Search Results

Search found 45915 results on 1837 pages for 'system tray'.

Page 216/1837 | < Previous Page | 212 213 214 215 216 217 218 219 220 221 222 223  | Next Page >

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Exception "The operation is not valid for the state of the transaction" using TransactionScope

    - by Lanfear
    We have a web service on server #1 and a database on server #2. Web service uses transaction scope to produce distributed transaction. Everything is correct. And we have another database on server #3. We had some problems with this server and we reinstalled operation system and software. We configured MSDTC and tried to use web service from server #1 to communicate with database on this server. And now after first select statement within transaction scope we get: "The operation is not valid for the state of the transaction". This exception falls in every web service request if it is using transaction scope. Server #2 and Server #3 is almost similar. The difference can be only in settings. .NET framework 3.5 SP1 installed and SQL Server SP3 on all servers. Full stacktrace: System.Transactions.TransactionState.EnlistPromotableSinglePhase(InternalTransaction tx, IPromotableSinglePhaseNotification promotableSinglePhaseNotification, Transaction atomicTransaction) ? System.Transactions.Transaction.EnlistPromotableSinglePhase(IPromotableSinglePhaseNotification promotableSinglePhaseNotification) ? System.Data.SqlClient.SqlInternalConnection.EnlistNonNull(Transaction t ? System.Data.SqlClient.SqlInternalConnection.Enlist(Transaction t ? System.Data.SqlClient.SqlInternalConnectionTds.Activate(Transaction transaction) ? System.Data.ProviderBase.DbConnectionInternal.ActivateConnection(Transaction transaction) ? System.Data.ProviderBase.DbConnectionPool.GetConnection(DbConnection owningObject) ? System.Data.ProviderBase.DbConnectionFactory.GetConnection(DbConnection owningConnection) ? System.Data.ProviderBase.DbConnectionClosed.OpenConnection(DbConnection outerConnection, DbConnectionFactory connectionFactory) ? System.Data.SqlClient.SqlConnection.Open() ? NHibernate.Connection.DriverConnectionProvider.GetConnection() ? NHibernate.Impl.SessionFactoryImpl.OpenConnection() I searched this message but didn't found any appropriate solution. So what settings should I check and what exactly should I do to fix it?

    Read the article

  • VS 2012 / 2013 AccessViolationException

    - by Goran
    When I run the project (F5) I receive the following exception in IDE: An unhandled exception of type 'System.AccessViolationException' occurred in System.Windows.Forms.dll Additional information: Attempted to read or write protected memory. This is often an indication that other memory is corrupt. Stack trace reports at System.Windows.Forms.UnsafeNativeMethods.SendMessage(HandleRef hWnd, Int32 msg, IntPtr wParam, IntPtr lParam) at System.Windows.Forms.Control.SendMessage(Int32 msg, Int32 wparam, IntPtr lparam) at System.Windows.Forms.Form.UpdateWindowIcon(Boolean redrawFrame) at System.Windows.Forms.Form.CreateHandle() at System.Windows.Forms.Control.get_Handle() at Microsoft.VisualStudio.HostingProcess.HostProc.RunParkingWindowThread() at System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean preserveSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean preserveSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart() I have never noticed receiving the same exception when running without debugger (CTRL+F5). This is a WPF project, but exception occurs before the App_ctor is executed, so this is external code, and my application code did not start to execute. This happens sporadically, sometimes it happens only once, and sometimes I run the project and get this message for several times in a roll. Then it does not pop up for 5-6 runs, and then starts again. Anyone knows why is this happening? I have just installed clean W8.1 64 bit, VS2013 and TFS 2013 (although I had the same problem with W8 and VS2012, but not as often).

