Search Results

Search found 67448 results on 2698 pages for 'data management'.

Page 22/2698 | < Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >

  • What do I need to know about Data Structures and Algorithms in the "real" world

    - by Ray T Champion
    I just finished the data structures and algorithms course in school , I took it during the summer so 6wks course vs a 16 wk course during the regular semester. So not only was the course hard but it was really really really fast. My question is what do I need to know about data structures in the real world? I understand what they do and how they work, for the most part, but I had a real tough time coding them , I wouldn't be able to write the code for a binary tree class or a balanced tree class from scratch .... Is that bad? should I retake it , or is knowledge of how they work sufficient, without being able to write the classes from scratch?

    Read the article

  • Coherence Data Guarantees for Data Reads - Basic Terminology

    - by jpurdy
    When integrating Coherence into applications, each application has its own set of requirements with respect to data integrity guarantees. Developers often describe these requirements using expressions like "avoiding dirty reads" or "making sure that updates are transactional", but we often find that even in a small group of people, there may be a wide range of opinions as to what these terms mean. This may simply be due to a lack of familiarity, but given that Coherence sits at an intersection of several (mostly) unrelated fields, it may be a matter of conflicting vocabularies (e.g. "consistency" is similar but different in transaction processing versus multi-threaded programming). Since almost all data read consistency issues are related to the concept of concurrency, it is helpful to start with a definition of that, or rather what it means for two operations to be concurrent. Rather than implying that they occur "at the same time", concurrency is a slightly weaker statement -- it simply means that it can't be proven that one event precedes (or follows) the other. As an example, in a Coherence application, if two client members mutate two different cache entries sitting on two different cache servers at roughly the same time, it is likely that one update will precede the other by a significant amount of time (say 0.1ms). However, since there is no guarantee that all four members have their clocks perfectly synchronized, and there is no way to precisely measure the time it takes to send a given message between any two members (that have differing clocks), we consider these to be concurrent operations since we can not (easily) prove otherwise. So this leads to a question that we hear quite frequently: "Are the contents of the near cache always synchronized with the underlying distributed cache?". It's easy to see that if an update on a cache server results in a message being sent to each near cache, and then that near cache being updated that there is a window where the contents are different. However, this is irrelevant, since even if the application reads directly from the distributed cache, another thread update the cache before the read is returned to the application. Even if no other member modifies a cache entry prior to the local near cache entry being updated (and subsequently read), the purpose of reading a cache entry is to do something with the result, usually either displaying for consumption by a human, or by updating the entry based on the current state of the entry. In the former case, it's clear that if the data is updated faster than a human can perceive, then there is no problem (and in many cases this can be relaxed even further). For the latter case, the application must assume that the value might potentially be updated before it has a chance to update it. This almost aways the case with read-only caches, and the solution is the traditional optimistic transaction pattern, which requires the application to explicitly state what assumptions it made about the old value of the cache entry. If the application doesn't want to bother stating those assumptions, it is free to lock the cache entry prior to reading it, ensuring that no other threads will mutate the entry, a pessimistic approach. The optimistic approach relies on what is sometimes called a "fuzzy read". In other words, the application assumes that the read should be correct, but it also acknowledges that it might not be. (I use the qualifier "sometimes" because in some writings, "fuzzy read" indicates the situation where the application actually sees an original value and then later sees an updated value within the same transaction -- however, both definitions are roughly equivalent from an application design perspective). If the read is not correct it is called a "stale read". Going back to the definition of concurrency, it may seem difficult to precisely define a stale read, but the practical way of detecting a stale read is that is will cause the encompassing transaction to roll back if it tries to update that value. The pessimistic approach relies on a "coherent read", a guarantee that the value returned is not only the same as the primary copy of that value, but also that it will remain that way. In most cases this can be used interchangeably with "repeatable read" (though that term has additional implications when used in the context of a database system). In none of cases above is it possible for the application to perform a "dirty read". A dirty read occurs when the application reads a piece of data that was never committed. In practice the only way this can occur is with multi-phase updates such as transactions, where a value may be temporarily update but then withdrawn when a transaction is rolled back. If another thread sees that value prior to the rollback, it is a dirty read. If an application uses optimistic transactions, dirty reads will merely result in a lack of forward progress (this is actually one of the main risks of dirty reads -- they can be chained and potentially cause cascading rollbacks). The concepts of dirty reads, fuzzy reads, stale reads and coherent reads are able to describe the vast majority of requirements that we see in the field. However, the important thing is to define the terms used to define requirements. A quick web search for each of the terms in this article will show multiple meanings, so I've selected what are generally the most common variations, but it never hurts to state each definition explicitly if they are critical to the success of a project (many applications have sufficiently loose requirements that precise terminology can be avoided).

    Read the article

  • Premera Blue Cross Deploys PeopleSoft Enterprise 9.1 Human Capital Management, Financial Management, Enterprise Learning Management and Enterprise Portal Solutions

    - by jay.richey
    Optimum Solutions Implements Oracle's PeopleSoft Enterprise 9.1 at Premera Blue Cross Premera chose to upgrade to the latest version of PeopleSoft to help the company achieve its strategic goals, which include building and maintaining a skilled employee team that enables the company to deliver highly efficient and valuable service to plan subscribers, sponsors, and healthcare providers. Its decision was influenced by the key capabilities in PeopleSoft Talent Management 9.1, as well as the common technology enhancements for the PeopleSoft PeopleTools 8.50 toolset across all business process areas, which has helped Premera to maximize process automation, increased ease of use, and minimize long term IT support overhead. Read more...

