-only, update-only, delete and insert operations as required. Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources. Parallel Replication tests using both asynchronous and 2-Safe replication methods. For asynchronous replication, transactions are processed in batches to maximize the throughput capabilities of the replication server and network. In 2-Safe replication, also known as no data-loss or high availability, transactions are replicated between servers immediately emphasizing low latency. For both environments, performance is measured in the number of parallel replication servers and the maximum transactions-per-second for all concurrent processes. See Also SPARC T4-2 Server oracle.com OTN Oracle TimesTen In-Memory Database oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • Creating a Synchronous BPEL composite using File Adapter

    - by [email protected]
    By default, the JDeveloper wizard generates asynchronous WSDLs when you use technology adapters. Typically, a user follows these steps when creating an adapter scenario in 11g: 1) Create a SOA Application with either "Composite with BPEL" or an "Empty Composite". Furthermore, if  the user chooses "Empty Composite", then he or she is required to drop the "BPEL Process" from the "Service Components" pane onto the SOA Composite Editor. Either way, the user comes to the screen below where he/she fills in the process details. Please note that the user is required to choose "Define Service Later" as the template. 2) Creates the inbound service and outbound references and wires them with the BPEL component:     3) And, finally creates the BPEL process with the initiating <receive> activity to retrieve the payload and an <invoke> activity to write the payload.     This is how most BPEL processes that use Adapters are modeled. And, if we scrutinize the generated WSDL, we can clearly see that the generated WSDL is one way and that makes the BPEL process asynchronous (see below)   In other words, the inbound FileAdapter would poll for files in the directory and for every file that it finds there, it would translate the content into XML and publish to BPEL. But, since the BPEL process is asynchronous, the adapter would return immediately after the publish and perform the required post processing e.g. deletion/archival and so on.  The disadvantage with such asynchronous BPEL processes is that it becomes difficult to throttle the inbound adapter. In otherwords, the inbound adapter would keep sending messages to BPEL without waiting for the downstream business processes to complete. This might lead to several issues including higher memory usage, CPU usage and so on. In order to alleviate these problems, we will manually tweak the WSDL and BPEL artifacts into synchronous processes. Once we have synchronous BPEL processes, the inbound adapter would automatically throttle itself since the adapter would be forced to wait for the downstream process to complete with a <reply> before processing the next file or message and so on. Please see the tweaked WSDL below and please note that we have converted the one-way to a two-way WSDL and thereby making the WSDL synchronous: Add a <reply> activity to the inbound adapter partnerlink at the end of your BPEL process e.g.   Finally, your process will look like this:   You are done.   Please remember that such an excercise is NOT required for Mediator since the Mediator routing rules are sequential by default. In other words, the Mediator uses the caller thread (inbound file adapter thread) for processing the routing rules. This is the case even if the WSDL for mediator is one-way.

    Read the article

  • Asynchrony in C# 5 (Part II)

    - by javarg
    This article is a continuation of the series of asynchronous features included in the new Async CTP preview for next versions of C# and VB. Check out Part I for more information. So, let’s continue with TPL Dataflow: Asynchronous functions TPL Dataflow Task based asynchronous Pattern Part II: TPL Dataflow Definition (by quote of Async CTP doc): “TPL Dataflow (TDF) is a new .NET library for building concurrent applications. It promotes actor/agent-oriented designs through primitives for in-process message passing, dataflow, and pipelining. TDF builds upon the APIs and scheduling infrastructure provided by the Task Parallel Library (TPL) in .NET 4, and integrates with the language support for asynchrony provided by C#, Visual Basic, and F#.” This means: data manipulation processed asynchronously. “TPL Dataflow is focused on providing building blocks for message passing and parallelizing CPU- and I/O-intensive applications”. Data manipulation is another hot area when designing asynchronous and parallel applications: how do you sync data access in a parallel environment? how do you avoid concurrency issues? how do you notify when data is available? how do you control how much data is waiting to be consumed? etc.  Dataflow Blocks TDF provides data and action processing blocks. Imagine having preconfigured data processing pipelines to choose from, depending on the type of behavior you want. The most basic block is the BufferBlock<T>, which provides an storage for some kind of data (instances of <T>). So, let’s review data processing blocks available. Blocks a categorized into three groups: Buffering Blocks Executor Blocks Joining Blocks Think of them as electronic circuitry components :).. 1. BufferBlock<T>: it is a FIFO (First in First Out) queue. You can Post data to it and then Receive it synchronously or asynchronously. It synchronizes data consumption for only one receiver at a time (you can have many receivers but only one will actually process it). 2. BroadcastBlock<T>: same FIFO queue for messages (instances of <T>) but link the receiving event to all consumers (it makes the data available for consumption to N number of consumers). The developer can provide a function to make a copy of the data if necessary. 3. WriteOnceBlock<T>: it stores only one value and once it’s been set, it can never be replaced or overwritten again (immutable after being set). As with BroadcastBlock<T>, all consumers can obtain a copy of the value. 4. ActionBlock<TInput>: this executor block allows us to define an operation to be executed when posting data to the queue. Thus, we must pass in a delegate/lambda when creating the block. Posting data will result in an execution of the delegate for each data in the queue. You could also specify how many parallel executions to allow (degree of parallelism). 5. TransformBlock<TInput, TOutput>: this is an executor block designed to transform each input, that is way it defines an output parameter. It ensures messages are processed and delivered in order. 6. TransformManyBlock<TInput, TOutput>: similar to TransformBlock but produces one or more outputs from each input. 7. BatchBlock<T>: combines N single items into one batch item (it buffers and batches inputs). 8. JoinBlock<T1, T2, …>: it generates tuples from all inputs (it aggregates inputs). Inputs could be of any type you want (T1, T2, etc.). 9. BatchJoinBlock<T1, T2, …>: aggregates tuples of collections. It generates collections for each type of input and then creates a tuple to contain each collection (Tuple<IList<T1>, IList<T2>>). Next time I will show some examples of usage for each TDF block. * Images taken from Microsoft’s Async CTP documentation.

    Read the article

  • Passing multiple POST parameters to Web API Controller Methods

    - by Rick Strahl
    ASP.NET Web API introduces a new API for creating REST APIs and making AJAX callbacks to the server. This new API provides a host of new great functionality that unifies many of the features of many of the various AJAX/REST APIs that Microsoft created before it - ASP.NET AJAX, WCF REST specifically - and combines them into a whole more consistent API. Web API addresses many of the concerns that developers had with these older APIs, namely that it was very difficult to build consistent REST style resource APIs easily. While Web API provides many new features and makes many scenarios much easier, a lot of the focus has been on making it easier to build REST compliant APIs that are focused on resource based solutions and HTTP verbs. But  RPC style calls that are common with AJAX callbacks in Web applications, have gotten a lot less focus and there are a few scenarios that are not that obvious, especially if you're expecting Web API to provide functionality similar to ASP.NET AJAX style AJAX callbacks. RPC vs. 'Proper' REST RPC style HTTP calls mimic calling a method with parameters and returning a result. Rather than mapping explicit server side resources or 'nouns' RPC calls tend simply map a server side operation, passing in parameters and receiving a typed result where parameters and result values are marshaled over HTTP. Typically RPC calls - like SOAP calls - tend to always be POST operations rather than following HTTP conventions and using the GET/POST/PUT/DELETE etc. verbs to implicitly determine what operation needs to be fired. RPC might not be considered 'cool' anymore, but for typical private AJAX backend operations of a Web site I'd wager that a large percentage of use cases of Web API will fall towards RPC style calls rather than 'proper' REST style APIs. Web applications that have needs for things like live validation against data, filling data based on user inputs, handling small UI updates often don't lend themselves very well to limited HTTP verb usage. It might not be what the cool kids do, but I don't see RPC calls getting replaced by proper REST APIs any time soon.  Proper REST has its place - for 'real' API scenarios that manage and publish/share resources, but for more transactional operations RPC seems a better choice and much easier to implement than trying to shoehorn a boatload of endpoint methods into a few HTTP verbs. In any case Web API does a good job of providing both RPC abstraction as well as the HTTP Verb/REST abstraction. RPC works well out of the box, but there are some differences especially if you're coming from ASP.NET AJAX service or WCF Rest when it comes to multiple parameters. Action Routing for RPC Style Calls If you've looked at Web API demos you've probably seen a bunch of examples of how to create HTTP Verb based routing endpoints. Verb based routing essentially maps a controller and then uses HTTP verbs to map the methods that are called in response to HTTP requests. This works great for resource APIs but doesn't work so well when you have many operational methods in a single controller. HTTP Verb routing is limited to the few HTTP verbs available (plus separate method signatures) and - worse than that - you can't easily extend the controller with custom routes or action routing beyond that. Thankfully Web API also supports Action based routing which allows you create RPC style endpoints fairly easily:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumApi", action = "GetAblums" } ); This uses traditional MVC style {action} method routing which is different from the HTTP verb based routing you might have read a bunch about in conjunction with Web API. Action based routing like above lets you specify an end point method in a Web API controller either via the {action} parameter in the route string or via a default value for custom routes. Using routing you can pass multiple parameters either on the route itself or pass parameters on the query string, via ModelBinding or content value binding. For most common scenarios this actually works very well. As long as you are passing either a single complex type via a POST operation, or multiple simple types via query string or POST buffer, there's no issue. But if you need to pass multiple parameters as was easily done with WCF REST or ASP.NET AJAX things are not so obvious. Web API has no issue allowing for single parameter like this:[HttpPost] public string PostAlbum(Album album) { return String.Format("{0} {1:d}", album.AlbumName, album.Entered); } There are actually two ways to call this endpoint: albums/PostAlbum Using the Model Binder with plain POST values In this mechanism you're sending plain urlencoded POST values to the server which the ModelBinder then maps the parameter. Each property value is matched to each matching POST value. This works similar to the way that MVC's  ModelBinder works. Here's how you can POST using the ModelBinder and jQuery:$.ajax( { url: "albums/PostAlbum", type: "POST", data: { AlbumName: "Dirty Deeds", Entered: "5/1/2012" }, success: function (result) { alert(result); }, error: function (xhr, status, p3, p4) { var err = "Error " + " " + status + " " + p3; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); Here's what the POST data looks like for this request: The model binder and it's straight form based POST mechanism is great for posting data directly from HTML pages to model objects. It avoids having to do manual conversions for many operations and is a great boon for AJAX callback requests. Using Web API JSON Formatter The other option is to post data using a JSON string. The process for this is similar except that you create a JavaScript object and serialize it to JSON first.album = { AlbumName: "PowerAge", Entered: new Date(1977,0,1) } $.ajax( { url: "albums/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify(album), success: function (result) { alert(result); } }); Here the data is sent using a JSON object rather than form data and the data is JSON encoded over the wire. The trace reveals that the data is sent using plain JSON (Source above), which is a little more efficient since there's no UrlEncoding that occurs. BTW, notice that WebAPI automatically deals with the date. I provided the date as a plain string, rather than a JavaScript date value and the Formatter and ModelBinder both automatically map the date propertly to the Entered DateTime property of the Album object. Passing multiple Parameters to a Web API Controller Single parameters work fine in either of these RPC scenarios and that's to be expected. ModelBinding always works against a single object because it maps a model. But what happens when you want to pass multiple parameters? Consider an API Controller method that has a signature like the following:[HttpPost] public string PostAlbum(Album album, string userToken) Here I'm asking to pass two objects to an RPC method. Is that possible? This used to be fairly straight forward either with WCF REST and ASP.NET AJAX ASMX services, but as far as I can tell this is not directly possible using a POST operation with WebAPI. There a few workarounds that you can use to make this work: Use both POST *and* QueryString Parameters in Conjunction If you have both complex and simple parameters, you can pass simple parameters on the query string. The above would actually work with: /album/PostAlbum?userToken=sekkritt but that's not always possible. In this example it might not be a good idea to pass a user token on the query string though. It also won't work if you need to pass multiple complex objects, since query string values do not support complex type mapping. They only work with simple types. Use a single Object that wraps the two Parameters If you go by service based architecture guidelines every service method should always pass and return a single value only. The input should wrap potentially multiple input parameters and the output should convey status as well as provide the result value. You typically have a xxxRequest and a xxxResponse class that wraps the inputs and outputs. Here's what this method might look like:public PostAlbumResponse PostAlbum(PostAlbumRequest request) { var album = request.Album; var userToken = request.UserToken; return new PostAlbumResponse() { IsSuccess = true, Result = String.Format("{0} {1:d} {2}", album.AlbumName, album.Entered,userToken) }; } with these support types:public class PostAlbumRequest { public Album Album { get; set; } public User User { get; set; } public string UserToken { get; set; } } public class PostAlbumResponse { public string Result { get; set; } public bool IsSuccess { get; set; } public string ErrorMessage { get; set; } }   To call this method you now have to assemble these objects on the client and send it up as JSON:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result.Result); } }); I assemble the individual types first and then combine them in the data: property of the $.ajax() call into the actual object passed to the server, that mimics the structure of PostAlbumRequest server class that has Album, User and UserToken properties. This works well enough but it gets tedious if you have to create Request and Response types for each method signature. If you have common parameters that are always passed (like you always pass an album or usertoken) you might be able to abstract this to use a single object that gets reused for all methods, but this gets confusing too: Overload a single 'parameter' too much and it becomes a nightmare to decipher what your method actual can use. Use JObject to parse multiple Property Values out of an Object If you recall, ASP.NET AJAX and WCF REST used a 'wrapper' object to make default AJAX calls. Rather than directly calling a service you always passed an object which contained properties for each parameter: { parm1: Value, parm2: Value2 } WCF REST/ASP.NET AJAX would then parse this top level property values and map them to the parameters of the endpoint method. This automatic type wrapping functionality is no longer available directly in Web API, but since Web API now uses JSON.NET for it's JSON serializer you can actually simulate that behavior with a little extra code. You can use the JObject class to receive a dynamic JSON result and then using the dynamic cast of JObject to walk through the child objects and even parse them into strongly typed objects. Here's how to do this on the API Controller end:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } This is clearly not as nice as having the parameters passed directly, but it works to allow you to pass multiple parameters and access them using Web API. JObject is JSON.NET's generic object container which sports a nice dynamic interface that allows you to walk through the object's properties using standard 'dot' object syntax. All you have to do is cast the object to dynamic to get access to the property interface of the JSON type. Additionally JObject also allows you to parse JObject instances into strongly typed objects, which enables us here to retrieve the two objects passed as parameters from this jquery code:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result); } }); Summary ASP.NET Web API brings many new features and many advantages over the older Microsoft AJAX and REST APIs, but realize that some things like passing multiple strongly typed object parameters will work a bit differently. It's not insurmountable, but just knowing what options are available to simulate this behavior is good to know. Now let me say here that it's probably not a good practice to pass a bunch of parameters to an API call. Ideally APIs should be closely factored to accept single parameters or a single content parameter at least along with some identifier parameters that can be passed on the querystring. But saying that doesn't mean that occasionally you don't run into a situation where you have the need to pass several objects to the server and all three of the options I mentioned might have merit in different situations. For now I'm sure the question of how to pass multiple parameters will come up quite a bit from people migrating WCF REST or ASP.NET AJAX code to Web API. At least there are options available to make it work.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ASP.NET and HTML5 Local Storage