    Read the article

  • Solaris 11.1: Changes to included FOSS packages

    - by alanc
    Besides the documentation changes I mentioned last time, another place you can see Solaris 11.1 changes before upgrading is in the online package repository, now that the 11.1 packages have been published to http://pkg.oracle.com/solaris/release/, as the “0.175.1.0.0.24.2” branch. (Oracle Solaris Package Versioning explains what each field in that version string means.) When you’re ready to upgrade to the packages from either this repo, or the support repository, you’ll want to first read How to Update to Oracle Solaris 11.1 Using the Image Packaging System by Pete Dennis, as there are a couple issues you will need to be aware of to do that upgrade, several of which are due to changes in the Free and Open Source Software (FOSS) packages included with Solaris, as I’ll explain in a bit. Solaris 11 can update more readily than Solaris 10 In the Solaris 10 and older update models, the way the updates were built constrained what changes we could make in those releases. To change an existing SVR4 package in those releases, we created a Solaris Patch, which applied to a given version of the SVR4 package and replaced, added or deleted files in it. These patches were released via the support websites (originally SunSolve, now My Oracle Support) for applying to existing Solaris 10 installations, and were also merged into the install images for the next Solaris 10 update release. (This Solaris Patches blog post from Gerry Haskins dives deeper into that subject.) Some of the restrictions of this model were that package refactoring, changes to package dependencies, and even just changing the package version number, were difficult to do in this hybrid patch/OS update model. For instance, when Solaris 10 first shipped, it had the Xorg server from X11R6.8. Over the first couple years of update releases we were able to keep it up to date by replacing, adding, & removing files as necessary, taking it all the way up to Xorg server release 1.3 (new version numbering begun after the X11R7 split of the X11 tree into separate modules gave each module its own version). But if you run pkginfo on the SUNWxorg-server package, you’ll see it still displayed a version number of 6.8, confusing users as to which version was actually included. We stopped upgrading the Xorg server releases in Solaris 10 after 1.3, as later versions added new dependencies, such as HAL, D-Bus, and libpciaccess, which were very difficult to manage in this patching model. (We later got libpciaccess to work, but HAL & D-Bus would have been much harder due to the greater dependency tree underneath those.) Similarly, every time the GNOME team looked into upgrading Solaris 10 past GNOME 2.6, they found these constraints made it so difficult it wasn’t worthwhile, and eventually GNOME’s dependencies had changed enough it was completely infeasible. Fortunately, this worked out for both the X11 & GNOME teams, with our management making the business decision to concentrate on the “Nevada” branch for desktop users - first as Solaris Express Desktop Edition, and later as OpenSolaris, so we didn’t have to fight to try to make the package updates fit into these tight constraints. Meanwhile, the team designing the new packaging system for Solaris 11 was seeing us struggle with these problems, and making this much easier to manage for both the development teams and our users was one of their big goals for the IPS design they were working on. Now that we’ve reached the first update release to Solaris 11, we can start to see the fruits of their labors, with more FOSS updates in 11.1 than we had in many Solaris 10 update releases, keeping software more up to date with the upstream communities. Of course, just because we can more easily update now, doesn’t always mean we should or will do so, it just removes the package system limitations from forcing the decision for us. So while we’ve upgraded the X Window System in the 11.1 release from X11R7.6 to 7.7, the Solaris GNOME team decided it was not the right time to try to make the jump from GNOME 2 to GNOME 3, though they did update some individual components of the desktop, especially those with security fixes like Firefox. In other parts of the system, decisions as to what to update were prioritized based on how they affected other projects, or what customer requests we’d gotten for them. So with all that background in place, what packages did we actually update or add between Solaris 11.0 and 11.1? Core OS Functionality One of the FOSS changes with the biggest impact in this release is the upgrade from Grub Legacy (0.97) to Grub 2 (1.99) for the x64 platform boot loader. This is the cause of one of the upgrade quirks, since to go from Solaris 11.0 to 11.1 on x64 systems, you first need to update the Boot Environment tools (such as beadm) to a new version that can handle boot environments that use the Grub2 boot loader. System administrators can find the details they need to know about the new Grub in the Administering the GRand Unified Bootloader chapter of the Booting and Shutting Down Oracle Solaris 11.1 Systems guide. This change was necessary to be able to support new hardware coming into the x64 marketplace, including systems using UEFI firmware or booting off disk drives larger than 2 terabytes. For both platforms, Solaris 11.1 adds rsyslog as an optional alternative to the traditional syslogd, and OpenSCAP for checking security configuration settings are compliant with site policies. Note that the support repo actually has newer versions of BIND & fetchmail than the 11.1 release, as some late breaking critical fixes came through from the community upstream releases after the Solaris 11.1 release was frozen, and made their way to the support repository. These are responsible for the other big upgrade quirk in this release, in which to upgrade a system which already installed those versions from the support repo, you need to either wait for those packages to make their way to the 11.1 branch of the support repo, or follow the steps in the aforementioned upgrade walkthrough to let the package system know it's okay to temporarily downgrade those. Developer Stack While Solaris 11.0 included Python 2.7, many of the bundled python modules weren’t packaged for it yet, limiting its usability. For 11.1, many more of the python modules include 2.7 versions (enough that I filtered them out of the below table, but you can always search on the package repository server for them. For other language runtimes and development tools, 11.1 expands the use of IPS mediated links to choose which version of a package is the default when the packages are designed to allow multiple versions to install side by side. For instance, in Solaris 11.0, GNU automake 1.9 and 1.10 were provided, and developers had to run them as either automake-1.9 or automake-1.10. In Solaris 11.1, when automake 1.11 was added, also added was a /usr/bin/automake mediated link, which points to the automake-1.11 program by default, but can be changed to another version by running the pkg set-mediator command. Mediated links were also used for the Java runtime & development kits in 11.1, changing the default versions to the Java 7 releases (the 1.7.0.x package versions), while allowing admins to switch links such as /usr/bin/javac back to Java 6 if they need to for their site, to deal with Java 7 compatibility or other issues, without having to update each usage to use the full versioned /usr/jdk/jdk1.6.0_35/bin/javac paths for every invocation. Desktop Stack As I mentioned before, we upgraded from X11R7.6 to X11R7.7, since a pleasant coincidence made the X.Org release dates line up nicely with our feature & code freeze dates for this release. (Or perhaps it wasn’t so coincidental, after all, one of the benefits of being the person making the release is being able to decide what schedule is most convenient for you, and this one worked well for me.) For the table below, I’ve skipped listing the packages in which we use the X11 “katamari” version for the Solaris package version (mainly packages combining elements of multiple upstream modules with independent version numbers), since they just all changed from 7.6 to 7.7. In the graphics drivers, we worked with Intel to update the Intel Integrated Graphics Processor support to support 3D graphics and kernel mode setting on the Ivy Bridge chipsets, and updated Nvidia’s non-FOSS graphics driver from 280.13 to 295.20. Higher up in the desktop stack, PulseAudio was added for audio support, and liblouis for Braille support, and the GNOME applications were built to use them. The Mozilla applications, Firefox & Thunderbird moved to the current Extended Support Release (ESR) versions, 10.x for each, to bring up-to-date security fixes without having to be on Mozilla’s agressive 6 week feature cycle release train. Detailed list of changes This table shows most of the changes to the FOSS packages between Solaris 11.0 and 11.1. As noted above, some were excluded for clarity, or to reduce noise and duplication. All the FOSS packages which didn't change the version number in their packaging info are not included, even if they had updates to fix bugs, security holes, or add support for new hardware or new features of Solaris. Package11.011.1 archiver/unrar 3.8.5 4.1.4 audio/sox 14.3.0 14.3.2 backup/rdiff-backup 1.2.1 1.3.3 communication/im/pidgin 2.10.0 2.10.5 compress/gzip 1.3.5 1.4 compress/xz not included 5.0.1 database/sqlite-3 3.7.6.3 3.7.11 desktop/remote-desktop/tigervnc 1.0.90 1.1.0 desktop/window-manager/xcompmgr 1.1.5 1.1.6 desktop/xscreensaver 5.12 5.15 developer/build/autoconf 2.63 2.68 developer/build/autoconf/xorg-macros 1.15.0 1.17 developer/build/automake-111 not included 1.11.2 developer/build/cmake 2.6.2 2.8.6 developer/build/gnu-make 3.81 3.82 developer/build/imake 1.0.4 1.0.5 developer/build/libtool 1.5.22 2.4.2 developer/build/makedepend 1.0.3 1.0.4 developer/documentation-tool/doxygen 1.5.7.1 1.7.6.1 developer/gnu-binutils 2.19 2.21.1 developer/java/jdepend not included 2.9 developer/java/jdk-6 1.6.0.26 1.6.0.35 developer/java/jdk-7 1.7.0.0 1.7.0.7 developer/java/jpackage-utils not included 1.7.5 developer/java/junit 4.5 4.10 developer/lexer/jflex not included 1.4.1 developer/parser/byaccj not included 1.14 developer/parser/java_cup not included 0.10 developer/quilt 0.47 0.60 developer/versioning/git 1.7.3.2 1.7.9.2 developer/versioning/mercurial 1.8.4 2.2.1 developer/versioning/subversion 1.6.16 1.7.5 diagnostic/constype 1.0.3 1.0.4 diagnostic/nmap 5.21 5.51 diagnostic/scanpci 0.12.1 0.13.1 diagnostic/wireshark 1.4.8 1.8.2 diagnostic/xload 1.1.0 1.1.1 editor/gnu-emacs 23.1 23.4 editor/vim 7.3.254 7.3.600 file/lndir 1.0.2 1.0.3 image/editor/bitmap 1.0.5 1.0.6 image/gnuplot 4.4.0 4.6.0 image/library/libexif 0.6.19 0.6.21 image/library/libpng 1.4.8 1.4.11 image/library/librsvg 2.26.3 2.34.1 image/xcursorgen 1.0.4 1.0.5 library/audio/pulseaudio not included 1.1 library/cacao 2.3.0.0 2.3.1.0 library/expat 2.0.1 2.1.0 library/gc 7.1 7.2 library/graphics/pixman 0.22.0 0.24.4 library/guile 1.8.4 1.8.6 library/java/javadb 10.5.3.0 10.6.2.1 library/java/subversion 1.6.16 1.7.5 library/json-c not included 0.9 library/libedit not included 3.0 library/libee not included 0.3.2 library/libestr not included 0.1.2 library/libevent 1.3.5 1.4.14.2 library/liblouis not included 2.1.1 library/liblouisxml not included 2.1.0 library/libtecla 1.6.0 1.6.1 library/libtool/libltdl 1.5.22 2.4.2 library/nspr 4.8.8 4.8.9 library/openldap 2.4.25 2.4.30 library/pcre 7.8 8.21 library/perl-5/subversion 1.6.16 1.7.5 library/python-2/jsonrpclib not included 0.1.3 library/python-2/lxml 2.1.2 2.3.3 library/python-2/nose not included 1.1.2 library/python-2/pyopenssl not included 0.11 library/python-2/subversion 1.6.16 1.7.5 library/python-2/tkinter-26 2.6.4 2.6.8 library/python-2/tkinter-27 2.7.1 2.7.3 library/security/nss 4.12.10 4.13.1 library/security/openssl 1.0.0.5 (1.0.0e) 1.0.0.10 (1.0.0j) mail/thunderbird 6.0 10.0.6 network/dns/bind 9.6.3.4.3 9.6.3.7.2 package/pkgbuild not included 1.3.104 print/filter/enscript not included 1.6.4 print/filter/gutenprint 5.2.4 5.2.7 print/lp/filter/foomatic-rip 3.0.2 4.0.15 runtime/java/jre-6 1.6.0.26 1.6.0.35 runtime/java/jre-7 1.7.0.0 1.7.0.7 runtime/perl-512 5.12.3 5.12.4 runtime/python-26 2.6.4 2.6.8 runtime/python-27 2.7.1 2.7.3 runtime/ruby-18 1.8.7.334 1.8.7.357 runtime/tcl-8/tcl-sqlite-3 3.7.6.3 3.7.11 security/compliance/openscap not included 0.8.1 security/nss-utilities 4.12.10 4.13.1 security/sudo 1.8.1.2 1.8.4.5 service/network/dhcp/isc-dhcp 4.1 4.1.0.6 service/network/dns/bind 9.6.3.4.3 9.6.3.7.2 service/network/ftp (ProFTPD) 1.3.3.0.5 1.3.3.0.7 service/network/samba 3.5.10 3.6.6 shell/conflict 0.2004.9.1 0.2010.6.27 shell/pipe-viewer 1.1.4 1.2.0 shell/zsh 4.3.12 4.3.17 system/boot/grub 0.97 1.99 system/font/truetype/liberation 1.4 1.7.2 system/library/freetype-2 2.4.6 2.4.9 system/library/libnet 1.1.2.1 1.1.5 system/management/cim/pegasus 2.9.1 2.11.0 system/management/ipmitool 1.8.10 1.8.11 system/management/wbem/wbemcli 1.3.7 1.3.9.1 system/network/routing/quagga 0.99.8 0.99.19 system/rsyslog not included 6.2.0 terminal/luit 1.1.0 1.1.1 text/convmv 1.14 1.15 text/gawk 3.1.5 3.1.8 text/gnu-grep 2.5.4 2.10 web/browser/firefox 6.0.2 10.0.6 web/browser/links 1.0 1.0.3 web/java-servlet/tomcat 6.0.33 6.0.35 web/php-53 not included 5.3.14 web/php-53/extension/php-apc not included 3.1.9 web/php-53/extension/php-idn not included 0.2.0 web/php-53/extension/php-memcache not included 3.0.6 web/php-53/extension/php-mysql not included 5.3.14 web/php-53/extension/php-pear not included 5.3.14 web/php-53/extension/php-suhosin not included 0.9.33 web/php-53/extension/php-tcpwrap not included 1.1.3 web/php-53/extension/php-xdebug not included 2.2.0 web/php-common not included 11.1 web/proxy/squid 3.1.8 3.1.18 web/server/apache-22 2.2.20 2.2.22 web/server/apache-22/module/apache-sed 2.2.20 2.2.22 web/server/apache-22/module/apache-wsgi not included 3.3 x11/diagnostic/xev 1.1.0 1.2.0 x11/diagnostic/xscope 1.3 1.3.1 x11/documentation/xorg-docs 1.6 1.7 x11/keyboard/xkbcomp 1.2.3 1.2.4 x11/library/libdmx 1.1.1 1.1.2 x11/library/libdrm 2.4.25 2.4.32 x11/library/libfontenc 1.1.0 1.1.1 x11/library/libfs 1.0.3 1.0.4 x11/library/libice 1.0.7 1.0.8 x11/library/libsm 1.2.0 1.2.1 x11/library/libx11 1.4.4 1.5.0 x11/library/libxau 1.0.6 1.0.7 x11/library/libxcb 1.7 1.8.1 x11/library/libxcursor 1.1.12 1.1.13 x11/library/libxdmcp 1.1.0 1.1.1 x11/library/libxext 1.3.0 1.3.1 x11/library/libxfixes 4.0.5 5.0 x11/library/libxfont 1.4.4 1.4.5 x11/library/libxft 2.2.0 2.3.1 x11/library/libxi 1.4.3 1.6.1 x11/library/libxinerama 1.1.1 1.1.2 x11/library/libxkbfile 1.0.7 1.0.8 x11/library/libxmu 1.1.0 1.1.1 x11/library/libxmuu 1.1.0 1.1.1 x11/library/libxpm 3.5.9 3.5.10 x11/library/libxrender 0.9.6 0.9.7 x11/library/libxres 1.0.5 1.0.6 x11/library/libxscrnsaver 1.2.1 1.2.2 x11/library/libxtst 1.2.0 1.2.1 x11/library/libxv 1.0.6 1.0.7 x11/library/libxvmc 1.0.6 1.0.7 x11/library/libxxf86vm 1.1.1 1.1.2 x11/library/mesa 7.10.2 7.11.2 x11/library/toolkit/libxaw7 1.0.9 1.0.11 x11/library/toolkit/libxt 1.0.9 1.1.3 x11/library/xtrans 1.2.6 1.2.7 x11/oclock 1.0.2 1.0.3 x11/server/xdmx 1.10.3 1.12.2 x11/server/xephyr 1.10.3 1.12.2 x11/server/xorg 1.10.3 1.12.2 x11/server/xorg/driver/xorg-input-keyboard 1.6.0 1.6.1 x11/server/xorg/driver/xorg-input-mouse 1.7.1 1.7.2 x11/server/xorg/driver/xorg-input-synaptics 1.4.1 1.6.2 x11/server/xorg/driver/xorg-input-vmmouse 12.7.0 12.8.0 x11/server/xorg/driver/xorg-video-ast 0.91.10 0.93.10 x11/server/xorg/driver/xorg-video-ati 6.14.1 6.14.4 x11/server/xorg/driver/xorg-video-cirrus 1.3.2 1.4.0 x11/server/xorg/driver/xorg-video-dummy 0.3.4 0.3.5 x11/server/xorg/driver/xorg-video-intel 2.10.0 2.18.0 x11/server/xorg/driver/xorg-video-mach64 6.9.0 6.9.1 x11/server/xorg/driver/xorg-video-mga 1.4.13 1.5.0 x11/server/xorg/driver/xorg-video-openchrome 0.2.904 0.2.905 x11/server/xorg/driver/xorg-video-r128 6.8.1 6.8.2 x11/server/xorg/driver/xorg-video-trident 1.3.4 1.3.5 x11/server/xorg/driver/xorg-video-vesa 2.3.0 2.3.1 x11/server/xorg/driver/xorg-video-vmware 11.0.3 12.0.2 x11/server/xserver-common 1.10.3 1.12.2 x11/server/xvfb 1.10.3 1.12.2 x11/server/xvnc 1.0.90 1.1.0 x11/session/sessreg 1.0.6 1.0.7 x11/session/xauth 1.0.6 1.0.7 x11/session/xinit 1.3.1 1.3.2 x11/transset 0.9.1 1.0.0 x11/trusted/trusted-xorg 1.10.3 1.12.2 x11/x11-window-dump 1.0.4 1.0.5 x11/xclipboard 1.1.1 1.1.2 x11/xclock 1.0.5 1.0.6 x11/xfd 1.1.0 1.1.1 x11/xfontsel 1.0.3 1.0.4 x11/xfs 1.1.1 1.1.2 P.S. To get the version numbers for this table, I ran a quick perl script over the output from: % pkg contents -H -r -t depend -a type=incorporate -o fmri \ `pkg contents -H -r -t depend -a type=incorporate -o fmri [email protected],5.11-0.175.1.0.0.24` \ | sort /tmp/11.1 % pkg contents -H -r -t depend -a type=incorporate -o fmri \ `pkg contents -H -r -t depend -a type=incorporate -o fmri [email protected],5.11-0.175.0.0.0.2` \ | sort /tmp/11.0

