Search Results

Search found 6591 results on 264 pages for 'rules engines'.

Page 217/264 | < Previous Page | 213 214 215 216 217 218 219 220 221 222 223 224  | Next Page >

  • Sphinx - delimiters

    - by yoda
    Hi, I would like to know if the Sphinx engine works with any delimiters (like commas and periods in normal MySQL). My question comes from the urge, not to use them at all, but to escape them or at least thay they don't enter in conflict when performing MATCH operations with FULLTEXT searches, since I have problems dealing with them in MySQL by default and I would prefer not to be forced to replace those delimiters by any other characters to provide a good set of results. Sorry if I'm saying something stupid, but I don't have experience with Sphinx or other complementary (?) search engines. To give you an example, if I perform a search with "Passat 2.0 TDI" MySQL by default would identify the period in this case as a delimiter and since the "2" and "0" are too short to be considered words by default, the results would be a bit messed up. Is it easy to handle with Sphinx (or other search engine)? I'm open to suggestions. This is for a large project, with probably more than 500.000 possible records (not trivial at all). Cheers!

    Read the article

  • Sharing code between two or more rails apps... alternatives to git submodules?

    - by jtgameover
    We have two separate rails_app, foo/ and bar/ (separate for good reason). They both depend on some models, etc. in a common/ folder, currently parallel to foo and bar. Our current svn setup uses svn:externals to share common/. This weekend we wanted to try out git. After much research, it appears that the "kosher" way to solve this is using git submodule. We got that working after separating foo,bar,common into separate repositories, but then realized all the strings attached: Always commit the submodule before committing the parent. Always push the submodule before pushing the parent. Make sure that the submodule's HEAD points to a branch before committing to it. (If you're a bash user, I recommend using git-completion to put the current branch name in your prompt.) Always run 'git submodule update' after switching branches or pulling changes. All these gotchas complicate things further than add,commit,push. We're looking for simpler ways to share common in git. This guy seems to have success using the git subtree extension, but that deviates from standard gitand still doesn't look that simple. Is this the best we can do given our project structure? I don't know enough about rails plugins/engines, but that seems like a possible RoR-ish way to share libraries. Thanks in advance.

    Read the article

  • PHP and storing stats

    - by John
    Using PHP5 and the latest version of MySQL I want to be able to track impressions and clicks for business listings. My question is if I did this myself what would be the best method in storing it so I can run reports? Before I just had a table that had the listing id, user ip address and if it was a click or impression as well as the date it was tracked. However the database itself is approaching 2GB of data and its very slow, part of the problem is its a pretty simple script that includes impressions and clicks from anyone including search engines and basically anyone or anything that accesses the listing page. Is there an api or file out there that has an update to date list that can detect if the person viewing is a actually person and not a spider so I dont fill up the database with unneeded stats? Just looking for suggestions, do I just have a raw database that gets just the hits then a cron job at night tally up for the day for each listing for each ip and store the cumulative stats in a different table? Also what type of database should it be? Innodb? MyISAM?

    Read the article

  • Creating and parsing huge strings with javascript?

    - by user246114
    Hi, I have a simple piece of data that I'm storing on a server, as a plain string. It is kind of ridiculous, but it looks like this: name|date|grade|description|name|date|grade|description|repeat for a long time this string can be up to 1.4mb in size. The idea is that it's a bunch of student records, just strung together with a simple pipe delimeter. It's a very poor serialization method. Once this massive string is pushed to the client, it is split along the pipes into student records again, using javascript. I've been timing how long it takes to create, and split, these strings on the client side. The times are actually quite good, the slowest run I've seen on a few different machines is 0.2 seconds for 10,000 'student records', which has a final string size of ~1.4mb. I realize this is quite bizarre, just wondering if there are any inherent problems with creating and splitting such large strings using javascript? I don't know how different browsers implement their javascript engines. I've tried this on the 'major' browsers, but don't know how this would perform on earlier versions of each. Yeah looking for any comments on this, this is more for fun than anything else! Thanks

    Read the article

  • Why does local variable names take precedence over function names in JavaScripts?

    - by fredrik
    In JavaScript you can define function in a bunch of different ways: function BatmanController () { } var BatmanController = function () { } // If you want to be EVIL eval("function BatmanController () {}"); // If you are fancy (function () { function BatmanController () { } }()); By accident I ran across a unexpected behaviour today. When declaring a local variable (in the fancy way) with the same name as function the local variable takes presence inside the local scope. For example: (function () { "use strict"; function BatmanController () { } console.log(typeof BatmanController); // outputs "function" var RobinController = function () { } console.log(typeof RobinController); // outputs "function" var JokerController = 1; function JokerController () { } console.log(typeof JokerController); // outputs "number", Ehm what? }()); Anyone know why var JokerController isn't overwritten by function JokerController? I tested this in Chrome, Safari, Canary, Firefox. I would guess it's due to some "look ahead" JavaScript optimizing done in the V8 and JägerMonkey engines. But is there any technical explanation to explain this behaviour?

    Read the article

  • Optimizing landing pages

    - by Oleg Shaldybin
    In my current project (Rails 2.3) we have a collection of 1.2 million keywords, and each of them is associated with a landing page, which is effectively a search results page for a given keywords. Each of those pages is pretty complicated, so it can take a long time to generate (up to 2 seconds with a moderate load, even longer during traffic spikes, with current hardware). The problem is that 99.9% of visits to those pages are new visits (via search engines), so it doesn't help a lot to cache it on the first visit: it will still be slow for that visit, and the next visit could be in several weeks. I'd really like to make those pages faster, but I don't have too many ideas on how to do it. A couple of things that come to mind: build a cache for all keywords beforehand (with a very long TTL, a month or so). However, building and maintaing this cache can be a real pain, and the search results on the page might be outdated, or even no longer accessible; given the volatile nature of this data, don't try to cache anything at all, and just try to scale out to keep up with traffic. I'd really appreciate any feedback on this problem.

    Read the article

  • JavaScript: Is there a better way to retain your array but efficiently concat or replace items?

    - by Michael Mikowski
    I am looking for the best way to replace or add to elements of an array without deleting the original reference. Here is the set up: var a = [], b = [], c, i, obj; for ( i = 0; i < 100000; i++ ) { a[ i ] = i; b[ i ] = 10000 - i; } obj.data_list = a; Now we want to concatenate b INTO a without changing the reference to a, since it is used in obj.data_list. Here is one method: for ( i = 0; i < b.length; i++ ) { a.push( b[ i ] ); } This seems to be a somewhat terser and 8x (on V8) faster method: a.splice.apply( a, [ a.length, 0 ].concat( b ) ); I have found this useful when iterating over an "in-place" array and don't want to touch the elements as I go (a good practice). I start a new array (let's call it keep_list) with the initial arguments and then add the elements I wish to retain. Finally I use this apply method to quickly replace the truncated array: var keep_list = [ 0, 0 ]; for ( i = 0; i < a.length; i++ ){ if ( some_condition ){ keep_list.push( a[ i ] ); } // truncate array a.length = 0; // And replace contents a.splice.apply( a, keep_list ); There are a few problems with this solution: there is a max call stack size limit of around 50k on V8 I have not tested on other JS engines yet. This solution is a bit cryptic Has anyone found a better way?

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • OSS4 on Debian Squeeze

    - by mit
    Hi, I am trying to get OSS4 to work on a Debian Squeeze 64 bit machine with an usb sound adapter. There is no sound from this adapter at the present, although it worked just before on the previous installation. You can see the output of some commands here: $ sudo /etc/init.d/oss4-base restart Stopping Open Sound System: SNDCTL_MIX_EXTINFO: No such device or address done. Starting Open Sound System: done (OSS is already loaded). $ sudo /etc/init.d/oss4-base stop Stopping Open Sound System: SNDCTL_MIX_EXTINFO: No such device or address done. $ sudo /etc/init.d/oss4-base start Starting Open Sound System: done (OSS is already loaded). $ ossinfo Version info: OSS 4.2 (b 2002/201001250441) (0x00040100) GPL Platform: Linux/x86_64 2.6.32-5-xen-amd64 #1 SMP Fri Dec 10 17:41:50 UTC 2010 (pc11) Number of audio devices: 2 Number of audio engines: 2 Number of MIDI devices: 0 Number of mixer devices: 2 Device objects 0: osscore0 OSS core services 1: oss_hdaudio0 ATI HD Audio interrupts=0 (613) HD Audio controller ATI HD Audio Vendor ID 0x10024383 Subvendor ID 0x10192816 Codec 0: Not present 2: oss_usb0 USB audio core services 3: usb0d8c0126-0 USB sound device 4: usb0d8c0126-1 USB sound device 5: usb0d8c0126-2 USB sound device 6: usb0d8c0126-3 USB sound device MIDI devices (/dev/midi*) Mixer devices 0: (USB sound device )(Mixer 0 of device object 3) 1: USB sound device (Mixer 0 of device object 5) Audio devices (USB sound device play /dev/oss/usb0d8c0126-1/pcm0 ) (device index 0) USB sound device play /dev/oss/usb0d8c0126-3/pcm0 (device index 1) Nodes /dev/dsp -> /dev/oss/usb0d8c0126-1/pcm0 /dev/dsp_out -> /dev/oss/usb0d8c0126-1/pcm0 /dev/dsp_mmap -> /dev/oss/usb0d8c0126-1/pcm0 $ osstest Sound subsystem and version: OSS 4.2 (b 2002/201001250441) (0x00040100) Platform: Linux/x86_64 2.6.32-5-xen-amd64 #1 SMP Fri Dec 10 17:41:50 UTC 2010 *** Scanning sound adapter #-1 *** /dev/oss/usb0d8c0126-1/pcm0 (audio engine 0): USB sound device play - Device not present - Skipping *** Scanning sound adapter #-1 *** /dev/oss/usb0d8c0126-3/pcm0 (audio engine 1): USB sound device play - Performing audio playback test... /dev/oss/usb0d8c0126-3/pcm0: No such file or directory Can't open the device *** Some errors were detected during the tests *** $ ossxmix /dev/oss/usb0d8c0126-2/mix0: No such file or directory No mixers could be opened $ ossmix SNDCTL_MIX_EXTINFO: No such device or address ad@pc11:~$ man ossmix ad@pc11:~$ ossmix -a SNDCTL_MIX_EXTINFO: No such device or address ad@pc11:~$ man ossmix ad@pc11:~$ ossmix -D SNDCTL_MIX_EXTINFO: No such device or address ad@pc11:~$ ossmix -D 0 SNDCTL_MIX_EXTINFO: No such device or address ad@pc11:~$ man ossmix ad@pc11:~$ ossxmix /dev/oss/usb0d8c0126-2/mix0: No such file or directory No mixers could be opened How can I make oss sound work? I can add more information if necessary.