    - by Stephen Walther
    My favorite feature of HTML5, hands-down, is HTML5 local storage (aka DOM storage). By taking advantage of HTML5 local storage, you can dramatically improve the performance of your data-driven ASP.NET applications by caching data in the browser persistently. Think of HTML5 local storage like browser cookies, but much better. Like cookies, local storage is persistent. When you add something to browser local storage, it remains there when the user returns to the website (possibly days or months later). Importantly, unlike the cookie storage limitation of 4KB, you can store up to 10 megabytes in HTML5 local storage. Because HTML5 local storage works with the latest versions of all modern browsers (IE, Firefox, Chrome, Safari), you can start taking advantage of this HTML5 feature in your applications right now. Why use HTML5 Local Storage? I use HTML5 Local Storage in the JavaScript Reference application: http://Superexpert.com/JavaScriptReference The JavaScript Reference application is an HTML5 app that provides an interactive reference for all of the syntax elements of JavaScript (You can read more about the application and download the source code for the application here). When you open the application for the first time, all of the entries are transferred from the server to the browser (all 300+ entries). All of the entries are stored in local storage. When you open the application in the future, only changes are transferred from the server to the browser. The benefit of this approach is that the application performs extremely fast. When you click the details link to view details on a particular entry, the entry details appear instantly because all of the entries are stored on the client machine. When you perform key-up searches, by typing in the filter textbox, matching entries are displayed very quickly because the entries are being filtered on the local machine. This approach can have a dramatic effect on the performance of any interactive data-driven web application. Interacting with data on the client is almost always faster than interacting with the same data on the server. Retrieving Data from the Server In the JavaScript Reference application, I use Microsoft WCF Data Services to expose data to the browser. WCF Data Services generates a REST interface for your data automatically. Here are the steps: Create your database tables in Microsoft SQL Server. For example, I created a database named ReferenceDB and a database table named Entities. Use the Entity Framework to generate your data model. For example, I used the Entity Framework to generate a class named ReferenceDBEntities and a class named Entities. Expose your data through WCF Data Services. I added a WCF Data Service to my project and modified the data service class to look like this:   using System.Data.Services; using System.Data.Services.Common; using System.Web; using JavaScriptReference.Models; namespace JavaScriptReference.Services { [System.ServiceModel.ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class EntryService : DataService<ReferenceDBEntities> { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { config.UseVerboseErrors = true; config.SetEntitySetAccessRule("*", EntitySetRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } // Define a change interceptor for the Products entity set. [ChangeInterceptor("Entries")] public void OnChangeEntries(Entry entry, UpdateOperations operations) { if (!HttpContext.Current.Request.IsAuthenticated) { throw new DataServiceException("Cannot update reference unless authenticated."); } } } }     The WCF data service is named EntryService. Notice that it derives from DataService<ReferenceEntitites>. Because it derives from DataService<ReferenceEntities>, the data service exposes the contents of the ReferenceEntitiesDB database. In the code above, I defined a ChangeInterceptor to prevent un-authenticated users from making changes to the database. Anyone can retrieve data through the service, but only authenticated users are allowed to make changes. After you expose data through a WCF Data Service, you can use jQuery to retrieve the data by performing an Ajax call. For example, I am using an Ajax call that looks something like this to retrieve the JavaScript entries from the EntryService.svc data service: $.ajax({ dataType: "json", url: “/Services/EntryService.svc/Entries”, success: function (result) { var data = callback(result["d"]); } });     Notice that you must unwrap the data using result[“d”]. After you unwrap the data, you have a JavaScript array of the entries. I’m transferring all 300+ entries from the server to the client when the application is opened for the first time. In other words, I transfer the entire database from the server to the client, once and only once, when the application is opened for the first time. The data is transferred using JSON. Here is a fragment: { "d" : [ { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(1)", "type": "ReferenceDBModel.Entry" }, "Id": 1, "Name": "Global", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "object", "ShortDescription": "Contains global variables and functions", "FullDescription": "<p>\nThe Global object is determined by the host environment. In web browsers, the Global object is the same as the windows object.\n</p>\n<p>\nYou can use the keyword <code>this</code> to refer to the Global object when in the global context (outside of any function).\n</p>\n<p>\nThe Global object holds all global variables and functions. For example, the following code demonstrates that the global <code>movieTitle</code> variable refers to the same thing as <code>window.movieTitle</code> and <code>this.movieTitle</code>.\n</p>\n<pre>\nvar movieTitle = \"Star Wars\";\nconsole.log(movieTitle === this.movieTitle); // true\nconsole.log(movieTitle === window.movieTitle); // true\n</pre>\n", "LastUpdated": "634298578273756641", "IsDeleted": false, "OwnerId": null }, { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(2)", "type": "ReferenceDBModel.Entry" }, "Id": 2, "Name": "eval(string)", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "function", "ShortDescription": "Evaluates and executes JavaScript code dynamically", "FullDescription": "<p>\nThe following code evaluates and executes the string \"3+5\" at runtime.\n</p>\n<pre>\nvar result = eval(\"3+5\");\nconsole.log(result); // returns 8\n</pre>\n<p>\nYou can rewrite the code above like this:\n</p>\n<pre>\nvar result;\neval(\"result = 3+5\");\nconsole.log(result);\n</pre>", "LastUpdated": "634298580913817644", "IsDeleted": false, "OwnerId": 1 } … ]} I worried about the amount of time that it would take to transfer the records. According to Google Chome, it takes about 5 seconds to retrieve all 300+ records on a broadband connection over the Internet. 5 seconds is a small price to pay to avoid performing any server fetches of the data in the future. And here are the estimated times using different types of connections using Fiddler: Notice that using a modem, it takes 33 seconds to download the database. 33 seconds is a significant chunk of time. So, I would not use the approach of transferring the entire database up front if you expect a significant portion of your website audience to connect to your website with a modem. Adding Data to HTML5 Local Storage After the JavaScript entries are retrieved from the server, the entries are stored in HTML5 local storage. Here’s the reference documentation for HTML5 storage for Internet Explorer: http://msdn.microsoft.com/en-us/library/cc197062(VS.85).aspx You access local storage by accessing the windows.localStorage object in JavaScript. This object contains key/value pairs. For example, you can use the following JavaScript code to add a new item to local storage: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You can use the Google Chrome Storage tab in the Developer Tools (hit CTRL-SHIFT I in Chrome) to view items added to local storage: After you add an item to local storage, you can read it at any time in the future by using the window.localStorage.getItem() method: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You only can add strings to local storage and not JavaScript objects such as arrays. Therefore, before adding a JavaScript object to local storage, you need to convert it into a JSON string. In the JavaScript Reference application, I use a wrapper around local storage that looks something like this: function Storage() { this.get = function (name) { return JSON.parse(window.localStorage.getItem(name)); }; this.set = function (name, value) { window.localStorage.setItem(name, JSON.stringify(value)); }; this.clear = function () { window.localStorage.clear(); }; }   If you use the wrapper above, then you can add arbitrary JavaScript objects to local storage like this: var store = new Storage(); // Add array to storage var products = [ {name:"Fish", price:2.33}, {name:"Bacon", price:1.33} ]; store.set("products", products); // Retrieve items from storage var products = store.get("products");   Modern browsers support the JSON object natively. If you need the script above to work with older browsers then you should download the JSON2.js library from: https://github.com/douglascrockford/JSON-js The JSON2 library will use the native JSON object if a browser already supports JSON. Merging Server Changes with Browser Local Storage When you first open the JavaScript Reference application, the entire database of JavaScript entries is transferred from the server to the browser. Two items are added to local storage: entries and entriesLastUpdated. The first item contains the entire entries database (a big JSON string of entries). The second item, a timestamp, represents the version of the entries. Whenever you open the JavaScript Reference in the future, the entriesLastUpdated timestamp is passed to the server. Only records that have been deleted, updated, or added since entriesLastUpdated are transferred to the browser. The OData query to get the latest updates looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated%20gt%20634301199890494792L) If you remove URL encoding, the query looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated gt 634301199890494792L) This query returns only those entries where the value of LastUpdated > 634301199890494792 (the version timestamp). The changes – new JavaScript entries, deleted entries, and updated entries – are merged with the existing entries in local storage. The JavaScript code for performing the merge is contained in the EntriesHelper.js file. The merge() method looks like this:   merge: function (oldEntries, newEntries) { // concat (this performs the add) oldEntries = oldEntries || []; var mergedEntries = oldEntries.concat(newEntries); // sort this.sortByIdThenLastUpdated(mergedEntries); // prune duplicates (this performs the update) mergedEntries = this.pruneDuplicates(mergedEntries); // delete mergedEntries = this.removeIsDeleted(mergedEntries); // Sort this.sortByName(mergedEntries); return mergedEntries; },   The contents of local storage are then updated with the merged entries. I spent several hours writing the merge() method (much longer than I expected). I found two resources to be extremely useful. First, I wrote extensive unit tests for the merge() method. I wrote the unit tests using server-side JavaScript. I describe this approach to writing unit tests in this blog entry. The unit tests are included in the JavaScript Reference source code. Second, I found the following blog entry to be super useful (thanks Nick!): http://nicksnettravels.builttoroam.com/post/2010/08/03/OData-Synchronization-with-WCF-Data-Services.aspx One big challenge that I encountered involved timestamps. I originally tried to store an actual UTC time as the value of the entriesLastUpdated item. I quickly discovered that trying to work with dates in JSON turned out to be a big can of worms that I did not want to open. Next, I tried to use a SQL timestamp column. However, I learned that OData cannot handle the timestamp data type when doing a filter query. Therefore, I ended up using a bigint column in SQL and manually creating the value when a record is updated. I overrode the SaveChanges() method to look something like this: public override int SaveChanges(SaveOptions options) { var changes = this.ObjectStateManager.GetObjectStateEntries( EntityState.Modified | EntityState.Added | EntityState.Deleted); foreach (var change in changes) { var entity = change.Entity as IEntityTracking; if (entity != null) { entity.LastUpdated = DateTime.Now.Ticks; } } return base.SaveChanges(options); }   Notice that I assign Date.Now.Ticks to the entity.LastUpdated property whenever an entry is modified, added, or deleted. Summary After building the JavaScript Reference application, I am convinced that HTML5 local storage can have a dramatic impact on the performance of any data-driven web application. If you are building a web application that involves extensive interaction with data then I recommend that you take advantage of this new feature included in the HTML5 standard.