    Read the article

  • C# BindingSource.AddingNew is never called?

    - by msfanboy
    Hello, BindingSource.AddingNew is never called when I leave the cell of my datagrid. The DataGrid has as datasource the BindingSource which again has a "List" of "Customer". What does the BindingSource need to create a new Customer object and add it to the underlying ICustomerList ? Of course a interface has no constructor... Thats the Exception I get: System.MissingMethodException: The constcructor for the type "SAT.EnCoDe.Administration.ICustomer" was not found. bei System.RuntimeType.CreateInstanceImpl(BindingFlags bindingAttr, Binder binder, Object[] args, CultureInfo culture, Object[] activationAttributes) bei System.SecurityUtils.SecureCreateInstance(Type type, Object[] args) bei System.ComponentModel.BindingList1.AddNewCore() bei System.ComponentModel.BindingList1.System.ComponentModel.IBindingList.AddNew() bei System.Windows.Forms.BindingSource.AddNew() bei System.Windows.Forms.CurrencyManager.AddNew() bei DevExpress.Data.CurrencyDataController.OnCurrencyManagerAddNew() bei DevExpress.Data.CurrencyDataController.AddNewRow() bei DevExpress.XtraGrid.Views.Grid.GridView.OnActiveEditor_ValueModified(Object sender, EventArgs e) bei DevExpress.XtraEditors.Repository.RepositoryItem.RaiseModified(EventArgs e) bei DevExpress.XtraEditors.BaseEdit.OnEditValueChanging(ChangingEventArgs e) bei DevExpress.XtraEditors.TextEdit.OnMaskBox_ValueChanged(Object sender, EventArgs e) bei DevExpress.XtraEditors.Mask.MaskBox.RaiseEditTextChanged() bei System.Windows.Forms.TextBoxBase.WmReflectCommand(Message& m) bei DevExpress.XtraEditors.Mask.MaskBox.BaseWndProc(Message& m) bei DevExpress.XtraEditors.Mask.MaskBox.WndProc(Message& m) bei DevExpress.XtraEditors.TextBoxMaskBox.WndProc(Message& msg) bei System.Windows.Forms.Control.ControlNativeWindow.WndProc(Message& m) bei System.Windows.Forms.NativeWindow.Callback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam)