    Read the article

  • No Properties path set - looking in classpath

    - by Will
    For whatever reason my project has decided it cannot find my transaction.properties file. It is located in the : src/main/resource However it looks in looks in target/classes/ The file also resides yet throws the errors(see below) These all seem to stem from the whole in the init of code I have no acces to which is always fun. Anyone have any idea how to get past the whole: Using init file: /target/classes/transactions.properties com.atomikos.icatch.SysException: Error in init: Error during checkpointing at com.atomikos.icatch.imp.TransactionServiceImp.init(TransactionServiceImp.java:728) EDIT: The errors are mainly pointing at the atomikos path. I'll be honest I'm at a total loss as to what is actually happening under the hood so. It's rather melting. The two files are the same so it shouldn't really matter which file it uses, however I can view the first error line reference. public synchronized void init ( Properties properties ) throws SysException { Stack errors = new Stack (); this.properties_ = properties; try { recoverymanager_.init (); } catch ( LogException le ) { errors.push ( le ); throw new SysException ( "Error in init: " + le.getMessage (), errors ); } recoverCoordinators (); //initialized is now set in recover() //initialized_ = true; shuttingDown_ = false; control_ = new LogControlImp ( this ); // call recovery already, to make sure that the // RMI participants can start inquiring and replay recover (); notifyListeners ( true, false ); } Full error printout: Using init file: /target/classes/transactions.properties com.atomikos.icatch.SysException: Error in init: Error during checkpointing at com.atomikos.icatch.imp.TransactionServiceImp.init(TransactionServiceImp.java:728) at com.atomikos.icatch.imp.BaseTransactionManager.init(BaseTransactionManager.java:217) at com.atomikos.icatch.standalone.StandAloneTransactionManager.init(StandAloneTransactionManager.java:104) at com.atomikos.icatch.standalone.UserTransactionServiceImp.init(UserTransactionServiceImp.java:307) at com.atomikos.icatch.config.UserTransactionServiceImp.init(UserTransactionServiceImp.java:413) at com.atomikos.icatch.jta.UserTransactionManager.checkSetup(UserTransactionManager.java:90) at com.atomikos.icatch.jta.UserTransactionManager.init(UserTransactionManager.java:140) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeCustomInitMethod(AbstractAutowireCapableBeanFactory.java:1544) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1485) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1417) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:519) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:456) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:291) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:288) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:190) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:580) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:895) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:425) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:139) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:93) at com.citi.eq.mo.dcc.server.Main.main(Main.java:32) Nested exception is: com.atomikos.persistence.LogException: Error during checkpointing at com.atomikos.persistence.imp.FileLogStream.writeCheckpoint(FileLogStream.java:229) at com.atomikos.persistence.imp.StreamObjectLog.init(StreamObjectLog.java:185) at com.atomikos.persistence.imp.StateRecoveryManagerImp.init(StateRecoveryManagerImp.java:71) at com.atomikos.icatch.imp.TransactionServiceImp.init(TransactionServiceImp.java:725) at com.atomikos.icatch.imp.BaseTransactionManager.init(BaseTransactionManager.java:217) at com.atomikos.icatch.standalone.StandAloneTransactionManager.init(StandAloneTransactionManager.java:104) at com.atomikos.icatch.standalone.UserTransactionServiceImp.init(UserTransactionServiceImp.java:307) at com.atomikos.icatch.config.UserTransactionServiceImp.init(UserTransactionServiceImp.java:413) at com.atomikos.icatch.jta.UserTransactionManager.checkSetup(UserTransactionManager.java:90) at com.atomikos.icatch.jta.UserTransactionManager.init(UserTransactionManager.java:140) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeCustomInitMethod(AbstractAutowireCapableBeanFactory.java:1544) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1485) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1417) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:519) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:456) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:291) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:288) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:190) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:580) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:895) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:425) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:139) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:93) at com.citi.eq.mo.dcc.server.Main.main(Main.java:32) 08/05/2011 14:55:59.998 [main] [] [INFO ] [o.s.b.f.s.DefaultListableBeanFactory] Destroying singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@164dbd5: defining beans [gfiPropertyConfigurerCommon,org.springframework.context.annotation.internalConfigurationAnnotationProcessor,org.springframework.context.annotation.internalAutowiredAnnotationProcessor,org.springframework.context.annotation.internalRequiredAnnotationProcessor,org.springframework.context.annotation.internalCommonAnnotationProcessor,org.springframework.context.annotation.internalPersistenceAnnotationProcessor,ZtsListenerContainer,ztsMessageListener,dccMessageHandler,dccToRioPublisher,rioJmsTemplate,dccMessageTransformer,ztsFixtoRioTransformer,dateManager,ztsDropCopyConverterContextFactory,ZtsBlockListenerContainer,ztsblockdropCopyConverterContextFactory,ZasListenerContainer,zasMessageListener,zastoRIOMessageTransformer,zasDropCopyConverterContextFactory,ztsToDccJndiTemplate,ztsQcf,ztsBlockToDccJndiTemplate,ztsBlockQcf,zasToDccJndiTemplate,zasQcf,rioJndiTemplate,rioTcf,rioDestinationResolver,URO.ZTSTRADES.1_Producer,mbeanServer,jmxExporter,rules-execution-server-engine,rio-object,trade-validator-context,trade-validator,validation-rules-helper,javaxTransactionManager,javaxUserTransaction,springPlatformTransactionManager,org.springframework.aop.config.internalAutoProxyCreator,org.springframework.transaction.annotation.AnnotationTransactionAttributeSource#0,org.springframework.transaction.interceptor.TransactionInterceptor#0,org.springframework.transaction.config.internalTransactionAdvisor,org.springframework.scheduling.annotation.internalAsyncAnnotationProcessor,org.springframework.scheduling.annotation.internalScheduledAnnotationProcessor]; root of factory hierarchy 08/05/2011 14:56:00.013 [main] [] [INFO ] [o.s.jmx.export.MBeanExporter] Unregistering JMX-exposed beans on shutdown Exception in thread "main" org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'javaxTransactionManager' defined in class path resource [eq-mo-dcc-server-context.xml]: Invocation of init method failed; nested exception is com.atomikos.icatch.SysException: Error in init(): Error in init: Error during checkpointing at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1420) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:519) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:456) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:291) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:288) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:190) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:580) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:895) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:425) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:139) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:93) at com.citi.eq.mo.dcc.server.Main.main(Main.java:32) Caused by: com.atomikos.icatch.SysException: Error in init(): Error in init: Error during checkpointing at com.atomikos.icatch.standalone.UserTransactionServiceImp.init(UserTransactionServiceImp.java:374) at com.atomikos.icatch.config.UserTransactionServiceImp.init(UserTransactionServiceImp.java:413) at com.atomikos.icatch.jta.UserTransactionManager.checkSetup(UserTransactionManager.java:90) at com.atomikos.icatch.jta.UserTransactionManager.init(UserTransactionManager.java:140) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeCustomInitMethod(AbstractAutowireCapableBeanFactory.java:1544) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1485) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1417) ... 12 more Caused by: com.atomikos.icatch.SysException: Error in init: Error during checkpointing at com.atomikos.icatch.imp.TransactionServiceImp.init(TransactionServiceImp.java:728) at com.atomikos.icatch.imp.BaseTransactionManager.init(BaseTransactionManager.java:217) at com.atomikos.icatch.standalone.StandAloneTransactionManager.init(StandAloneTransactionManager.java:104) at com.atomikos.icatch.standalone.UserTransactionServiceImp.init(UserTransactionServiceImp.java:307) ... 22 more

    Read the article

  • Deployment/provisioning tool for commercial applications (not developed in-house)

    - by mfinni
    I help manage a few hosted commercial applications, and we have a lot of manual processes involved when doing new customer-instance deployments into the shared (multitenant) environment. Allow me to describe the most relevant features, and then we can talk about the tools. We have an application on AIX, that requires dozens of changes to config files (some plain text, some XML) as well as a good number of commands to be run on multiple servers - some to start the new instance, some to restart our shared authentication and reporting engines, etc. The config changes follow templates, of course. The servers in question will also depend on the initial conditions specified by the implementer/deployer - we may choose to deploy a given customer to our servers in Europe, or one set of servers may be active-active whereas a different set of servers is active-passive - in short, there's a lot of complications. We have another application that run on IIS 6 and SQL. The DBAs don't want any automation of the SQL components and that's fine with me, but automating the IIS bit would be great. For a new customer instance, we make a filesystem copy of a template Virtual Directory target named after the new customer, make a new AppPool to match, edit a VirDir template .xml file to replace the filepaths and AppPool names with the new ones, and then make a new VirDir from the modified template XML to point to the new filesystem folder and app pool. For the first case, something like ControlTier or Chef might be good. For the second, the new(ish) Web Deploy from MS would probably do a good job. Has anyone used these tools or others to do something similar for applications? More of a nice-to-have, not a fixed requirement - Has anyone used anything that works on both platforms? I'm looking for something free, because the official word is that within a year, we will have whatever HP has renamed the OpsWare suite, which should be able to do stuff like this. Edit - based on someone's suggestion, looking at CFengine for the AIX application, it doesn't seem to address my pain. The problem isn't keeping a given config synced across dozens of servers, we have rsync for that. The problem is that onboarding a new customer instance touches dozens of files, putting pieces of the same or similar information into them - some are new stanzas in existing files, some are new files, and some are new directories. This is a several-hours-long process that is also error-prone because it's mostly done by hand. I guess I'm looking for config-file generation and management. I have built a small Perl script to do something similar for a much smaller case - it binds a CSV file into variables, and then does a copy-and-search-and-replace from a set of template config files. I could probably do the same here.

    Read the article

  • form_dropdown in codeigniter

    - by Patrick
    I'm getting a strange behaviour from form_dropdown - basically, when I reload the page after validation, the values are screwed up. this bit generates 3 drop downs with days, months and years: $days = array(0 => 'Day...'); for ($i = 1; $i <= 31; $i++) { $days[] = $i; } $months = array(0 => 'Month...', ); for ($i = 1; $i <= 12; $i++) { $months[] = $i; } $years = array(0 => 'Year...'); for ($i = 2010; $i <= 2012; $i++) { $years[$i] = $i; echo "<pre>"; print_r($years); echo "</pre>";//remove this } $selected_day = (isset($selected_day)) ? $selected_day : 0; $selected_month = (isset($selected_month)) ? $selected_month : 0; $selected_year = (isset($selected_year)) ? $selected_year : 0; echo "<p>"; echo form_label('Select date:', 'day', array('class' => 'left')); echo form_dropdown('day', $days, $selected_day, 'class="combosmall"'); echo form_dropdown('month', $months, $selected_month, 'class="combosmall"'); echo form_dropdown('year', $years, $selected_year, 'class="combosmall"'); echo "</p>"; ...and generates this: <p><label for="day" class="left">Select date:</label><select name="day" class="combosmall"> <option value="0" selected="selected">Day...</option> <option value="1">1</option> <option value="2">2</option> <option value="3">3</option> <option value="4">4</option> <option value="5">5</option> <option value="6">6</option> <option value="7">7</option> <option value="8">8</option> <option value="9">9</option> <option value="10">10</option> <option value="11">11</option> <option value="12">12</option> <option value="13">13</option> <option value="14">14</option> <option value="15">15</option> <option value="16">16</option> <option value="17">17</option> <option value="18">18</option> <option value="19">19</option> <option value="20">20</option> <option value="21">21</option> <option value="22">22</option> <option value="23">23</option> <option value="24">24</option> <option value="25">25</option> <option value="26">26</option> <option value="27">27</option> <option value="28">28</option> <option value="29">29</option> <option value="30">30</option> <option value="31">31</option> </select><select name="month" class="combosmall"> <option value="0" selected="selected">Month...</option> <option value="1">1</option> <option value="2">2</option> <option value="3">3</option> <option value="4">4</option> <option value="5">5</option> <option value="6">6</option> <option value="7">7</option> <option value="8">8</option> <option value="9">9</option> <option value="10">10</option> <option value="11">11</option> <option value="12">12</option> </select><select name="year" class="combosmall"> <option value="0" selected="selected">Year...</option> <option value="2010">2010</option> <option value="2011">2011</option> <option value="2012">2012</option> </select></p> however, when the form is reloaded after validation, the same code above generates this: <!-- days and months... --> <select name="year" class="combosmall"> <option value="0" selected="selected">Year...</option> <option value="1">2010</option> <option value="2">2011</option> <option value="3">2012</option> </select> So basically the value start from 1 instead of 2010. The same happens to days and months but obviously it doesn't make any difference in this particular case as the values would start from 1 anyway. How can I fix this - and why does it happen? edit: validation rules are: $this->load->library('form_validation'); //...rules for other fields.. $this->form_validation->set_rules('day', 'day', 'required|xss_clean'); $this->form_validation->set_rules('month', 'month', 'required|xss_clean'); $this->form_validation->set_rules('year', 'year', 'required|xss_clean'); $this->form_validation->set_error_delimiters('<p class="error">', '</p>'); //define other errors if($this->input->post('day') == 0 || $this->input->post('month') == 0 || $this->input->post('year') == 0) { $data['error'] = "Please check the date of your event."; }

    Read the article

  • How to store data on a machine whose power gets cut at random

    - by Sevas
    I have a virtual machine (Debian) running on a physical machine host. The virtual machine acts as a buffer for data that it frequently receives over the local network (the period for this data is 0.5s, so a fairly high throughput). Any data received is stored on the virtual machine and repeatedly forwarded to an external server over UDP. Once the external server acknowledges (over UDP) that it has received a data packet, the original data is deleted from the virtual machine and not sent to the external server again. The internet connection that connects the VM and the external server is unreliable, meaning it could be down for days at a time. The physical machine that hosts the VM gets its power cut several times per day at random. There is no way to tell when this is about to happen and it is not possible to add a UPS, a battery, or a similar solution to the system. Originally, the data was stored on a file-based HSQLDB database on the virtual machine. However, the frequent power cuts eventually cause the database script file to become corrupted (not at the file system level, i.e. it is readable, but HSQLDB can't make sense of it), which leads to my question: How should data be stored in an environment where power cuts can and do happen frequently? One option I can think of is using flat files, saving each packet of data as a file on the file system. This way if a file is corrupted due to loss of power, it can be ignored and the rest of the data remains intact. This poses a few issues however, mainly related to the amount of data likely being stored on the virtual machine. At 0.5s between each piece of data, 1,728,000 files will be generated in 10 days. This at least means using a file system with an increased number of inodes to store this data (the current file system setup ran out of inodes at ~250,000 messages and 30% disk space used). Also, it is hard (not impossible) to manage. Are there any other options? Are there database engines that run on Debian that would not get corrupted by power cuts? Also, what file system should be used for this? ext3 is what is used at the moment. The software that runs on the virtual machine is written using Java 6, so hopefully the solution would not be incompatible.

    Read the article

  • Which programming idiom to choose for this open source library?

    - by Walkman
    I have an interesting question about which programming idiom is easier to use for beginner developers writing concrete file parsing classes. I'm developing an open source library, which one of the main functionality is to parse plain text files and get structured information from them. All of the files contains the same kind of information, but can be in different formats like XML, plain text (each of them is structured differently), etc. There are a common set of information pieces which is the same in all (e.g. player names, table names, some id numbers) There are formats which are very similar to each other, so it's possible to define a common Base class for them to facilitate concrete format parser implementations. So I can clearly define base classes like SplittablePlainTextFormat, XMLFormat, SeparateSummaryFormat, etc. Each of them hints the kind of structure they aim to parse. All of the concrete classes should have the same information pieces, no matter what. To be useful at all, this library needs to define at least 30-40 of these parsers. A couple of them are more important than others (obviously the more popular formats). Now my question is, which is the best programming idiom to choose to facilitate the development of these concrete classes? Let me explain: I think imperative programming is easy to follow even for beginners, because the flow is fixed, the statements just come one after another. Right now, I have this: class SplittableBaseFormat: def parse(self): "Parses the body of the hand history, but first parse header if not yet parsed." if not self.header_parsed: self.parse_header() self._parse_table() self._parse_players() self._parse_button() self._parse_hero() self._parse_preflop() self._parse_street('flop') self._parse_street('turn') self._parse_street('river') self._parse_showdown() self._parse_pot() self._parse_board() self._parse_winners() self._parse_extra() self.parsed = True So the concrete parser need to define these methods in order in any way they want. Easy to follow, but takes longer to implement each individual concrete parser. So what about declarative? In this case Base classes (like SplittableFormat and XMLFormat) would do the heavy lifting based on regex and line/node number declarations in the concrete class, and concrete classes have no code at all, just line numbers and regexes, maybe other kind of rules. Like this: class SplittableFormat: def parse_table(): "Parses TABLE_REGEX and get information" # set attributes here def parse_players(): "parses PLAYER_REGEX and get information" # set attributes here class SpecificFormat1(SplittableFormat): TABLE_REGEX = re.compile('^(?P<table_name>.*) other info \d* etc') TABLE_LINE = 1 PLAYER_REGEX = re.compile('^Player \d: (?P<player_name>.*) has (.*) in chips.') PLAYER_LINE = 16 class SpecificFormat2(SplittableFormat): TABLE_REGEX = re.compile(r'^Tournament #(\d*) (?P<table_name>.*) other info2 \d* etc') TABLE_LINE = 2 PLAYER_REGEX = re.compile(r'^Seat \d: (?P<player_name>.*) has a stack of (\d*)') PLAYER_LINE = 14 So if I want to make it possible for non-developers to write these classes the way to go seems to be the declarative way, however, I'm almost certain I can't eliminate the declarations of regexes, which clearly needs (senior :D) programmers, so should I care about this at all? Do you think it matters to choose one over another or doesn't matter at all? Maybe if somebody wants to work on this project, they will, if not, no matter which idiom I choose. Can I "convert" non-programmers to help developing these? What are your observations? Other considerations: Imperative will allow any kind of work; there is a simple flow, which they can follow but inside that, they can do whatever they want. It would be harder to force a common interface with imperative because of this arbitrary implementations. Declarative will be much more rigid, which is a bad thing, because formats might change over time without any notice. Declarative will be harder for me to develop and takes longer time. Imperative is already ready to release. I hope a nice discussion will happen in this thread about programming idioms regarding which to use when, which is better for open source projects with different scenarios, which is better for wide range of developer skills. TL; DR: Parsing different file formats (plain text, XML) They contains same kind of information Target audience: non-developers, beginners Regex probably cannot be avoided 30-40 concrete parser classes needed Facilitate coding these concrete classes Which idiom is better?