    Read the article

  • Can data classes contain methods for validation?

    - by Arturas M
    OK, say I have a data class for a user: public class User { private String firstName; private String lastName; private long personCode; private Date birthDate; private Gender gender; private String email; private String password; Now let's say I want to validate email, whether names are not empty, whether birth date is in normal range, etc. Can I put that validation method in this class together with data? Or should it be in UserManager which in my case handles the lists of these users?

    Read the article

  • How much data validation is too much? [closed]

    - by adbertram
    Possible Duplicate: Data input validation - Where? How much? I'm a new PHP developer and am into Powershell quite a bit but this question is language agnostic. I've been questioning my code quite a bit lately thinking about how many nets I should setup to catch exceptions, verify results, etc. I realize that I could go crazy trying to verify each and every line of code but at the same time I want the code as resilient as possible. I'm not talking about user input but verifying output from methods. Is there some standard or rule of thumb to go by when deciding when and where to do data validation?

    Read the article

  • Data structure for file search

    - by poly
    I've asked this question before and I got a few answers/idea, but I'm not sure how to implement them. I'm building a telecom messaging solution. Currently, I'm using a database to save my transaction/messages for the network stack I've built, and as you know it's slower than using a data structure (hash, linkedlist, etc...). My problem is that the data can be really huge, and it won't fit in the memory. I was thinking of saving the records in a file and the a key and line number in a hash, then if I want to access some record then I can get the line number from the hash, and get it from the file. I don't know how efficient is this; I think the database is doing a way better job than this on my behalf. Please share whatever you have in mind.

    Read the article

  • Recommended programming language for linux server management and web ui integration

    - by Brendan Martens
    I am interested in making an in house web ui to ease some of the management tasks I face with administrating many servers; think Canonical's Landscape. This means doing things like, applying package updates simultaneously across servers, perhaps installing a custom .deb (I use ubuntu/debian.) Reviewing server logs, executing custom scripts, viewing status information for all my servers. I hope to be able to reuse existing command line tools instead of rewriting the exact same operations in a different language myself. I really want to develop something that allows me to continue managing on the ssh level but offers the power of a web interface for easily applying the same infrastructure wide changes. They should not be mutually exclusive. What are some recommended programming languages to use for doing this kind of development and tying it into a web ui? Why do you recommend the language(s) you do? I am not an experienced programmer, but view this as an opportunity to scratch some of my own itches as well as become a better programmer. I do not care specifically if one language is harder than another, but am more interested in picking the best tools for the job from the beginning. Feel free to recommend any existing projects that already integrate management of many systems into a single cohesive web ui, except Landscape (not free,) Ebox (ebox control center not free) and webmin (I don't like it, feels clunky and does not integrate well with the "debian way" of maintaining a server, imo. Also, only manages one system.) Thanks for any ideas! Update: I am not looking to reinvent the wheel of systems management, I just want to "glue" many preexisting and excellent tools together where possible and appropriate; this is why I wonder about what languages can interact well with pre-existing command line tools, while making them manageable with a web ui.

    Read the article

  • Recommendation for Document Management Solution

    - by BillN
    We've just been informed by our software vendor that the custom document management system they'd written is no longer in development, and will not be supported in the future. So we are looking at new document management systems. Requirements: Multiple input vectors, we receive documents via e-mail, fax, scanning, and from the originating application Ability to Redact or obscure data. Customers may fax an order with CC data, we want to attach the image of the order form with the order record, but the CC data needs to be protected. Same with Tax IDs. Certain users should be able to see the redacted data, but access should be logged. Version control on documents. We'd like Product Development and Marketing to be able to track various versions of documents like Packaging Designs, but ensure that users have the latest approved version. AD integration, my users don't need another password. Ability to integrate to other apps. Our current system, offers function keys in the order-entry system, that will spawn the viewer application, and open the correct document. Mass import facility, we have a half a terabyte of existing documents in the old system that we would like to import. Retention Policy. I'd like a way to have the system comply with the corporate retention policy, so that when a document of a certain type reaches a certain age, it gets deleted, or atleast marked for manual deletion. We are a Windows Server and HP-UX shop. Does anybody have any experience with Document Management systems that they would like to share? Thanks.