    Read the article

  • MVVM in Task-It

    As I'm gearing up to write a post about dynamic XAP loading with MEF, I'd like to first talk a bit about MVVM, the Model-View-ViewModel pattern, as I will be leveraging this pattern in my future posts. Download Source Code Why MVVM? Your first question may be, "why do I need this pattern? I've been using a code-behind approach for years and it works fine." Well, you really don't have to make the switch to MVVM, but let me first explain some of the benefits I see for doing so. MVVM Benefits Testability - This is the one you'll probably hear the most about when it comes to MVVM. Moving most of the code from your code-behind to a separate view model class means you can now write unit tests against the view model without any knowledge of a view (UserControl). Multiple UIs - Let's just say that you've created a killer app, it's running in the browser, and maybe you've even made it run out-of-browser. Now what if your boss comes to you and says, "I heard about this new Windows Phone 7 device that is coming out later this year. Can you start porting the app to that device?". Well, now you have to create a new UI (UserControls, etc.) because you have a lot less screen real estate to work with. So what do you do, copy all of your existing UserControls, paste them, rename them, and then start changing the code? Hmm, that doesn't sound so good. But wait, if most of the code that makes your browser-based app tick lives in view model classes, now you can create new view (UserControls) for Windows Phone 7 that reference the same view model classes as your browser-based app. Page state - In Silverlight you're at some point going to be faced with the same issue you dealt with for years in ASP.NET, maintaining page state. Let's say a user hits your Products page, does some stuff (filters record, etc.), then leaves the page and comes back later. It would be best if the Products page was in the same state as when they left it right? Well, if you've thrown away your view (UserControl or Page) and moved off to another part of the UI, when you come back to Products you're probably going to re-instantiate your view...which will put it right back in the state it was when it started. Hmm, not good. Well, with a little help from MEF you can store the state in your view model class, MEF will keep that view model instance hanging around in memory, and then you simply rebind your view to the view model class. I made that sound easy, but it's actually a bit of work to properly store and restore the state. At least it can be done though, which will make your users a lot happier! I'll talk more about this in an upcoming blog post. No event handlers? Another nice thing about MVVM is that you can bind your UserControls to the view model, which may eliminate the need for event handlers in your code-behind. So instead of having a Click handler on a Button (or RadMenuItem), for example, you can now bind your control's Command property to a DelegateCommand in your view model (I'll talk more about Commands in an upcoming post). Instead of having a SelectionChanged event handler on your RadGridView you can now bind its SelectedItem property to a property in your view model, and each time the user clicks a row, the view model property's setter will be called. Now through the magic of binding we can eliminate the need for traditional code-behind based event handlers on our user interface controls, and the best thing is that the view model knows about everything that's going on...which means we can test things without a user interface. The brains of the operation So what we're seeing here is that the view is now just a dumb layer that binds to the view model, and that the view model is in control of just about everything, like what happens when a RadGridView row is selected, or when a RadComboBoxItem is selected, or when a RadMenuItem is clicked. It is also responsible for loading data when the page is hit, as well as kicking off data inserts, updates and deletions. Once again, all of this stuff can be tested without the need for a user interface. If the test works, then it'll work regardless of whether the user is hitting the browser-based version of your app, or the Windows Phone 7 version. Nice! The database Before running the code for this app you will need to create the database. First, create a database called MVVMProject in SQL Server, then run MVVMProject.sql in the MVVMProject/Database directory of your downloaded .zip file. This should give you a Task table with 3 records in it. When you fire up the solution you will also need to update the connection string in web.config to point to your database instead of IBM12\SQLSERVER2008. The code One note about this code is that it runs against the latest Silverlight 4 RC and WCF RIA Services code. Please see my first blog post about updating to the RC bits. Beta to RC - Part 1 At the top of this post is a link to a sample project that demonstrates a sample application with a Tasks page that uses the MVVM pattern. This is a simplified version of how I have implemented the Tasks page in the Task-It application. Youll notice that Tasks.xaml has very little code to it. Just a TextBlock that displays the page title and a ContentControl. <StackPanel>     <TextBlock Text="Tasks" Style="{StaticResource PageTitleStyle}"/>     <Rectangle Style="{StaticResource StandardSpacerStyle}"/>     <ContentControl x:Name="ContentControl1"/> </StackPanel> In List.xaml we have a RadGridView. Notice that the ItemsSource is bound to a property in the view model class call Tasks, SelectedItem is bound to a property in the view model called SelectedItem, and IsBusy is bound to a property in the view model called IsLoading. <Grid>     <telerikGridView:RadGridView ItemsSource="{Binding Tasks}" SelectedItem="{Binding SelectedItem, Mode=TwoWay}"                                  IsBusy="{Binding IsLoading}" AutoGenerateColumns="False" IsReadOnly="True" RowIndicatorVisibility="Collapsed"                IsFilteringAllowed="False" ShowGroupPanel="False">         <telerikGridView:RadGridView.Columns>             <telerikGridView:GridViewDataColumn Header="Name" DataMemberBinding="{Binding Name}" Width="3*"/>             <telerikGridView:GridViewDataColumn Header="Due" DataMemberBinding="{Binding DueDate}" DataFormatString="{}{0:d}" Width="*"/>         </telerikGridView:RadGridView.Columns>     </telerikGridView:RadGridView> </Grid> In Details.xaml we have a Save button that is bound to a property called SaveCommand in our view model. We also have a simple form (Im using a couple of controls here from Silverlight.FX for the form layout, FormPanel and Label simply because they make for a clean XAML layout). Notice that the FormPanel is also bound to the SelectedItem in the view model (the same one that the RadGridView is). The two form controls, the TextBox and RadDatePicker) are bound to the SelectedItem's Name and DueDate properties. These are properties of the Task object that WCF RIA Services creates. <StackPanel>     <Button Content="Save" Command="{Binding SaveCommand}" HorizontalAlignment="Left"/>     <Rectangle Style="{StaticResource StandardSpacerStyle}"/>     <fxui:FormPanel DataContext="{Binding SelectedItem}" Style="{StaticResource FormContainerStyle}">         <fxui:Label Text="Name:"/>         <TextBox Text="{Binding Name, Mode=TwoWay}"/>         <fxui:Label Text="Due:"/>         <telerikInput:RadDatePicker SelectedDate="{Binding DueDate, Mode=TwoWay}"/>     </fxui:FormPanel> </StackPanel> In the code-behind of the Tasks control, Tasks.xaml.cs, I created an instance of the view model class (TasksViewModel) in the constructor and set it as the DataContext for the control. The Tasks page will load one of two child UserControls depending on whether you are viewing the list of tasks (List.xaml) or the form for editing a task (Details.xaml). // Set the DataContext to an instance of the view model class var viewModel = new TasksViewModel(); DataContext = viewModel;   // Child user controls (inherit DataContext from this user control) List = new List(); // RadGridView Details = new Details(); // Form When the page first loads, the List is loaded into the ContentControl. // Show the RadGridView first ContentControl1.Content = List; In the code-behind we also listen for a couple of the view models events. The ItemSelected event will be fired when the user clicks on a record in the RadGridView in the List control. The SaveCompleted event will be fired when the user clicks Save in the Details control (the form). Here the view model is in control, and is letting the view know when something needs to change. // Listeners for the view model's events viewModel.ItemSelected += OnItemSelected; viewModel.SaveCompleted += OnSaveCompleted; The event handlers toggle the view between the RadGridView (List) and the form (Details). void OnItemSelected(object sender, RoutedEventArgs e) {     // Show the form     ContentControl1.Content = Details; }   void OnSaveCompleted(object sender, RoutedEventArgs e) {     // Show the RadGridView     ContentControl1.Content = List; } In TasksViewModel, we instantiate a DataContext object and a SaveCommand in the constructor. DataContext is a WCF RIA Services object that well use to retrieve the list of Tasks and to save any changes to a task. Ill talk more about this and Commands in future post, but for now think of the SaveCommand as an event handler that is called when the Save button in the form is clicked. DataContext = new DataContext(); SaveCommand = new DelegateCommand(OnSave); When the TasksViewModel constructor is called we also make a call to LoadTasks. This sets IsLoading to true (which causes the RadGridViews busy indicator to appear) and retrieves the records via WCF RIA Services.         public LoadOperation<Task> LoadTasks()         {             // Show the loading message             IsLoading = true;             // Get the data via WCF RIA Services. When the call has returned, called OnTasksLoaded.             return DataContext.Load(DataContext.GetTasksQuery(), OnTasksLoaded, false);         } When the data is returned, OnTasksLoaded is called. This sets IsLoading to false (which hides the RadGridViews busy indicator), and fires property changed notifications to the UI to let it know that the IsLoading and Tasks properties have changed. This property changed notification basically tells the UI to rebind. void OnTasksLoaded(LoadOperation<Task> lo) {     // Hide the loading message     IsLoading = false;       // Notify the UI that Tasks and IsLoading properties have changed     this.OnPropertyChanged(p => p.Tasks);     this.OnPropertyChanged(p => p.IsLoading); } Next lets look at the view models SelectedItem property. This is the one thats bound to both the RadGridView and the form. When the user clicks a record in the RadGridView its setter gets called (set a breakpoint and see what I mean). The other code in the setter lets the UI know that the SelectedItem has changed (so the form displays the correct data), and fires the event that notifies the UI that a selection has occurred (which tells the UI to switch from List to Details). public Task SelectedItem {     get { return _selectedItem; }     set     {         _selectedItem = value;           // Let the UI know that the SelectedItem has changed (forces it to re-bind)         this.OnPropertyChanged(p => p.SelectedItem);         // Notify the UI, so it can switch to the Details (form) page         NotifyItemSelected();     } } One last thing, saving the data. When the Save button in the form is clicked it fires the SaveCommand, which calls the OnSave method in the view model (once again, set a breakpoint to see it in action). public void OnSave() {     // Save the changes via WCF RIA Services. When the save is complete, call OnSaveCompleted.     DataContext.SubmitChanges(OnSaveCompleted, null); } In OnSave, we tell WCF RIA Services to submit any changes, which there will be if you changed either the Name or the Due Date in the form. When the save is completed, it calls OnSaveCompleted. This method fires a notification back to the UI that the save is completed, which causes the RadGridView (List) to show again. public virtual void OnSaveCompleted(SubmitOperation so) {     // Clear the item that is selected in the grid (in case we want to select it again)     SelectedItem = null;     // Notify the UI, so it can switch back to the List (RadGridView) page     NotifySaveCompleted(); } Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Setting up and using Bing Translate API Service for Machine Translation