    Read the article

  • XNA Notes 007

    - by George Clingerman
    Every week I keep wondering if there’s going to be enough activity in the community to keep doing these notes on a weekly basis and every week I’m reminded of just how awesome and active the XNA community is. There’s engines being made, tutorials being created, games being crafted. There’s information being shared, questions being answered and then there’s another whole community around the Xbox LIVE Indie Games themselves. It’s really incredibly to just watch all that’s going on and I’m glad I’m playing a small part in all of this. So here’s what I noticed happening in the XNA community last week. If there’s things I’m missing, always feel free to let me know. I love learning about new corners of the XNA community that I wasn’t aware of or just have been missing! XNA Developers: Uditha Bandara held an XNA Game Development Workshops at Singapore Universities http://uditha.wordpress.com/2011/02/18/xna-game-development-workshops-at-singapore-universities-event-update/ Binary Tweed gives his talks about Indie City and gives his opinion on the false promise of digital distribution http://www.develop-online.net/news/37053/OPINION-The-false-promise-of-digital-distribution Kris Steele posts his Trivia or Die postmortem http://www.krissteele.net/blogdetails.aspx?id=246 @MadNinjaSkills (James Johnston) posts his feelings on testing for XBLIG http://www.ezmuze.co.uk/101 Simon (@DDReaper) posts hints and tips for XNA developers to help get the size of their projects down http://twitter.com/#!/DDReaper/status/38279440924545024 http://xna-uk.net/blogs/darkgenesis/archive/2011/02/17/look-at-the-size-of-that-thing.aspx Michael B. McLaughlin proving why he should be an XNA MVP posts the list of commonly used value types in XNA games http://geekswithblogs.net/mikebmcl/archive/2011/02/17/list-of-commonly-used-value-types-in-xna-games.aspx http://twitter.com/#!/mikebmcl/status/38166541354811392 Paul Powell (@ITSligoPaul) posts about a common sprite batch as a game service http://itspaulsblog.blogspot.com/2011/02/xna-common-sprite-batch-as-game-service.html @SigilXNA (John Defenbaugh) posts his new level editor video for the sequel to Opac’s Journey http://twitter.com/SigilXNA/statuses/36548174373982209 http://twitter.com/#!/SigilXNA/status/36548174373982209 http://youtu.be/QHbmxB_2AW8 @jwatte updates kW Animation for XNA 4.0 http://www.enchantedage.com/xna-animation @DSebJ posts Blender to SunBurn http://twitter.com/#!/DSebJ/status/36564920224976896 http://dsebj.evolvingsoftware.com/?p=187 Ads and WP7 Games - @mechaghost shares his revenue data for his ad based games http://www.occasionalgamer.com/2011/02/09/ads-and-wp7-games/ Xbox LIVE Indie Games (XBLIG): Steven Hurdle posts day 100 of his quest to find a fantastic XBLIG purchase every day http://writingsofmassdeduction.com/2011/02/17/day-100-radiangames-ballistic/ Xbox 360 Indie Game Buying Guide - 12 games for $60 including several Xbox LIVE Indie games! (although if the XNA community was asked we could have recommended 60 games for $60...) http://www.indiegamemag.com/xbox360-indie-games-buying-guide/ The best selling Xbox LIVE Indie games of 2010 http://www.1up.com/news/xbox-live-most-popular-games I’d buy that for a dollar! - the California Literary Review points out a few gems on the XBLIG marketplace (and other places) where you can game on the cheap. http://calitreview.com/14125 Armless Octopus Episode 39 - The Indie Gem Octocast http://www.armlessoctopus.com/2011/02/17/armless-octocast-episode-39-the-indie-gem-octocast/ Ska Studios posts a plethora of updates http://www.ska-studios.com/2011/02/11/good-morning-gato-49/ http://www.ska-studios.com/2011/02/14/vampire-smile-valentines/ http://www.ska-studios.com/2011/02/16/the-dishwasher-vs-finds-a-home/ Kotaku posts about the Xbox LIVE Indie Game that makes you go Pew Pew Pew Pew Pew Pew http://kotaku.com/#!5760632/the-game-that-makes-you-go-pew-pew-pew-pew-pew-pew-pew GameMarx continues to be active and doing a ton for the XBLIG community reviews and Top 5 indie games of the week 2/4-2/10 http://www.gamemarx.com/video/the-show/22/ep-9-february-11-2010.aspx a new podcast Xbox Indie New Releases http://twitter.com/#!/gamemarx/status/36888849107910656 http://www.gamemarx.com/news/2011/02/13/a-new-podcast-xbox-indie-new-releases.aspx @MasterBlud uploads Indocalypse XBLIG Collections #2 http://www.youtube.com/watch?v=uzCZSv075mc&feature=youtu.be&a http://twitter.com/#!/MasterBlud/status/37100029697064960 Just Press Start interviews Michael Hicks from MichaelArts, 18 year old creator of Honor in Vengeance http://justpressstart.net/?p=465 Achievement Locked interviews Kris Steele of FunInfused Games http://xboxindies.wordpress.com/2011/02/11/interview-fun-infused-games/ XNA Game Development: XNA -UK launches their XAP test service to help the XNA community http://xna-uk.net/blogs/news/archive/2011/02/18/xna-uk-xap-test-service-now-live.aspx Transmute shows off a video of the standard character editor http://www.youtube.com/watch?v=qqH6gErG948&feature=youtu.be Microsoft Tech Student introduces their first tech student of the month.  Meet Daniel Van Tassel from the University of Utah and learn how he created an Xbox LIVE Indie Game using XNA Studio http://blogs.msdn.com/b/techstudent/archive/2010/12/22/introducing-our-first-tech-student-of-the-month-daniel-van-tassel.aspx XNA for Silverlight Developers Part 3 - Animation (transforms) http://www.silverlightshow.net/items/XNA-for-Silverlight-developers-Part-3-Animation-transforms.aspx XNA for Silverlight Developers Part 4 - Animation (frame based) http://www.silverlightshow.net/items/XNA-for-Silverlight-developers-Part-4-Animation-frame-based.aspx @suhinini tweets about an XNA Sprite Font generation tool http://twitter.com/#!/suhinini/status/36841370131890176 http://www.nubik.com/SpriteFont/ XNATouch 1.5 is out and in it’s words is faster, simpler, more reliable and has the XNA 4.0 API http://monogame.codeplex.com/releases/view/60815 IndieCity is hosting marketing workshops for Indie Developers (UK and US) http://forums.create.msdn.com/forums/p/75197/457654.aspx#457654 New York Students - Learn XNA and Silverlight for Xbox 360 and Windows Phone 7 http://forums.create.msdn.com/forums/p/72753/456964.aspx#456964 http://blogs.msdn.com/b/andrewparsons/archive/2011/01/13/learn-to-build-your-own-games-for-xbox-360-and-windows-phone-7.aspx http://blogs.msdn.com/b/andrewparsons/archive/2011/01/13/build-a-game-in-48-hours-win-a-kinect-or-windows-phone-7.aspx Extra Credits: Videogame Music http://www.escapistmagazine.com/videos/view/extra-credits/2019-Videogame-Music Steve Pavlina posts an article with useful information for all XNA/XBLIG developers http://www.stevepavlina.com/blog/2011/02/completion-vs-perfection/

    Read the article

  • The Mysterious ARR Server Farm to URL Rewrite link

    - by OWScott
    Application Request Routing (ARR) is a reverse proxy plug-in for IIS7+ that does many things, including functioning as a load balancer.  For this post, I’m assuming that you already have an understanding of ARR.  Today I wanted to find out how the mysterious link between ARR and URL Rewrite is maintained.  Let me explain… ARR is unique in that it doesn’t work by itself.  It sits on top of IIS7 and uses URL Rewrite.  As a result, ARR depends on URL Rewrite to ‘catch’ the traffic and redirect it to an ARR Server Farm. As the last step of creating a new Server Farm, ARR will prompt you with the following: If you accept the prompt, it will create a URL Rewrite rule for you.  If you say ‘No’, then you’re on your own to create a URL Rewrite rule. When you say ‘Yes’, the Server Farm’s checkbox for “Use URL Rewrite to inspect incoming requests” will be checked.  See the following screenshot. However, I’m not a fan of this auto-rule.  The problem is that if I make any changes to the URL Rewrite rule, which I always do, and then make the wrong change in ARR, it will blow away my settings.  So, I prefer to create my own rule and manage it myself. Since I had some old rules that were managed by ARR, I wanted to update them so that they were no longer managed that way.  I took a look at a config in applicationHost.config to try to find out what property would bind the two together.  I assumed that there would be a property on the ServerFarm called something like urlRewriteRuleName that would serve as the link between ARR and URL Rewrite.  I found no such property.  After a bit of testing, I found that the name of the URL Rewrite rule is the only link between ARR and URL Rewrite.  I wouldn’t have guessed.  The URL Rewrite rule needs to be exactly ARR_{ServerFarm Name}_loadBalance, although it’s not case sensitive. Consider the following auto-created URL Rewrite rule: And, the link between ARR and URL Rewrite exists: Now, as soon as I rename that to anything else, for example, site.com ARR Binding, the link between ARR and URL Rewrite is broken. To be certain of the relationship, I renamed it back again and sure enough, the relationship was reestablished. Why is this important?  It’s only important if you want to decouple the relationship between ARR the URL Rewrite rule, but if you want to do so, the best way to do that is to rename the URL Rewrite rule.  If you uncheck the “Use URL Rewrite to inspect incoming requests” checkbox, it will delete your rule for you without prompting.  Conclusion The mysterious link between ARR and URL Rewrite only exists through the ARR Rule name.  If you want to break the link, simply rename the URL Rewrite rule.  It’s completely safe to do so, and, in my opinion, this is a rule that you should manage yourself anyway. 

    Read the article

  • ASP.NET JavaScript Routing for ASP.NET MVC–Constraints

    - by zowens
    If you haven’t had a look at my previous post about ASP.NET routing, go ahead and check it out before you read this post: http://weblogs.asp.net/zowens/archive/2010/12/20/asp-net-mvc-javascript-routing.aspx And the code is here: https://github.com/zowens/ASP.NET-MVC-JavaScript-Routing   Anyways, this post is about routing constraints. A routing constraint is essentially a way for the routing engine to filter out route patterns based on the day from the URL. For example, if I have a route where all the parameters are required, I could use a constraint on the required parameters to say that the parameter is non-empty. Here’s what the constraint would look like: Notice that this is a class that inherits from IRouteConstraint, which is an interface provided by System.Web.Routing. The match method returns true if the value is a match (and can be further processed by the routing rules) or false if it does not match (and the route will be matched further along the route collection). Because routing constraints are so essential to the route matching process, it was important that they be part of my JavaScript routing engine. But the problem is that we need to somehow represent the constraint in JavaScript. I made a design decision early on that you MUST put this constraint into JavaScript to match a route. I didn’t want to have server interaction for the URL generation, like I’ve seen in so many applications. While this is easy to maintain, it causes maintenance issues in my opinion. So the way constraints work in JavaScript is that the constraint as an object type definition is set on the route manager. When a route is created, a new instance of the constraint is created with the specific parameter. In its current form the constraint function MUST return a function that takes the route data and will return true or false. You will see the NotEmpty constraint in a bit. Another piece to the puzzle is that you can have the JavaScript exist as a string in your application that is pulled in when the routing JavaScript code is generated. There is a simple interface, IJavaScriptAddition, that I have added that will be used to output custom JavaScript. Let’s put it all together. Here is the NotEmpty constraint. There’s a few things at work here. The constraint is called “notEmpty” in JavaScript. When you add the constraint to a parameter in your C# code, the route manager generator will look for the JsConstraint attribute to look for the name of the constraint type name and fallback to the class name. For example, if I didn’t apply the “JsConstraint” attribute, the constraint would be called “NotEmpty”. The JavaScript code essentially adds a function to the “constraintTypeDefs” object on the “notEmpty” property (this is how constraints are added to routes). The function returns another function that will be invoked with routing data. Here’s how you would use the NotEmpty constraint in C# and it will work with the JavaScript routing generator. The only catch to using route constraints currently is that the following is not supported: The constraint will work in C# but is not supported by my JavaScript routing engine. (I take pull requests so if you’d like this… go ahead and implement it).   I just wanted to take this post to explain a little bit about the background on constraints. I am looking at expanding the current functionality, but for now this is a good start. Thanks for all the support with the JavaScript router. Keep the feedback coming!