    Read the article

  • Scrambling Sensitive Data in E-Business Suite Release 12 Cloned Environments

    - by Elke Phelps (Oracle Development)
    Securing the Oracle E-Business Suite includes protecting the underlying E-Business data in production and non-production databases.  While steps can be taken to provide a secure configuration to limit EBS access, a better approach to protecting non-production data is simply to scramble (mask) the data in the non-production copy.  You can use the Oracle Data Masking Pack with Oracle Enterprise Manager today to scramble sensitive data in cloned environments. Due to data dependencies, scrambling E-Business Suite data is not a trivial task.  The data needs to be scrubbed in such a way that allows the application to continue to function.  Using the Data Masking Pack in E-Business Suite environments is now easier with the release of new set of templates for E-Business Suite databases: Oracle E-Business Suite Release 12.1.3 Template for Data Masking Pack (Patch13898999) This template works with the Oracle Data Masking Pack and Oracle Enterprise Manager to obscure sensitive E-Business Suite information that is copied from production to non-production environments.  Is there a charge for this? Yes. You must purchase licenses for Oracle Enterprise Manager and the Oracle Data Masking Pack plug-in. The Oracle E-Business Suite 12.1.3 Template for the Data Masking Pack is included with the Oracle Data Masking Pack license.  You can contact your Oracle account manager for more details about licensing. What does data masking do in E-Business Suite environments? Application data masking does the following: De-identify the data:  Scramble identifiers of individuals, also known as personally identifiable information or PII.  Examples include information such as name, account, address, location, and driver's license number. Mask sensitive data:  Mask data that, if associated with personally identifiable information (PII), would cause privacy concerns.  Examples include compensation, health and employment information.   Maintain data validity:  Provide a fully functional application. How can EBS customers use data masking? The Oracle E-Business Suite Template for Data Masking Pack can be used in situations where confidential or regulated data needs to be shared with other non-production users who need access to some of the original data, but not necessarily every table.  Examples of non-production users include internal application developers or external business partners such as offshore testing companies, suppliers or customers.  The Oracle E-Business Suite Template for Data Masking Pack is applied to a non-production environment with the Enterprise Manager Grid Control Data Masking Pack.  When applied, the Oracle E-Business Suite Template for Data Masking Pack will create an irreversibly scrambled version of your production database for development and testing.   References For additional information on the Oracle E-Business Suite Template for Data Masking Pack please refer to the following: Masking Sensitive Data for Non-production Use in the Oracle Enterprise Manager Concepts 11g Using the Oracle E-Business Suite, Release 12.1.3 Template for the Data Masking Pack, Note 1437485.1 Related Articles Webcast Replay Available: E-Business Suite Data Protection Oracle E-Business Suite Plug-in 4.0 Released for OEM 11g (11.1.0.1)

    Read the article

  • E-Business Suite 12.1.3 Data Masking Certified with Enterprise Manager 12c

    - by Elke Phelps (Oracle Development)
    Following up on our prior announcement for EM 11g, we're pleased to announce the certification of the E-Business Suite 12.1.3 Data Masking Template for the Data Masking Pack with Enterprise Manager Cloud Control 12c. You can use the Oracle Data Masking Pack with Oracle Enterprise Manager Grid Control 12c to scramble sensitive data in cloned E-Business Suite environments.  Due to data dependencies, scrambling E-Business Suite data is not a trivial task.  The data needs to be scrubbed in such a way that allows the application to continue to function.  You may scramble data in E-Business Suite cloned environments with EM12c using the following template: E-Business Suite 12.1.3 Data Masking Template for Data Masking Pack with EM12c (Patch 14407414) What does data masking do in E-Business Suite environments? Application data masking does the following: De-identify the data:  Scramble identifiers of individuals, also known as personally identifiable information or PII.  Examples include information such as name, account, address, location, and driver's license number. Mask sensitive data:  Mask data that, if associated with personally identifiable information (PII), would cause privacy concerns.  Examples include compensation, health and employment information.   Maintain data validity:  Provide a fully functional application. How can EBS customers use data masking? The Oracle E-Business Suite Template for Data Masking Pack can be used in situations where confidential or regulated data needs to be shared with other non-production users who need access to some of the original data, but not necessarily every table.  Examples of non-production users include internal application developers or external business partners such as offshore testing companies, suppliers or customers.  The template works with the Oracle Data Masking Pack and Oracle Enterprise Manager to obscure sensitive E-Business Suite information that is copied from production to non-production environments. The Oracle E-Business Suite Template for Data Masking Pack is applied to a non-production environment with the Enterprise Manager Grid Control Data Masking Pack.  When applied, the Oracle E-Business Suite Template for Data Masking Pack will create an irreversibly scrambled version of your production database for development and testing.  What's new with EM 12c? Some of the execution steps may also be performed with EM Command Line Interface (EM CLI).  Support of EM CLI is a new feature with the E-Business Suite Release 12.1.3 template for EM 12c.  Is there a charge for this? Yes. You must purchase licenses for the Oracle Data Masking Pack plug-in. The Oracle E-Business Suite 12.1.3 Template for the Data Masking Pack is included with the Oracle Data Masking Pack license.  You can contact your Oracle account manager for more details about licensing. References Additional details and requirements are provided in the following My Oracle Support Note: Using Oracle E-Business Suite Release 12.1.3 Template for the Data Masking Pack with Oracle Enterprise Manager 12.1.0.2 Data Masking Tool (Note 1481916.1) Masking Sensitive Data in the Oracle Database Real Application Testing User's Guide 11g Release 2 (11.2) Related Articles Scrambling Sensitive Data in E-Business Suite

    Read the article

  • SQL SERVER – Identifying Column Data Type of uniqueidentifier without Querying System Tables

    - by pinaldave
    I love interesting conversations with related to SQL Server. One of my friends Madhivanan always comes up with an interesting point of conversation. Here is one of the conversation between us. I am very confident this blog post will for sure enable you with some new knowledge. Madhi: How do I know if any table has a uniqueidentifier column used in it? Pinal:  I am sure you know that you can do it through some DMV or catalogue views. Madhi: I know that but how can we do that without using DMV or catalogue views? Pinal: Hm… what can I use? Madhi: You can use table name. Pinal: Easy, just say SELECT YourUniqueIdentCol FROM Table. Madhi: Hold on, the question seems to be not clear to you – you do know the name of the column. The matter of the fact, you do not know if the table has uniqueidentifier column. Only information you have is table name. Pinal: Madhi, this seems like you are changing the question when I am close to answer. Madhi: Well, are you clear now? Let me say it again – How do I know if any table has a uniqueidentifier column and what is its value without using any DMV or System Catalogues? Only information you know is table name and you are allowed to return any kind of error if table does not have uniqueidentifier column. Pinal: Do you know the answer? Madhi: Yes. I just wanted to test your knowledge about SQL. Pinal: I will have to think. Let me accept I do not know it right away. Can you share the answer please? Madhi: I won! Here it goes! Pinal: When I have friends like you – who needs enemies? Madhi: (laughter which did not stop for a minute). CREATE TABLE t ( GuidCol UNIQUEIDENTIFIER DEFAULT newsequentialid() ROWGUIDCOL, data VARCHAR(60) ) INSERT INTO t (data) SELECT 'test' INSERT INTO t (data) SELECT 'test1' SELECT $rowguid FROM t DROP TABLE t This is indeed very interesting to me. Please note that this is not the optimal way and there will be many other ways to retrieve uniqueidentifier name and value. What I learned from this was if I am in a rush to check if the table has uniqueidentifier and I do not know the name of the same, I can use SELECT TOP (1) $rowguid and quickly know the name of the column. I can later use the same columnname in my query. Madhi did teach me this new trick. Did you know this? What are other ways to get the check uniqueidentifier column existence in a database? Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Patterns for a tree of persistent data with multiple storage options?