    Read the article

  • Child web.config can't clear <pages><controls> from parent web.config

    - by Lance Rushing
    How can I "clear" the vendor defined <controls> in my child app's web.config? Parent Web Config. <system.web> <pages> <controls> <!-- START: Vendor Custom Control --> <add tagPrefix="asp" namespace="VENDOR.Web.UI.Base" assembly="System.Web.Extensions, Version=1.0.61025.0, Culture=neutral /> ... <!-- END: Vendor Custom Control --> ... </controls> <tagMapping> <add tagType="System.Web.UI.WebControls.WebParts.WebPartManager" mappedTagType="Microsoft.Web.Preview.UI.Controls.WebParts.WebPartManager" /> <add tagType="System.Web.UI.WebControls.WebParts.WebPartZone" mappedTagType="Microsoft.Web.Preview.UI.Controls.WebParts.WebPartZone" /> </tagMapping> </pages> </system.web> Child: <system.web> <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </controls> <tagMapping> <clear/> </tagMapping> </pages> </system.web> I have it working for the <tagMapping> section, but <controls> does not support <clear/> (or ).

    Read the article

  • DataGridView not displaying data in ToolStripDropDown

    - by jblaske
    I'm utilizing the code posted by Jesper Palm here: http://stackoverflow.com/questions/280891/make-user-control-display-outside-of-form-boundry /// <summary> /// A simple popup window that can host any System.Windows.Forms.Control /// </summary> public class PopupWindow : System.Windows.Forms.ToolStripDropDown { private System.Windows.Forms.Control _content; private System.Windows.Forms.ToolStripControlHost _host; public PopupWindow(System.Windows.Forms.Control content) { //Basic setup... this.AutoSize = false; this.DoubleBuffered = true; this.ResizeRedraw = true; this._content = content; this._host = new System.Windows.Forms.ToolStripControlHost(content); //Positioning and Sizing this.MinimumSize = content.MinimumSize; this.MaximumSize = content.Size; this.Size = content.Size; content.Location = Point.Empty; //Add the host to the list this.Items.Add(this._host); } } I've translated it to VB: Public Class PopupWindow Inherits System.Windows.Forms.ToolStripDropDown Private _content As System.Windows.Forms.Control Private _host As System.Windows.Forms.ToolStripControlHost Public Sub New(ByVal content As System.Windows.Forms.Control) Me.AutoSize = False Me.DoubleBuffered = True Me.ResizeRedraw = True Me._content = content Me._host = New System.Windows.Forms.ToolStripControlHost(content) Me.MinimumSize = content.MinimumSize Me.MaximumSize = content.MaximumSize Me.Size = content.Size content.Location = Point.Empty Me.Items.Add(Me._host) End Sub End Class It works great with a PictureBox showing its information. But for some reason I cannot get the DataGridView to display anything when it is in the popup. If I pull the grid out of the popup it displays all of its information fine. If I pause during debug, the grid shows that it has all the data in it. It's just not displaying anything. Does anybody have any ideas?

    Read the article

  • IIS 6 with wildcard mapping and UNC virtual directory problem

    - by El Che
    Hi. On our production servers (win 2003 with IIS6 and load balanced with an F5 BIGIP), we have a problem when introducing wildcardmapping on IIS6. We use .net Framework 3.5 SP1. The issue manifests itself as by the server only sometimes serving the images stored on a virtual directory pointing to a UNC path. Sometimes the images are displayed, and sometimes not. Removing the wildcard mapping solved this problem. I will need wildcard mapping on the server for future features, so any help/pointers to if this is a known problem will be very helpful. In advance, thanks for any help. Edit: The exception it fails with is the following: Message: Failed to start monitoring changes to '\ourFileServer\folder1\thumbnails' because the network BIOS command limit has been reached. For more information on this error, please refer to Microsoft knowledge base article 810886. Hosting on a UNC share is not supported for the Windows XP Platform. Source: System.Web Data: System.Collections.ListDictionaryInternal TargetSizeVoid .ctor(System.Web.DirectoryMonitor, System.String, Boolean, UInt32) StackTrace at System.Web.DirMonCompletion..ctor(DirectoryMonitor dirMon, String dir, Boolean watchSubtree, UInt32 notifyFilter) at System.Web.DirectoryMonitor.StartMonitoring() at System.Web.DirectoryMonitor.StartMonitoringFile(String file, FileChangeEventHandler callback, String alias) at System.Web.FileChangesMonitor.StartMonitoringFile(String alias, FileChangeEventHandler callback) at System.Web.Configuration.WebConfigurationHost.StartMonitoringStreamForChanges(String streamName, StreamChangeCallback callback) at System.Configuration.BaseConfigurationRecord.MonitorStream(String configKey, String configSource, String streamname) at System.Configuration.BaseConfigurationRecord.InitConfigFromFile()

    Read the article

  • Using Nemerle in asp.net App_Code directory

    - by Andrew Davey
    I want to use Nemerle in an ASP.NET application. Specifically, putting .n files into App_Code. I added this to my web.config system.codedom/compilers section: <compiler language="n;Nemerle" extension=".n" type="Nemerle.Compiler.NemerleCodeProvider, Nemerle.Compiler"/> When running I get this exception: The assembly '' is already loaded in another appdomain. Setting in machine.config can help solve this issue. Stack trace [HttpException (0x80004005): The assembly '' is already loaded in another appdomain. Setting <deployment retail="true" /> in machine.config can help solve this issue.] System.Web.Compilation.CodeDirectoryCompiler.GetCodeDirectoryAssembly(VirtualPath virtualDir, CodeDirectoryType dirType, String assemblyName, StringSet excludedSubdirectories, Boolean isDirectoryAllowed) +8809675 System.Web.Compilation.BuildManager.CompileCodeDirectory(VirtualPath virtualDir, CodeDirectoryType dirType, String assemblyName, StringSet excludedSubdirectories) +128 System.Web.Compilation.BuildManager.CompileCodeDirectories() +265 System.Web.Compilation.BuildManager.EnsureTopLevelFilesCompiled() +320 [HttpException (0x80004005): The assembly '' is already loaded in another appdomain. Setting <deployment retail="true" /> in machine.config can help solve this issue.] System.Web.Compilation.BuildManager.ReportTopLevelCompilationException() +58 System.Web.Compilation.BuildManager.EnsureTopLevelFilesCompiled() +512 System.Web.Hosting.HostingEnvironment.Initialize(ApplicationManager appManager, IApplicationHost appHost, IConfigMapPathFactory configMapPathFactory, HostingEnvironmentParameters hostingParameters) +729 [HttpException (0x80004005): The assembly '' is already loaded in another appdomain. Setting <deployment retail="true" /> in machine.config can help solve this issue.] System.Web.HttpRuntime.FirstRequestInit(HttpContext context) +8890735 System.Web.HttpRuntime.EnsureFirstRequestInit(HttpContext context) +85 System.Web.HttpRuntime.ProcessRequestInternal(HttpWorkerRequest wr) +259 What am I doing wrong?