    Read the article

  • Oracle Support Master Note for Troubleshooting Advanced Queuing and Oracle Streams Propagation Issues (Doc ID 233099.1)

    - by faye.todd(at)oracle.com
    Master Note for Troubleshooting Advanced Queuing and Oracle Streams Propagation Issues (Doc ID 233099.1) Copyright (c) 2010, Oracle Corporation. All Rights Reserved. In this Document  Purpose  Last Review Date  Instructions for the Reader  Troubleshooting Details     1. Scope and Application      2. Definitions and Classifications     3. How to Use This Guide     4. Basic AQ Propagation Troubleshooting     5. Additional Troubleshooting Steps for AQ Propagation of User-Enqueued and Dequeued Messages     6. Additional Troubleshooting Steps for Propagation in an Oracle Streams Environment     7. Performance Issues  References Applies to: Oracle Server - Enterprise Edition - Version: 8.1.7.0 to 11.2.0.2 - Release: 8.1.7 to 11.2Information in this document applies to any platform. Purpose This document presents a step-by-step methodology for troubleshooting and resolving problems with Advanced Queuing Propagation in both Streams and basic Advanced Queuing environments. It also serves as a master reference for other more specific notes on Oracle Streams Propagation and Advanced Queuing Propagation issues. Last Review Date December 20, 2010 Instructions for the Reader A Troubleshooting Guide is provided to assist in debugging a specific issue. When possible, diagnostic tools are included in the document to assist in troubleshooting. Troubleshooting Details 1. Scope and Application This note is intended for Database Administrators of Oracle databases where issues are being encountered with propagating messages between advanced queues, whether the queues are used for user-created messaging systems or for Oracle Streams. It contains troubleshooting steps and links to notes for further problem resolution.It can also be used a template to document a problem when it is necessary to engage Oracle Support Services. Knowing what is NOT happening can frequently speed up the resolution process by focusing solely on the pertinent problem area. This guide is divided into five parts: Section 2: Definitions and Classifications (discusses the different types and features of propagations possible - helpful for understanding the rest of the guide) Section 3: How to Use this Guide (to be used as a start part for determining the scope of the problem and what sections to consult) Section 4. Basic AQ propagation troubleshooting (applies to both AQ propagation of user enqueued and dequeued messages as well as Oracle Streams propagations) Section 5. Additional troubleshooting steps for AQ propagation of user enqueued and dequeued messages Section 6. Additional troubleshooting steps for Oracle Streams propagation Section 7. Performance issues 2. Definitions and Classifications Given the potential scope of issues that can be encountered with AQ propagation, the first recommended step is to do some basic diagnosis to determine the type of problem that is being encountered. 2.1. What Type of Propagation is Being Used? 2.1.1. Buffered Messaging For an advanced queue, messages can be maintained on disk (persistent messaging) or in memory (buffered messaging). To determine if a queue is buffered or not, reference the GV_$BUFFERED_QUEUES view. If the queue does not appear in this view, it is persistent. 2.1.2. Propagation mode - queue-to-dblink vs queue-to-queue As of 10.2, an AQ propagation can also be defined as queue-to-dblink, or queue-to-queue: queue-to-dblink: The propagation delivers messages or events from the source queue to all subscribing queues at the destination database identified by the dblink. A single propagation schedule is used to propagate messages to all subscribing queues. Hence any changes made to this schedule will affect message delivery to all the subscribing queues. This mode does not support multiple propagations from the same source queue to the same target database. queue-to-queue: Added in 10.2, this propagation mode delivers messages or events from the source queue to a specific destination queue identified on the database link. This allows the user to have fine-grained control on the propagation schedule for message delivery. This new propagation mode also supports transparent failover when propagating to a destination Oracle RAC system. With queue-to-queue propagation, you are no longer required to re-point a database link if the owner instance of the queue fails on Oracle RAC. This mode supports multiple propagations to the same target database if the target queues are different. The default is queue-to-dblink. To verify if queue-to-queue propagation is being used, in non-Streams environments query DBA_QUEUE_SCHEDULES.DESTINATION - if a remote queue is listed along with the remote database link, then queue-to-queue propagation is being used. For Streams environments, the DBA_PROPAGATION.QUEUE_TO_QUEUE column can be checked.See the following note for a method to switch between the two modes:Document 827473.1 How to alter propagation from queue-to-queue to queue-to-dblink 2.1.3. Combined Capture and Apply (CCA) for Streams In 11g Oracle Streams environments, an optimization called Combined Capture and Apply (CCA) is implemented by default when possible. Although a propagation is configured in this case, Streams does not use it; instead it passes information directly from capture to an apply receiver. To see if CCA is in use: COLUMN CAPTURE_NAME HEADING 'Capture Name' FORMAT A30COLUMN OPTIMIZATION HEADING 'CCA Mode?' FORMAT A10SELECT CAPTURE_NAME, DECODE(OPTIMIZATION,0, 'No','Yes') OPTIMIZATIONFROM V$STREAMS_CAPTURE; Also, see the following note:Document 463820.1 Streams Combined Capture and Apply in 11g 2.2. Queue Table Compatibility There are three types of queue table compatibility. In more recent databases, queue tables may be present in all three modes of compatibility: 8.0 - earliest version, deprecated in 10.2 onwards 8.1 - support added for RAC, asynchronous notification, secure queues, queue level access control, rule-based subscribers, separate storage of history information 10.0 - if the database is in 10.1-compatible mode, then the default value for queue table compatibility is 10.0 2.3. Single vs Multiple Consumer Queue Tables If more than one recipient can dequeue a message from a queue, then its queue table is multiple consumer. You can propagate messages from a multiple-consumer queue to a single-consumer queue. Propagation from a single-consumer queue to a multiple-consumer queue is not possible. 3. How to Use This Guide 3.1. Are Messages Being Propagated at All, or is the Propagation Just Slow? Run the following query on the source database for the propagation (assuming that it is running): select TOTAL_NUMBER from DBA_QUEUE_SCHEDULES where QNAME='<source_queue_name>'; If TOTAL_NUMBER is increasing, then propagation is most likely functioning, although it may be slow. For performance issues, see Section 7. 3.2. Propagation Between Persistent User-Created Queues See Sections 4 and 5 (and optionally Section 6 if performance is an issue). 3.3. Propagation Between Buffered User-Created Queues See Sections 4, 5, and 6 (and optionally Section 7 if performance is an issue). 3.4. Propagation between Oracle Streams Queues (without Combined Capture and Apply (CCA) Optimization) See Sections 4 and 6 (and optionally Section 7 if performance is an issue). 3.5. Propagation between Oracle Streams Queues (with Combined Capture and Apply (CCA) Optimization) Although an AQ propagation is not used directly in this case, some characteristics of the message transfer are inferred from the propagation parameters used. Some parts of Sections 4 and 6 still apply. 3.6. Messaging Gateway Propagations This note does not apply to Messaging Gateway propagations. 4. Basic AQ Propagation Troubleshooting 4.1. Double-check Your Code Make sure that you are consistent in your usage of the database link(s) names, queue names, etc. It may be useful to plot a diagram of which queues are connected via which database links to make sure that the logical structure is correct. 4.2. Verify that Job Queue Processes are Running 4.2.1. Versions 10.2 and Lower - DBA_JOBS Package For versions 10.2 and lower, a scheduled propagation is managed by DBMS_JOB package. The propagation is performed by job queue process background processes. Therefore we need to verify that there are sufficient processes available for the propagation process. We should have at least 4 job queue processes running and preferably more depending on the number of other jobs running in the database. It should be noted that for AQ specific work, AQ will only ever use half of the job queue processes available.An issue caused by an inadequate job queue processes parameter setting is described in the following note:Document 298015.1 Kwqjswproc:Excep After Loop: Assigning To Self 4.2.1.1. Job Queue Processes in Initalization Parameter File The parameter JOB_QUEUE_PROCESSES in the init.ora/spfile should be > 0. The value can be changed dynamically via connect / as sysdbaalter system set JOB_QUEUE_PROCESSES=10; 4.2.1.2. Job Queue Processes in Memory The following command will show how many job queue processes are currentlyin use by this instance (this may be different than what is in the init.ora/spfile): connect / as sysdbashow parameter job; 4.2.1.3. OS PIDs Corresponding to Job Queue Processes Identify the operating system process ids (spids) of job queue processes involved in propagation via select p.SPID, p.PROGRAM from V$PROCESS p, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j where s.SID=jr.SID and s.PADDR=p.ADDR and jr.JOB=j.JOBand j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%'; and these SPIDs can be used to check at the operating system level that they exist.In 8i a job queue process will have a name similar to: ora_snp1_<instance_name>.In 9i onwards you will see a coordinator process: ora_cjq0_ and multiple slave processes: ora_jnnn_<instance_name>, where nnn is an integer between 1 and 999. 4.2.2. Version 11.1 and Above - Oracle Scheduler In version 11.1 and above, Oracle Scheduler is used to perform AQ and Streams propagations. Oracle Scheduler automatically tunes the number of slave processes for these jobs based on the load on the computer system, and the JOB_QUEUE_PROCESSES initialization parameter is only used to specify the maximum number of slave processes. Therefore, the JOB_QUEUE_PROCESSES initialization parameter does not need to be set (it defaults to a very high number), unless you want to limit the number of slaves that can be created. If JOB_QUEUE_PROCESSES = 0, no propagation jobs will run.See the following note for a discussion of Oracle Streams 11g and Oracle Scheduler:Document 1083608.1 11g Streams and Oracle Scheduler 4.2.2.1. Job Queue Processes in Initalization Parameter File The parameter JOB_QUEUE_PROCESSES in the init.ora/spfile should be > 0, and preferably be left at its default value. The value can be changed dynamically via connect / as sysdbaalter system set JOB_QUEUE_PROCESSES=10; To set the JOB_QUEUE_PROCESSES parameter to its default value, run: connect / as sysdbaalter system reset JOB_QUEUE_PROCESSES; and then bounce the instance. 4.2.2.2. Job Queue Processes in Memory The following command will show how many job queue processes are currently in use by this instance (this may be different than what is in the init.ora/spfile): connect / as sysdbashow parameter job; 4.2.2.3. OS PIDs Corresponding to Job Queue Processes Identify the operating system process ids (SPIDs) of job queue processes involved in propagation via col PROGRAM for a30select p.SPID, p.PROGRAM, j.JOB_namefrom v$PROCESS p, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j where s.SID=jr.SESSION_ID and s.PADDR=p.ADDRand jr.JOB_name=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%'; and these SPIDs can be used to check at the operating system level that they exist.You will see a coordinator process: ora_cjq0_ and multiple slave processes: ora_jnnn_<instance_name>, where nnn is an integer between 1 and 999. 4.3. Check the Alert Log and Any Associated Trace Files The first place to check for propagation failures is the alert logs at all sites (local and if relevant all remote sites). When a job queue process attempts to execute a schedule and fails it will always write an error stack to the alert log. This error stack will also be written in a job queue process trace file, which will be written to the BACKGROUND_DUMP_DEST location for 10.2 and below, and in the DIAGNOSTIC_DEST location for 11g. The fact that errors are written to the alert log demonstrates that the schedule is executing. This means that the problem could be with the set up of the schedule. In this example the ORA-02068 demonstrates that the failure was at the remote site. Further investigation revealed that the remote database was not open, hence the ORA-03114 error. Starting the database resolved the problem. Thu Feb 14 10:40:05 2002 Propagation Schedule for (AQADM.MULTIPLEQ, SHANE816.WORLD) encountered following error:ORA-04052: error occurred when looking up Remote object [email protected]: error occurred at recursive SQL level 4ORA-02068: following severe error from SHANE816ORA-03114: not connected to ORACLEORA-06512: at "SYS.DBMS_AQADM_SYS", line 4770ORA-06512: at "SYS.DBMS_AQADM", line 548ORA-06512: at line 1 Other potential errors that may be written to the alert log can be found in the following notes:Document 827184.1 AQ Propagation with CLOB data types Fails with ORA-22990 (11.1)Document 846297.1 AQ Propagation Fails : ORA-00600[kope2upic2954] or Ora-00600[Kghsstream_copyn] (10.2, 11.1)Document 731292.1 ORA-25215 Reported on Local Propagation When Using Transformation with ANYDATA queue tables (10.2, 11.1, 11.2)Document 365093.1 ORA-07445 [kwqppay2aqe()+7360] Reported on Propagation of a Transformed Message (10.1, 10.2)Document 219416.1 Advanced Queuing Propagation Fails with ORA-22922 (9.0)Document 1203544.1 AQ Propagation Aborted with ORA-600 [ociksin: invalid status] on SYS.DBMS_AQADM_SYS.AQ$_PROPAGATION_PROCEDURE After Upgrade (11.1, 11.2)Document 1087324.1 ORA-01405 ORA-01422 reported by Advanced Queuing Propagation schedules after RAC reconfiguration (10.2)Document 1079577.1 Advanced Queuing Propagation Fails With "ORA-22370 incorrect usage of method" (9.2, 10.2, 11.1, 11.2)Document 332792.1 ORA-04061 error relating to SYS.DBMS_PRVTAQIP reported when setting up Statspack (8.1, 9.0, 9.2, 10.1)Document 353325.1 ORA-24056: Internal inconsistency for QUEUE <queue_name> and destination <dblink> (8.1, 9.0, 9.2, 10.1, 10.2, 11.1, 11.2)Document 787367.1 ORA-22275 reported on Propagating Messages with LOB component when propagating between 10.1 and 10.2 (10.1, 10.2)Document 566622.1 ORA-22275 when propagating >4K AQ$_JMS_TEXT_MESSAGEs from 9.2.0.8 to 10.2.0.1 (9.2, 10.1)Document 731539.1 ORA-29268: HTTP client error 401 Unauthorized Error when the AQ Servlet attempts to Propagate a message via HTTP (9.0, 9.2, 10.1, 10.2, 11.1)Document 253131.1 Concurrent Writes May Corrupt LOB Segment When Using Auto Segment Space Management (ORA-1555) (9.2)Document 118884.1 How to unschedule a propagation schedule stuck in pending stateDocument 222992.1 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE Returns ORA-24082Document 282987.1 Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueDocument 1204080.1 AQ Propagation Failing With ORA-25329 After Upgraded From 8i or 9i to 10g or 11g.Document 1233675.1 AQ Propagation stops after upgrade to 11.2.0.1 ORA-30757 4.3.1. Errors Related to Incorrect Network Configuration The most common propagation errors result from an incorrect network configuration. The list below contains common errors caused by tnsnames.ora file or database links being configured incorrectly: - ORA-12154: TNS:could not resolve service name- ORA-12505: TNS:listener does not currently know of SID given in connect descriptor- ORA-12514: TNS:listener could not resolve SERVICE_NAME - ORA-12541: TNS-12541 TNS:no listener 4.4. Check the Database Links Exist and are Functioning Correctly For schedules to remote databases confirm the database link exists via. SQL> col DBLINK for a45SQL> select QNAME, NVL(REGEXP_SUBSTR(DESTINATION, '[^@]+', 1, 2), DESTINATION) dblink2 from DBA_QUEUE_SCHEDULES3 where MESSAGE_DELIVERY_MODE = 'PERSISTENT';QNAME DBLINK------------------------------ ---------------------------------------------MY_QUEUE ORCL102B.WORLD Connect as the owner of the link and select across it to verify it works and connects to the database we expect. i.e. select * from ALL_QUEUES@ ORCL102B.WORLD; You need to ensure that the userid that scheduled the propagation (using DBMS_AQADM.SCHEDULE_PROPAGATION or DBMS_PROPAGATION_ADM.CREATE_PROPAGATION if using Streams) has access to the database link for the destination. 