    - by Robin Winslow
    I have a real-world problem which I'll try to abstract into an illustrative example. So imagine I have data objects in a tree, where parent objects can access children, and children can access parents: // Interfaces interface IParent<TChild> { List<TChild> Children; } interface IChild<TParent> { TParent Parent; } // Classes class Top : IParent<Middle> {} class Middle : IParent<Bottom>, IChild<Top> {} class Bottom : IChild<Middle> {} // Usage var top = new Top(); var middles = top.Children; // List<Middle> foreach (var middle in middles) { var bottoms = middle.Children; // List<Bottom> foreach (var bottom in bottoms) { var middle = bottom.Parent; // Access the parent var top = middle.Parent; // Access the grandparent } } All three data objects have properties that are persisted in two data stores (e.g. a database and a web service), and they need to reflect and synchronise with the stores. Some objects only request from the web service, some only write to it. Data Mapper My favourite pattern for data access is Data Mapper, because it completely separates the data objects themselves from the communication with the data store: class TopMapper { public Top FetchById(int id) { var top = new Top(DataStore.TopDataById(id)); top.Children = MiddleMapper.FetchForTop(Top); return Top; } } class MiddleMapper { public Middle FetchById(int id) { var middle = new Middle(DataStore.MiddleDataById(id)); middle.Parent = TopMapper.FetchForMiddle(middle); middle.Children = BottomMapper.FetchForMiddle(bottom); return middle; } } This way I can have one mapper per data store, and build the object from the mapper I want, and then save it back using the mapper I want. There is a circular reference here, but I guess that's not a problem because most languages can just store memory references to the objects, so there won't actually be infinite data. The problem with this is that every time I want to construct a new Top, Middle or Bottom, it needs to build the entire object tree within that object's Parent or Children property, with all the data store requests and memory usage that that entails. And in real life my tree is much bigger than the one represented here, so that's a problem. Requests in the object In this the objects request their Parents and Children themselves: class Middle { private List<Bottom> _children = null; // cache public List<Bottom> Children { get { _children = _children ?? BottomMapper.FetchForMiddle(this); return _children; } set { BottomMapper.UpdateForMiddle(this, value); _children = value; } } } I think this is an example of the repository pattern. Is that correct? This solution seems neat - the data only gets requested from the data store when you need it, and thereafter it's stored in the object if you want to request it again, avoiding a further request. However, I have two different data sources. There's a database, but there's also a web service, and I need to be able to create an object from the web service and save it back to the database and then request it again from the database and update the web service. This also makes me uneasy because the data objects themselves are no longer ignorant of the data source. We've introduced a new dependency, not to mention a circular dependency, making it harder to test. And the objects now mask their communication with the database. Other solutions Are there any other solutions which could take care of the multiple stores problem but also mean that I don't need to build / request all the data every time?

    Read the article

  • Is there a DRM scheme that works?

    - by Simon
    We help our clients to manage and publish their media online - images, video, audio, whatever. They always ask my boss whether they can stop users from copying their media, and he asks me, and I always tell him the same thing: no. If the users can view the media, then a sufficiently determined user will always be able to make a copy. But am I right? I've been asked again today, and I promised my boss I'd ask about it online. So - is there a DRM scheme that will work? One that will stop users making copies without stopping legitimate viewing of the media? And if there isn't, how do I convince my boss?

    Read the article

  • C# - Data Clustering approach

    - by Brett
    Hi all, I am writing a program in C# in which I have a set of 200 points displayed on an image. However, the points tend to cluster in various regions, and I am looking to find a way to "cluster." In other words, maybe draw a circle/ellipse around the clustered points. Has anyone seen any way to do this? I have heard about K-means clustering, but I am not sure how to implement it in C#. Any favorite implementations out there? Cheers, Brett

    Read the article

  • Efficient data structure design

    - by Sway
    Hi there, I need to match a series of user inputed words against a large dictionary of words (to ensure the entered value exists). So if the user entered: "orange" it should match an entry "orange' in the dictionary. Now the catch is that the user can also enter a wildcard or series of wildcard characters like say "or__ge" which would also match "orange" The key requirements are: * this should be as fast as possible. * use the smallest amount of memory to achieve it. If the size of the word list was small I could use a string containing all the words and use regular expressions. however given that the word list could contain potentially hundreds of thousands of enteries I'm assuming this wouldn't work. So is some sort of 'tree' be the way to go for this...? Any thoughts or suggestions on this would be totally appreciated! Thanks in advance, Matt

    Read the article

  • What are the most difficult aspects of project management in Software Engineering?