    - by Rick Strahl
    Last week I spent quite a bit of time trying to set up the Bing Translate API service. I can honestly say this was one of the most screwed up developer experiences I've had in a long while - specifically related to the byzantine sign up process that Microsoft has in place. Not only is it nearly impossible to find decent documentation on the required signup process, some of the links in the docs are just plain wrong, and some of the account pages you need to access the actual account information once signed up are not linked anywhere from the administration UI. To make things even harder is the fact that the APIs changed a while back, with a completely new authentication scheme that's described and not directly linked documentation topic also made for a very frustrating search experience. It's a bummer that this is the case too, because the actual API itself is easy to use and works very well - fast and reasonably accurate (as accurate as you can expect machine translation to be). But the sign up process is a pain in the ass doubtlessly leaving many people giving up in frustration. In this post I'll try to hit all the points needed to set up to use the Bing Translate API in one place since such a document seems to be missing from Microsoft. Hopefully the API folks at Microsoft will get their shit together and actually provide this sort of info on their site… Signing Up The first step required is to create a Windows Azure MarketPlace account. Go to: https://datamarket.azure.com/ Sign in with your Windows Live Id If you don't have an account you will be taken to a registration page which you have to fill out. Follow the links and complete the registration. Once you're signed in you can start adding services. Click on the Data Link on the main page Select Microsoft Translator from the list This adds the Microsoft Bing Translator to your services. Pricing The page shows the pricing matrix and the free service which provides 2 megabytes for translations a month for free. Prices go up steeply from there. Pricing is determined by actual bytes of the result translations used. Max translations are 1000 characters so at minimum this means you get around 2000 translations a month for free. However most translations are probable much less so you can expect larger number of translations to go through. For testing or low volume translations this should be just fine. Once signed up there are no further instructions and you're left in limbo on the MS site. Register your Application Once you've created the Data association with Translator the next step is registering your application. To do this you need to access your developer account. Go to https://datamarket.azure.com/developer/applications/register Provide a ClientId, which is effectively the unique string identifier for your application (not your customer id!) Provide your name The client secret was auto-created and this becomes your 'password' For the redirect url provide any https url: https://microsoft.com works Give this application a description of your choice so you can identify it in the list of apps Now, once you've registered your application, keep track of the ClientId and ClientSecret - those are the two keys you need to authenticate before you can call the Translate API. Oddly the applications page is hidden from the Azure Portal UI. I couldn't find a direct link from anywhere on the site back to this page where I can examine my developer application keys. To find them you can go to: https://datamarket.azure.com/developer/applications You can come back here to look at your registered applications and pick up the ClientID and ClientSecret. Fun eh? But we're now ready to actually call the API and do some translating. Using the Bing Translate API The good news is that after this signup hell, using the API is pretty straightforward. To use the translation API you'll need to actually use two services: You need to call an authentication API service first, before you can call the actual translator API. These two APIs live on different domains, and the authentication API returns JSON data while the translator service returns XML. So much for consistency. Authentication The first step is authentication. The service uses oAuth authentication with a  bearer token that has to be passed to the translator API. The authentication call retrieves the oAuth token that you can then use with the translate API call. The bearer token has a short 10 minute life time, so while you can cache it for successive calls, the token can't be cached for long periods. This means for Web backend requests you typically will have to authenticate each time unless you build a more elaborate caching scheme that takes the timeout into account (perhaps using the ASP.NET Cache object). For low volume operations you can probably get away with simply calling the auth API for every translation you do. To call the Authentication API use code like this:/// /// Retrieves an oAuth authentication token to be used on the translate /// API request. The result string needs to be passed as a bearer token /// to the translate API. /// /// You can find client ID and Secret (or register a new one) at: /// https://datamarket.azure.com/developer/applications/ /// /// The client ID of your application /// The client secret or password /// public string GetBingAuthToken(string clientId = null, string clientSecret = null) { string authBaseUrl = https://datamarket.accesscontrol.windows.net/v2/OAuth2-13; if (string.IsNullOrEmpty(clientId) || string.IsNullOrEmpty(clientSecret)) { ErrorMessage = Resources.Resources.Client_Id_and_Client_Secret_must_be_provided; return null; } var postData = string.Format("grant_type=client_credentials&client_id={0}" + "&client_secret={1}" + "&scope=http://api.microsofttranslator.com", HttpUtility.UrlEncode(clientId), HttpUtility.UrlEncode(clientSecret)); // POST Auth data to the oauth API string res, token; try { var web = new WebClient(); web.Encoding = Encoding.UTF8; res = web.UploadString(authBaseUrl, postData); } catch (Exception ex) { ErrorMessage = ex.GetBaseException().Message; return null; } var ser = new JavaScriptSerializer(); var auth = ser.Deserialize<BingAuth>(res); if (auth == null) return null; token = auth.access_token; return token; } private class BingAuth { public string token_type { get; set; } public string access_token { get; set; } } This code basically takes the client id and secret and posts it at the oAuth endpoint which returns a JSON string. Here I use the JavaScript serializer to deserialize the JSON into a custom object I created just for deserialization. You can also use JSON.NET and dynamic deserialization if you are already using JSON.NET in your app in which case you don't need the extra type. In my library that houses this component I don't, so I just rely on the built in serializer. The auth method returns a long base64 encoded string which can be used as a bearer token in the translate API call. Translation Once you have the authentication token you can use it to pass to the translate API. The auth token is passed as an Authorization header and the value is prefixed with a 'Bearer ' prefix for the string. Here's what the simple Translate API call looks like:/// /// Uses the Bing API service to perform translation /// Bing can translate up to 1000 characters. /// /// Requires that you provide a CLientId and ClientSecret /// or set the configuration values for these two. /// /// More info on setup: /// http://www.west-wind.com/weblog/ /// /// Text to translate /// Two letter culture name /// Two letter culture name /// Pass an access token retrieved with GetBingAuthToken. /// If not passed the default keys from .config file are used if any /// public string TranslateBing(string text, string fromCulture, string toCulture, string accessToken = null) { string serviceUrl = "http://api.microsofttranslator.com/V2/Http.svc/Translate"; if (accessToken == null) { accessToken = GetBingAuthToken(); if (accessToken == null) return null; } string res; try { var web = new WebClient(); web.Headers.Add("Authorization", "Bearer " + accessToken); string ct = "text/plain"; string postData = string.Format("?text={0}&from={1}&to={2}&contentType={3}", HttpUtility.UrlEncode(text), fromCulture, toCulture, HttpUtility.UrlEncode(ct)); web.Encoding = Encoding.UTF8; res = web.DownloadString(serviceUrl + postData); } catch (Exception e) { ErrorMessage = e.GetBaseException().Message; return null; } // result is a single XML Element fragment var doc = new XmlDocument(); doc.LoadXml(res); return doc.DocumentElement.InnerText; } The first of this code deals with ensuring the auth token exists. You can either pass the token into the method manually or let the method automatically retrieve the auth code on its own. In my case I'm using this inside of a Web application and in that situation I simply need to re-authenticate every time as there's no convenient way to manage the lifetime of the auth cookie. The auth token is added as an Authorization HTTP header prefixed with 'Bearer ' and attached to the request. The text to translate, the from and to language codes and a result format are passed on the query string of this HTTP GET request against the Translate API. The translate API returns an XML string which contains a single element with the translated string. Using the Wrapper Methods It should be pretty obvious how to use these two methods but here are a couple of test methods that demonstrate the two usage scenarios:[TestMethod] public void TranslateBingWithAuthTest() { var translate = new TranslationServices(); string clientId = DbResourceConfiguration.Current.BingClientId; string clientSecret = DbResourceConfiguration.Current.BingClientSecret; string auth = translate.GetBingAuthToken(clientId, clientSecret); Assert.IsNotNull(auth); string text = translate.TranslateBing("Hello World we're back home!", "en", "de",auth); Assert.IsNotNull(text, translate.ErrorMessage); Console.WriteLine(text); } [TestMethod] public void TranslateBingIntegratedTest() { var translate = new TranslationServices(); string text = translate.TranslateBing("Hello World we're back home!","en","de"); Assert.IsNotNull(text, translate.ErrorMessage); Console.WriteLine(text); } Other API Methods The Translate API has a number of methods available and this one is the simplest one but probably also the most common one that translates a single string. You can find additional methods for this API here: http://msdn.microsoft.com/en-us/library/ff512419.aspx Soap and AJAX APIs are also available and documented on MSDN: http://msdn.microsoft.com/en-us/library/dd576287.aspx These links will be your starting points for calling other methods in this API. Dual Interface I've talked about my database driven localization provider here in the past, and it's for this tool that I added the Bing localization support. Basically I have a localization administration form that allows me to translate individual strings right out of the UI, using both Google and Bing APIs: As you can see in this example, the results from Google and Bing can vary quite a bit - in this case Google is stumped while Bing actually generated a valid translation. At other times it's the other way around - it's pretty useful to see multiple translations at the same time. Here I can choose from one of the values and driectly embed them into the translated text field. Lost in Translation There you have it. As I mentioned using the API once you have all the bureaucratic crap out of the way calling the APIs is fairly straight forward and reasonably fast, even if you have to call the Auth API for every call. Hopefully this post will help out a few of you trying to navigate the Microsoft bureaucracy, at least until next time Microsoft upends everything and introduces new ways to sign up again. Until then - happy translating… Related Posts Translation method Source on Github Translating with Google Translate without Google API Keys Creating a data-driven ASP.NET Resource Provider© Rick Strahl, West Wind Technologies, 2005-2013Posted in Localization  ASP.NET  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C# 4.0: Named And Optional Arguments

    - by Paulo Morgado
    As part of the co-evolution effort of C# and Visual Basic, C# 4.0 introduces Named and Optional Arguments. First of all, let’s clarify what are arguments and parameters: Method definition parameters are the input variables of the method. Method call arguments are the values provided to the method parameters. In fact, the C# Language Specification states the following on §7.5: The argument list (§7.5.1) of a function member invocation provides actual values or variable references for the parameters of the function member. Given the above definitions, we can state that: Parameters have always been named and still are. Parameters have never been optional and still aren’t. Named Arguments Until now, the way the C# compiler matched method call definition arguments with method parameters was by position. The first argument provides the value for the first parameter, the second argument provides the value for the second parameter, and so on and so on, regardless of the name of the parameters. If a parameter was missing a corresponding argument to provide its value, the compiler would emit a compilation error. For this call: Greeting("Mr.", "Morgado", 42); this method: public void Greeting(string title, string name, int age) will receive as parameters: title: “Mr.” name: “Morgado” age: 42 What this new feature allows is to use the names of the parameters to identify the corresponding arguments in the form: name:value Not all arguments in the argument list must be named. However, all named arguments must be at the end of the argument list. The matching between arguments (and the evaluation of its value) and parameters will be done first by name for the named arguments and than by position for the unnamed arguments. This means that, for this method definition: public static void Method(int first, int second, int third) this call declaration: int i = 0; Method(i, third: i++, second: ++i); will have this code generated by the compiler: int i = 0; int CS$0$0000 = i++; int CS$0$0001 = ++i; Method(i, CS$0$0001, CS$0$0000); which will give the method the following parameter values: first: 2 second: 2 third: 0 Notice the variable names. Although invalid being invalid C# identifiers, they are valid .NET identifiers and thus avoiding collision between user written and compiler generated code. Besides allowing to re-order of the argument list, this feature is very useful for auto-documenting the code, for example, when the argument list is very long or not clear, from the call site, what the arguments are. Optional Arguments Parameters can now have default values: public static void Method(int first, int second = 2, int third = 3) Parameters with default values must be the last in the parameter list and its value is used as the value of the parameter if the corresponding argument is missing from the method call declaration. For this call declaration: int i = 0; Method(i, third: ++i); will have this code generated by the compiler: int i = 0; int CS$0$0000 = ++i; Method(i, 2, CS$0$0000); which will give the method the following parameter values: first: 1 second: 2 third: 1 Because, when method parameters have default values, arguments can be omitted from the call declaration, this might seem like method overloading or a good replacement for it, but it isn’t. Although methods like this: public static StreamReader OpenTextFile( string path, Encoding encoding = null, bool detectEncoding = true, int bufferSize = 1024) allow to have its calls written like this: OpenTextFile("foo.txt", Encoding.UTF8); OpenTextFile("foo.txt", Encoding.UTF8, bufferSize: 4096); OpenTextFile( bufferSize: 4096, path: "foo.txt", detectEncoding: false); The complier handles default values like constant fields taking the value and useing it instead of a reference to the value. So, like with constant fields, methods with parameters with default values are exposed publicly (and remember that internal members might be publicly accessible – InternalsVisibleToAttribute). If such methods are publicly accessible and used by another assembly, those values will be hard coded in the calling code and, if the called assembly has its default values changed, they won’t be assumed by already compiled code. At the first glance, I though that using optional arguments for “bad” written code was great, but the ability to write code like that was just pure evil. But than I realized that, since I use private constant fields, it’s OK to use default parameter values on privately accessed methods.

    Read the article

  • I can't install using Wubi due to permission denied error

    - by Taksh Sharma
    I can't install ubuntu 11.10 inside my windows 7. It shows permission denied while installation. It gave a log file having the following data: 03-29 20:19 DEBUG TaskList: # Running tasklist... 03-29 20:19 DEBUG TaskList: ## Running select_target_dir... 03-29 20:19 INFO WindowsBackend: Installing into D:\ubuntu 03-29 20:19 DEBUG TaskList: ## Finished select_target_dir 03-29 20:19 DEBUG TaskList: ## Running create_dir_structure... 03-29 20:19 DEBUG CommonBackend: Creating dir D:\ubuntu 03-29 20:19 DEBUG CommonBackend: Creating dir D:\ubuntu\disks 03-29 20:19 DEBUG CommonBackend: Creating dir D:\ubuntu\install 03-29 20:19 DEBUG CommonBackend: Creating dir D:\ubuntu\install\boot 03-29 20:19 DEBUG CommonBackend: Creating dir D:\ubuntu\disks\boot 03-29 20:19 DEBUG CommonBackend: Creating dir D:\ubuntu\disks\boot\grub 03-29 20:19 DEBUG CommonBackend: Creating dir D:\ubuntu\install\boot\grub 03-29 20:19 DEBUG TaskList: ## Finished create_dir_structure 03-29 20:19 DEBUG TaskList: ## Running uncompress_target_dir... 03-29 20:19 DEBUG TaskList: ## Finished uncompress_target_dir 03-29 20:19 DEBUG TaskList: ## Running create_uninstaller... 03-29 20:19 DEBUG WindowsBackend: Copying uninstaller E:\wubi.exe -> D:\ubuntu\uninstall-wubi.exe 03-29 20:19 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi UninstallString D:\ubuntu\uninstall-wubi.exe 03-29 20:19 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi InstallationDir D:\ubuntu 03-29 20:19 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi DisplayName Ubuntu 03-29 20:19 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi DisplayIcon D:\ubuntu\Ubuntu.ico 03-29 20:19 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi DisplayVersion 11.10-rev241 03-29 20:19 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi Publisher Ubuntu 03-29 20:19 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi URLInfoAbout http://www.ubuntu.com 03-29 20:19 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi HelpLink http://www.ubuntu.com/support 03-29 20:19 DEBUG TaskList: ## Finished create_uninstaller 03-29 20:19 DEBUG TaskList: ## Running copy_installation_files... 03-29 20:19 DEBUG WindowsBackend: Copying C:\Users\Home\AppData\Local\Temp\pylB911.tmp\data\custom-installation -> D:\ubuntu\install\custom-installation 03-29 20:19 DEBUG WindowsBackend: Copying C:\Users\Home\AppData\Local\Temp\pylB911.tmp\winboot -> D:\ubuntu\winboot 03-29 20:19 DEBUG WindowsBackend: Copying C:\Users\Home\AppData\Local\Temp\pylB911.tmp\data\images\Ubuntu.ico -> D:\ubuntu\Ubuntu.ico 03-29 20:19 DEBUG TaskList: ## Finished copy_installation_files 03-29 20:19 DEBUG TaskList: ## Running get_iso... 03-29 20:19 DEBUG TaskList: New task copy_file 03-29 20:19 DEBUG TaskList: ### Running copy_file... 03-29 20:23 ERROR TaskList: [Errno 13] Permission denied Traceback (most recent call last): File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\utils.py", line 202, in copy_file IOError: [Errno 13] Permission denied 03-29 20:23 DEBUG TaskList: # Cancelling tasklist 03-29 20:23 DEBUG TaskList: New task check_iso 03-29 20:23 ERROR root: [Errno 13] Permission denied Traceback (most recent call last): File "\lib\wubi\application.py", line 58, in run File "\lib\wubi\application.py", line 130, in select_task File "\lib\wubi\application.py", line 205, in run_cd_menu File "\lib\wubi\application.py", line 120, in select_task File "\lib\wubi\application.py", line 158, in run_installer File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\utils.py", line 202, in copy_file IOError: [Errno 13] Permission denied 03-29 20:23 ERROR TaskList: 'WindowsBackend' object has no attribute 'iso_path' Traceback (most recent call last): File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\backend.py", line 579, in get_iso File "\lib\wubi\backends\common\backend.py", line 565, in use_iso AttributeError: 'WindowsBackend' object has no attribute 'iso_path' 03-29 20:23 DEBUG TaskList: # Cancelling tasklist 03-29 20:23 DEBUG TaskList: # Finished tasklist 03-29 20:29 INFO root: === wubi 11.10 rev241 === 03-29 20:29 DEBUG root: Logfile is c:\users\home\appdata\local\temp\wubi-11.10-rev241.log 03-29 20:29 DEBUG root: sys.argv = ['main.pyo', '--exefile="E:\\wubi.exe"'] 03-29 20:29 DEBUG CommonBackend: data_dir=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\data 03-29 20:29 DEBUG WindowsBackend: 7z=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\bin\7z.exe 03-29 20:29 DEBUG WindowsBackend: startup_folder=C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup 03-29 20:29 DEBUG CommonBackend: Fetching basic info... 03-29 20:29 DEBUG CommonBackend: original_exe=E:\wubi.exe 03-29 20:29 DEBUG CommonBackend: platform=win32 03-29 20:29 DEBUG CommonBackend: osname=nt 03-29 20:29 DEBUG CommonBackend: language=en_IN 03-29 20:29 DEBUG CommonBackend: encoding=cp1252 03-29 20:29 DEBUG WindowsBackend: arch=amd64 03-29 20:29 DEBUG CommonBackend: Parsing isolist=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\data\isolist.ini 03-29 20:29 DEBUG CommonBackend: Adding distro Xubuntu-i386 03-29 20:29 DEBUG CommonBackend: Adding distro Xubuntu-amd64 03-29 20:29 DEBUG CommonBackend: Adding distro Kubuntu-amd64 03-29 20:29 DEBUG CommonBackend: Adding distro Mythbuntu-i386 03-29 20:29 DEBUG CommonBackend: Adding distro Ubuntu-amd64 03-29 20:29 DEBUG CommonBackend: Adding distro Ubuntu-i386 03-29 20:29 DEBUG CommonBackend: Adding distro Mythbuntu-amd64 03-29 20:29 DEBUG CommonBackend: Adding distro Kubuntu-i386 03-29 20:29 DEBUG WindowsBackend: Fetching host info... 03-29 20:29 DEBUG WindowsBackend: registry_key=Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi 03-29 20:29 DEBUG WindowsBackend: windows version=vista 03-29 20:29 DEBUG WindowsBackend: windows_version2=Windows 7 Home Basic 03-29 20:29 DEBUG WindowsBackend: windows_sp=None 03-29 20:29 DEBUG WindowsBackend: windows_build=7601 03-29 20:29 DEBUG WindowsBackend: gmt=5 03-29 20:29 DEBUG WindowsBackend: country=IN 03-29 20:29 DEBUG WindowsBackend: timezone=Asia/Calcutta 03-29 20:29 DEBUG WindowsBackend: windows_username=Home 03-29 20:29 DEBUG WindowsBackend: user_full_name=Home 03-29 20:29 DEBUG WindowsBackend: user_directory=C:\Users\Home 03-29 20:29 DEBUG WindowsBackend: windows_language_code=1033 03-29 20:29 DEBUG WindowsBackend: windows_language=English 03-29 20:29 DEBUG WindowsBackend: processor_name=Intel(R) Core(TM) i3 CPU M 370 @ 2.40GHz 03-29 20:29 DEBUG WindowsBackend: bootloader=vista 03-29 20:29 DEBUG WindowsBackend: system_drive=Drive(C: hd 61135.1523438 mb free ntfs) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(C: hd 61135.1523438 mb free ntfs) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(D: hd 12742.5507813 mb free ntfs) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(E: cd 0.0 mb free cdfs) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(F: cd 0.0 mb free ) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(G: hd 93.22265625 mb free fat32) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(Q: hd 0.0 mb free ) 03-29 20:29 DEBUG WindowsBackend: uninstaller_path=D:\ubuntu\uninstall-wubi.exe 03-29 20:29 DEBUG WindowsBackend: previous_target_dir=D:\ubuntu 03-29 20:29 DEBUG WindowsBackend: previous_distro_name=Ubuntu 03-29 20:29 DEBUG WindowsBackend: keyboard_id=67699721 03-29 20:29 DEBUG WindowsBackend: keyboard_layout=us 03-29 20:29 DEBUG WindowsBackend: keyboard_variant= 03-29 20:29 DEBUG CommonBackend: python locale=('en_IN', 'cp1252') 03-29 20:29 DEBUG CommonBackend: locale=en_IN 03-29 20:29 DEBUG WindowsBackend: total_memory_mb=3893.859375 03-29 20:29 DEBUG CommonBackend: Searching ISOs on USB devices 03-29 20:29 DEBUG CommonBackend: Searching for local CDs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Ubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Ubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Kubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Kubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Xubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Xubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Mythbuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Mythbuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Ubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Ubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Kubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Kubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Xubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Xubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Mythbuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Mythbuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether E:\ is a valid Ubuntu CD 03-29 20:29 DEBUG Distro: parsing info from str=Ubuntu 11.10 "Oneiric Ocelot" - Release i386 (20111012) 03-29 20:29 DEBUG Distro: parsed info={'name': 'Ubuntu', 'subversion': 'Release', 'version': '11.10', 'build': '20111012', 'codename': 'Oneiric Ocelot', 'arch': 'i386'} 03-29 20:29 INFO Distro: Found a valid CD for Ubuntu: E:\ 03-29 20:29 INFO root: Running the CD menu... 03-29 20:29 DEBUG WindowsFrontend: __init__... 03-29 20:29 DEBUG WindowsFrontend: on_init... 03-29 20:29 INFO WinuiPage: appname=wubi, localedir=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\translations, languages=['en_IN', 'en'] 03-29 20:29 INFO WinuiPage: appname=wubi, localedir=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\translations, languages=['en_IN', 'en'] 03-29 20:29 INFO root: CD menu finished 03-29 20:29 INFO root: Already installed, running the uninstaller... 03-29 20:29 INFO root: Running the uninstaller... 03-29 20:29 INFO CommonBackend: This is the uninstaller running 03-29 20:29 INFO WinuiPage: appname=wubi, localedir=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\translations, languages=['en_IN', 'en'] 03-29 20:29 INFO root: Received settings 03-29 20:29 INFO WinuiPage: appname=wubi, localedir=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\translations, languages=['en_IN', 'en'] 03-29 20:29 DEBUG TaskList: # Running tasklist... 03-29 20:29 DEBUG TaskList: ## Running Remove bootloader entry... 03-29 20:29 DEBUG WindowsBackend: Could not find bcd id 03-29 20:29 DEBUG WindowsBackend: undo_bootini C: 03-29 20:29 DEBUG WindowsBackend: undo_configsys Drive(C: hd 61135.1523438 mb free ntfs) 03-29 20:29 DEBUG WindowsBackend: undo_bootini D: 03-29 20:29 DEBUG WindowsBackend: undo_configsys Drive(D: hd 12742.5507813 mb free ntfs) 03-29 20:29 DEBUG WindowsBackend: undo_bootini G: 03-29 20:29 DEBUG WindowsBackend: undo_configsys Drive(G: hd 93.22265625 mb free fat32) 03-29 20:29 DEBUG WindowsBackend: undo_bootini Q: 03-29 20:29 DEBUG WindowsBackend: undo_configsys Drive(Q: hd 0.0 mb free ) 03-29 20:29 DEBUG TaskList: ## Finished Remove bootloader entry 03-29 20:29 DEBUG TaskList: ## Running Remove target dir... 03-29 20:29 DEBUG CommonBackend: Deleting D:\ubuntu 03-29 20:29 DEBUG TaskList: ## Finished Remove target dir 03-29 20:29 DEBUG TaskList: ## Running Remove registry key... 03-29 20:29 DEBUG TaskList: ## Finished Remove registry key 03-29 20:29 DEBUG TaskList: # Finished tasklist 03-29 20:29 INFO root: Almost finished uninstalling 03-29 20:29 INFO root: Finished uninstallation 03-29 20:29 DEBUG CommonBackend: Fetching basic info... 03-29 20:29 DEBUG CommonBackend: original_exe=E:\wubi.exe 03-29 20:29 DEBUG CommonBackend: platform=win32 03-29 20:29 DEBUG CommonBackend: osname=nt 03-29 20:29 DEBUG WindowsBackend: arch=amd64 03-29 20:29 DEBUG CommonBackend: Parsing isolist=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\data\isolist.ini 03-29 20:29 DEBUG CommonBackend: Adding distro Xubuntu-i386 03-29 20:29 DEBUG CommonBackend: Adding distro Xubuntu-amd64 03-29 20:29 DEBUG CommonBackend: Adding distro Kubuntu-amd64 03-29 20:29 DEBUG CommonBackend: Adding distro Mythbuntu-i386 03-29 20:29 DEBUG CommonBackend: Adding distro Ubuntu-amd64 03-29 20:29 DEBUG CommonBackend: Adding distro Ubuntu-i386 03-29 20:29 DEBUG CommonBackend: Adding distro Mythbuntu-amd64 03-29 20:29 DEBUG CommonBackend: Adding distro Kubuntu-i386 03-29 20:29 DEBUG WindowsBackend: Fetching host info... 03-29 20:29 DEBUG WindowsBackend: registry_key=Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi 03-29 20:29 DEBUG WindowsBackend: windows version=vista 03-29 20:29 DEBUG WindowsBackend: windows_version2=Windows 7 Home Basic 03-29 20:29 DEBUG WindowsBackend: windows_sp=None 03-29 20:29 DEBUG WindowsBackend: windows_build=7601 03-29 20:29 DEBUG WindowsBackend: gmt=5 03-29 20:29 DEBUG WindowsBackend: country=IN 03-29 20:29 DEBUG WindowsBackend: timezone=Asia/Calcutta 03-29 20:29 DEBUG WindowsBackend: windows_username=Home 03-29 20:29 DEBUG WindowsBackend: user_full_name=Home 03-29 20:29 DEBUG WindowsBackend: user_directory=C:\Users\Home 03-29 20:29 DEBUG WindowsBackend: windows_language_code=1033 03-29 20:29 DEBUG WindowsBackend: windows_language=English 03-29 20:29 DEBUG WindowsBackend: processor_name=Intel(R) Core(TM) i3 CPU M 370 @ 2.40GHz 03-29 20:29 DEBUG WindowsBackend: bootloader=vista 03-29 20:29 DEBUG WindowsBackend: system_drive=Drive(C: hd 61134.8632813 mb free ntfs) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(C: hd 61134.8632813 mb free ntfs) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(D: hd 12953.140625 mb free ntfs) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(E: cd 0.0 mb free cdfs) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(F: cd 0.0 mb free ) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(G: hd 93.22265625 mb free fat32) 03-29 20:29 DEBUG WindowsBackend: drive=Drive(Q: hd 0.0 mb free ) 03-29 20:29 DEBUG WindowsBackend: uninstaller_path=None 03-29 20:29 DEBUG WindowsBackend: previous_target_dir=None 03-29 20:29 DEBUG WindowsBackend: previous_distro_name=None 03-29 20:29 DEBUG WindowsBackend: keyboard_id=67699721 03-29 20:29 DEBUG WindowsBackend: keyboard_layout=us 03-29 20:29 DEBUG WindowsBackend: keyboard_variant= 03-29 20:29 DEBUG WindowsBackend: total_memory_mb=3893.859375 03-29 20:29 DEBUG CommonBackend: Searching ISOs on USB devices 03-29 20:29 DEBUG CommonBackend: Searching for local CDs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Ubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Ubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Kubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Kubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Xubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Xubuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Mythbuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether C:\Users\Home\AppData\Local\Temp\pyl3487.tmp is a valid Mythbuntu CD 03-29 20:29 DEBUG Distro: does not contain C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Ubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Ubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Kubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Kubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Xubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Xubuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Mythbuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether D:\ is a valid Mythbuntu CD 03-29 20:29 DEBUG Distro: does not contain D:\casper\filesystem.squashfs 03-29 20:29 DEBUG Distro: checking whether E:\ is a valid Ubuntu CD 03-29 20:29 INFO Distro: Found a valid CD for Ubuntu: E:\ 03-29 20:29 INFO root: Running the installer... 03-29 20:29 INFO WinuiPage: appname=wubi, localedir=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\translations, languages=['en_IN', 'en'] 03-29 20:29 INFO WinuiPage: appname=wubi, localedir=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\translations, languages=['en_IN', 'en'] 03-29 20:30 DEBUG WinuiInstallationPage: target_drive=C:, installation_size=8000MB, distro_name=Ubuntu, language=en_US, locale=en_US.UTF-8, username=taksh 03-29 20:30 INFO root: Received settings 03-29 20:30 INFO WinuiPage: appname=wubi, localedir=C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\translations, languages=['en_US', 'en'] 03-29 20:30 DEBUG TaskList: # Running tasklist... 03-29 20:30 DEBUG TaskList: ## Running select_target_dir... 03-29 20:30 INFO WindowsBackend: Installing into C:\ubuntu 03-29 20:30 DEBUG TaskList: ## Finished select_target_dir 03-29 20:30 DEBUG TaskList: ## Running create_dir_structure... 03-29 20:30 DEBUG CommonBackend: Creating dir C:\ubuntu 03-29 20:30 DEBUG CommonBackend: Creating dir C:\ubuntu\disks 03-29 20:30 DEBUG CommonBackend: Creating dir C:\ubuntu\install 03-29 20:30 DEBUG CommonBackend: Creating dir C:\ubuntu\install\boot 03-29 20:30 DEBUG CommonBackend: Creating dir C:\ubuntu\disks\boot 03-29 20:30 DEBUG CommonBackend: Creating dir C:\ubuntu\disks\boot\grub 03-29 20:30 DEBUG CommonBackend: Creating dir C:\ubuntu\install\boot\grub 03-29 20:30 DEBUG TaskList: ## Finished create_dir_structure 03-29 20:30 DEBUG TaskList: ## Running uncompress_target_dir... 03-29 20:30 DEBUG TaskList: ## Finished uncompress_target_dir 03-29 20:30 DEBUG TaskList: ## Running create_uninstaller... 03-29 20:30 DEBUG WindowsBackend: Copying uninstaller E:\wubi.exe -> C:\ubuntu\uninstall-wubi.exe 03-29 20:30 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi UninstallString C:\ubuntu\uninstall-wubi.exe 03-29 20:30 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi InstallationDir C:\ubuntu 03-29 20:30 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi DisplayName Ubuntu 03-29 20:30 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi DisplayIcon C:\ubuntu\Ubuntu.ico 03-29 20:30 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi DisplayVersion 11.10-rev241 03-29 20:30 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi Publisher Ubuntu 03-29 20:30 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi URLInfoAbout http://www.ubuntu.com 03-29 20:30 DEBUG registry: Setting registry key -2147483646 Software\Microsoft\Windows\CurrentVersion\Uninstall\Wubi HelpLink http://www.ubuntu.com/support 03-29 20:30 DEBUG TaskList: ## Finished create_uninstaller 03-29 20:30 DEBUG TaskList: ## Running copy_installation_files... 03-29 20:30 DEBUG WindowsBackend: Copying C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\data\custom-installation -> C:\ubuntu\install\custom-installation 03-29 20:30 DEBUG WindowsBackend: Copying C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\winboot -> C:\ubuntu\winboot 03-29 20:30 DEBUG WindowsBackend: Copying C:\Users\Home\AppData\Local\Temp\pyl3487.tmp\data\images\Ubuntu.ico -> C:\ubuntu\Ubuntu.ico 03-29 20:30 DEBUG TaskList: ## Finished copy_installation_files 03-29 20:30 DEBUG TaskList: ## Running get_iso... 03-29 20:30 DEBUG TaskList: New task copy_file 03-29 20:30 DEBUG TaskList: ### Running copy_file... 03-29 20:34 ERROR TaskList: [Errno 13] Permission denied Traceback (most recent call last): File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\utils.py", line 202, in copy_file IOError: [Errno 13] Permission denied 03-29 20:34 DEBUG TaskList: # Cancelling tasklist 03-29 20:34 DEBUG TaskList: New task check_iso 03-29 20:34 ERROR root: [Errno 13] Permission denied Traceback (most recent call last): File "\lib\wubi\application.py", line 58, in run File "\lib\wubi\application.py", line 130, in select_task File "\lib\wubi\application.py", line 205, in run_cd_menu File "\lib\wubi\application.py", line 120, in select_task File "\lib\wubi\application.py", line 158, in run_installer File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\utils.py", line 202, in copy_file IOError: [Errno 13] Permission denied 03-29 20:34 ERROR TaskList: 'WindowsBackend' object has no attribute 'iso_path' Traceback (most recent call last): File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\backend.py", line 579, in get_iso File "\lib\wubi\backends\common\backend.py", line 565, in use_iso AttributeError: 'WindowsBackend' object has no attribute 'iso_path' 03-29 20:34 DEBUG TaskList: # Cancelling tasklist 03-29 20:34 DEBUG TaskList: # Finished tasklist I have no idea what's the problem is. I'm a kind of newbie. I'm using win7 64bit, and installing as an administrator. Please help me out!

    Read the article

  • Pure Front end JavaScript with Web API versus MVC views with ajax

    - by eyeballpaul
    This was more a discussion for what peoples thoughts are these days on how to split a web application. I am used to creating an MVC application with all its views and controllers. I would normally create a full view and pass this back to the browser on a full page request, unless there were specific areas that I did not want to populate straight away and would then use DOM page load events to call the server to load other areas using AJAX. Also, when it came to partial page refreshing, I would call an MVC action method which would return the HTML fragment which I could then use to populate parts of the page. This would be for areas that I did not want to slow down initial page load, or areas that fitted better with AJAX calls. One example would be for table paging. If you want to move on to the next page, I would prefer it if an AJAX call got that info rather than using a full page refresh. But the AJAX call would still return an HTML fragment. My question is. Are my thoughts on this archaic because I come from a .net background rather than a pure front end background? An intelligent front end developer that I work with, prefers to do more or less nothing in the MVC views, and would rather do everything on the front end. Right down to web API calls populating the page. So that rather than calling an MVC action method, which returns HTML, he would prefer to return a standard object and use javascript to create all the elements of the page. The front end developer way means that any benefits that I normally get with MVC model validation, including client side validation, would be gone. It also means that any benefits that I get with creating the views, with strongly typed html templates etc would be gone. I believe this would mean I would need to write the same validation for front end and back end validation. The javascript would also need to have lots of methods for creating all the different parts of the DOM. For example, when adding a new row to a table, I would normally use the MVC partial view for creating the row, and then return this as part of the AJAX call, which then gets injected into the table. By using a pure front end way, the javascript would would take in an object (for, say, a product) for the row from the api call, and then create a row from that object. Creating each individual part of the table row. The website in question will have lots of different areas, from administration, forms, product searching etc. A website that I don't think requires to be architected in a single page application way. What are everyone's thoughts on this? I am interested to hear from front end devs and back end devs.

    Read the article

  • How do you differentiate between "box," "machine," "computer" and whatever else?

    - by Corey
    There seems to be a few terms for referring to a computer, especially in the tech world. Different terms seem to be used based on technical expertise. When talking with people with some technical knowledge, I'll refer to it as a machine. When talking to non-technical people (family, friends) I'll call it a computer. On the rare occasion I'm talking about servers, I might call it a box, but even then I'll probably still call it a machine. Is that just me, or do there exist rules already for what to call a computer?

    Read the article

  • Fixing Chrome&rsquo;s AJAX Request Caching Bug

    - by Steve Wilkes
    I recently had to make a set of web pages restore their state when the user arrived on them after clicking the browser’s back button. The pages in question had various content loaded in response to user actions, which meant I had to manually get them back into a valid state after the page loaded. I got hold of the page’s data in a JavaScript ViewModel using a JQuery ajax call, then iterated over the properties, filling in the fields as I went. I built in the ability to describe dependencies between inputs to make sure fields were filled in in the correct order and at the correct time, and that all worked nicely. To make sure the browser didn’t cache the AJAX call results I used the JQuery’s cache: false option, and ASP.NET MVC’s OutputCache attribute for good measure. That all worked perfectly… except in Chrome. Chrome insisted on retrieving the data from its cache. cache: false adds a random query string parameter to make the browser think it’s a unique request – it made no difference. I made the AJAX call a POST – it made no difference. Eventually what I had to do was add a random token to the URL (not the query string) and use MVC routing to deliver the request to the correct action. The project had a single Controller for all AJAX requests, so this route: routes.MapRoute( name: "NonCachedAjaxActions", url: "AjaxCalls/{cacheDisablingToken}/{action}", defaults: new { controller = "AjaxCalls" }, constraints: new { cacheDisablingToken = "[0-9]+" }); …and this amendment to the ajax call: function loadPageData(url) { // Insert a timestamp before the URL's action segment: var indexOfFinalUrlSeparator = url.lastIndexOf("/"); var uniqueUrl = url.substring(0, indexOfFinalUrlSeparator) + new Date().getTime() + "/" + url.substring(indexOfFinalUrlSeparator); // Call the now-unique action URL: $.ajax(uniqueUrl, { cache: false, success: completePageDataLoad }); } …did the trick.

    Read the article

  • Exception Handling Differences Between 32/64 Bit

    - by Alois Kraus
    I do quite a bit of debugging .NET applications but from time to time I see things that are impossible (at a first look). I may ask you dear reader what your mental exception handling model is. Exception handling is easy after all right? Lets suppose the following code:         private void F1(object sender, EventArgs e)         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new Exception("even worse Exception");             }           }           private void F2()         {             try             {                 F3();             }             finally             {                 throw new Exception("other exception");             }         }           private void F3()         {             throw new NotImplementedException();         }   What will the call stack look like when you break into the catch(Exception) clause in Windbg (32 and 64 bit on .NET 3.5 SP1)? The mental model I have is that when an exception is thrown the stack frames are unwound until the catch handler can execute. An exception does propagate the call chain upwards.   So when F3 does throw an exception the control flow will resume at the finally handler in F2 which does throw another exception hiding the original one (that is nasty) and then the new Exception will be catched in F1 where the catch handler is executed. So we should see in the catch handler in F1 as call stack only the F1 stack frame right? Well lets try it out in Windbg. For this I created a simple Windows Forms application with one button which does execute the F1 method in its click handler. When you compile the application for 64 bit and the catch handler is reached you will find with the following commands in Windbg   Load sos extension from the same path where mscorwks was loaded in the current process .loadby sos mscorwks   Beak on clr exceptions sxe clr   Continue execution g   Dump mixed call stack container C++  and .NET Stacks interleaved 0:000> !DumpStack OS Thread Id: 0x1d8 (0) Child-SP         RetAddr          Call Site 00000000002c88c0 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002c8990 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002c8a60 000007ff005dd7f4 mscorwks!JIT_Throw+0x130 00000000002c8c10 000007fefa6942e1 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)+0xb4 00000000002c8c60 000007fefa661012 mscorwks!ExceptionTracker::CallHandler+0x145 00000000002c8d60 000007fefa711a72 mscorwks!ExceptionTracker::CallCatchHandler+0x9e 00000000002c8df0 0000000077b055cd mscorwks!ProcessCLRException+0x25e 00000000002c8e90 0000000077ae55f8 ntdll!RtlpExecuteHandlerForUnwind+0xd 00000000002c8ec0 000007fefa637c1a ntdll!RtlUnwindEx+0x539 00000000002c9560 000007fefa711a21 mscorwks!ClrUnwindEx+0x36 00000000002c9a70 0000000077b0554d mscorwks!ProcessCLRException+0x20d 00000000002c9b10 0000000077ae5d1c ntdll!RtlpExecuteHandlerForException+0xd 00000000002c9b40 0000000077b1fe48 ntdll!RtlDispatchException+0x3cb 00000000002ca220 000007fefdaeaa7d ntdll!KiUserExceptionDispatcher+0x2e 00000000002ca7e0 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002ca8b0 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002ca980 000007ff005dd8df mscorwks!JIT_Throw+0x130 00000000002cab30 000007fefa6942e1 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F2()+0x9f 00000000002cab80 000007fefa71b5b3 mscorwks!ExceptionTracker::CallHandler+0x145 00000000002cac80 000007fefa70dcd0 mscorwks!ExceptionTracker::ProcessManagedCallFrame+0x683 00000000002caed0 000007fefa7119af mscorwks!ExceptionTracker::ProcessOSExceptionNotification+0x430 00000000002cbd90 0000000077b055cd mscorwks!ProcessCLRException+0x19b 00000000002cbe30 0000000077ae55f8 ntdll!RtlpExecuteHandlerForUnwind+0xd 00000000002cbe60 000007fefa637c1a ntdll!RtlUnwindEx+0x539 00000000002cc500 000007fefa711a21 mscorwks!ClrUnwindEx+0x36 00000000002cca10 0000000077b0554d mscorwks!ProcessCLRException+0x20d 00000000002ccab0 0000000077ae5d1c ntdll!RtlpExecuteHandlerForException+0xd 00000000002ccae0 0000000077b1fe48 ntdll!RtlDispatchException+0x3cb 00000000002cd1c0 000007fefdaeaa7d ntdll!KiUserExceptionDispatcher+0x2e 00000000002cd780 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002cd850 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002cd920 000007ff005dd968 mscorwks!JIT_Throw+0x130 00000000002cdad0 000007ff005dd875 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F3()+0x48 00000000002cdb10 000007ff005dd786 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F2()+0x35 00000000002cdb60 000007ff005dbe6a WindowsFormsApplication1!WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)+0x46 00000000002cdbc0 000007ff005dd452 System_Windows_Forms!System.Windows.Forms.Control.OnClick(System.EventArgs)+0x5a   Hm okaaay. I see my method F1 two times in this call stack. Looks like we did get some recursion bug. But that can´t be given the obvious code above. Let´s try the same thing in a 32 bit process.  0:000> !DumpStack OS Thread Id: 0x33e4 (0) Current frame: KERNELBASE!RaiseException+0x58 ChildEBP RetAddr  Caller,Callee 0028ed38 767db727 KERNELBASE!RaiseException+0x58, calling ntdll!RtlRaiseException 0028ed4c 68b9008c mscorwks!Binder::RawGetClass+0x20, calling mscorwks!Module::LookupTypeDef 0028ed5c 68b904ff mscorwks!Binder::IsClass+0x23, calling mscorwks!Binder::RawGetClass 0028ed68 68bfb96f mscorwks!Binder::IsException+0x14, calling mscorwks!Binder::IsClass 0028ed78 68bfb996 mscorwks!IsExceptionOfType+0x23, calling mscorwks!Binder::IsException 0028ed80 68bfbb1c mscorwks!RaiseTheExceptionInternalOnly+0x2a8, calling KERNEL32!RaiseExceptionStub 0028eda8 68ba0713 mscorwks!Module::ResolveStringRef+0xe0, calling mscorwks!BaseDomain::GetStringObjRefPtrFromUnicodeString 0028edc8 68b91e8d mscorwks!SetObjectReferenceUnchecked+0x19 0028ede0 68c8e910 mscorwks!JIT_Throw+0xfc, calling mscorwks!RaiseTheExceptionInternalOnly 0028ee44 68c8e734 mscorwks!JIT_StrCns+0x22, calling mscorwks!LazyMachStateCaptureState 0028ee54 68c8e865 mscorwks!JIT_Throw+0x1e, calling mscorwks!LazyMachStateCaptureState 0028eea4 02ffaecd (MethodDesc 0x7af08c +0x7d WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)), calling mscorwks!JIT_Throw 0028eeec 02ffaf19 (MethodDesc 0x7af098 +0x29 WindowsFormsApplication1.Form1.F2()), calling 06370634 0028ef58 02ffae37 (MethodDesc 0x7a7bb0 +0x4f System.Windows.Forms.Control.OnClick(System.EventArgs))   That does look more familar. The call stack has been unwound and we do see only some frames into the history where the debugger was smart enough to find out that we have called F2 from F1. The exception handling on 64 bit systems does work quite differently which seems to have the nice property to remember the called methods not only during the first pass of exception filter clauses (during first pass all catch handler are called if they are going to catch the exception which is about to be thrown)  but also when the actual stack unwind has taken place. This makes it possible to follow not only the call stack right at the moment but also to look into the “history” of the catch/finally clauses. In a 64 bit process you only need to look at the ExceptionTracker to find out if a catch or finally handler was called. The two frames ProcessManagedCallFrame/CallHandler does indicate a finally clause whereas CallCatchHandler/CallHandler indicates a catch clause. That was a interesting one. Oh and by the way if you manage to load the Microsoft symbols you can also find out the hidden exception which. When you encounter in the call stack a line 0016eb34 75b79617 KERNELBASE!RaiseException+0x58 ====> Exception Code e0434f4d cxr@16e850 exr@16e838 Then it is a good idea to execute .exr 16e838 !analyze –v to find out more. In the managed world it is even easier since we can dump the objects allocated on the stack which have not yet been garbage collected to look at former method parameters. The command !dso which is the abbreviation for dump stack objects will give you 0:000> !dso OS Thread Id: 0x46c (0) ESP/REG  Object   Name 0016dd4c 020737f0 System.Exception 0016dd98 020737f0 System.Exception 0016dda8 01f5c6cc System.Windows.Forms.Button 0016ddac 01f5d2b8 System.EventHandler 0016ddb0 02071744 System.Windows.Forms.MouseEventArgs 0016ddc0 01f5d2b8 System.EventHandler 0016ddcc 01f5c6cc System.Windows.Forms.Button 0016dddc 020737f0 System.Exception 0016dde4 01f5d2b8 System.EventHandler 0016ddec 02071744 System.Windows.Forms.MouseEventArgs 0016de40 020737f0 System.Exception 0016de80 02071744 System.Windows.Forms.MouseEventArgs 0016de8c 01f5d2b8 System.EventHandler 0016de90 01f5c6cc System.Windows.Forms.Button 0016df10 02073784 System.SByte[] 0016df5c 02073684 System.NotImplementedException 0016e2a0 02073684 System.NotImplementedException 0016e2e8 01ed69f4 System.Resources.ResourceManager From there it is easy to do 0:000> !pe 02073684 Exception object: 02073684 Exception type: System.NotImplementedException Message: Die Methode oder der Vorgang sind nicht implementiert. InnerException: <none> StackTrace (generated):     SP       IP       Function     0016ECB0 006904AD WindowsFormsApplication2!WindowsFormsApplication2.Form1.F3()+0x35     0016ECC0 00690411 WindowsFormsApplication2!WindowsFormsApplication2.Form1.F2()+0x29     0016ECF0 0069038F WindowsFormsApplication2!WindowsFormsApplication2.Form1.F1(System.Object, System.EventArgs)+0x3f StackTraceString: <none> HResult: 80004001 to see the former exception. That´s all for today.

    Read the article

  • Timeout Considerations for Solicit Response

    - by Michael Stephenson
    Background One of the clients I work with had been experiencing some issues for a while surrounding web service timeouts.  It's been a little challenging to work through the problems due to limitations in the diagnostic information available from one of the applications, but I learned some interesting things while troubleshooting the problem which don't seem to have been discussed much in the community so I thought I'd share my findings. In the scenario we have BizTalk trying to make calls to a .net web service which was exposed as a WSE 2 endpoint.  In the process BizTalk will try to make a large number of concurrent web service calls to the application, and the backend application has more than enough infrastructure and capability to handle the load. We have configured the <ConnectionManagement> section of the BizTalk configuration file to support up to 100 concurrent connections from each of our 2 BizTalk send servers to the web servers of the application. The problem we were facing was that the BizTalk side was reporting a significant number of timeouts when calling the web service.   One of the biggest issues was the challenge of being able to correlate a message from BizTalk to the IIS log in the .net application and the custom logs in the application especially when there was a fairly large number of servers hosting the web services.  However the key moment came when we were able to identify a specific call which had taken 40 seconds to execute on the server (yes a long time I know but that's a different story!).  Anyway we were able to identify that this had timed out on the BizTalk side.  Based on the normal 2 minute timeout we knew something unexpected was going on. From here I decided to do some experimentation and I wanted to start outside of BizTalk because my hunch was this was not a BizTalk behaviour but something which was being highlighted by BizTalk because of our large load.     Server-side - Sample Web Service To begin with I created a sample web service.  Nothing special just a vanilla asmx web service hosted in IIS6 on Windows 2003 Standard Edition.  The web service is just a hello world style web service as shown in the below picture.  The only key feature is that the server side web method has a 30 second sleep in it and will trace out some information before and after the thread is set to sleep.      In the configuration for this web service there again is nothing special it's pretty much the most plain simple web service you could build. Client-Side To begin looking at what was happening with our example I created a number of different ways to consume the web service. SoapHttpClientProtocol Example I created a small application which would use a normal proxy generated to call the web service.  It would iterate around a loop and make calls using the begin/end methods so I can do this asynchronously.  I would do a loop of 20 calls with the ConnectionManager configuration section supporting only 5 concurrent connections to the server.     <connectionManagement> <remove address="*"/> <add address = "*" maxconnection = "12" /> <add address = "http://<ServerName>" maxconnection = "5" />                         </connectionManagement> </system.net>     The below picture shows an example of the service calling code, key points are: I have configured the timeout of 40 seconds for the proxy I am using the asynchronous methods on the proxy to call the web service         The Test I would run the client and execute 21 calls to the web service.   The Results  Below is the client side trace showing what's happening on the client. In the below diagram is the web service side trace showing what's happening on the server Some observations on the results are: All of the calls were successful from the clients perspective You could see the next call starting on the server as soon as the previous one had completed Calls took significantly longer than 40 seconds from the start of our call to the return. In fact call 20 took 2 minutes and 30 seconds from the perspective of my code to execute even though I had set the timeout to 40 seconds     WSE 2 Sample In the second example I used the exact same code to call the web service again with a single exception that I modified the web service proxy to derive from WebServiceClient protocol which is part of WSE 2 (using SP3).  The below picture shows the basic code and the key points are: I have configured the timeout of 40 seconds for the proxy I am using the asynchronous methods on the proxy to call the web service        The Test This test would execute 21 calls from the client to the web service.   The Results  The below trace is from the client side: The below trace is from the server side:   Some observations on the trace results for this scenario are: With call 4 if you look at the server side trace it did not start executing on the server for a number of seconds after the other 4 initial calls which were accepted by the server. I re-ran the test and this happened a couple of times and not on most others so at this point I'm just putting this down to something unexpected happening on the development machine and we will leave this observation out of scope of this article. You can see that the client side trace statement executed almost immediately in all cases All calls after the initial few calls would timeout On the client side the calls that did timeout; timed out in a longer duration than the 40 seconds we set as the timeout You can see that as calls were completing on the server the next calls were starting to come through The calls that timed out on the client did actually connect to the server and their server side execution completed successfully     Elaboration on the findings Based on the above observations I have drawn the below sequence diagram to illustrate conceptually what is happening.  Everything except the final web service object is on the client side of the call. In the diagram below I've put two notes on the Web Service Proxy to show the two different places where the different base classes seem to start their timeout counters. From the earlier samples we can work out that the timeout counter for the WSE web service proxy starts before the one for the SoapHttpClientProtocol proxy and the WSE one includes the time to get a connection from the pool; whereas the Soap proxy timeout just covers the method execution. One interesting observation is if we rerun the above sample and increase the number of calls from 21 to 100,000 then for the WSE sample we will see a similar pattern where everything after the first few calls will timeout on the client as soon as it makes a connection to the server whereas the soap proxy will happily plug away and process all of the calls without a single timeout. I have actually set the sample running overnight and this did happen. At this point you are probably thinking the same thoughts I was at the time about the differences in behaviour and which is right and why are they different? I'm not sure there is a definitive answer to this in the documentation, or at least not that I could find! I think you just have to consider that they are different and they could have different effects depending on your messaging solution. In lots of situations this is just not an issue as your concurrent requests doesn't get to the situation where you end up throttling the web service calls on the client side, however this is definitely more common with an integration broker such as BizTalk where you often have high throughput requirements.  Some of the considerations you should make Based on this behaviour you should be aware of the following: In a .net application if you are making lots of concurrent web service calls from an application in an asynchronous manner your user may thing they are experiencing poor performance but you think your web service is working well. The problem could be that the client will have a default of 2 connections to remote servers so you should bear this in mind When you are developing a BizTalk solution or a .net solution with the WSE 2 stack you may experience timeouts under load and throttling the number of connections using the max connections element in the configuration file will not help you For an application using WSE2 or SoapHttpClientProtocol an expired timeout will not throw an error until after a connection to the server has been made so you should consider this in your transaction and durability patterns     Our Work Around In the short term for our specific scenario we know that we can handle this by just increasing our timeout value.  There is only a specific small window when we get lots of concurrent traffic that causes this scenario so we should be able to increase the timeout to take into consideration the additional client side wait, and on the odd occasion where we do get a timeout the BizTalk send port retry will handle this. What was causing our original problem was that for that short window we were getting a lot of retries which significantly increased the load on our send servers and highlighted the issue.  Longer Term Solution As a longer term solution this really gives us more ammunition to argue a migration to WCF. The application we are calling has some factors which limit the protocols we can use but with WCF we would have more control on the various timeout options because in WCF you can configure specific parts of the timeout. Summary I've had this blog post on my to do list for ages but hopefully it will be useful to some people to just understand this behaviour and to possibly help you with some performance issues you may have. I do not believe there is too much in the way of documentation particularly around WSE2 and ASMX in this area so again another bit of ammunition for migrating to WCF. I'll try to do a follow up post with the sample for WCF to show how this changes things.

    Read the article

  • IMPORTANT - FY13 OPN Incentive Program VAD Webcast - June 21st @ 4PM GMT

    - by Cinzia Mascanzoni
    Please mark your calendars for the FY13 OPN Incentive Program update webcast on June 21. The objective of this call is to share the updates to the OPN Incentive Program for FY13 with you. Thursday, June 21st @: 4:00 PM GMT : 5PM CET Click here for the details of the webcast. Please plan to call in 5-10 minutes prior to the start to avoid delays. We look forward to your participation on this call.

    Read the article

  • Which would be a better way to load data via ajax

    - by Mike
    I am using google maps and returning html/lat/long from my MySQL database Currently A user picks a business category e.g; "Video Production". an ajax call is sent to a CodeIgniter controller the Controller then queries the db, and returns the following data via JSON Lat/Long of the marker HTML for the popup window this is approximately 34 rows in the database across two tables per business the ajax call receives this data and then plots the marker along with the html onto the map The data that is returned from the controller is one big json object... This is done for all businesses that exist in the Video Production category (currently approx 40 businesses). As you can see, pulling this data for multiple categories (100s of businesses) can get very very taxing on the server. My question is Would it be more beneficial to modify the process flow as such: a user picks a business category e.g; "Video Production". an ajax call is sent to a CodeIgniter controller the controller then queries the database for the location base information lat/long level (used to change marker icon color) This would be a single row per business with several columns the ajax call receives this data and then plots the marker on the map when the user clicks a marker an ajax call is sent to a CodeIgniter Controller the controller queries the database for the HTML and additional data based on business_id and if not, what are some better suggestions to this problem? In summary this means rather than including the HTML and additional data along for each business, only submitting minimal location information and then re-query for that information when each business marker is clicked. Potential Downsides longer load times when a user clicks a marker icon more code?? more queries to the database

    Read the article

  • Can't connect to VPN on Ubuntu 12.04

    - by 12rad
    I'm having a lot of trouble connecting to VPN. This used to work on my machine, but i recently did an update and it's stopped working. I'm not sure what the problem is. My question is how do i debug this? I'm not able to narrow it down to a specific problem. This is what i get when i tail the syslogs. Would appreciate any help! Nov 6 23:42:52 meera NetworkManager[1137]: <info> Starting VPN service 'pptp'... Nov 6 23:42:52 meera NetworkManager[1137]: <info> VPN service 'pptp' started (org.freedesktop.NetworkManager.pptp), PID 6132 Nov 6 23:42:52 meera NetworkManager[1137]: <info> VPN service 'pptp' appeared; activating connections Nov 6 23:42:52 meera NetworkManager[1137]: <info> VPN plugin state changed: starting (3) Nov 6 23:42:52 meera NetworkManager[1137]: <info> VPN connection 'NAME VPN' (Connect) reply received. Nov 6 23:42:52 meera pppd[6136]: Plugin /usr/lib/pppd/2.4.5/nm-pptp-pppd-plugin.so loaded. Nov 6 23:42:52 meera pppd[6136]: pppd 2.4.5 started by root, uid 0 Nov 6 23:42:52 meera chat[6139]: timeout set to 15 seconds Nov 6 23:42:52 meera chat[6139]: abort on (NO CARRIER) Nov 6 23:42:52 meera chat[6139]: abort on (NO DIALTONE) Nov 6 23:42:52 meera chat[6139]: abort on (ERROR) Nov 6 23:42:52 meera chat[6139]: abort on (NO ANSWER) Nov 6 23:42:52 meera chat[6139]: abort on (BUSY) Nov 6 23:42:52 meera chat[6139]: abort on (Username/Password Incorrect) Nov 6 23:42:52 meera chat[6139]: send (AT^M) Nov 6 23:42:52 meera pptp[6138]: nm-pptp-service-6132 log[main:pptp.c:314]: The synchronous pptp option is NOT activated Nov 6 23:42:52 meera chat[6139]: expect (OK) Nov 6 23:42:52 meera pptp[6143]: nm-pptp-service-6132 log[ctrlp_rep:pptp_ctrl.c:251]: Sent control packet type is 1 'Start-Control-Connection-Request' Nov 6 23:42:53 meera pptp[6143]: nm-pptp-service-6132 log[ctrlp_disp:pptp_ctrl.c:739]: Received Start Control Connection Reply Nov 6 23:42:53 meera pptp[6143]: nm-pptp-service-6132 log[ctrlp_disp:pptp_ctrl.c:773]: Client connection established. Nov 6 23:42:53 meera pptp[6143]: nm-pptp-service-6132 log[ctrlp_rep:pptp_ctrl.c:251]: Sent control packet type is 7 'Outgoing-Call-Request' Nov 6 23:42:54 meera pptp[6143]: nm-pptp-service-6132 log[ctrlp_disp:pptp_ctrl.c:858]: Received Outgoing Call Reply. Nov 6 23:42:54 meera pptp[6143]: nm-pptp-service-6132 log[ctrlp_disp:pptp_ctrl.c:897]: Outgoing call established (call ID 0, peer's call ID 13077). Nov 6 23:42:54 meera pptp[6138]: nm-pptp-service-6132 warn[decaps_hdlc:pptp_gre.c:231]: The ppp mode is synchronous, yet no pptp --sync option is specified! Nov 6 23:43:07 meera chat[6139]: alarm Nov 6 23:43:07 meera chat[6139]: Failed Nov 6 23:43:07 meera pppd[6136]: Script chat -v -f /etc/ppp/chat-ztisp finished (pid 6139), status = 0x3 Nov 6 23:43:07 meera pppd[6136]: Connect script failed Nov 6 23:43:07 meera pppd[6136]: Waiting for 1 child processes... Nov 6 23:43:07 meera pppd[6136]: script /usr/sbin/pptp 204.197.218.90 --nolaunchpppd --loglevel 0 --logstring nm-pptp-service-6132, pid 6138 Nov 6 23:43:07 meera pptp[6138]: nm-pptp-service-6132 warn[decaps_hdlc:pptp_gre.c:204]: short read (-1): Input/output error Nov 6 23:43:07 meera pptp[6138]: nm-pptp-service-6132 warn[decaps_hdlc:pptp_gre.c:216]: pppd may have shutdown, see pppd log Nov 6 23:43:07 meera pptp[6143]: nm-pptp-service-6132 log[callmgr_main:pptp_callmgr.c:234]: Closing connection (unhandled) Nov 6 23:43:07 meera pppd[6136]: Script /usr/sbin/pptp 204.197.218.90 --nolaunchpppd --loglevel 0 --logstring nm-pptp-service-6132 finished (pid 6138), status = 0x0 Nov 6 23:43:07 meera pptp[6143]: nm-pptp-service-6132 log[ctrlp_rep:pptp_ctrl.c:251]: Sent control packet type is 12 'Call-Clear-Request' Nov 6 23:43:07 meera pptp[6143]: nm-pptp-service-6132 log[call_callback:pptp_callmgr.c:79]: Closing connection (call state) Nov 6 23:43:07 meera pppd[6136]: Exit. Nov 6 23:43:07 meera NetworkManager[1137]: <warn> VPN plugin failed: 1 Nov 6 23:43:07 meera NetworkManager[1137]: <info> VPN plugin state changed: stopped (6) Nov 6 23:43:07 meera NetworkManager[1137]: <info> VPN plugin state change reason: 0 Nov 6 23:43:07 meera NetworkManager[1137]: <warn> error disconnecting VPN: Could not process the request because no VPN connection was active.

    Read the article

  • "Error detecting shell" when launching Gnome Tweak Tool

    - by user70988
    It was working before I started the process of installing Gnome. I've poked around on Google but can't find anything. If I log into Gnome the screen is massively zoomed in and I have to pan around the page. I was hoping the appropriate setting would be in the tweak tool. __ WARNING : Error detecting shell Traceback (most recent call last): File "/usr/lib/python2.7/dist-packages/gtweak/tweaks/tweak_shell_extensions.py", line 149, in __init__ shell = GnomeShellFactory().get_shell() File "/usr/lib/python2.7/dist-packages/gtweak/utils.py", line 38, in getinstance instances[cls] = cls() File "/usr/lib/python2.7/dist-packages/gtweak/gshellwrapper.py", line 143, in __init__ proxy = _ShellProxy() File "/usr/lib/python2.7/dist-packages/gtweak/gshellwrapper.py", line 44, in __init__ result, output = self.proxy.Eval('(s)', js) File "/usr/lib/python2.7/dist-packages/gi/overrides/Gio.py", line 148, in __call__ kwargs.get('flags', 0), kwargs.get('timeout', -1), None) File "/usr/lib/python2.7/dist-packages/gi/types.py", line 43, in function return info.invoke(*args, **kwargs) GError: GDBus.Error:org.freedesktop.DBus.Error.ServiceUnknown: The name org.gnome.Shell was not provided by any .service files WARNING : Shell not running Traceback (most recent call last): File "/usr/lib/python2.7/dist-packages/gtweak/tweaks/tweak_shell.py", line 59, in __init__ self._shell = GnomeShellFactory().get_shell() File "/usr/lib/python2.7/dist-packages/gtweak/utils.py", line 38, in getinstance instances[cls] = cls() File "/usr/lib/python2.7/dist-packages/gtweak/gshellwrapper.py", line 143, in __init__ proxy = _ShellProxy() File "/usr/lib/python2.7/dist-packages/gtweak/gshellwrapper.py", line 44, in __init__ result, output = self.proxy.Eval('(s)', js) File "/usr/lib/python2.7/dist-packages/gi/overrides/Gio.py", line 148, in __call__ kwargs.get('flags', 0), kwargs.get('timeout', -1), None) File "/usr/lib/python2.7/dist-packages/gi/types.py", line 43, in function return info.invoke(*args, **kwargs) GError: GDBus.Error:org.freedesktop.DBus.Error.ServiceUnknown: The name org.gnome.Shell was not provided by any .service files WARNING : Could not list shell extensions Traceback (most recent call last): File "/usr/lib/python2.7/dist-packages/gtweak/tweaks/tweak_shell.py", line 64, in __init__ extensions = self._shell.list_extensions() AttributeError: ShellThemeTweak instance has no attribute '_shell' Traceback (most recent call last): File "/usr/bin/gnome-tweak-tool", line 76, in <module> MainWindow() File "/usr/lib/python2.7/dist-packages/gtweak/mainwindow.py", line 44, in __init__ model) File "/usr/lib/python2.7/dist-packages/gtweak/tweakview.py", line 40, in __init__ self._model.load_tweaks() File "/usr/lib/python2.7/dist-packages/gtweak/tweakmodel.py", line 135, in load_tweaks mods = __import__("gtweak.tweaks", globals(), locals(), tweak_files, 0) File "/usr/lib/python2.7/dist-packages/gtweak/tweaks/tweak_shell.py", line 236, in <module> GSettingsSwitchTweak("org.gnome.settings-daemon.plugins.power", "lid-close-suspend-with-external-monitor"), File "/usr/lib/python2.7/dist-packages/gtweak/widgets.py", line 116, in __init__ _GSettingsTweak.__init__(self, schema_name, key_name, **options) File "/usr/lib/python2.7/dist-packages/gtweak/widgets.py", line 105, in __init__ options.get("summary",self.settings.schema_get_summary(key_name)), File "/usr/lib/python2.7/dist-packages/gtweak/gsettings.py", line 122, in schema_get_summary return self._schema._schema[key]["summary"] KeyError: 'lid-close-suspend-with-external-monitor'

    Read the article

< Previous Page | 212 213 214 215 216 217 218 219 220 221 222 223  | Next Page >