4.5. Has Propagation Been Correctly Scheduled? Check that the propagation schedule has been created and that a job queue process has been assigned. Look for the entry in DBA_QUEUE_SCHEDULES and SYS.AQ$_SCHEDULES for your schedule. For 10g and below, check that it has a JOBNO entry in SYS.AQ$_SCHEDULES, and that there is an entry in DBA_JOBS with that JOBNO. For 11g and above, check that the schedule has a JOB_NAME entry in SYS.AQ$_SCHEDULES, and that there is an entry in DBA_SCHEDULER_JOBS with that JOB_NAME. Check the destination is as intended and spelled correctly. SQL> select SCHEMA, QNAME, DESTINATION, SCHEDULE_DISABLED, PROCESS_NAME from DBA_QUEUE_SCHEDULES;SCHEMA QNAME DESTINATION S PROCESS------- ---------- ------------------ - -----------AQADM MULTIPLEQ AQ$_LOCAL N J000 AQ$_LOCAL in the destination column shows that the queue to which we are propagating to is in the same database as the source queue. If the propagation was to a remote (different) database, a database link will be in the DESTINATION column. The entry in the SCHEDULE_DISABLED column, N, means that the schedule is NOT disabled. If Y (yes) appears in this column, propagation is disabled and the schedule will not be executed. If not using Oracle Streams, propagation should resume once you have enabled the schedule by invoking DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE (for 10.2 Oracle Streams and above, the DBMS_PROPAGATION_ADM.START_PROPAGATION procedure should be used). The PROCESS_NAME is the name of the job queue process currently allocated to execute the schedule. This process is allocated dynamically at execution time. If the PROCESS_NAME column is null (empty) the schedule is not currently executing. You may need to execute this statement a number of times to verify if a process is being allocated. If a process is at some time allocated to the schedule, it is attempting to execute. SQL> select SCHEMA, QNAME, LAST_RUN_DATE, NEXT_RUN_DATE from DBA_QUEUE_SCHEDULES;SCHEMA QNAME LAST_RUN_DATE NEXT_RUN_DATE------ ----- ----------------------- ----------------------- AQADM MULTIPLEQ 13-FEB-2002 13:18:57 13-FEB-2002 13:20:30 In 11g, these dates are expressed in TIMESTAMP WITH TIME ZONE datatypes. If the NEXT_RUN_DATE and NEXT_RUN_TIME columns are null when this statement is executed, the scheduled propagation is currently in progress. If they never change it would suggest that the schedule itself is never executing. If the next scheduled execution is too far away, change the NEXT_TIME parameter of the schedule so that schedules are executed more frequently (assuming that the window is not set to be infinite). Parameters of a schedule can be changed using the DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE call. In 10g and below, scheduling propagation posts a job in the DBA_JOBS view. The columns are more or less the same as DBA_QUEUE_SCHEDULES so you just need to recognize the job and verify that it exists. SQL> select JOB, WHAT from DBA_JOBS where WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%';JOB WHAT---- ----------------- 720 next_date := sys.dbms_aqadm.aq$_propaq(job); For 11g, scheduling propagation posts a job in DBA_SCHEDULER_JOBS instead: SQL> select JOB_NAME from DBA_SCHEDULER_JOBS where JOB_NAME like 'AQ_JOB$_%';JOB_NAME------------------------------AQ_JOB$_41 If no job exists, check DBA_QUEUE_SCHEDULES to make sure that the schedule has not been disabled. For 10g and below, the job number is dynamic for AQ propagation schedules. The procedure that is executed to expedite a propagation schedule runs, removes itself from DBA_JOBS, and then reposts a new job for the next scheduled propagation. The job number should therefore always increment unless the schedule has been set up to run indefinitely. 4.6. Is the Schedule Executing but Failing to Complete? Run the following query: SQL> select FAILURES, LAST_ERROR_MSG from DBA_QUEUE_SCHEDULES;FAILURES LAST_ERROR_MSG------------ -----------------------1 ORA-25207: enqueue failed, queue AQADM.INQ is disabled from enqueueingORA-02063: preceding line from SHANE816 The failures column shows how many times we have attempted to execute the schedule and failed. Oracle will attempt to execute the schedule 16 times after which it will be removed from the DBA_JOBS or DBA_SCHEDULER_JOBS view and the schedule will become disabled. The column DBA_QUEUE_SCHEDULES.SCHEDULE_DISABLED will show 'Y'. For 11g and above, the DBA_SCHEDULER_JOBS.STATE column will show 'BROKEN' for the job corresponding to DBA_QUEUE_SCHEDULES.JOB_NAME. Prior to 10g the back off algorithm for failures was exponential, whereas from 10g onwards it is linear. The propagation will become disabled on the 17th attempt. Only the last execution failure will be reflected in the LAST_ERROR_MSG column. That is, if the schedule fails 5 times for 5 different reasons, only the last set of errors will be recorded in DBA_QUEUE_SCHEDULES. Any errors need to be resolved to allow propagation to continue. If propagation has also become disabled due to 17 failures, first resolve the reason for the error and then re-enable the schedule using the DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE procedure, or DBMS_PROPAGATION_ADM.START_PROPAGATION if using 10.2 or above Oracle Streams. As soon as the schedule executes successfully the error message entries will be deleted. Oracle does not keep a history of past failures. However, when using Oracle Streams, the errors will be retained in the DBA_PROPAGATION view even after the schedule resumes successfully. See the following note for instructions on how to clear out the errors from the DBA_PROPAGATION view:Document 808136.1 How to clear the old errors from DBA_PROPAGATION view?If a schedule is active and no errors are being reported then the source queue may not have any messages to be propagated. 4.7. Do the Propagation Notification Queue Table and Queue Exist? Check to see that the propagation notification queue table and queue exist and are enabled for enqueue and dequeue. Propagation makes use of the propagation notification queue for handling propagation run-time events, and the messages in this queue are stored in a SYS-owned queue table. This queue should never be stopped or dropped and the corresponding queue table never be dropped. 10g and belowThe propagation notification queue table is of the format SYS.AQ$_PROP_TABLE_n, where 'n' is the RAC instance number, i.e. '1' for a non-RAC environment. This queue and queue table are created implicitly when propagation is first scheduled. If propagation has been scheduled and these objects do not exist, try unscheduling and rescheduling propagation. If they still do not exist contact Oracle Support. SQL> select QUEUE_TABLE from DBA_QUEUE_TABLES2 where QUEUE_TABLE like '%PROP_TABLE%' and OWNER = 'SYS';QUEUE_TABLE------------------------------AQ$_PROP_TABLE_1SQL> select NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED2 from DBA_QUEUES where owner='SYS'3 and QUEUE_TABLE like '%PROP_TABLE%';NAME ENQUEUE DEQUEUE------------------------------ ------- -------AQ$_PROP_NOTIFY_1 YES YESAQ$_AQ$_PROP_TABLE_1_E NO NO If the AQ$_PROP_NOTIFY_1 queue is not enabled for enqueue or dequeue, it should be so enabled using DBMS_AQADM.START_QUEUE. However, the exception queue AQ$_AQ$_PROP_TABLE_1_E should not be enabled for enqueue or dequeue.11g and aboveThe propagation notification queue table is of the format SYS.AQ_PROP_TABLE, and is created when the database is created. If they do not exist, contact Oracle Support. SQL> select QUEUE_TABLE from DBA_QUEUE_TABLES2 where QUEUE_TABLE like '%PROP_TABLE%' and OWNER = 'SYS';QUEUE_TABLE------------------------------AQ_PROP_TABLESQL> select NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED2 from DBA_QUEUES where owner='SYS'3 and QUEUE_TABLE like '%PROP_TABLE%';NAME ENQUEUE DEQUEUE------------------------------ ------- -------AQ_PROP_NOTIFY YES YESAQ$_AQ_PROP_TABLE_E NO NO If the AQ_PROP_NOTIFY queue is not enabled for enqueue or dequeue, it should be so enabled using DBMS_AQADM.START_QUEUE. However, the exception queue AQ$_AQ$_PROP_TABLE_E should not be enabled for enqueue or dequeue. 4.8. Does the Remote Queue Exist and is it Enabled for Enqueueing? Check that the remote queue the propagation is transferring messages to exists and is enabled for enqueue: SQL> select DESTINATION from USER_QUEUE_SCHEDULES where QNAME = 'OUTQ';DESTINATION-----------------------------------------------------------------------------"AQADM"."INQ"@M2V102.ESSQL> select OWNER, NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED from [email protected];OWNER NAME ENQUEUE DEQUEUE-------- ------ ----------- -----------AQADM INQ YES YES 4.9. Do the Target and Source Database Charactersets Differ? If a message fails to propagate, check the database charactersets of the source and target databases. Investigate whether the same message can propagate between the databases with the same characterset or it is only a particular combination of charactersets which causes a problem. 4.10. Check the Queue Table Type Agreement Propagation is not possible between queue tables which have types that differ in some respect. One way to determine if this is the case is to run the DBMS_AQADM.VERIFY_QUEUE_TYPES procedure for the two queues that the propagation operates on. If the types do not agree, DBMS_AQADM.VERIFY_QUEUE_TYPES will return '0'.For AQ propagation between databases which have different NLS_LENGTH_SEMANTICS settings, propagation will not work, unless the queues are Oracle Streams ANYDATA queues.See the following notes for issues caused by lack of type agreement:Document 1079577.1 Advanced Queuing Propagation Fails With "ORA-22370: incorrect usage of method"Document 282987.1 Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueDocument 353754.1 Streams Messaging Propagation Fails between Single and Multi-byte Charactersets when using Chararacter Length Semantics in the ADT 4.11. Enable Propagation Tracing 4.11.1. System Level This is set it in the init.ora/spfile as follows: event="24040 trace name context forever, level 10" and restart the instanceThis event cannot be set dynamically with an alter system command until version 10.2: SQL> alter system set events '24040 trace name context forever, level 10'; To unset the event: SQL> alter system set events '24040 trace name context off'; Debugging information will be logged to job queue trace file(s) (jnnn) as propagation takes place. You can check the trace file for errors, and for statements indicating that messages have been sent. For the most part the trace information is understandable. This trace should also be uploaded to Oracle Support if a service request is created. 4.11.2. Attaching to a Specific Process We can also attach to an existing job queue processes that is running a propagation schedule and trace it individually using the oradebug utility, as follows:10.2 and below connect / as sysdbaselect p.SPID, p.PROGRAM from v$PROCESS p, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j where s.SID=jr.SID and s.PADDR=p.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%';-- For the process id (SPID) attach to it via oradebug and generate the following traceoradebug setospid <SPID>oradebug unlimitoradebug Event 10046 trace name context forever, level 12oradebug Event 24040 trace name context forever, level 10-- Trace the process for 5 minutesoradebug Event 10046 trace name context offoradebug Event 24040 trace name context off-- The following command returns the pathname/filename to the file being written tooradebug tracefile_name 11g connect / as sysdbacol PROGRAM for a30select p.SPID, p.PROGRAM, j.JOB_NAMEfrom v$PROCESS p, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j where s.SID=jr.SESSION_ID and s.PADDR=p.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%';-- For the process id (SPID) attach to it via oradebug and generate the following traceoradebug setospid <SPID>oradebug unlimitoradebug Event 10046 trace name context forever, level 12oradebug Event 24040 trace name context forever, level 10-- Trace the process for 5 minutesoradebug Event 10046 trace name context offoradebug Event 24040 trace name context off-- The following command returns the pathname/filename to the file being written tooradebug tracefile_name 4.11.3. Further Tracing The previous tracing steps only trace the job queue process executing the propagation on the source. At times it is useful to trace the propagation receiver process (the session which is enqueueing the messages into the target queue) on the target database which is associated with the job queue process on the source database.These following queries provide ways of identifying the processes involved in propagation so that you can attach to them via oradebug to generate trace information.In order to identify the propagation receiver process you need to execute the query as a user with privileges to access the v$ views in both the local and remote databases so the database link must connect as a user with those privileges in the remote database. The <DBLINK> in the queries should be replaced by the appropriate database link.The queries have two forms due to the differences between operating systems. The value returned by 'Rem Process' is the operating system identifier of the propagation receiver on the remote database. Once identified, this process can be attached to and traced on the remote database using the commands given in Section 4.11.2.10.2 and below - Windows select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from v$PROCESS pl, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SID and s.PADDR=pl.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%' and pl.SPID=substr(sr.PROCESS, instr(sr.PROCESS,':')+1); 10.2 and below - Unix select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SID and s.PADDR=pl.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%' and pl.SPID=sr.PROCESS; 11g - Windows select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SESSION_ID and s.PADDR=pl.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%%' and pl.SPID=substr(sr.PROCESS, instr(sr.PROCESS,':')+1); 11g - Unix select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SESSION_ID and s.PADDR=pl.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%%' and pl.SPID=sr.PROCESS;   5. Additional Troubleshooting Steps for AQ Propagation of User-Enqueued and Dequeued Messages 5.1. Check the Privileges of All Users Involved Ensure that the owner of the database link has the necessary privileges on the aq packages. SQL> select TABLE_NAME, PRIVILEGE from USER_TAB_PRIVS;TABLE_NAME PRIVILEGE------------------------------ ----------------------------------------DBMS_LOCK EXECUTEDBMS_AQ EXECUTEDBMS_AQADM EXECUTEDBMS_AQ_BQVIEW EXECUTEQT52814_BUFFER SELECT Note that when queue table is created, a view called QT<nnn>_BUFFER is created in the SYS schema, and the queue table owner is given SELECT privileges on it. The <nnn> corresponds to the object_id of the associated queue table. SQL> select * from USER_ROLE_PRIVS;USERNAME GRANTED_ROLE ADM DEF OS_------------------------------ ------------------------------ ---- ---- ---AQ_USER1 AQ_ADMINISTRATOR_ROLE NO YES NOAQ_USER1 CONNECT NO YES NOAQ_USER1 RESOURCE NO YES NO It is good practice to configure central AQ administrative user. All admin and processing jobs are created, executed and administered as this user. This configuration is not mandatory however, and the database link can be owned by any existing queue user. If this latter configuration is used, ensure that the connecting user has the necessary privileges on the AQ packages and objects involved. Privileges for an AQ Administrative user Execute on DBMS_AQADM Execute on DBMS_AQ Granted the AQ_ADMINISTRATOR_ROLE Privileges for an AQ user Execute on DBMS_AQ Execute on the message payload Enqueue privileges on the remote queue Dequeue privileges on the originating queue Privileges need to be confirmed on both sites when propagation is scheduled to remote destinations. Verify that the user ID used to login to the destination through the database link has been granted privileges to use AQ. 5.2. Verify Queue Payload Types AQ will not propagate messages from one queue to another if the payload types of the two queues are not verified to be equivalent. An AQ administrator can verify if the source and destination's payload types match by executing the DBMS_AQADM.VERIFY_QUEUE_TYPES procedure. The results of the type checking will be stored in the SYS.AQ$_MESSAGE_TYPES table. This table can be accessed using the object identifier OID of the source queue and the address database link of the destination queue, i.e. [schema.]queue_name[@destination]. Prior to Oracle 9i the payload (message type) had to be the same for all the queue tables involved in propagation. From Oracle9i onwards a transformation can be used so that payloads can be converted from one type to another. The following procedural call made on the source database can verify whether we can propagate between the source and the destination queue tables. connect aq_user1/[email protected] serverout onDECLARErc_value number;BEGINDBMS_AQADM.VERIFY_QUEUE_TYPES(src_queue_name => 'AQ_USER1.Q_1', dest_queue_name => 'AQ_USER2.Q_2',destination => 'dbl_aq_user2.es',rc => rc_value);dbms_output.put_line('rc_value code is '||rc_value);END;/ If propagation is possible then the return code value will be 1. If it is 0 then propagation is not possible and further investigation of the types and transformations used by and in conjunction with the queue tables is required. With regard to comparison of the types the following sql can be used to extract the DDL for a specific type with' %' changed appropriately on the source and target. This can then be compared for the source and target. SET LONG 20000 set pagesize 50 EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM, 'STORAGE',false); SELECT DBMS_METADATA.GET_DDL('TYPE',t.type_name) from user_types t WHERE t.type_name like '%'; EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM, 'DEFAULT'); 5.3. Check Message State and Destination The first step in this process is to identify the queue table associated with the problem source queue. Although you schedule propagation for a specific queue, most of the meta-data associated with that queue is stored in the underlying queue table. The following statement finds the queue table for a given queue (note that this is a multiple-consumer queue table). SQL> select QUEUE_TABLE from DBA_QUEUES where NAME = 'MULTIPLEQ';QUEUE_TABLE --------------------MULTIPLEQTABLE For a small amount of messages in a multiple-consumer queue table, the following query can be run: SQL> select MSG_STATE, CONSUMER_NAME, ADDRESS from AQ$MULTIPLEQTABLE where QUEUE = 'MULTIPLEQ';MSG_STATE CONSUMER_NAME ADDRESS-------------- ----------------------- -------------READY AQUSER2 [email protected] AQUSER1READY AQUSER3 AQADM.INQ In this example we see 2 messages ready to be propagated to remote queues and 1 that is not. If the address column is blank, the message is not scheduled for propagation and can only be dequeued from the queue upon which it was enqueued. The MSG_STATE column values are discussed in Document 102330.1 Advanced Queueing MSG_STATE Values and their Interpretation. If the address column has a value, the message has been enqueued for propagation to another queue. The first row in the example includes a database link (@M2V102.ES). This demonstrates that the message should be propagated to a queue at a remote database. The third row does not include a database link so will be propagated to a queue that resides on the same database as the source queue. The consumer name is the intended recipient at the target queue. Note that we are not querying the base queue table directly; rather, we are querying a view that is available on top of every queue table, AQ$<queue_table_name>.A more realistic query in an environment where the queue table contains thousands of messages is8.0.3-compatible multiple-consumer queue table and all compatibility single-consumer queue tables select count(*), MSG_STATE, QUEUE from AQ$<queue_table_name>  group by MSG_STATE, QUEUE; 8.1.3 and 10.0-compatible queue tables select count(*), MSG_STATE, QUEUE, CONSUMER_NAME from AQ$<queue_table_name>group by MSG_STATE, QUEUE, CONSUMER_NAME; For multiple-consumer queue tables, if you did not see the expected CONSUMER_NAME , check the syntax of the enqueue code and verify the recipients are declared correctly. If a recipients list is not used on enqueue, check the subscriber list in the AQ$_<queue_table_name>_S view (note that a single-consumer queue table does not have a subscriber view. This view records all members of the default subscription list which were added using the DBMS_AQADM.ADD_SUBSCRIBER procedure and also those enqueued using a recipient list. SQL> select QUEUE, NAME, ADDRESS from AQ$MULTIPLEQTABLE_S;QUEUE NAME ADDRESS---------- ----------- -------------MULTIPLEQ AQUSER2 [email protected] AQUSER1 In this example we have 2 subscribers registered with the queue. We have a local subscriber AQUSER1, and a remote subscriber AQUSER2, on the queue INQ, owned by AQADM, at M2V102.ES. Unless overridden with a recipient list during enqueue every message enqueued to this queue will be propagated to INQ at M2V102.ES.For 8.1 style and above multiple consumer queue tables, you can also check the following information at the target: select CONSUMER_NAME, DEQ_TXN_ID, DEQ_TIME, DEQ_USER_ID, PROPAGATED_MSGID from AQ$<queue_table_name> where QUEUE = '<QUEUE_NAME>'; For 8.0 style queues, if the queue table supports multiple consumers you can obtain the same information from the history column of the queue table: select h.CONSUMER, h.TRANSACTION_ID, h.DEQ_TIME, h.DEQ_USER, h.PROPAGATED_MSGIDfrom AQ$<queue_table_name> t, table(t.history) h where t.Q_NAME = '<QUEUE_NAME>'; A non-NULL TRANSACTION_ID indicates that the message was successfully propagated. Further, the DEQ_TIME indicates the time of propagation, the DEQ_USER indicates the userid used for propagation, and the PROPAGATED_MSGID indicates the message ID of the message that was enqueued at the destination. 