    - by Jamie Chapman
    I have been asked to provide a brief summary of the what the most difficult aspects of being a project manager of a software engineering project. However, I have no experience of this as I'm still at University and have no "hands on" experience of project management. I was hoping that someone on SO would be able to provide some insight based on their experience. What are the most difficult aspects of project management in Software Engineering?

    Read the article

  • Effecient data structure design

    - by Sway
    Hi there, I need to match a series of user inputed words against a large dictionary of words (to ensure the entered value exists). So if the user entered: "orange" it should match an entry "orange' in the dictionary. Now the catch is that the user can also enter a wildcard or series of wildcard characters like say "or__ge" which would also match "orange" The key requirements are: * this should be as fast as possible. * use the smallest amount of memory to achieve it. If the size of the word list was small I could use a string containing all the words and use regular expressions. however given that the word list could contain potentially hundreds of thousands of enteries I'm assuming this wouldn't work. So is some sort of 'tree' be the way to go for this...? Any thoughts or suggestions on this would be totally appreciated! Thanks in advance, Matt

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Oracle UCM 11g

    - by [email protected]
    Ya se ha lanzado la última versión de Oracle UCM11g. Grandes novedades, sobre todo en la arquitectura del producto, nos hacen ser muy optimistas sobre todo después de ver los resultados de rendimiento y escalabilidad obtenidos.El enlace a toda la información sobre el lanzamiento está aquí:Oracle Enterprise Content Management 11gLas novedades más importantes son:Mejor integración en tu entorno de trabajo: Nueva integración del escritorio: los contenidos se manejan usando herramientas estándares de oficina.Gestión de contenidos web en un clic: que permite a los desarrolladores y editores web acceder y actualizar contenido con un solo clic.Más funcionalidad a través de integraciones con otros productos de Oracle. Unificación del stack tecnológico de gestión de contenidosAhora Oracle ECM Suite 11g unifica todos los repositorios de contenido para facilitar su gestión en una única infraestructura.Infraestructura Oracle Fusion Middleware: Oracle ECM Suite 11g se ha trasladado completamente a la plataforma Oracle Fusion Middleware, con todas las aplicaciones soportadas por Oracle WebLogic Server y gestionado con el cuadro de mando Oracle Enterprise Manager. Rendimiento y escalabilidad ExtremosLos datos de los test de rendimiento son espectaculares corriendo en una máquina Exadata.Podéis ver un vídeo del rendimiento aquí: Bueno... 172 millones de documentos por día!!! y 124 páginas por segundo con 2 cpu's... quien quiere ser el primero en probarlo?

    Read the article

  • Running a simple integration scenario using the Oracle Big Data Connectors on Hadoop/HDFS cluster