    Read the article

  • How to migrate from XslTransform to XslCompiledTransform

    - by Atara
    I have the following code that I need to migrate from VS 2003 (.Net 1.1) to VS 2008 (.Net 2+) but I get compilation error - System.Xml.Xsl.XslTransform' is obsolete: This class has been deprecated. I probably need to use System.Xml.Xsl.XslCompiledTransform instead. but I do not find the matching Load() and Transform() overload versions that I can use with all the parameters of my original code. in MSDN [How to: Migrate Your XslTransform Code] I only found some simpler cases. http://msdn.microsoft.com/en-us/library/aa983475%28VS.80%29.aspx but in my code I see some remarks that hints that the added parameters were used to avoid exceptions, so I prefer to use these parameters. Can someone please help migrating this code? Thanks, Atara ' ---------------------------------------------------------------------- ' VS 2003 code: ' ---------------------------------------------------------------------- . . . Dim myXslDoc As Xml.XmlDocument ' ---------------------------------------------------------------------- Public Sub mcSetParameters(ByVal srcFileName As String) ' ---------------------------------------------------------------------- Me.myXslDoc = New Xml.XmlDocument Me.myXslDoc.Load(srcFileName) End Sub ' ---------------------------------------------------------------------- Public Sub mcSetHtml() ' ---------------------------------------------------------------------- Dim oXPathNav As System.Xml.XPath.XPathNavigator = xmlDoc.DocumentElement.CreateNavigator() Dim sbContent As New System.Text.StringBuilder Dim swContent As New System.IO.StringWriter(sbContent) Dim args As New System.Xml.Xsl.XsltArgumentList args.AddParam("paramName1", "", paramVal1.ToString) args.AddParam("paramName2", "", paramVal2.ToString) Try ' Try to avoid "Invalid site" exception, by using XmlUrlResolver and Evidence. ' If the XSLT stylesheet . . . comes from a code base that you trust, Then use Me.GetType().Assembly.Evidence() Dim resolver As System.Xml.XmlUrlResolver = New System.Xml.XmlUrlResolver resolver.Credentials = System.Net.CredentialCache.DefaultCredentials Dim xslt As System.Xml.Xsl.XslTransform = New System.Xml.Xsl.XslTransform xslt.Load(Me.myXslDoc, resolver, Me.GetType().Assembly.Evidence()) xslt.Transform(oXPathNav, args, swContent, Nothing) Catch ex As Exception Debug.WriteLine("Exception: {0}", ex.ToString()) End Try DoSomething(sbContent.ToString()) End Sub ' ----------------------------------------------------------------------

    Read the article

  • How to avoid timeouts in WCF?

    - by Jader Dias
    I use netNamedPipeBinding, and my service methods return nothing (void), but they timeout: TimeoutException: "The open operation did not complete within the allotted timeout of 00:01:00. The time allotted to this operation may have been a portion of a longer timeout." Server stack trace: at System.ServiceModel.Channels.ClientFramingDuplexSessionChannel.OnOpen(TimeSpan timeout) at System.ServiceModel.Channels.CommunicationObject.Open(TimeSpan timeout) at System.ServiceModel.Channels.ServiceChannel.OnOpen(TimeSpan timeout) at System.ServiceModel.Channels.CommunicationObject.Open(TimeSpan timeout) at System.ServiceModel.Channels.ServiceChannel.CallOnceManager.CallOnce(TimeSpan timeout, CallOnceManager cascade) at System.ServiceModel.Channels.ServiceChannel.EnsureOpened(TimeSpan timeout) at System.ServiceModel.Channels.ServiceChannel.Call(String action, Boolean oneway, ProxyOperationRuntime operation, Object[] ins, Object[] outs, TimeSpan timeout) at System.ServiceModel.Channels.ServiceChannelProxy.InvokeService(IMethodCallMessage methodCall, ProxyOperationRuntime operation) at System.ServiceModel.Channels.ServiceChannelProxy.Invoke(IMessage message) Exception rethrown at [0]: at System.Runtime.Remoting.Proxies.RealProxy.HandleReturnMessage(IMessage reqMsg, IMessage retMsg) at System.Runtime.Remoting.Proxies.RealProxy.PrivateInvoke(MessageData& msgData, Int32 type) To avoid this I turned my service into a OneWay operation. But the timeout still occurs. I expected that it solved my problem. Its the netMsmqBinding the only one that could avoid such timeout? I also tried to make all processing in a separate thread, so the service can disconnect earlier, with no success.

    Read the article

  • DateFormat conversion problem in java?

    - by androidbase Praveen
    my input String is : 2010-03-24T17:28:50.000Z output pattern is like: DateFormat formatter1 = new SimpleDateFormat("EEE. MMM. d. yyyy"); i convert this like this: formatter1.format(new Date("2010-03-24T17:28:50.000Z"));//illegalArgumentException here the string "2010-03-24T17:28:50.000Z" ouput should be like this: Thu. Mar. 24. 2010 idea but i get a illegalArgumentException. Dont know why? any idea?? stacktrace message is: 04-08 19:50:28.326: WARN/System.err(306): java.lang.IllegalArgumentException 04-08 19:50:28.345: WARN/System.err(306): at java.util.Date.parse(Date.java:447) 04-08 19:50:28.355: WARN/System.err(306): at java.util.Date.<init>(Date.java:157) 04-08 19:50:28.366: WARN/System.err(306): at com.example.brown.Bru_Tube$SelectDataTask.doInBackground(Bru_Tube.java:222) 04-08 19:50:28.366: WARN/System.err(306): at com.example.brown.Bru_Tube$SelectDataTask.doInBackground(Bru_Tube.java:1) 04-08 19:50:28.405: WARN/System.err(306): at android.os.AsyncTask$2.call(AsyncTask.java:185) 04-08 19:50:28.415: WARN/System.err(306): at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:305) 04-08 19:50:28.415: WARN/System.err(306): at java.util.concurrent.FutureTask.run(FutureTask.java:137) 04-08 19:50:28.446: WARN/System.err(306): at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1068) 04-08 19:50:28.456: WARN/System.err(306): at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:561) 04-08 19:50:28.466: WARN/System.err(306): at java.lang.Thread.run(Thread.java:1096)

    Read the article

  • Generating EF Code First model classes from an existing database

    - by Jon Galloway
    Entity Framework Code First is a lightweight way to "turn on" data access for a simple CLR class. As the name implies, the intended use is that you're writing the code first and thinking about the database later. However, I really like the Entity Framework Code First works, and I want to use it in existing projects and projects with pre-existing databases. For example, MVC Music Store comes with a SQL Express database that's pre-loaded with a catalog of music (including genres, artists, and songs), and while it may eventually make sense to load that seed data from a different source, for the MVC 3 release we wanted to keep using the existing database. While I'm not getting the full benefit of Code First - writing code which drives the database schema - I can still benefit from the simplicity of the lightweight code approach. Scott Guthrie blogged about how to use entity framework with an existing database, looking at how you can override the Entity Framework Code First conventions so that it can work with a database which was created following other conventions. That gives you the information you need to create the model classes manually. However, it turns out that with Entity Framework 4 CTP 5, there's a way to generate the model classes from the database schema. Once the grunt work is done, of course, you can go in and modify the model classes as you'd like, but you can save the time and frustration of figuring out things like mapping SQL database types to .NET types. Note that this template requires Entity Framework 4 CTP 5 or later. You can install EF 4 CTP 5 here. Step One: Generate an EF Model from your existing database The code generation system in Entity Framework works from a model. You can add a model to your existing project and delete it when you're done, but I think it's simpler to just spin up a separate project to generate the model classes. When you're done, you can delete the project without affecting your application, or you may choose to keep it around in case you have other database schema updates which require model changes. I chose to add the Model classes to the Models folder of a new MVC 3 application. Right-click the folder and select "Add / New Item..."   Next, select ADO.NET Entity Data Model from the Data Templates list, and name it whatever you want (the name is unimportant).   Next, select "Generate from database." This is important - it's what kicks off the next few steps, which read your database's schema.   Now it's time to point the Entity Data Model Wizard at your existing database. I'll assume you know how to find your database - if not, I covered that a bit in the MVC Music Store tutorial section on Models and Data. Select your database, uncheck the "Save entity connection settings in Web.config" (since we won't be using them within the application), and click Next.   Now you can select the database objects you'd like modeled. I just selected all tables and clicked Finish.   And there's your model. If you want, you can make additional changes here before going on to generate the code.   Step Two: Add the DbContext Generator Like most code generation systems in Visual Studio lately, Entity Framework uses T4 templates which allow for some control over how the code is generated. K Scott Allen wrote a detailed article on T4 Templates and the Entity Framework on MSDN recently, if you'd like to know more. Fortunately for us, there's already a template that does just what we need without any customization. Right-click a blank space in the Entity Framework model surface and select "Add Code Generation Item..." Select the Code groupt in the Installed Templates section and pick the ADO.NET DbContext Generator. If you don't see this listed, make sure you've got EF 4 CTP 5 installed and that you're looking at the Code templates group. Note that the DbContext Generator template is similar to the EF POCO template which came out last year, but with "fix up" code (unnecessary in EF Code First) removed.   As soon as you do this, you'll two terrifying Security Warnings - unless you click the "Do not show this message again" checkbox the first time. It will also be displayed (twice) every time you rebuild the project, so I checked the box and no immediate harm befell my computer (fingers crossed!).   Here's the payoff: two templates (filenames ending with .tt) have been added to the project, and they've generated the code I needed.   The "MusicStoreEntities.Context.tt" template built a DbContext class which holds the entity collections, and the "MusicStoreEntities.tt" template build a separate class for each table I selected earlier. We'll customize them in the next step. I recommend copying all the generated .cs files into your application at this point, since accidentally rebuilding the generation project will overwrite your changes if you leave them there. Step Three: Modify and use your POCO entity classes Note: I made a bunch of tweaks to my POCO classes after they were generated. You don't have to do any of this, but I think it's important that you can - they're your classes, and EF Code First respects that. Modify them as you need for your application, or don't. The Context class derives from DbContext, which is what turns on the EF Code First features. It holds a DbSet for each entity. Think of DbSet as a simple List, but with Entity Framework features turned on.   //------------------------------------------------------------------------------ // <auto-generated> // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Data.Entity; public partial class Entities : DbContext { public Entities() : base("name=Entities") { } public DbSet<Album> Albums { get; set; } public DbSet<Artist> Artists { get; set; } public DbSet<Cart> Carts { get; set; } public DbSet<Genre> Genres { get; set; } public DbSet<OrderDetail> OrderDetails { get; set; } public DbSet<Order> Orders { get; set; } } } It's a pretty lightweight class as generated, so I just took out the comments, set the namespace, removed the constructor, and formatted it a bit. Done. If I wanted, though, I could have added or removed DbSets, overridden conventions, etc. using System.Data.Entity; namespace MvcMusicStore.Models { public class MusicStoreEntities : DbContext { public DbSet Albums { get; set; } public DbSet Genres { get; set; } public DbSet Artists { get; set; } public DbSet Carts { get; set; } public DbSet Orders { get; set; } public DbSet OrderDetails { get; set; } } } Next, it's time to look at the individual classes. Some of mine were pretty simple - for the Cart class, I just need to remove the header and clean up the namespace. //------------------------------------------------------------------------------ // // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Collections.Generic; public partial class Cart { // Primitive properties public int RecordId { get; set; } public string CartId { get; set; } public int AlbumId { get; set; } public int Count { get; set; } public System.DateTime DateCreated { get; set; } // Navigation properties public virtual Album Album { get; set; } } } I did a bit more customization on the Album class. Here's what was generated: //------------------------------------------------------------------------------ // // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Collections.Generic; public partial class Album { public Album() { this.Carts = new HashSet(); this.OrderDetails = new HashSet(); } // Primitive properties public int AlbumId { get; set; } public int GenreId { get; set; } public int ArtistId { get; set; } public string Title { get; set; } public decimal Price { get; set; } public string AlbumArtUrl { get; set; } // Navigation properties public virtual Artist Artist { get; set; } public virtual Genre Genre { get; set; } public virtual ICollection Carts { get; set; } public virtual ICollection OrderDetails { get; set; } } } I removed the header, changed the namespace, and removed some of the navigation properties. One nice thing about EF Code First is that you don't have to have a property for each database column or foreign key. In the Music Store sample, for instance, we build the app up using code first and start with just a few columns, adding in fields and navigation properties as the application needs them. EF Code First handles the columsn we've told it about and doesn't complain about the others. Here's the basic class: using System.ComponentModel; using System.ComponentModel.DataAnnotations; using System.Web.Mvc; using System.Collections.Generic; namespace MvcMusicStore.Models { public class Album { public int AlbumId { get; set; } public int GenreId { get; set; } public int ArtistId { get; set; } public string Title { get; set; } public decimal Price { get; set; } public string AlbumArtUrl { get; set; } public virtual Genre Genre { get; set; } public virtual Artist Artist { get; set; } public virtual List OrderDetails { get; set; } } } It's my class, not Entity Framework's, so I'm free to do what I want with it. I added a bunch of MVC 3 annotations for scaffolding and validation support, as shown below: using System.ComponentModel; using System.ComponentModel.DataAnnotations; using System.Web.Mvc; using System.Collections.Generic; namespace MvcMusicStore.Models { [Bind(Exclude = "AlbumId")] public class Album { [ScaffoldColumn(false)] public int AlbumId { get; set; } [DisplayName("Genre")] public int GenreId { get; set; } [DisplayName("Artist")] public int ArtistId { get; set; } [Required(ErrorMessage = "An Album Title is required")] [StringLength(160)] public string Title { get; set; } [Required(ErrorMessage = "Price is required")] [Range(0.01, 100.00, ErrorMessage = "Price must be between 0.01 and 100.00")] public decimal Price { get; set; } [DisplayName("Album Art URL")] [StringLength(1024)] public string AlbumArtUrl { get; set; } public virtual Genre Genre { get; set; } public virtual Artist Artist { get; set; } public virtual List<OrderDetail> OrderDetails { get; set; } } } The end result was that I had working EF Code First model code for the finished application. You can follow along through the tutorial to see how I built up to the finished model classes, starting with simple 2-3 property classes and building up to the full working schema. Thanks to Diego Vega (on the Entity Framework team) for pointing me to the DbContext template.

    Read the article

  • C# using namespace directive in nested namespaces

    - by MoSlo
    Right, I've usually used 'using' directives as follows using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace AwesomeLib { //awesome award winning class declarations making use of Linq } i've recently seen examples of such as using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace AwesomeLib { //awesome award winning class declarations making use of Linq namespace DataLibrary { using System.Data; //Data access layers and whatnot } } Granted, i understand that i can put USING inside of my namespace declaration. Such a thing makes sense to me if your namespaces are in the same root (they organized). System; namespace 1 {} namespace 2 { System.data; } But what of nested namespaces? Personally, I would leave all USING declarations at the top where you can find them easily. Instead, it looks like they're being spread all over the source file. Is there benefit to the USING directives being used this way in nested namespaces? Such as memory management or the JIT compiler?

    Read the article

  • C# Active Directory - Check username / password

    - by Michael G
    I'm using the following code on Windows Vista Ultimate SP1 to query our active directory server to check the user name and password of a user on a domain. public Object IsAuthenticated() { String domainAndUsername = strDomain + @"\" + strUser; DirectoryEntry entry = new DirectoryEntry(_path, domainAndUsername, strPass); SearchResult result; try { //Bind to the native AdsObject to force authentication. DirectorySearcher search = new DirectorySearcher(entry) { Filter = ("(SAMAccountName=" + strUser + ")") }; search.PropertiesToLoad.Add("givenName"); // First Name search.PropertiesToLoad.Add("sn"); // Last Name search.PropertiesToLoad.Add("cn"); // Last Name result = search.FindOne(); if (null == result) { return null; } //Update the new path to the user in the directory. _path = result.Path; _filterAttribute = (String)result.Properties["cn"][0]; } catch (Exception ex) { return new Exception("Error authenticating user. " + ex.Message); } return user; } the target is using .NET 3.5, and compiled with VS 2008 standard I'm logged in under a domain account that is a domain admin where the application is running. The code works perfectly on windows XP; but i get the following exception when running it on Vista: System.DirectoryServices.DirectoryServicesCOMException (0x8007052E): Logon failure: unknown user name or bad password. at System.DirectoryServices.DirectoryEntry.Bind(Boolean throwIfFail) at System.DirectoryServices.DirectoryEntry.Bind() at System.DirectoryServices.DirectoryEntry.get_AdsObject() at System.DirectoryServices.DirectorySearcher.FindAll(Boolean findMoreThanOne) at System.DirectoryServices.DirectorySearcher.FindOne() at Chain_Of_Custody.Classes.Authentication.LdapAuthentication.IsAuthenticated() at System.DirectoryServices.DirectoryEntry.Bind(Boolean throwIfFail) at System.DirectoryServices.DirectoryEntry.Bind() at System.DirectoryServices.DirectoryEntry.get_AdsObject() at System.DirectoryServices.DirectorySearcher.FindAll(Boolean findMoreThanOne) at System.DirectoryServices.DirectorySearcher.FindOne() at Chain_Of_Custody.Classes.Authentication.LdapAuthentication.IsAuthenticated() I've tried changing the authentication types, I'm not sure what's going on. See also: http://stackoverflow.com/questions/290548/c-validate-a-username-and-password-against-active-directory

    Read the article

  • Get more debug info from AxHost?

    - by Presidenten
    Hello I'm trying to deploy an application which uses an library that embeds an ActiveX control with AxHost in C#. When I run the installed app on our test rig I catch and present the following exception: Unexpected exception. This application has failed to start because the application configuration is incorrect. Reinstalling the application may fix this problem. (Exception from HRESULT: 0x800736B1) at System.Windows.Forms.UnsafeNativeMethods.CoCreateInstance(Guid& clsid, Object punkOuter, Int32 context, Guid& iid) at System.Windows.Forms.AxHost.CreateWithoutLicense(Guid clsid) at System.Windows.Forms.AxHost.CreateWithLicense(String license, Guid clsid) at System.Windows.Forms.AxHost.CreateInstanceCore(Guid clsid) at System.Windows.Forms.AxHost.CreateInstance() at System.Windows.Forms.AxHost.GetOcxCreate() at System.Windows.Forms.AxHost.TransitionUpTo(Int32 state) at System.Windows.Forms.AxHost.CreateHandle() at System.Windows.Forms.Control.CreateControl(Boolean fIgnoreVisible) at System.Windows.Forms.Control.CreateControl(Boolean fIgnoreVisible) at System.Windows.Forms.AxHost.EndInit() at ....InitializeComponent() at ... I googled 0x800736B1, so I know that it means that a file could not be loaded. The big Q right now is how to find out which file it is that cant be loaded. Is there some sort of logging function I can turn on, or is there maybe som way I can get more info from the exception?

    Read the article

  • Error when changing default lanuage in asp.net compilation from vb to c#

    - by Herman
    Hi all, We have a updatable web site project that is written in c#, it has the usual web form implementation using master page, skins, user controls,...etc. Up to this point we neglect to change the default compilation language from VB to C#. However, the second we change it, we see the following error. Object reference not set to an instance of an object. ---> System.NullReferenceException: Object reference not set to an instance of an object. at ASP.Default.__DataBinding__control499(Object sender, EventArgs e) at System.Web.UI.Control.OnDataBinding(EventArgs e) at System.Web.UI.Control.DataBind(Boolean raiseOnDataBinding) at System.Web.UI.Control.DataBindChildren() at System.Web.UI.Control.DataBind(Boolean raiseOnDataBinding) at System.Web.UI.Control.DataBindChildren() at System.Web.UI.Control.DataBind(Boolean raiseOnDataBinding) at System.Web.UI.Control.DataBindChildren() at System.Web.UI.Control.DataBind(Boolean raiseOnDataBinding) at System.Web.UI.Control.DataBindChildren() at System.Web.UI.Control.DataBind(Boolean raiseOnDataBinding) at .... Further investigation points out that this error is getting generated from a Theme related assembly (Source : App_Theme_Default.zclakrlo). Any ideas? One of my co-worker suggested that it might be skin file related since we have a theme call "Default" and there is no way to specify a language on a skin file. Therefore, when the asp.net runtime tries to compile it under C#, it will give a name collision? Does this make sense? Any help is appreciated.

    Read the article

  • When using SendKeys()-InvalidOperationException: Undo Operation encountered...

    - by M0DC0M
    Here is my code public void KeyPress() { //Finds the target window and sends a key command to the application Process[] processes = Process.GetProcessesByName("calc"); IntPtr calculatorHandle; foreach (Process proc in processes) { calculatorHandle = proc.MainWindowHandle; if (calculatorHandle == IntPtr.Zero) { MessageBox.Show("Calculator is not running."); return; } SetForegroundWindow(calculatorHandle); break; } SendKeys.SendWait("1"); } After Executing this code I recieve an Error, i know the source is the SendKeys. Here is the full error I am Receiving System.InvalidOperationException was unhandled Message="The Undo operation encountered a context that is different from what was applied in the corresponding Set operation. The possible cause is that a context was Set on the thread and not reverted(undone)." Source="mscorlib" StackTrace: at System.Threading.SynchronizationContextSwitcher.Undo() at System.Threading.ExecutionContextSwitcher.Undo() at System.Threading.ExecutionContext.runFinallyCode(Object userData, Boolean exceptionThrown) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteBackoutCodeHelper(Object backoutCode, Object userData, Boolean exceptionThrown) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Net.ContextAwareResult.Complete(IntPtr userToken) at System.Net.LazyAsyncResult.ProtectedInvokeCallback(Object result, IntPtr userToken) at System.Net.Sockets.BaseOverlappedAsyncResult.CompletionPortCallback(UInt32 errorCode, UInt32 numBytes, NativeOverlapped* nativeOverlapped) at System.Threading._IOCompletionCallback.PerformIOCompletionCallback(UInt32 errorCode, UInt32 numBytes, NativeOverlapped* pOVERLAP) InnerException: I'm not sure what the problem is, The number will appear in my calculator but that error pops up

    Read the article

  • Unable to generate a temporary class (result=1).\r\nerror CS0030:- c#

    - by ltech
    Running XSD.exe on my xml to generate C# class. All works well except on this property public DocumentATTRIBUTES[][] Document { get { return this.documentField; } set { this.documentField = value; } } I want to try and use CollectionBase, and this was my attempt public DocumentATTRIBUTESCollection Document { get { return this.documentField; } set { this.documentField = value; } } /// <remarks/> [System.SerializableAttribute()] [System.Diagnostics.DebuggerStepThroughAttribute()] [System.ComponentModel.DesignerCategoryAttribute("code")] [System.Xml.Serialization.XmlTypeAttribute(AnonymousType = true)] public partial class DocumentATTRIBUTES { private string _author; private string _maxVersions; private string _summary; /// <remarks/> [System.Xml.Serialization.XmlElementAttribute(Form = System.Xml.Schema.XmlSchemaForm.Unqualified)] public string author { get { return _author; } set { _author = value; } } /// <remarks/> [System.Xml.Serialization.XmlElementAttribute(Form = System.Xml.Schema.XmlSchemaForm.Unqualified)] public string max_versions { get { return _maxVersions; } set { _maxVersions = value; } } /// <remarks/> [System.Xml.Serialization.XmlElementAttribute(Form = System.Xml.Schema.XmlSchemaForm.Unqualified)] public string summary { get { return _summary; } set { _summary = value; } } } public class DocumentAttributeCollection : System.Collections.CollectionBase { public DocumentAttributeCollection() : base() { } public DocumentATTRIBUTES this[int index] { get { return (DocumentATTRIBUTES)this.InnerList[index]; } } public void Insert(int index, DocumentATTRIBUTES value) { this.InnerList.Insert(index, value); } public int Add(DocumentATTRIBUTES value) { return (this.InnerList.Add(value)); } } However when I try to serialize my object using XmlSerializer serializer = new XmlSerializer(typeof(DocumentMetaData)); I get the error: {"Unable to generate a temporary class (result=1).\r\nerror CS0030: Cannot convert type 'DocumentATTRIBUTES' to 'DocumentAttributeCollection'\r\nerror CS1502: The best overloaded method match for 'DocumentAttributeCollection.Add(DocumentATTRIBUTES)' has some invalid arguments\r\nerror CS1503: Argument '1': cannot convert from 'DocumentAttributeCollection' to 'DocumentATTRIBUTES'\r\n"}

    Read the article

  • Invalid viewstate error

    - by Chamila
    I'm getting an invalid viewstate error with regard to the ScriptResource.axd. Just wondering if anyone of you could help me on this. Error is: 2009-02-24 09:46:30,021 [13] DEBUG ASP.global_asax [(null)] - Request start - URL: /Web/ScriptResource.axd?d=E9hlvtsn8Gr1MyjysW1gFDFYr4CVwstY-sC22tRu5V8d7UyEYz3FhVYGrlhY87n2ihgKh58RrMRhK-Yk2WcQahEaCg_asTInqHK 2009-02-24 09:46:30,021 [13] DEBUG ASP.global_asax [(null)] - Application_AuthenticateRequest started 2009-02-24 09:46:30,021 [13] ERROR ASP.global_asax [(null)] - Unexpected error. User presented with Site Error page. System.Web.HttpException: Invalid viewstate. at System.Web.UI.Page.DecryptStringWithIV(String s, IVType ivType) at System.Web.UI.Page.DecryptString(String s) at System.Web.Handlers.ScriptResourceHandler.DecryptParameter(NameValueCollection queryString) at System.Web.Handlers.ScriptResourceHandler.ProcessRequestInternal(HttpResponse response, NameValueCollection queryString, VirtualFileReader fileReader) at System.Web.Handlers.ScriptResourceHandler.ProcessRequest(HttpContext context) at System.Web.Handlers.ScriptResourceHandler.System.Web.IHttpHandler.ProcessRequest(HttpContext context) at System.Web.HttpApplication.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) This happens in production environment. I'm unable to reproduce this in dev nor test environments. Also these pages can only be accessed by authenticated users. It would be really if you could shed some light on this matter.

    Read the article

  • Need help making a check statement to make sure al the controls are not blank

    - by Michael Quiles
    This is for a tic tac toe game. I need help making a check statement to see if all the controls' Texts are non-blank, and if they are, you have a draw (if someone had won the previous code would have discovered that). Can you give me a good example using my code. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Windows.Forms; using System.Drawing; namespace MyGame { public class Result1 { static private int[,] Winners = new int[,] { // main gameplay Ex: if x is on 0,1,2 x is the winner {0,1,2}, {3,4,5}, {6,7,8}, {0,3,6}, {1,4,7}, {2,5,8}, {0,4,8}, {2,4,6}, }; static public bool CheckWinner(Button[] myControls) { //bolean statement to check for the winner bool gameOver = false; for (int i = 0; i < 8; i++) { int a = Winners[i, 0]; int b = Winners[i, 1]; int c = Winners[i, 2]; Button b1 = myControls[a], b2 = myControls[b], b3 = myControls[c]; if (b1.Text == "" || b2.Text == "" || b3.Text == "") continue; if (b1.Text == b2.Text && b2.Text == b3.Text) { b1.BackColor = b2.BackColor = b3.BackColor = Color.LightCoral; b1.Font = b2.Font = b3.Font = new System.Drawing.Font("Microsoft Sans Serif", 32F, System.Drawing.FontStyle.Italic & System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((System.Byte)(0))); gameOver = true; xWinnerForm xWinnerForm = new xWinnerForm(); xWinnerForm.ShowDialog(); //only works with show not showDialog method gets overloaded (b1.Text + " is the Winner"); to get around this I added and image showing the last player } } return gameOver; } } }

    Read the article

  • ASP.NET Sql Timeout

    - by Petoj
    Well we have this Asp.Net application that we installed at a customer but now some times we get a SqlException that says "Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding." now the wired thing is that the exception comes instantly when i press the button, this does not happen every time i press the button so its random.. any idea what i could try to pinpoint the problem? We are using the EnterpriseLibrary Database block if that matters... Stack trace: at System.Data.SqlClient.SqlConnection.OnError(SqlException exception, Boolean breakConnection) at System.Data.SqlClient.TdsParser.ThrowExceptionAndWarning(TdsParserStateObject stateObj) at System.Data.SqlClient.TdsParser.Run(RunBehavior runBehavior, SqlCommand cmdHandler, SqlDataReader dataStream, BulkCopySimpleResultSet bulkCopyHandler, TdsParserStateObject stateObj) at System.Data.SqlClient.SqlDataReader.ConsumeMetaData() at System.Data.SqlClient.SqlDataReader.get_MetaData() at System.Data.SqlClient.SqlCommand.FinishExecuteReader(SqlDataReader ds, RunBehavior runBehavior, String resetOptionsString) at System.Data.SqlClient.SqlCommand.RunExecuteReaderTds(CommandBehavior cmdBehavior, RunBehavior runBehavior, Boolean returnStream, Boolean async) at System.Data.SqlClient.SqlCommand.RunExecuteReader(CommandBehavior cmdBehavior, RunBehavior runBehavior, Boolean returnStream, String method, DbAsyncResult result) at System.Data.SqlClient.SqlCommand.RunExecuteReader(CommandBehavior cmdBehavior, RunBehavior runBehavior, Boolean returnStream, String method) at System.Data.SqlClient.SqlCommand.ExecuteReader(CommandBehavior behavior, String method) at System.Data.SqlClient.SqlCommand.ExecuteDbDataReader(CommandBehavior behavior) at Microsoft.Practices.EnterpriseLibrary.Data.Database.DoExecuteReader(DbCommand command, CommandBehavior cmdBehavior) at Microsoft.Practices.EnterpriseLibrary.Data.Database.ExecuteReader(DbCommand command)

    Read the article

  • Are the old httpHandlers and httpModules elements needed in IIS7?

    - by James Newton-King
    I'd like to clean up the web.config and remove unneeded XML. A default ASP.NET 3.5 web application has the follow elements in the web.config: <httpHandlers> <remove verb="*" path="*.asmx"/> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false"/> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule, System.Web.Routing, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </httpModules> When running under IIS7, which has modules and handlers being registered under the system.webServer element, is the configuration above still needed?

    Read the article

  • MVC 2 Data annotations problem

    - by Louzzzzzz
    Hi. Going mad now. I have a MVC solution that i've upgraded from MVC 1 to 2. It all works fine.... except the Validation! Here's some code: In the controller: using System; using System.Collections.Generic; using System.Globalization; using System.Linq; using System.Security.Principal; using System.Web; using System.Web.Mvc; using System.Web.Security; using System.Web.UI; using MF.Services.Authentication; using System.ComponentModel; using System.ComponentModel.DataAnnotations; namespace MF.Controllers { //basic viewmodel public class LogOnViewData { [Required] public string UserName { get; set; } [Required] public string Password { get; set; } } [HandleError] public class AccountController : Controller { [HttpPost] public ActionResult LogOn(LogOnViewData lvd, string returnUrl) { if (ModelState.IsValid) { //do stuff - IsValid is always true } } } } The ModelState is always valid. The model is being populated correctly however. Therefore, if I leave both username and password blank, and post the form the model state is still valid. Argh! Extra info: using structure map for IoD. Previously, before upgrading to MVC 2 was using the MS data annotation library so had this in my global.asax.cs: ModelBinders.Binders.DefaultBinder = new Microsoft.Web.Mvc.DataAnnotations.DataAnnotationsModelBinder(); Have removed that now. I'm sure i'm doing something really basic and wrong. If someone could point it out that would be marvellous. Cheers

    Read the article

  • Convert Lambda from C# to VB.NET

    - by Iosu
    How would I translate this C# lambda expression into VB.NET ? query.ExecuteAsync(op => op.Results.ForEach(Employees.Add)); using System; using System.Net; using System.Windows; using System.Windows.Controls; using System.Windows.Documents; using System.Windows.Ink; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Animation; using System.Windows.Shapes; using System.Collections.ObjectModel; using IdeaBlade.Core; using IdeaBlade.EntityModel; namespace SimpleSteps { public class MainPageViewModel { public MainPageViewModel() { Employees = new ObservableCollection(); var mgr = new NorthwindIBEntities(); var query = mgr.Employees; query.ExecuteAsync(op = op.Results.ForEach(Employees.Add)); } public ObservableCollection<Employee> Employees { get; private set; } } }

    Read the article

< Previous Page | 212 213 214 215 216 217 218 219 220 221 222 223  | Next Page >