6. Additional Troubleshooting Steps for Propagation in an Oracle Streams Environment 6.1. Is the Propagation Enabled? For a propagation job to propagate messages, the propagation must be enabled. For Streams, a special view called DBA_PROPAGATION exists to convey information about Streams propagations. If messages are not being propagated by a propagation as expected, then the propagation might not be enabled. To query for this: SELECT p.PROPAGATION_NAME, DECODE(s.SCHEDULE_DISABLED, 'Y', 'Disabled','N', 'Enabled') SCHEDULE_DISABLED, s.PROCESS_NAME, s.FAILURES, s.LAST_ERROR_MSGFROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION pWHERE p.DESTINATION_DBLINK = NVL(REGEXP_SUBSTR(s.DESTINATION, '[^@]+', 1, 2), s.DESTINATION) AND s.SCHEMA = p.SOURCE_QUEUE_OWNER AND s.QNAME = p.SOURCE_QUEUE_NAME AND MESSAGE_DELIVERY_MODE = 'PERSISTENT' order by PROPAGATION_NAME; At times, the propagation job may become "broken" or fail to start after an error has been encountered or after a database restart. If an error is indicated by the above query, an attempt to disable the propagation and then re-enable it can be made. In the examples below, for the propagation named STRMADMIN_PROPAGATE where the queue name is STREAMS_QUEUE owned by STRMADMIN and the destination database link is ORCL2.WORLD, the commands would be:10.2 and above exec dbms_propagation_adm.stop_propagation('STRMADMIN_PROPAGATE'); exec dbms_propagation_adm.start_propagation('STRMADMIN_PROPAGATE'); If the above does not fix the problem, stop the propagation specifying the force parameter (2nd parameter on stop_propagation) as TRUE: exec dbms_propagation_adm.stop_propagation('STRMADMIN_PROPAGATE',true); exec dbms_propagation_adm.start_propagation('STRMADMIN_PROPAGATE'); The statistics for the propagation as well as any old error messages are cleared when the force parameter is set to TRUE. Therefore if the propagation schedule is stopped with FORCE set to TRUE, and upon restart there is still an error message in DBA_PROPAGATION, then the error message is current.9.2 or 10.1 exec dbms_aqadm.disable_propagation_schedule('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); exec dbms.aqadm.enable_propagation_schedule('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); If the above does not fix the problem, perform an unschedule of propagation and then schedule_propagation: exec dbms_aqadm.unschedule_propagation('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); exec dbms_aqadm.schedule_propagation('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); Typically if the error from the first query in Section 6.1 recurs after restarting the propagation as shown above, further troubleshooting of the error is needed. 6.2. Check Propagation Rule Sets and Transformations Inspect the configuration of the rules in the rule set that is associated with the propagation process to make sure that they evaluate to TRUE as expected. If not, then the object or schema will not be propagated. Remember that when a negative rule evaluates to TRUE, the specified object or schema will not be propagated. Finally inspect any rule-based transformations that are implemented with propagation to make sure they are changing the data in the intended way.The following query shows what rule sets are assigned to a propagation: select PROPAGATION_NAME, RULE_SET_OWNER||'.'||RULE_SET_NAME "Positive Rule Set",NEGATIVE_RULE_SET_OWNER||'.'||NEGATIVE_RULE_SET_NAME "Negative Rule Set"from DBA_PROPAGATION; The next two queries list the propagation rules and their conditions. The first is for the positive rule set, the second is for the negative rule set: set long 4000select rsr.RULE_SET_OWNER||'.'||rsr.RULE_SET_NAME RULE_SET ,rsr.RULE_OWNER||'.'||rsr.RULE_NAME RULE_NAME,r.RULE_CONDITION CONDITION fromDBA_RULE_SET_RULES rsr, DBA_RULES rwhere rsr.RULE_NAME = r.RULE_NAME and rsr.RULE_OWNER = r.RULE_OWNER and RULE_SET_NAME in(select RULE_SET_NAME from DBA_PROPAGATION) order by rsr.RULE_SET_OWNER, rsr.RULE_SET_NAME;   set long 4000select c.PROPAGATION_NAME, rsr.RULE_SET_OWNER||'.'||rsr.RULE_SET_NAME RULE_SET ,rsr.RULE_OWNER||'.'||rsr.RULE_NAME RULE_NAME,r.RULE_CONDITION CONDITION fromDBA_RULE_SET_RULES rsr, DBA_RULES r ,DBA_PROPAGATION cwhere rsr.RULE_NAME = r.RULE_NAME and rsr.RULE_OWNER = r.RULE_OWNER andrsr.RULE_SET_OWNER=c.NEGATIVE_RULE_SET_OWNER and rsr.RULE_SET_NAME=c.NEGATIVE_RULE_SET_NAMEand rsr.RULE_SET_NAME in(select NEGATIVE_RULE_SET_NAME from DBA_PROPAGATION) order by rsr.RULE_SET_OWNER, rsr.RULE_SET_NAME; 6.3. Determining the Total Number of Messages and Bytes Propagated As in Section 3.1, determining if messages are flowing can be instructive to see whether the propagation is entirely hung or just slow. If the propagation is not in flow control (see Section 6.5.2), but the statistics are incrementing slowly, there may be a performance issue. For Streams implementations two views are available that can assist with this that can show the number of messages sent by a propagation, as well as the number of acknowledgements being returned from the target site: the V$PROPAGATION_SENDER view at the Source site and the V$PROPAGATION_RECEIVER view at the destination site. It is helpful to query both to determine if messages are being delivered to the target. Look for the statistics to increase.Source: select QUEUE_SCHEMA, QUEUE_NAME, DBLINK,HIGH_WATER_MARK, ACKNOWLEDGEMENT, TOTAL_MSGS, TOTAL_BYTESfrom V$PROPAGATION_SENDER; Target: select SRC_QUEUE_SCHEMA, SRC_QUEUE_NAME, SRC_DBNAME, DST_QUEUE_SCHEMA, DST_QUEUE_NAME, HIGH_WATER_MARK, ACKNOWLEDGEMENT, TOTAL_MSGS from V$PROPAGATION_RECEIVER; 6.4. Check Buffered Subscribers The V$BUFFERED_SUBSCRIBERS view displays information about subscribers for all buffered queues in the instance. This view can be queried to make sure that the site that the propagation is propagating to is listed as a subscriber address for the site being propagated from: select QUEUE_SCHEMA, QUEUE_NAME, SUBSCRIBER_ADDRESS from V$BUFFERED_SUBSCRIBERS; The SUBSCRIBER_ADDRESS column will not be populated when the propagation is local (between queues on the same database). 6.5. Common Streams Propagation Errors 6.5.1. ORA-02082: A loopback database link must have a connection qualifier. This error can occur if you use the Streams Setup Wizard in Oracle Enterprise Manager without first configuring the GLOBAL_NAME for your database. 6.5.2. ORA-25307: Enqueue rate too high. Enable flow control DBA_QUEUE_SCHEDULES will display this informational message for propagation when the automatic flow control (10g feature of Streams) has been invoked.Similar to Streams capture processes, a Streams propagation process can also go into a state of 'flow control. This is an informative message that indicates flow control has been automatically enabled to reduce the rate at which messages are being enqueued into at target queue.This typically occurs when the target site is unable to keep up with the rate of messages flowing from the source site. Other than checking that the apply process is running normally on the target site, usually no action is required by the DBA. Propagation and the capture process will be resumed automatically when the target site is able to accept more messages.The following document contains more information:Document 302109.1 Streams Propagation Error: ORA-25307 Enqueue rate too high. Enable flow controlSee the following document for one potential cause of this situation:Document 1097115.1 Oracle Streams Apply Reader is in 'Paused' State 6.5.3. ORA-25315 unsupported configuration for propagation of buffered messages This error typically occurs when the target database is RAC and usually indicates that an attempt was made to propagate buffered messages with the database link pointing to an instance in the destination database which is not the owner instance of the destination queue. To resolve the problem, use queue-to-queue propagation for buffered messages. 6.5.4. ORA-600 [KWQBMCRCPTS101] after dropping / recreating propagation For cause/fixes refer to:Document 421237.1 ORA-600 [KWQBMCRCPTS101] reported by a Qmon slave process after dropping a Streams Propagation 6.5.5. Stopping or Dropping a Streams Propagation Hangs See the following note:Document 1159787.1 Troubleshooting Streams Propagation When It is Not Functioning and Attempts to Stop It Hang 6.6. Streams Propagation-Related Notes for Common Issues Document 437838.1 Streams Specific PatchesDocument 749181.1 How to Recover Streams After Dropping PropagationDocument 368912.1 Queue to Queue Propagation Schedule encountered ORA-12514 in a RAC environmentDocument 564649.1 ORA-02068/ORA-03114/ORA-03113 Errors From Streams Propagation Process - Remote Database is Available and Unschedule/Reschedule Does Not ResolveDocument 553017.1 Stream Propagation Process Errors Ora-4052 Ora-6554 From 11g To 10201Document 944846.1 Streams Propagation Fails Ora-7445 [kohrsmc]Document 745601.1 ORA-23603 'STREAMS enqueue aborted due to low SGA' Error from Streams Propagation, and V$STREAMS_CAPTURE.STATE Hanging on 'Enqueuing Message'Document 333068.1 ORA-23603: Streams Enqueue Aborted Eue To Low SGADocument 363496.1 Ora-25315 Propagating on RAC StreamsDocument 368237.1 Unable to Unschedule Propagation. Streams Queue is InvalidDocument 436332.1 dbms_propagation_adm.stop_propagation hangsDocument 727389.1 Propagation Fails With ORA-12528Document 730911.1 ORA-4063 Is Reported After Dropping Negative Prop.RulesetDocument 460471.1 Propagation Blocked by Qmon Process - Streams_queue_table / 'library cache lock' waitsDocument 1165583.1 ORA-600 [kwqpuspse0-ack] In Streams EnvironmentDocument 1059029.1 Combined Capture and Apply (CCA) : Capture aborts : ORA-1422 after schedule_propagationDocument 556309.1 Changing Propagation/ queue_to_queue : false -> true does does not work; no LCRs propagatedDocument 839568.1 Propagation failing with error: ORA-01536: space quota exceeded for tablespace ''Document 311021.1 Streams Propagation Process : Ora 12154 After Reboot with Transparent Application Failover TAF configuredDocument 359971.1 STREAMS propagation to Primary of physical Standby configuation errors with Ora-01033, Ora-02068Document 1101616.1 DBMS_PROPAGATION_ADM.DROP_PROPAGATION FAILS WITH ORA-1747 7. Performance Issues A propagation may seem to be slow if the queries from Sections 3.1 and 6.3 show that the message statistics are not changing quickly. In Oracle Streams, this more usually is due to a slow apply process at the target rather than a slow propagation. Propagation could be inferred to be slow if the message statistics are changing, and the state of a capture process according to V$STREAMS_CAPTURE.STATE is PAUSED FOR FLOW CONTROL, but an ORA-25307 'Enqueue rate too high. Enable flow control' warning is NOT observed in DBA_QUEUE_SCHEDULES per Section 6.5.2. If this is the case, see the following notes / white papers for suggestions to increase performance:Document 335516.1 Master Note for Streams Performance RecommendationsDocument 730036.1 Overview for Troubleshooting Streams Performance IssuesDocument 780733.1 Streams Propagation Tuning with Network ParametersWhite Paper: http://www.oracle.com/technetwork/database/features/availability/maa-wp-10gr2-streams-performance-130059.pdfWhite Paper: Oracle Streams Configuration Best Practices: Oracle Database 10g Release 10.2, http://www.oracle.com/technetwork/database/features/availability/maa-10gr2-streams-configuration-132039.pdf, See APPENDIX A: USING STREAMS CONFIGURATIONS OVER A NETWORKFor basic AQ propagation, the network tuning in the aforementioned Appendix A of the white paper 'Oracle Streams Configuration Best Practices: Oracle Database 10g Release 10.2' is applicable. References NOTE:102330.1 - Advanced Queueing MSG_STATE Values and their InterpretationNOTE:102771.1 - Advanced Queueing Propagation using PL/SQLNOTE:1059029.1 - Combined Capture and Apply (CCA) : Capture aborts : ORA-1422 after schedule_propagationNOTE:1079577.1 - Advanced Queuing Propagation Fails With "ORA-22370: incorrect usage of method"NOTE:1083608.1 - 11g Streams and Oracle SchedulerNOTE:1087324.1 - ORA-01405 ORA-01422 reported by Adavanced Queueing Propagation schedules after RAC reconfigurationNOTE:1097115.1 - Oracle Streams Apply Reader is in 'Paused' StateNOTE:1101616.1 - DBMS_PROPAGATION_ADM.DROP_PROPAGATION FAILS WITH ORA-1747NOTE:1159787.1 - Troubleshooting Streams Propagation When It is Not Functioning and Attempts to Stop It HangNOTE:1165583.1 - ORA-600 [kwqpuspse0-ack] In Streams EnvironmentNOTE:118884.1 - How to unschedule a propagation schedule stuck in pending stateNOTE:1203544.1 - AQ PROPAGATION ABORTED WITH ORA-600[OCIKSIN: INVALID STATUS] ON SYS.DBMS_AQADM_SYS.AQ$_PROPAGATION_PROCEDURE AFTER UPGRADENOTE:1204080.1 - AQ Propagation Failing With ORA-25329 After Upgraded From 8i or 9i to 10g or 11g.NOTE:219416.1 - Advanced Queuing Propagation fails with ORA-22922NOTE:222992.1 - DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE Returns ORA-24082NOTE:253131.1 - Concurrent Writes May Corrupt LOB Segment When Using Auto Segment Space Management (ORA-1555)NOTE:282987.1 - Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueNOTE:298015.1 - Kwqjswproc:Excep After Loop: Assigning To SelfNOTE:302109.1 - Streams Propagation Error: ORA-25307 Enqueue rate too high. Enable flow controlNOTE:311021.1 - Streams Propagation Process : Ora 12154 After Reboot with Transparent Application Failover TAF configuredNOTE:332792.1 - ORA-04061 error relating to SYS.DBMS_PRVTAQIP reported when setting up StatspackNOTE:333068.1 - ORA-23603: Streams Enqueue Aborted Eue To Low SGANOTE:335516.1 - Master Note for Streams Performance RecommendationsNOTE:353325.1 - ORA-24056: Internal inconsistency for QUEUE and destination NOTE:353754.1 - Streams Messaging Propagation Fails between Single and Multi-byte Charactersets when using Chararacter Length Semantics in the ADT.NOTE:359971.1 - STREAMS propagation to Primary of physical Standby configuation errors with Ora-01033, Ora-02068NOTE:363496.1 - Ora-25315 Propagating on RAC StreamsNOTE:365093.1 - ORA-07445 [kwqppay2aqe()+7360] reported on Propagation of a Transformed MessageNOTE:368237.1 - Unable to Unschedule Propagation. Streams Queue is InvalidNOTE:368912.1 - Queue to Queue Propagation Schedule encountered ORA-12514 in a RAC environmentNOTE:421237.1 - ORA-600 [KWQBMCRCPTS101] reported by a Qmon slave process after dropping a Streams PropagationNOTE:436332.1 - dbms_propagation_adm.stop_propagation hangsNOTE:437838.1 - Streams Specific PatchesNOTE:460471.1 - Propagation Blocked by Qmon Process - Streams_queue_table / 'library cache lock' waitsNOTE:463820.1 - Streams Combined Capture and Apply in 11gNOTE:553017.1 - Stream Propagation Process Errors Ora-4052 Ora-6554 From 11g To 10201NOTE:556309.1 - Changing Propagation/ queue_to_queue : false -> true does does not work; no LCRs propagatedNOTE:564649.1 - ORA-02068/ORA-03114/ORA-03113 Errors From Streams Propagation Process - Remote Database is Available and Unschedule/Reschedule Does Not ResolveNOTE:566622.1 - ORA-22275 when propagating >4K AQ$_JMS_TEXT_MESSAGEs from 9.2.0.8 to 10.2.0.1NOTE:727389.1 - Propagation Fails With ORA-12528NOTE:730036.1 - Overview for Troubleshooting Streams Performance IssuesNOTE:730911.1 - ORA-4063 Is Reported After Dropping Negative Prop.RulesetNOTE:731292.1 - ORA-25215 Reported On Local Propagation When Using Transformation with ANYDATA queue tablesNOTE:731539.1 - ORA-29268: HTTP client error 401 Unauthorized Error when the AQ Servlet attempts to Propagate a message via HTTPNOTE:745601.1 - ORA-23603 'STREAMS enqueue aborted due to low SGA' Error from Streams Propagation, and V$STREAMS_CAPTURE.STATE Hanging on 'Enqueuing Message'NOTE:749181.1 - How to Recover Streams After Dropping PropagationNOTE:780733.1 - Streams Propagation Tuning with Network ParametersNOTE:787367.1 - ORA-22275 reported on Propagating Messages with LOB component when propagating between 10.1 and 10.2NOTE:808136.1 - How to clear the old errors from DBA_PROPAGATION view ?NOTE:827184.1 - AQ Propagation with CLOB data types Fails with ORA-22990NOTE:827473.1 - How to alter propagation from queue_to_queue to queue_to_dblinkNOTE:839568.1 - Propagation failing with error: ORA-01536: space quota exceeded for tablespace ''NOTE:846297.1 - AQ Propagation Fails : ORA-00600[kope2upic2954] or Ora-00600[Kghsstream_copyn]NOTE:944846.1 - Streams Propagation Fails Ora-7445 [kohrsmc]