    - by hamsun
    Between the elephant ( the tradional image of the Hadoop framework) and the Oracle Iron Man (Big Data..) an english setter could be seen as the link to the right data Data, Data, Data, we are living in a world where data technology based on popular applications , search engines, Webservers, rich sms messages, email clients, weather forecasts and so on, have a predominant role in our life. More and more technologies are used to analyze/track our behavior, try to detect patterns, to propose us "the best/right user experience" from the Google Ad services, to Telco companies or large consumer sites (like Amazon:) ). The more we use all these technologies, the more we generate data, and thus there is a need of huge data marts and specific hardware/software servers (as the Exadata servers) in order to treat/analyze/understand the trends and offer new services to the users. Some of these "data feeds" are raw, unstructured data, and cannot be processed effectively by normal SQL queries. Large scale distributed processing was an emerging infrastructure need and the solution seemed to be the "collocation of compute nodes with the data", which in turn leaded to MapReduce parallel patterns and the development of the Hadoop framework, which is based on MapReduce and a distributed file system (HDFS) that runs on larger clusters of rather inexpensive servers. Several Oracle products are using the distributed / aggregation pattern for data calculation ( Coherence, NoSql, times ten ) so once that you are familiar with one of these technologies, lets says with coherence aggregators, you will find the whole Hadoop, MapReduce concept very similar. Oracle Big Data Appliance is based on the Cloudera Distribution (CDH), and the Oracle Big Data Connectors can be plugged on a Hadoop cluster running the CDH distribution or equivalent Hadoop clusters. In this paper, a "lab like" implementation of this concept is done on a single Linux X64 server, running an Oracle Database 11g Enterprise Edition Release 11.2.0.4.0, and a single node Apache hadoop-1.2.1 HDFS cluster, using the SQL connector for HDFS. The whole setup is fairly simple: Install on a Linux x64 server ( or virtual box appliance) an Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 server Get the Apache Hadoop distribution from: http://mir2.ovh.net/ftp.apache.org/dist/hadoop/common/hadoop-1.2.1. Get the Oracle Big Data Connectors from: http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/index.html?ssSourceSiteId=ocomen. Check the java version of your Linux server with the command: java -version java version "1.7.0_40" Java(TM) SE Runtime Environment (build 1.7.0_40-b43) Java HotSpot(TM) 64-Bit Server VM (build 24.0-b56, mixed mode) Decompress the hadoop hadoop-1.2.1.tar.gz file to /u01/hadoop-1.2.1 Modify your .bash_profile export HADOOP_HOME=/u01/hadoop-1.2.1 export PATH=$PATH:$HADOOP_HOME/bin export HIVE_HOME=/u01/hive-0.11.0 export PATH=$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin (also see my sample .bash_profile) Set up ssh trust for Hadoop process, this is a mandatory step, in our case we have to establish a "local trust" as will are using a single node configuration copy the new public keys to the list of authorized keys connect and test the ssh setup to your localhost: We will run a "pseudo-Hadoop cluster", in what is called "local standalone mode", all the Hadoop java components are running in one Java process, this is enough for our demo purposes. We need to "fine tune" some Hadoop configuration files, we have to go at our $HADOOP_HOME/conf, and modify the files: core-site.xml hdfs-site.xml mapred-site.xml check that the hadoop binaries are referenced correctly from the command line by executing: hadoop -version As Hadoop is managing our "clustered HDFS" file system we have to create "the mount point" and format it , the mount point will be declared to core-site.xml as: The layout under the /u01/hadoop-1.2.1/data will be created and used by other hadoop components (MapReduce = /mapred/...) HDFS is using the /dfs/... layout structure format the HDFS hadoop file system: Start the java components for the HDFS system As an additional check, you can use the GUI Hadoop browsers to check the content of your HDFS configurations: Once our HDFS Hadoop setup is done you can use the HDFS file system to store data ( big data : )), and plug them back and forth to Oracle Databases by the means of the Big Data Connectors ( which is the next configuration step). You can create / use a Hive db, but in our case we will make a simple integration of "raw data" , through the creation of an External Table to a local Oracle instance ( on the same Linux box, we run the Hadoop HDFS one node cluster and one Oracle DB). Download some public "big data", I use the site: http://france.meteofrance.com/france/observations, from where I can get *.csv files for my big data simulations :). Here is the data layout of my example file: Download the Big Data Connector from the OTN (oraosch-2.2.0.zip), unzip it to your local file system (see picture below) Modify your environment in order to access the connector libraries , and make the following test: [oracle@dg1 bin]$./hdfs_stream Usage: hdfs_stream locationFile [oracle@dg1 bin]$ Load the data to the Hadoop hdfs file system: hadoop fs -mkdir bgtest_data hadoop fs -put obsFrance.txt bgtest_data/obsFrance.txt hadoop fs -ls /user/oracle/bgtest_data/obsFrance.txt [oracle@dg1 bg-data-raw]$ hadoop fs -ls /user/oracle/bgtest_data/obsFrance.txt Found 1 items -rw-r--r-- 1 oracle supergroup 54103 2013-10-22 06:10 /user/oracle/bgtest_data/obsFrance.txt [oracle@dg1 bg-data-raw]$hadoop fs -ls hdfs:///user/oracle/bgtest_data/obsFrance.txt Found 1 items -rw-r--r-- 1 oracle supergroup 54103 2013-10-22 06:10 /user/oracle/bgtest_data/obsFrance.txt Check the content of the HDFS with the browser UI: Start the Oracle database, and run the following script in order to create the Oracle database user, the Oracle directories for the Oracle Big Data Connector (dg1 it’s my own db id replace accordingly yours): #!/bin/bash export ORAENV_ASK=NO export ORACLE_SID=dg1 . oraenv sqlplus /nolog <<EOF CONNECT / AS sysdba; CREATE OR REPLACE DIRECTORY osch_bin_path AS '/u01/orahdfs-2.2.0/bin'; CREATE USER BGUSER IDENTIFIED BY oracle; GRANT CREATE SESSION, CREATE TABLE TO BGUSER; GRANT EXECUTE ON sys.utl_file TO BGUSER; GRANT READ, EXECUTE ON DIRECTORY osch_bin_path TO BGUSER; CREATE OR REPLACE DIRECTORY BGT_LOG_DIR as '/u01/BG_TEST/logs'; GRANT READ, WRITE ON DIRECTORY BGT_LOG_DIR to BGUSER; CREATE OR REPLACE DIRECTORY BGT_DATA_DIR as '/u01/BG_TEST/data'; GRANT READ, WRITE ON DIRECTORY BGT_DATA_DIR to BGUSER; EOF Put the following in a file named t3.sh and make it executable, hadoop jar $OSCH_HOME/jlib/orahdfs.jar \ oracle.hadoop.exttab.ExternalTable \ -D oracle.hadoop.exttab.tableName=BGTEST_DP_XTAB \ -D oracle.hadoop.exttab.defaultDirectory=BGT_DATA_DIR \ -D oracle.hadoop.exttab.dataPaths="hdfs:///user/oracle/bgtest_data/obsFrance.txt" \ -D oracle.hadoop.exttab.columnCount=7 \ -D oracle.hadoop.connection.url=jdbc:oracle:thin:@//localhost:1521/dg1 \ -D oracle.hadoop.connection.user=BGUSER \ -D oracle.hadoop.exttab.printStackTrace=true \ -createTable --noexecute then test the creation fo the external table with it: [oracle@dg1 samples]$ ./t3.sh ./t3.sh: line 2: /u01/orahdfs-2.2.0: Is a directory Oracle SQL Connector for HDFS Release 2.2.0 - Production Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved. Enter Database Password:] The create table command was not executed. The following table would be created. CREATE TABLE "BGUSER"."BGTEST_DP_XTAB" ( "C1" VARCHAR2(4000), "C2" VARCHAR2(4000), "C3" VARCHAR2(4000), "C4" VARCHAR2(4000), "C5" VARCHAR2(4000), "C6" VARCHAR2(4000), "C7" VARCHAR2(4000) ) ORGANIZATION EXTERNAL ( TYPE ORACLE_LOADER DEFAULT DIRECTORY "BGT_DATA_DIR" ACCESS PARAMETERS ( RECORDS DELIMITED BY 0X'0A' CHARACTERSET AL32UTF8 STRING SIZES ARE IN CHARACTERS PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream' FIELDS TERMINATED BY 0X'2C' MISSING FIELD VALUES ARE NULL ( "C1" CHAR(4000), "C2" CHAR(4000), "C3" CHAR(4000), "C4" CHAR(4000), "C5" CHAR(4000), "C6" CHAR(4000), "C7" CHAR(4000) ) ) LOCATION ( 'osch-20131022081035-74-1' ) ) PARALLEL REJECT LIMIT UNLIMITED; The following location files would be created. osch-20131022081035-74-1 contains 1 URI, 54103 bytes 54103 hdfs://localhost:19000/user/oracle/bgtest_data/obsFrance.txt Then remove the --noexecute flag and create the external Oracle table for the Hadoop data. Check the results: The create table command succeeded. CREATE TABLE "BGUSER"."BGTEST_DP_XTAB" ( "C1" VARCHAR2(4000), "C2" VARCHAR2(4000), "C3" VARCHAR2(4000), "C4" VARCHAR2(4000), "C5" VARCHAR2(4000), "C6" VARCHAR2(4000), "C7" VARCHAR2(4000) ) ORGANIZATION EXTERNAL ( TYPE ORACLE_LOADER DEFAULT DIRECTORY "BGT_DATA_DIR" ACCESS PARAMETERS ( RECORDS DELIMITED BY 0X'0A' CHARACTERSET AL32UTF8 STRING SIZES ARE IN CHARACTERS PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream' FIELDS TERMINATED BY 0X'2C' MISSING FIELD VALUES ARE NULL ( "C1" CHAR(4000), "C2" CHAR(4000), "C3" CHAR(4000), "C4" CHAR(4000), "C5" CHAR(4000), "C6" CHAR(4000), "C7" CHAR(4000) ) ) LOCATION ( 'osch-20131022081719-3239-1' ) ) PARALLEL REJECT LIMIT UNLIMITED; The following location files were created. osch-20131022081719-3239-1 contains 1 URI, 54103 bytes 54103 hdfs://localhost:19000/user/oracle/bgtest_data/obsFrance.txt This is the view from the SQL Developer: and finally the number of lines in the oracle table, imported from our Hadoop HDFS cluster SQL select count(*) from "BGUSER"."BGTEST_DP_XTAB"; COUNT(*) ---------- 1151 In a next post we will integrate data from a Hive database, and try some ODI integrations with the ODI Big Data connector. Our simplistic approach is just a step to show you how these unstructured data world can be integrated to Oracle infrastructure. Hadoop, BigData, NoSql are great technologies, they are widely used and Oracle is offering a large integration infrastructure based on these services. Oracle University presents a complete curriculum on all the Oracle related technologies: NoSQL: Introduction to Oracle NoSQL Database Using Oracle NoSQL Database Big Data: Introduction to Big Data Oracle Big Data Essentials Oracle Big Data Overview Oracle Data Integrator: Oracle Data Integrator 12c: New Features Oracle Data Integrator 11g: Integration and Administration Oracle Data Integrator: Administration and Development Oracle Data Integrator 11g: Advanced Integration and Development Oracle Coherence 12c: Oracle Coherence 12c: New Features Oracle Coherence 12c: Share and Manage Data in Clusters Oracle Coherence 12c: Oracle GoldenGate 11g: Fundamentals for Oracle Oracle GoldenGate 11g: Fundamentals for SQL Server Oracle GoldenGate 11g Fundamentals for Oracle Oracle GoldenGate 11g Fundamentals for DB2 Oracle GoldenGate 11g Fundamentals for Teradata Oracle GoldenGate 11g Fundamentals for HP NonStop Oracle GoldenGate 11g Management Pack: Overview Oracle GoldenGate 11g Troubleshooting and Tuning Oracle GoldenGate 11g: Advanced Configuration for Oracle Other Resources: Apache Hadoop : http://hadoop.apache.org/ is the homepage for these technologies. "Hadoop Definitive Guide 3rdEdition" by Tom White is a classical lecture for people who want to know more about Hadoop , and some active "googling " will also give you some more references. About the author: Eugene Simos is based in France and joined Oracle through the BEA-Weblogic Acquisition, where he worked for the Professional Service, Support, end Education for major accounts across the EMEA Region. He worked in the banking sector, ATT, Telco companies giving him extensive experience on production environments. Eugen currently specializes in Oracle Fusion Middleware teaching an array of courses on Weblogic/Webcenter, Content,BPM /SOA/Identity-Security/GoldenGate/Virtualisation/Unified Comm Suite) throughout the EMEA region.

    Read the article

  • Oracle E-Business Suite Plug-in 4.0 Released for OEM 11g (11.1.0.1)

    - by Steven Chan
    [Feb. 25, 12:40 PM Update: Removed incorrect references to RHEL 3, SLES 9, HP-UX 11.11, Solaris 8]We're very pleased to announce the release of Oracle E-Business Suite Plug-in 4.0, an integral part of Application Management Suite for Oracle E-Business Suite.The management suite combines features in the standalone Application Management Pack (AMP) for Oracle E-Business Suite and Application Change Management Pack (ACMP) for Oracle E-Business Suite with Oracle's real user monitoring and configuration management capabilities.  The features that were available in the standalone Application Management Pack and Application Change Management Pack for Oracle E-Business Suite are now packaged into the Oracle E-Business Suite Plug-in 4.0.  The Oracle E-Business Suite Plug-in 4.0 is now fully certified with Oracle Enterprise Manager 11g Grid Control.  This latest plug-in extends Grid Control with E-Business Suite specific management capabilities and features enhanced change management support.  The Oracle E-Business Suite Plug-in is released via patch 8333939.  For the AMP and ACMP 4.0 installation guide, see:Getting Started with Oracle E-Business Suite Plug-in Release 4.0 (Note 1224313.1)General AMP & ACMP improvementsOracle Enterprise Manager 11g Grid Control SupportApplication Management Pack 4.0 and Application Change Management Pack 4.0 for Oracle E-Business Suite are certified with Oracle Enterprise Manager 11g Grid Control Release 1 (11.1.0.1.0).Built-in Diagnostic Ability Release 4.0 has numerous major enhancements that provide the necessary intelligence to determine if the product has been installed and configured correctly. There are diagnostics for Discovery, Cloning, and User Monitoring that will validate if the appropriate patches, privileges, setups, and profile options have been configured. This feature improves the setup and configuration process.