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Visual Studio 2010 Productivity Power Tool Extensions

    - by ScottGu
    Last month I blogged about the Extension Manager that is built-into VS 2010 – as well as about a cool VS 2010 PowerCommands extension that provides some extra features for Visual Studio.  The Visual Studio 2010 Extension Manager provides an easy way for developers to quickly find and install extensions and plugins that enhance the built-in functionality to VS 2010. New VS 2010 Productivity Power Tools Release Earlier this week Jason Zander announced the availability of a new VS 2010 Productivity Power Tools release that includes a bunch of great new VS 2010 extensions that provide a bunch of cool new functionality for you to take advantage of.  You can download and install the release for free here.  Some of the code editor improvements it provides include: Entire Line Highlighting: Makes it easier to track cursor location within the editor Entire Line Selection: Triple Clicking a line in the code editor now selects the entire line (like with MS Word) Code Block Movement: Use Alt+Up/Down Arrow now moves selected code blocks up/down in the editor Consistent Tabs vs. Spaces: Ensure consistent tab vs. space usage across your projects Colorized Parameters: It is now easier to see/identify method parameters Column Guide: You can now add vertical column guidelines to help with text alignment and sizes Align assignments: Makes it easier to line-up multiple variable assignments within your code HTML Clipboard Support: Copy/paste code from VS into an HTML buffer (useful for blogging!) Ctrl + Click Go to Definition: You can now hold down the Ctrl key and click a type to go to its definition It also includes several tab management improvements for managing document tabs within the IDE: Show Close Button in Tab Well: Shows a close button in document well for the active tab (like VS 2008 did) Colored Tabs: You can now select the color of each document tab by project or by regex Pinned Tabs: Enables you to pin tabs to keep them always visible and available Vertical Tabs: You can now show document tabs vertically to fit more tabs than normal Remove Tabs by Usage Order: Better behavior when adding new tabs and one needs to be hidden for space reasons Sort Tabs by Project: Tabs can be sorted by project they belong to, keeping them grouped together Sort Tabs Alphabetically: Tabs can be sorted alphabetically And last – but not least – it includes a new and improved “Add Reference” dialog: This new Add Reference dialog caches assembly information – which means it loads within a second or two (note: the very first time it still loads assembly data – but it then caches it and makes it fast afterwards). The new Add Reference dialog also now includes searching support – making it easier to find the assembly you are looking for. You can read more about all of the above improvements in Jason’s blog post about the release. New Visualization and Modeling Feature Pack Release Earlier this week we also shipped a new feature pack that adds additional modeling and code visualization features to VS 2010 Ultimate.  You can download it here. The Visualization and Modeling Feature Pack includes a bunch of great new capabilities including: Web Site Visualization: New support for generating a DGML visualization for ASP.NET projects C/C++ Native Code Visualization: New support for generating DGML diagrams for C/C++ projects Generate Code from UML Class Diagrams: You can now generate code from your UML diagrams Create UML Class Diagrams from Code: Create UML diagrams from existing code bases Import UML from XML: Import UML class, sequence, and use case elements from XMI 2.1 files Custom Validation Layer Rules: Write custom code to create, modify, and validate layer diagrams Jason’s blog post covers more about these features as well. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Developer Training – Importance and Significance – Part 1

    - by pinaldave
    Developer Training - Importance and Significance - Part 1 Developer Training – Employee Morals and Ethics – Part 2 Developer Training – Difficult Questions and Alternative Perspective - Part 3 Developer Training – Various Options for Developer Training – Part 4 Developer Training – A Conclusive Summary- Part 5 Can anyone remember their final day of schooling?  This is probably a silly question because – of course you can!  Many people mark this as the most exciting, happiest day of their life.  It marks the end of testing, the end of following rules set by teachers, and the beginning of finally being able to earn money and work in your chosen field. Beginning in Real World However, many former-students will be disappointed to find out that once they become employees, learning is not over.  Many companies are discovering the importance and benefits to training their employees.  You can breathe a sigh of relief, though, because much for this kind of training there are not usually tests! We often think that we go to school for our younger years so that we do all our learning all at once, and then for the rest of our lives we use that knowledge.  But in so many cases, but especially for developers, the opposite is true.  It takes many years of schools to learn the basics of a field, and then our careers are spent learning to become experts. For this, and so many other reasons, training is very important.  Example one: developer training leads to better employees.  A company is only as good as the people it employs, and one way to ensure that you have employed the right candidate is through training.  Training can take a regular “stone” and polish it into a “diamond.”  Employees who have been well-trained will be better at their jobs and produce a better product. Most Expensive Resource Did you know that one of the most expensive operating costs for any company is not buying goods, or advertising, but its employees – especially having to hire new employees.  Bringing in new people, getting them up to speed, and providing them with perks to attract them to a company is a huge cost for companies.  So employee retention – keep the employees you already have, and keeping them happy – is incredibly important from a business aspect.  And research shows that a well-trained employee is a happy employee.  They feel more confident in their job, happier with their position, and more cared-about – and therefore less likely to leave in search of a better job.  Employee training leads to better retention. Good Moral On the subject of keeping employees happy in order to keep them at a company, the complement to that research shows that happier employees are more efficient and overall better at their jobs.  You don’t have to be a scientist to figure out why this is true.  An employee who feel that his company cares about him and his educational future will work harder for the company.  He or she will put in that extra hour during the busy season that makes all the difference in the end.  Good morale is good for the company. If good morale is better for the company, you know that it goes hand-in-hand with something even better – better efficiency.  An employee who is well trained obviously knows more about their job and all the technical aspects.  That means when a problem crops up – and they inevitably do – this employee will be well-equipped to deal with that problem with fewer problems, and no need to go searching for help from higher up.  When employees are well trained, companies run more smoothly. A Better Product Of course, all of these “pros” for employee training are leading up to the one thing that companies truly care about – a better product.  We have shown that employees who have been trained to be competitive in the market are happier at the company, they are more efficient, and their morale is better.  The overall result is that the company’s product – whether it is a database, piece of equipment, or even a physical good – is better.  And a better product will always be more competitive on the market. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Developer Training, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Redaction in AutoVue

    - by [email protected]
    As the trend to digitize all paper assets continues, so does the push to digitize all the processes around these assets. One such process is redaction - removing sensitive or classified information from documents. While for some this may conjure up thoughts of old CIA documents filled with nothing but blacked out pages, there are actually many uses for redaction today beyond military and government. Many companies have a need to remove names, phone numbers, social security numbers, credit card numbers, etc. from documents that are being scanned in and/or released to the public or less privileged users - insurance companies, banks and legal firms are a few examples. The process of digital redaction actually isn't that far from the old paper method: Step 1. Find a folder with a big red stamp on it labeled "TOP SECRET" Step 2. Make a copy of that document, since some folks still need to access the original contents Step 3. Black out the text or pages you want to hide Step 4. Release or distribute this new 'redacted' copy So where does a solution like AutoVue come in? Well, we've really been doing all of these things for years! 1. With AutoVue's VueLink integration and iSDK, we can integrate to virtually any content management system and view documents of almost any format with a single click. Finding the document and opening it in AutoVue: CHECK! 2. With AutoVue's markup capabilities, adding filled boxes (or other shapes) around certain text is a no-brainer. You can even leverage AutoVue's powerful APIs to automate the addition of markups over certain text or pre-defined regions using our APIs. Black out the text you want to hide: CHECK! 3. With AutoVue's conversion capabilities, you can 'burn-in' the comments into a new file, either as a TIFF, JPEG or PDF document. Burning-in the redactions avoids slip-ups like the recent (well-publicized) TSA one. Through our tight integrations, the newly created copies can be directly checked into the content management system with no manual intervention. Make a copy of that document: CHECK! 4. Again, leveraging AutoVue's integrations, we can now define rules in the system based on a user's privileges. An 'authorized' user wishing to view the document from the repository will get exactly that - no redactions. An 'unauthorized' user, when requesting to view that same document, can get redirected to open the redacted copy of the same document. Release or distribute the new 'redacted' copy: CHECK! See this movie (WMV format, 2mins, 20secs, no audio) for a quick illustration of AutoVue's redaction capabilities. It shows how redactions can be added based on text searches, manual input or pre-defined templates/regions. Let us know what you think in the comments. And remember - this is all in our flagship AutoVue product - no additional software required!

    Read the article

  • Something for the weekend - Whats the most complex query?

    - by simonsabin
    Whenever I teach about SQL Server performance tuning I try can get across the message that there is no such thing as a table. Does that sound odd, well it isn't, trust me. Rather than tables you need to consider structures. You have 1. Heaps 2. Indexes (b-trees) Some people split indexes in two, clustered and non-clustered, this I feel confuses the situation as people associate clustered indexes with sorting, but don't associate non clustered indexes with sorting, this is wrong. Clustered and non-clustered indexes are the same b-tree structure(and even more so with SQL 2005) with the leaf pages sorted in a linked list according to the keys of the index.. The difference is that non clustered indexes include in their structure either, the clustered key(s), or the row identifier for the row in the table (see http://sqlblog.com/blogs/kalen_delaney/archive/2008/03/16/nonclustered-index-keys.aspx for more details). Beyond that they are the same, they have key columns which are stored on the root and intermediary pages, and included columns which are on the leaf level. The reason this is important is that this is how the optimiser sees the world, this means it can use any of these structures to resolve your query. Even if your query only accesses one table, the optimiser can access multiple structures to get your results. One commonly sees this with a non-clustered index scan and then a key lookup (clustered index seek), but importantly it's not restricted to just using one non-clustered index and the clustered index or heap, and that's the challenge for the weekend. So the challenge for the weekend is to produce the most complex single table query. For those clever bods amongst you that are thinking, great I will just use lots of xquery functions, sorry these are the rules. 1. You have to use a table from AdventureWorks (2005 or 2008) 2. You can add whatever indexes you like, but you must document these 3. You cannot use XQuery, Spatial, HierarchyId, Full Text or any open rowset function. 4. You can only reference your table once, i..e a FROM clause with ONE table and no JOINs 5. No Sub queries. The aim of this is to show how the optimiser can use multiple structures to build the results of a query and to also highlight why the optimiser is doing that. How many structures can you get the optimiser to use? As an example create these two indexes on AdventureWorks2008 create index IX_Person_Person on Person.Person (lastName, FirstName,NameStyle,PersonType) create index IX_Person_Person on Person.Person(BusinessentityId,ModifiedDate)with drop_existing    select lastName, ModifiedDate   from Person.Person  where LastName = 'Smith' You will see that the optimiser has decided to not access the underlying clustered index of the table but to use two indexes above to resolve the query. This highlights how the optimiser considers all storage structures, clustered indexes, non clustered indexes and heaps when trying to resolve a query. So are you up to the challenge for the weekend to produce the most complex single table query? The prize is a pdf version of a popular SQL Server book, or a physical book if you live in the UK.  

    Read the article

  • WIF, ADFS 2 and WCF&ndash;Part 4: Service Client (using Service Metadata)

    - by Your DisplayName here!
    See parts 1, 2 and 3 first. In this part we will finally build a client for our federated service. There are basically two ways to accomplish this. You can use the WCF built-in tooling to generate client and configuration via the service metadata (aka ‘Add Service Reference’). This requires no WIF on the client side. Another approach would be to use WIF’s WSTrustChannelFactory to manually talk to the ADFS 2 WS-Trust endpoints. This option gives you more flexibility, but is slightly more code to write. You also need WIF on the client which implies that you need to run on a WIF supported operating system – this rules out e.g. Windows XP clients. We’ll start with the metadata way. You simply create a new client project (e.g. a console app) – call ‘Add Service Reference’ and point the dialog to your service endpoint. What will happen then is, that VS will contact your service and read its metadata. Inside there is also a link to the metadata endpoint of ADFS 2. This one will be contacted next to find out which WS-Trust endpoints are available. The end result will be a client side proxy and a configuration file. Let’s first write some code to call the service and then have a closer look at the config file. var proxy = new ServiceClient(); proxy.GetClaims().ForEach(c =>     Console.WriteLine("{0}\n {1}\n  {2} ({3})\n",         c.ClaimType,         c.Value,         c.Issuer,         c.OriginalIssuer)); That’s all. The magic is happening in the configuration file. When you in inspect app.config, you can see the following general configuration hierarchy: <client /> element with service endpoint information federation binding and configuration containing ADFS 2 endpoint 1 (with binding and configuration) ADFS 2 endpoint n (with binding and configuration) (where ADFS 2 endpoint 1…n are the endpoints I talked about in part 1) You will see a number of <issuer /> elements in the binding configuration where simply the first endpoint from the ADFS 2 metadata becomes the default endpoint and all other endpoints and their configuration are commented out. You now need to find the endpoint you want to use (based on trust version, credential type and security mode) and replace that with the default endpoint. That’s it. When you call the WCF proxy, it will inspect configuration, then first contact the selected ADFS 2 endpoint to request a token. This token will then be used to authenticate against the service. In the next post I will show you the more manual approach using the WIF APIs.

    Read the article

  • Windows Presentation Foundation 4.5 Cookbook Review

    - by Ricardo Peres
    As promised, here’s my review of Windows Presentation Foundation 4.5 Cookbook, that Packt Publishing kindly made available to me. It is an introductory book, targeted at WPF newcomers or users with few experience, following the typical recipes or cookbook style. Like all Packt Publishing books on development, each recipe comes with sample code that is self-sufficient for understanding the concepts it tries to illustrate. It starts on chapter 1 by introducing the most important concepts, the XAML language itself, what can be declared in XAML and how to do it, what are dependency and attached properties as well as markup extensions and events, which should give readers a most required introduction to how WPF works and how to do basic stuff. It moves on to resources on chapter 2, which also makes since, since it’s such an important concept in WPF. Next, chapter 3, come the panels used for laying controls on the screen, all of the out of the box panels are described with typical use cases. Controls come next in chapter 4; the difference between elements and controls is introduced, as well as content controls, headered controls and items controls, and all standard controls are introduced. The book shows how to change the way they look by using templates. The next chapter, 5, talks about top level windows and the WPF application object: how to access startup arguments, how to set the main window, using standard dialogs and there’s even a sample on how to have a irregularly-shaped window. This is one of the most important concepts in WPF: data binding, which is the theme for the following chapter, 6. All common scenarios are introduced, the binding modes, directions, triggers, etc. It talks about the INotifyPropertyChanged interface and how to use it for notifying data binding subscribers of changes in data sources. Data templates and selectors are also covered, as are value converters and data triggers. Examples include master-detail and sorting, grouping and filtering collections and binding trees and grids. Last it covers validation rules and error templates. Chapter 7 talks about the current trend in WPF development, the Model View View-Model (MVVM) framework. This is a well known pattern for connecting things interface to actions, and it is explained competently. A typical implementation is presented which also presents the command pattern used throughout WPF. A complete application using MVVM is presented from start to finish, including typical features such as undo. Style and layout is covered on chapter 8. Why/how to use styles, applying them automatically,  using the many types of triggers to change styles automatically, using Expression Blend behaviors and templates are all covered. Next chapter, 9, is about graphics and animations programming. It explains how to create shapes, transform common UI elements, apply special effects and perform simple animations. The following chapter, 10, is about creating custom controls, either by deriving from UserControl or from an existing control or framework element class, applying custom templates for changing the way the control looks. One useful example is a custom layout panel that arranges its children along a circumference. The final chapter, 11, is about multi-threading programming and how one can integrate it with WPF. Includes how to invoke methods and properties on WPF classes from threads other than the main UI, using background tasks and timers and even using the new C# 5.0 asynchronous operations. It’s an interesting book, like I said, mostly for newcomers. It provides a competent introduction to WPF, with examples that cover the most common scenarios and also give directions to more complex ones. I recommend it to everyone wishing to learn WPF.

    Read the article

< Previous Page | 213 214 215 216 217 218 219 220 221 222 223 224  | Next Page >