    Read the article

  • Which software to keep track of my project?

    - by Exa
    I'm about to start the first real phase of my game development which will consist of the acquisition of information, resources and the definition of where I want to go and what I will need for that. I just want to make sure that I'm prepared as best as possible before I actually start development. I don't like the thought of using Microsoft Word or Excel for my project management... I already worked with MS Project but I don't think it fits my needs. I need a software where I can easily maintain project steps, milestones, important issues, information about technologies and engines I use, as well as simple notes and thoughts I just want to write down. I usually prefer a whiteboard for stuff like that but unfortunately it's not a persistent way of storing. ;) Also writing it down the old-school way is something I can think of, but only for quick notes... Which software do you use for that? Are there commonly used programs? Is there any free software at all?

    Read the article

  • How to show or direct a business analyst to a data modelling subject?

    - by AaronLS
    Our business analysts pushed hard to collect data through a spreadsheet. I am the programmer responsible for importing that data. Usually when they push hard for something like this, I never know how well it will work out until a few weeks later when I have time assigned to work on the task of programming the import of the data. I have tried to do as much as possible along the way, named ranges, data validations, etc. But I usually don't have time to take a detailed look at all the data and compare to the destination in the database to determine how well it matches up. A lot of times there will be maybe a little table of items that somehow I have to relate to something else in the database, but there are not natural or business keys present that would allow me to do so. Make the best of this, trying to write something that can compare strings and make a best guess at it and then go through the effort of creating interfaces for a user to match the imported data to the destination. I feel like if the business analyst was actually creating a data model, they would be forced to think about these relationships, and have an appreciation for the need of natural or business keys to be part of the spreadsheet for the purposes of smoothly importing the data. The closest they come to business analysis is a big flat list of fields, and that would be fine if it were like any other data dictionary and include data types+relationships, but it isn't. They are just a bunch of names. No indication of what type of data they might hold, and it is up to me to guess. When I have pushed for more detail, they say that it is just busy work. How can I explain the importance of data modelling? How can I tell them what it is and how to do it? It feels impossible, because they don't have an appreciation for its importance. They do however, usually have an interest in helping out in whatever way they can, it's just this in particular has never gotten a motivated response.

    Read the article

  • Ray Tracing concers: Efficient Data Structure and Photon Mapping

    - by Grieverheart
    I'm trying to build a simple ray tracer for specific target scenes. An example of such scene can be seen below. I'm concerned as to what accelerating data structure would be most efficient in this case since all objects are touching but on the other hand, the scene is uniform. The objects in my ray tracer are stored as a collection of triangles, thus I also have access to individual triangles. Also, when trying to find the bounding box of the scene, how should infinite planes be handled? Should one instead use the viewing frustum to calculate the bounding box? A few other questions I have are about photon mapping. I've read the original paper by Jensen and many more material. In the compact data structure for the photon they introduce, they store photon power as 4 chars, which from my understanding is 3 chars for color and 1 for flux. But I don't understand how 1 char is enough to store a flux of the order of 1/n, where n is the number of photons (I'm also a bit confused about flux vs power). The other question about photon mapping is, if it would be more efficient in my case to store photons per object (or even per Object's triangle) instead of using a balanced kd-tree. Also, same question about bounding box of the scene but for photon mapping. How should one find a bounding box from the pov of the light when infinite planes are involved?

    Read the article

  • How to show or direct a business analyst to do data modelling?

    - by AaronLS
    Our business analysts pushed hard to collect data through a spreadsheet. I am the programmer responsible for importing that data. Usually when they push hard for something like this, I never know how well it will work out until a few weeks later when I have time assigned to work on the task of programming the import of the data. I have tried to do as much as possible along the way, named ranges, data validations, etc. But I usually don't have time to take a detailed look at all the data and compare to the destination in the database to determine how well it matches up. A lot of times there will be maybe a little table of items that somehow I have to relate to something else in the database, but there are not natural or business keys present that would allow me to do so. Make the best of this, trying to write something that can compare strings and make a best guess at it and then go through the effort of creating interfaces for a user to match the imported data to the destination. I feel like if the business analyst was actually creating a data model, they would be forced to think about these relationships, and have an appreciation for the need of natural or business keys to be part of the spreadsheet for the purposes of smoothly importing the data. The closest they come to business analysis is a big flat list of fields, and that would be fine if it were like any other data dictionary and include data types+relationships, but it isn't. They are just a bunch of names. No indication of what type of data they might hold, and it is up to me to guess. When I have pushed for more detail, they say that it is just busy work. How can I explain the importance of data modelling? How can I tell them what it is and how to do it? It feels impossible, because they don't have an appreciation for its importance. They do however, usually have an interest in helping out in whatever way they can, it's just this in particular has never gotten a motivated response.

    Read the article

< Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >