Search Results

Search found 11077 results on 444 pages for 'no such ip'.

Page 22/444 | < Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >

  • Computer Networks UNISA - Chap 10 &ndash; In Depth TCP/IP Networking

    - by MarkPearl
    After reading this section you should be able to Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation Explain the differences between public and private TCP/IP networks Describe protocols used between mail clients and mail servers, including SMTP, POP3, and IMAP4 Employ multiple TCP/IP utilities for network discovery and troubleshooting Designing TCP/IP-Based Networks The following sections explain how network and host information in an IPv4 address can be manipulated to subdivide networks into smaller segments. Subnetting Subnetting separates a network into multiple logically defined segments, or subnets. Networks are commonly subnetted according to geographic locations, departmental boundaries, or technology types. A network administrator might separate traffic to accomplish the following… Enhance security Improve performance Simplify troubleshooting The challenges of Classful Addressing in IPv4 (No subnetting) The simplest type of IPv4 is known as classful addressing (which was the Class A, Class B & Class C network addresses). Classful addressing has the following limitations. Restriction in the number of usable IPv4 addresses (class C would be limited to 254 addresses) Difficult to separate traffic from various parts of a network Because of the above reasons, subnetting was introduced. IPv4 Subnet Masks Subnetting depends on the use of subnet masks to identify how a network is subdivided. A subnet mask indicates where network information is located in an IPv4 address. The 1 in a subnet mask indicates that corresponding bits in the IPv4 address contain network information (likewise 0 indicates the opposite) Each network class is associated with a default subnet mask… Class A = 255.0.0.0 Class B = 255.255.0.0 Class C = 255.255.255.0 An example of calculating  the network ID for a particular device with a subnet mask is shown below.. IP Address = 199.34.89.127 Subnet Mask = 255.255.255.0 Resultant Network ID = 199.34.89.0 IPv4 Subnetting Techniques Subnetting breaks the rules of classful IPv4 addressing. Read page 490 for a detailed explanation Calculating IPv4 Subnets Read page 491 – 494 for an explanation Important… Subnetting only applies to the devices internal to your network. Everything external looks at the class of the IP address instead of the subnet network ID. This way, traffic directed to your network externally still knows where to go, and once it has entered your internal network it can then be prioritized and segmented. CIDR (classless Interdomain Routing) CIDR is also known as classless routing or supernetting. In CIDR conventional network class distinctions do not exist, a subnet boundary can move to the left, therefore generating more usable IP addresses on your network. A subnet created by moving the subnet boundary to the left is known as a supernet. With CIDR also came new shorthand for denoting the position of subnet boundaries known as CIDR notation or slash notation. CIDR notation takes the form of the network ID followed by a forward slash (/) followed by the number of bits that are used for the extended network prefix. To take advantage of classless routing, your networks routers must be able to interpret IP addresses that don;t adhere to conventional network class parameters. Routers that rely on older routing protocols (i.e. RIP) are not capable of interpreting classless IP addresses. Internet Gateways Gateways are a combination of software and hardware that enable two different network segments to exchange data. A gateway facilitates communication between different networks or subnets. Because on device cannot send data directly to a device on another subnet, a gateway must intercede and hand off the information. Every device on a TCP/IP based network has a default gateway (a gateway that first interprets its outbound requests to other subnets, and then interprets its inbound requests from other subnets). The internet contains a vast number of routers and gateways. If each gateway had to track addressing information for every other gateway on the Internet, it would be overtaxed. Instead, each handles only a relatively small amount of addressing information, which it uses to forward data to another gateway that knows more about the data’s destination. The gateways that make up the internet backbone are called core gateways. Address Translation An organizations default gateway can also be used to “hide” the organizations internal IP addresses and keep them from being recognized on a public network. A public network is one that any user may access with little or no restrictions. On private networks, hiding IP addresses allows network managers more flexibility in assigning addresses. Clients behind a gateway may use any IP addressing scheme, regardless of whether it is recognized as legitimate by the Internet authorities but as soon as those devices need to go on the internet, they must have legitimate IP addresses to exchange data. When a clients transmission reaches the default gateway, the gateway opens the IP datagram and replaces the client’s private IP address with an Internet recognized IP address. This process is known as NAT (Network Address Translation). TCP/IP Mail Services All Internet mail services rely on the same principles of mail delivery, storage, and pickup, though they may use different types of software to accomplish these functions. Email servers and clients communicate through special TCP/IP application layer protocols. These protocols, all of which operate on a variety of operating systems are discussed below… SMTP (Simple Mail transfer Protocol) The protocol responsible for moving messages from one mail server to another over TCP/IP based networks. SMTP belongs to the application layer of the ODI model and relies on TCP as its transport protocol. Operates from port 25 on the SMTP server Simple sub-protocol, incapable of doing anything more than transporting mail or holding it in a queue MIME (Multipurpose Internet Mail Extensions) The standard message format specified by SMTP allows for lines that contain no more than 1000 ascii characters meaning if you relied solely on SMTP you would have very short messages and nothing like pictures included in an email. MIME us a standard for encoding and interpreting binary files, images, video, and non-ascii character sets within an email message. MIME identifies each element of a mail message according to content type. MIME does not replace SMTP but works in conjunction with it. Most modern email clients and servers support MIME POP (Post Office Protocol) POP is an application layer protocol used to retrieve messages from a mail server POP3 relies on TCP and operates over port 110 With POP3 mail is delivered and stored on a mail server until it is downloaded by a user Disadvantage of POP3 is that it typically does not allow users to save their messages on the server because of this IMAP is sometimes used IMAP (Internet Message Access Protocol) IMAP is a retrieval protocol that was developed as a more sophisticated alternative to POP3 The single biggest advantage IMAP4 has over POP3 is that users can store messages on the mail server, rather than having to continually download them Users can retrieve all or only a portion of any mail message Users can review their messages and delete them while the messages remain on the server Users can create sophisticated methods of organizing messages on the server Users can share a mailbox in a central location Disadvantages of IMAP are typically related to the fact that it requires more storage space on the server. Additional TCP/IP Utilities Nearly all TCP/IP utilities can be accessed from the command prompt on any type of server or client running TCP/IP. The syntaxt may differ depending on the OS of the client. Below is a list of additional TCP/IP utilities – research their use on your own! Ipconfig (Windows) & Ifconfig (Linux) Netstat Nbtstat Hostname, Host & Nslookup Dig (Linux) Whois (Linux) Traceroute (Tracert) Mtr (my traceroute) Route

    Read the article

  • Oracle Coherence?UCOM?IP???????SIP?????????????

    - by Norihito Yachita
    ?????????Oracle Coherence???????????????????????UCOM?IP???????SIP(Session Initiation Protocol)?????????????????????????????????? UCOM?????????????????????????????????????????IP????????????????????????????????????ISP?????????????????????????????????????????????????????????????????????????????????????????SOHO??????????????????????? UCOM??IP???????????????????SIP??????????????????????????????IP???????????????????????????Oracle Coherence??2011?2????????????????????????????????????????????????????????????????????????????????????????·????????2????????? 11?30?(?)??????????·??????·????? 2011?(??:??????)??UCOM??Oracle Coherence?????????????????????:?UCOM ????????????????????????

    Read the article

  • How to tell endianness from this output?

    - by Nick Rosencrantz
    I'm running this example program and I'm suppossed to be able to tell from the output what machine type it is. I'm certain it's from inspecting one or two values but how should I perform this inspection? /* pointers.c - Test pointers * Written 2012 by F Lundevall * Copyright abandoned. This file is in the public domain. * * To make this program work on as many systems as possible, * addresses are converted to unsigned long when printed. * The 'l' in formatting-codes %ld and %lx means a long operand. */ #include <stdio.h> #include <stdlib.h> int * ip; /* Declare a pointer to int, a.k.a. int pointer. */ char * cp; /* Pointer to char, a.k.a. char pointer. */ /* Declare fp as a pointer to function, where that function * has one parameter of type int and returns an int. * Use cdecl to get the syntax right, http://cdecl.org/ */ int ( *fp )( int ); int val1 = 111111; int val2 = 222222; int ia[ 17 ]; /* Declare an array of 17 ints, numbered 0 through 16. */ char ca[ 17 ]; /* Declare an array of 17 chars. */ int fun( int parm ) { printf( "Function fun called with parameter %d\n", parm ); return( parm + 1 ); } /* Main function. */ int main() { printf( "Message PT.01 from pointers.c: Hello, pointy World!\n" ); /* Do some assignments. */ ip = &val1; cp = &val2; /* The compiler should warn you about this. */ fp = fun; ia[ 0 ] = 11; /* First element. */ ia[ 1 ] = 17; ia[ 2 ] = 3; ia[ 16 ] = 58; /* Last element. */ ca[ 0 ] = 11; /* First element. */ ca[ 1 ] = 17; ca[ 2 ] = 3; ca[ 16 ] = 58; /* Last element. */ printf( "PT.02: val1: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val1, val1, val1 ); printf( "PT.03: val2: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val2, val2, val2 ); printf( "PT.04: ip: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &ip, (long) ip, (long) ip ); printf( "PT.05: Dereference pointer ip and we find: %d \n", *ip ); printf( "PT.06: cp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &cp, (long) cp, (long) cp ); printf( "PT.07: Dereference pointer cp and we find: %d \n", *cp ); *ip = 1234; printf( "\nPT.08: Executed *ip = 1234; \n" ); printf( "PT.09: val1: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val1, val1, val1 ); printf( "PT.10: ip: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &ip, (long) ip, (long) ip ); printf( "PT.11: Dereference pointer ip and we find: %d \n", *ip ); printf( "PT.12: val1: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val1, val1, val1 ); *cp = 1234; /* The compiler should warn you about this. */ printf( "\nPT.13: Executed *cp = 1234; \n" ); printf( "PT.14: val2: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val2, val2, val2 ); printf( "PT.15: cp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &cp, (long) cp, (long) cp ); printf( "PT.16: Dereference pointer cp and we find: %d \n", *cp ); printf( "PT.17: val2: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val2, val2, val2 ); ip = ia; printf( "\nPT.18: Executed ip = ia; \n" ); printf( "PT.19: ia[0]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ia[0], ia[0], ia[0] ); printf( "PT.20: ia[1]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ia[1], ia[1], ia[1] ); printf( "PT.21: ip: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &ip, (long) ip, (long) ip ); printf( "PT.22: Dereference pointer ip and we find: %d \n", *ip ); ip = ip + 1; /* add 1 to pointer */ printf( "\nPT.23: Executed ip = ip + 1; \n" ); printf( "PT.24: ip: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &ip, (long) ip, (long) ip ); printf( "PT.25: Dereference pointer ip and we find: %d \n", *ip ); cp = ca; printf( "\nPT.26: Executed cp = ca; \n" ); printf( "PT.27: ca[0]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ca[0], ca[0], ca[0] ); printf( "PT.28: ca[1]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ca[1], ca[1], ca[1] ); printf( "PT.29: cp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &cp, (long) cp, (long) cp ); printf( "PT.30: Dereference pointer cp and we find: %d \n", *cp ); cp = cp + 1; /* add 1 to pointer */ printf( "\nPT.31: Executed cp = cp + 1; \n" ); printf( "PT.32: cp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &cp, (long) cp, (long) cp ); printf( "PT.33: Dereference pointer cp and we find: %d \n", *cp ); ip = ca; /* The compiler should warn you about this. */ printf( "\nPT.34: Executed ip = ca; \n" ); printf( "PT.35: ca[0]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ca[0], ca[0], ca[0] ); printf( "PT.36: ca[1]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ca[1], ca[1], ca[1] ); printf( "PT.37: ip: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &ip, (long) ip, (long) ip ); printf( "PT.38: Dereference pointer ip and we find: %d \n", *ip ); cp = ia; /* The compiler should warn you about this. */ printf( "\nPT.39: Executed cp = ia; \n" ); printf( "PT.40: cp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &cp, (long) cp, (long) cp ); printf( "PT.41: Dereference pointer cp and we find: %d \n", *cp ); printf( "\nPT.42: fp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &fp, (long) fp, (long) fp ); printf( "PT.43: Dereference fp and see what happens.\n" ); val1 = (*fp)(42); printf( "PT.44: Executed val1 = (*fp)(42); \n" ); printf( "PT.45: val1: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val1, val1, val1 ); return( 0 ); } Output Message PT.01 from pointers.c: Hello, pointy World! PT.02: val1: stored at 21e50 (hex); value is 111111 (dec), 1b207 (hex) PT.03: val2: stored at 21e54 (hex); value is 222222 (dec), 3640e (hex) PT.04: ip: stored at 21eb8 (hex); value is 138832 (dec), 21e50 (hex) PT.05: Dereference pointer ip and we find: 111111 PT.06: cp: stored at 21e6c (hex); value is 138836 (dec), 21e54 (hex) PT.07: Dereference pointer cp and we find: 0 PT.08: Executed *ip = 1234; PT.09: val1: stored at 21e50 (hex); value is 1234 (dec), 4d2 (hex) PT.10: ip: stored at 21eb8 (hex); value is 138832 (dec), 21e50 (hex) PT.11: Dereference pointer ip and we find: 1234 PT.12: val1: stored at 21e50 (hex); value is 1234 (dec), 4d2 (hex) PT.13: Executed *cp = 1234; PT.14: val2: stored at 21e54 (hex); value is -771529714 (dec), d203640e (hex) PT.15: cp: stored at 21e6c (hex); value is 138836 (dec), 21e54 (hex) PT.16: Dereference pointer cp and we find: -46 PT.17: val2: stored at 21e54 (hex); value is -771529714 (dec), d203640e (hex) PT.18: Executed ip = ia; PT.19: ia[0]: stored at 21e74 (hex); value is 11 (dec), b (hex) PT.20: ia[1]: stored at 21e78 (hex); value is 17 (dec), 11 (hex) PT.21: ip: stored at 21eb8 (hex); value is 138868 (dec), 21e74 (hex) PT.22: Dereference pointer ip and we find: 11 PT.23: Executed ip = ip + 1; PT.24: ip: stored at 21eb8 (hex); value is 138872 (dec), 21e78 (hex) PT.25: Dereference pointer ip and we find: 17 PT.26: Executed cp = ca; PT.27: ca[0]: stored at 21e58 (hex); value is 11 (dec), b (hex) PT.28: ca[1]: stored at 21e59 (hex); value is 17 (dec), 11 (hex) PT.29: cp: stored at 21e6c (hex); value is 138840 (dec), 21e58 (hex) PT.30: Dereference pointer cp and we find: 11 PT.31: Executed cp = cp + 1; PT.32: cp: stored at 21e6c (hex); value is 138841 (dec), 21e59 (hex) PT.33: Dereference pointer cp and we find: 17 PT.34: Executed ip = ca; PT.35: ca[0]: stored at 21e58 (hex); value is 11 (dec), b (hex) PT.36: ca[1]: stored at 21e59 (hex); value is 17 (dec), 11 (hex) PT.37: ip: stored at 21eb8 (hex); value is 138840 (dec), 21e58 (hex) PT.38: Dereference pointer ip and we find: 185664256 PT.39: Executed cp = ia; PT.40: cp: stored at 21e6c (hex); value is 138868 (dec), 21e74 (hex) PT.41: Dereference pointer cp and we find: 0 PT.42: fp: stored at 21e70 (hex); value is 69288 (dec), 10ea8 (hex) PT.43: Dereference fp and see what happens. Function fun called with parameter 42 PT.44: Executed val1 = (*fp)(42); PT.45: val1: stored at 21e50 (hex); value is 43 (dec), 2b (hex)

    Read the article

  • How do I use ffmpeg with live streaming from an IP camera

    - by Murali Hariharan
    My question is very basic because I am a newbie to all these technologies. I have an IP camera connected to my internal network. - "http://192.168.1.20/videostream.cgi?user=admin&pwd=" gives a live streaming view in Firefox or Internet Explorer. Now I want to record the live stream into a video. The parameters to be supplied are begin_time, end_time, format of video etc. How do I accomplish this? I appreciate any guidance. Thanks Murali

    Read the article

  • Determine if IP Address is Cellular IP Address

    - by CJCraft.com
    In .NET Compact Framework a device can have several IP Addresses I want to find one that is NOT coming from the Cellular connection. Goal is for WiFi or Ethernet connection. Is there a way to do this? Seems like State and Notification Broker would have a way to do this but didn't see a way.

    Read the article

  • cPanel/WHM IP Ban - How to Unban IP

    - by Loren
    We are using htaccess basic authentication on one of our sites. One of our clients tried accessing the site and failed logging in multiple times. Now when visiting our site they simply get a "Can't Display Webpage" error. I believe I've had this before and I believe there IP's got banned after so many failures. I'm not sure where to go in WHM/cPanel to unban them - appreciate any assistance!! Thanks Loren

    Read the article

  • One google IP address is failing. Is there a way to force a switch to different one?

    - by vaccano
    The google ip address 74.125.53.100 is failing. I know no one would believe this so I did an online ping: As this image shows one of the IP addresses for Google is failing. But there are others. If I type them in then I can get to Google just fine. But when I try to search, Google reverts back to the broken IP. Is there any way for me to say "I want to do a search with one of the working IP addresses"?

    Read the article

  • Saving an IP adddress to DB

    - by Mark
    I want to save a user's IP address to my database just in case any legal issues come up and we need to track down who performed what action. Since I highly doubt I will ever actually need to use this data (well, maybe for counting unique hits or something) do you think I can just dump the REMOTE_ADDR into a field? If so, what should the length of that field be? 39 chars should fit an IPv6 address, no? I don't know if I'll ever get any of those, but just in case...

    Read the article

  • Problem getting real IP in php

    - by leda
    I am using this to get real IP but i take empty from $_SERVER['HTTP_CLIENT_IP'],i take not empty only from $_SERVER['REMOTE_ADDR'].But i dont need the IP of proxy,i need the real ip of computers using some intranet.Can i get it?when $_SERVER['HTTP_CLIENT_IP'] does not return empty? function getRealIpAddr() { if (!empty($_SERVER['HTTP_CLIENT_IP'])) //check ip from share internet { $ip=$_SERVER['HTTP_CLIENT_IP']; } elseif (!empty($_SERVER['HTTP_X_FORWARDED_FOR'])) //to check ip is pass from proxy { $ip=$_SERVER['HTTP_X_FORWARDED_FOR']; } else { $ip=$_SERVER['REMOTE_ADDR']; } return $ip; }

    Read the article

  • Change IP where domain is pointing

    - by Christian Sciberras
    This is probably a very strange request. I need to programmaticaly (via code) change the IP where a domain name is pointing to. IE: xyz.com points to 100.100.100.100 setIP('xyz.com','100.100.100.100'); I know this [code] is practically impossible, however, what I need is to do this via domain host API etc or other possible ways you might think of. I'd be happy even if it weren't anything more then sending an email to the DNS owner/host. Do you know of anything the like or which might help? (nb: considered throwing this at ServerFault, but felt it more at home here ;) ) Cheers!

    Read the article

  • Cannot access Application configured on local IIS 7 using IP/machine name

    - by SilverHorse
    I have a windows 7 machine 64 bit and IIS 7 I have a default website on the IIS.Its binding is {IP: All Unassigned , Port:80 , Host Name : blank} I have added a new asp.net application to that website,mapped physical path, have set the virtual path as "MyWebApp". Application pool for "MyWebApp" is "DefaultAppPool" {.Net Framework: 4.0 ; Managed Pipeline Mode: Classic} The problem I am facing is I can access the website using http://localhost, http://IP.IP.IP.IP and http://MyMachineName But I can not access the Application other than using http://localhost/MyWebApp What should I do if I want to access the webapp using http://MyMachineName/MyWebApp OR http://IP.IP.IP.IP/MyWebApp Please note : I have already created an inbound rule to allow all HTTP traffic for port 80 in firewall settings.

    Read the article

  • DNS PTR record when domain on shared IP address

    - by Marco Demaio
    Hello, I own a typical shared IP hosting plan and domain. I can modify the DNS of the domain from the control panel. The mailserver shares the same IP address, so my typical DNS config is: www.mydomain.com A -> IP mydomain.com A -> IP ftp.mydomain.com A -> IP mail.mydomain.com A -> IP mydomain.com MX(10) -> IP I read some Q&A on this site where they suggest to add PTR record mainly for mailserver. I would like to add PTR record to my domain, I have got two questions: 1) can PTR record be added even if the hosting/mailserver are on a shared IP address? Or do I need a dedicated IP. 2) How do I setup PTR record, I mean does it look like A record: mydomain.com (PTR) -> myip

    Read the article

  • Configuring NAT and static IP on Cisco 877W

    - by David M Williams
    Hi all, I'm having trouble setting up a static IP reservation on a network. What I want to do is assign IP 192.168.1.105 to MAC address 00:21:5d:2f:58:04 and then port forward 35394 to it. If it helps, output from show ver says Cisco IOS software, C870 software (C870-ADVSECURITYK9-M), version 12.4(4)T7, release software (fc1) ROM: System bootstrap, version 12.3(8r)YI4, release software I have done this - service dhcp ip routing ip dhcp excluded-address 192.168.1.1 192.168.1.99 ip dhcp excluded-address 192.168.1.200 192.168.1.255 ip dhcp pool ClientDHCP network 192.168.1.0 255.255.255.0 default-router 192.168.1.1 dns-server 192.168.1.1 lease 7 ip dhcp pool NEO host 192.168.1.105 255.255.255.0 hardware-address 0021.5D2F.5804 ip nat inside source static tcp 192.168.1.105 35394 <PUBLIC_IP> 35394 extendable However, the machine is getting assigned IP address 192.168.1.101 not .105 ... any suggestions? Thanks !

    Read the article

  • Linux router: ping doesn't route back

    - by El Barto
    I have a Debian box which I'm trying to set up as a router and an Ubuntu box which I'm using as a client. My problem is that when the Ubuntu client tries to ping a server on the Internet, all the packets are lost (though, as you can see below, they seem to go to the server and back without problem). I'm doing this in the Ubuntu Box: # ping -I eth1 my.remote-server.com PING my.remote-server.com (X.X.X.X) from 10.1.1.12 eth1: 56(84) bytes of data. ^C --- my.remote-server.com ping statistics --- 13 packets transmitted, 0 received, 100% packet loss, time 12094ms (I changed the name and IP of the remote server for privacy). From the Debian Router I see this: # tcpdump -i eth1 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 7, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 8, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 8, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 9, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 9, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 10, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 10, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 11, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 11, length 64 ^C 9 packets captured 9 packets received by filter 0 packets dropped by kernel # tcpdump -i eth2 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth2, link-type EN10MB (Ethernet), capture size 65535 bytes IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 213, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 213, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 214, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 214, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 215, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 215, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 216, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 216, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 217, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 217, length 64 ^C 10 packets captured 10 packets received by filter 0 packets dropped by kernel And at the remote server I see this: # tcpdump -i eth0 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 1, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 1, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 2, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 2, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 3, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 3, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 4, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 4, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 5, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 5, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 6, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 6, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 7, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 7, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 8, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 8, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 9, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 9, length 64 18 packets captured 228 packets received by filter 92 packets dropped by kernel Here "X.X.X.X" is my remote server's IP and "Y.Y.Y.Y" is my local network's public IP. So, what I understand is that the ping packets are coming out of the Ubuntu box (10.1.1.12), to the router (10.1.1.1), from there to the next router (192.168.1.1) and reaching the remote server (X.X.X.X). Then they come back all the way to the Debian router, but they never reach the Ubuntu box back. What am I missing? Here's the Debian router setup: # ifconfig eth1 Link encap:Ethernet HWaddr 94:0c:6d:82:0d:98 inet addr:10.1.1.1 Bcast:10.1.1.255 Mask:255.255.255.0 inet6 addr: fe80::960c:6dff:fe82:d98/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:105761 errors:0 dropped:0 overruns:0 frame:0 TX packets:48944 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:40298768 (38.4 MiB) TX bytes:44831595 (42.7 MiB) Interrupt:19 Base address:0x6000 eth2 Link encap:Ethernet HWaddr 6c:f0:49:a4:47:38 inet addr:192.168.1.10 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::6ef0:49ff:fea4:4738/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:38335992 errors:0 dropped:0 overruns:0 frame:0 TX packets:37097705 errors:0 dropped:0 overruns:0 carrier:1 collisions:0 txqueuelen:1000 RX bytes:4260680226 (3.9 GiB) TX bytes:3759806551 (3.5 GiB) Interrupt:27 eth3 Link encap:Ethernet HWaddr 94:0c:6d:82:c8:72 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:20 Base address:0x2000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:3408 errors:0 dropped:0 overruns:0 frame:0 TX packets:3408 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:358445 (350.0 KiB) TX bytes:358445 (350.0 KiB) tun0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet addr:10.8.0.1 P-t-P:10.8.0.2 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1 RX packets:2767779 errors:0 dropped:0 overruns:0 frame:0 TX packets:1569477 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:100 RX bytes:3609469393 (3.3 GiB) TX bytes:96113978 (91.6 MiB) # route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 10.8.0.2 0.0.0.0 255.255.255.255 UH 0 0 0 tun0 127.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 lo 10.8.0.0 10.8.0.2 255.255.255.0 UG 0 0 0 tun0 192.168.1.0 0.0.0.0 255.255.255.0 U 1 0 0 eth2 10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth2 # arp -n # Note: Here I have changed all the different MACs except the ones corresponding to the Ubuntu box (on 10.1.1.12 and 192.168.1.12) Address HWtype HWaddress Flags Mask Iface 192.168.1.118 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.72 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.94 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.102 ether NN:NN:NN:NN:NN:NN C eth2 10.1.1.12 ether 00:1e:67:15:2b:f0 C eth1 192.168.1.86 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.2 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.61 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.64 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.116 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.91 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.52 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.93 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.87 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.92 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.100 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.40 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.53 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.83 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.89 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.12 ether 00:1e:67:15:2b:f1 C eth2 192.168.1.77 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.66 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.90 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.65 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.41 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.78 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.123 ether NN:NN:NN:NN:NN:NN C eth2 # iptables -L -n Chain INPUT (policy ACCEPT) target prot opt source destination Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination # iptables -L -n -t nat Chain PREROUTING (policy ACCEPT) target prot opt source destination Chain POSTROUTING (policy ACCEPT) target prot opt source destination MASQUERADE all -- 10.1.1.0/24 !10.1.1.0/24 MASQUERADE all -- !10.1.1.0/24 10.1.1.0/24 Chain OUTPUT (policy ACCEPT) target prot opt source destination And here's the Ubuntu box: # ifconfig eth0 Link encap:Ethernet HWaddr 00:1e:67:15:2b:f1 inet addr:192.168.1.12 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::21e:67ff:fe15:2bf1/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:28785139 errors:0 dropped:0 overruns:0 frame:0 TX packets:19050735 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:32068182803 (32.0 GB) TX bytes:6061333280 (6.0 GB) Interrupt:16 Memory:b1a00000-b1a20000 eth1 Link encap:Ethernet HWaddr 00:1e:67:15:2b:f0 inet addr:10.1.1.12 Bcast:10.1.1.255 Mask:255.255.255.0 inet6 addr: fe80::21e:67ff:fe15:2bf0/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:285086 errors:0 dropped:0 overruns:0 frame:0 TX packets:12719 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:30817249 (30.8 MB) TX bytes:2153228 (2.1 MB) Interrupt:16 Memory:b1900000-b1920000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:86048 errors:0 dropped:0 overruns:0 frame:0 TX packets:86048 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:11426538 (11.4 MB) TX bytes:11426538 (11.4 MB) # route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0 0.0.0.0 10.1.1.1 0.0.0.0 UG 100 0 0 eth1 10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 10.8.0.0 192.168.1.10 255.255.255.0 UG 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0 192.168.1.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0 # arp -n # Note: Here I have changed all the different MACs except the ones corresponding to the Debian box (on 10.1.1.1 and 192.168.1.10) Address HWtype HWaddress Flags Mask Iface 192.168.1.70 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.90 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.97 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.103 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.13 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.120 (incomplete) eth0 192.168.1.111 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.118 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.51 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.102 (incomplete) eth0 192.168.1.64 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.52 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.74 (incomplete) eth0 192.168.1.94 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.121 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.72 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.87 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.91 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.71 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.78 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.83 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.88 (incomplete) eth0 192.168.1.82 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.98 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.100 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.93 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.73 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.11 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.85 (incomplete) eth0 192.168.1.112 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.89 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.65 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.81 ether NN:NN:NN:NN:NN:NN C eth0 10.1.1.1 ether 94:0c:6d:82:0d:98 C eth1 192.168.1.53 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.116 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.61 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.10 ether 6c:f0:49:a4:47:38 C eth0 192.168.1.86 (incomplete) eth0 192.168.1.119 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.66 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth1 192.168.1.92 ether NN:NN:NN:NN:NN:NN C eth0 # iptables -L -n Chain INPUT (policy ACCEPT) target prot opt source destination Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination # iptables -L -n -t nat Chain PREROUTING (policy ACCEPT) target prot opt source destination Chain INPUT (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination Chain POSTROUTING (policy ACCEPT) target prot opt source destination Edit: Following Patrick's suggestion, I did a tcpdump con the Ubuntu box and I see this: # tcpdump -i eth1 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 1, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 1, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 2, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 2, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 3, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 3, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 4, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 4, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 5, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 5, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 6, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 6, length 64 ^C 12 packets captured 12 packets received by filter 0 packets dropped by kernel So the question is: if all packets seem to be coming and going, why does ping report 100% packet loss?

    Read the article

  • How to Find Your Computer’s Private & Public IP Addresses

    - by Chris Hoffman
    An IP address (or Internet Protocol address) identifies each networked computer and device on a network. When computers communicate with each other on the Internet or a local network, they send information to each other’s IP addresses. Your computer likely has public and private IP addresses. You’ll need the IP address if you’re hosting server software – the client computers will need your computer’s IP address to connect to it. How to Make Your Laptop Choose a Wired Connection Instead of Wireless HTG Explains: What Is Two-Factor Authentication and Should I Be Using It? HTG Explains: What Is Windows RT and What Does It Mean To Me?

    Read the article

  • Gateway IP Returns to Zero

    - by Robert Smith
    When you set a static IP under Ubuntu 12.04.1, you must supply the desired machine IP and the gateway IP, all using the Network Manager. When I first entered them and rebooted, everything worked great. On the second boot, however, Firefox could find no Web page. Upon checking, I discovered that the gateway IP had returned to zero. Now, no matter how often I resupply it, it returns to zero immediately after NM "saves" it: that is, appears as zero when redisplayed. The only way I can get to the Internet is to restore DHCP operation. I need to use static IP for access to my home network. Would appreciate any suggestion. --Robert Smith

    Read the article

  • Port forward based on external IP (for VPS hosting)

    - by Ben Alter
    What I want to do is to host a VPS. First, I'd like to set up a static IP address that forwards to my home IP address (so I can have more than one IP coming into my house). How can I do this without contacting my ISP (and is it even possible?; I don't care about paying for something that does this). Once I have the extra external IP address, how can I forward it to my VPS? How is my router supposed to differentiate between two separate external IP addresses?

    Read the article

  • Is there any way to abstract IP address during ssh?

    - by Vivek V K
    I have a server which is in the middle of a forest. It is connected to the Internet via a microwave link and an ADSL link.Hence it has two different static IP addresses. Now if there is heavy rain, the microwave link breaks and I should use the much slower ADSL link. And I ping the microwave ip time to time to check if it is up again . But at times, I end up using the very slow ADSL link even if the microwave link is back up. Hence I need a way to automate this in the following way. 1.I need to abstract the IP address of the machine with some other name which when I use ssh or sftp, will poll both the IP and connect me to the best one. so for eg: if I say ssh -Y name@server, It should first try to connect to the microwave link if it cant, then connect to ADSL. 2.Suppose the first time I connect, the microwave link is down so it connects to ADSL, I need it to dynamically change to the microwave link once it is working again. Is this even possible?

    Read the article

  • How to route public static IP to a virtual machine on a vmware ESXi host?

    - by Kevin Southworth
    I have 5 static IPs from my ISP (Comcast) and I have a physical machine with VMware ESXi 4.0 on it that is hosting multiple virtual machines. Right now I am just using the default vmware virtual network (vswitch0) with DHCP from the Comcast IP Gateway Router and everything is working fine. Each virtual machine can access the internet, etc. One of my virtual machines is a webserver (Windows Server 2008) and I want to assign it to 1 of my 5 static IPs so it's accessible from the public internet, while leaving the other VMs on the internal LAN still using DHCP. If I just plug my laptop directly into the Comcast IP Gateway (it has 4 ports on the back) and assign my laptop a Static IP using the windows networking dialogs, then I can hit my laptop from the public internet and it works great. However, if I try to do the same steps to set a static IP config on my Windows Server 2008 VM, it does not work. The VM cannot access the internet (open Firefox and try to visit google.com), and I cannnot see the VM from the public internet either. I'm assuming I'm missing something in the ESXi config somewhere, but I'm pretty new to ESXi and I'm not sure how to configure it to work this way.

    Read the article

  • What tools can I use to locate the IP of a machine on my network?

    - by user134918
    I am logged in to a remote Windows Server machine and am trying to attach it to a VPN for a LAN that I am also connected to locally from another Windows machine using Remotr Desktop. I can connect the remote machine to the VPN but when I do so, I lose my remote desktop connection. I am now in a situation where I know/think that the remote machine is on my LAN, but do not know what its current IP is and can therefor not connect to it again. I do not have any control over the infrastructure, all I have is a remote machine that I do control, and another machine that I also control that is connected to the same LAN as I'm trying to get the remote machine on using the existing VPN. What tools are available for Windows to allow me to locate the machine on my LAN again? I am imagining that there must be a tool that broadcasts the machines new IP using multicast, or tries to log in to a server component running somewhere with a know IP. Effectively, I am looking for some software that I can run on my remote machine, as well as my local machine, to allow me to discover the new IP address (on the LAN) assigned to the remote machine after connecting to the VPN.

    Read the article

  • How to route outbound traffic to specific domain "XYZ.org" via a specific NIC or public/static IP?

    - by user139943
    Within the next week or so, I'll be setting up an AT&T U-verse modem with 5 usable static public IP addresses. I plan to register a domain name to 1 of the 5 static IPs (remaining 4 unregistered), and run a website from a single server setup in my home LAN. I'll skip the long winded reason why, but I need to somehow route outbound traffic (originating from my server) destined for one public domain (i.e. http://www.sample.org) through one of the UNREGISTERED static IP addresses ONLY. Basically, I want this public domain to see connections coming from an IP address and not my domain name. If it makes it easier, this can apply to all outbound traffic from my server as long as it doesn't impact users browsing my website! Inbound connections should go through the domain name / registered public IP. Can I accomplish this with my single server with one or multiple NICs? Do I need multiple servers and set one up as a proxy? Please help as my background is in software and not networking, and I don't think I can accomplish this at a software level (e.g. Java). Thanks.

    Read the article

  • DNS/Nameserver issue. Can't ping IP or domain

    - by Tar
    I get this when I ping an IP: 21:31:50.136623 IP SITE_IP > 173.194.33.4: ICMP echo request, id 14941, seq 1, length 64 21:31:51.136138 IP SITE_IP > 173.194.33.4: ICMP echo request, id 14941, seq 2, length 64 21:31:52.136118 IP SITE_IP > 173.194.33.4: ICMP echo request, id 14941, seq 3, length 64 21:31:53.136129 IP SITE_IP > 173.194.33.4: ICMP echo request, id 14941, seq 4, length 64 21:31:54.136102 IP SITE_IP > 173.194.33.4: ICMP echo request, id 14941, seq 5, length 64 21:31:55.136153 IP SITE_IP > 173.194.33.4: ICMP echo request, id 14941, seq 6, length 64 and when I ping a domain: 21:29:33.631583 IP 74.125.189.19.52085 > SITE_IP.domain: 28952 A? google.com.MY_DOMAIN. (42) 21:29:38.626553 IP SITE_IP.42280 > 8.8.4.4.domain: 52435+ A? google.com.MY_DOMAIN. (42) 21:29:38.652675 IP 74.125.189.22.63658 > SITE_IP.domain: 36178 A? google.com.MY_DOMAIN. (42) 21:29:43.631626 IP SITE_IP.48205 > 8.8.8.8.domain: 52435+ A? google.com.MY_DOMAIN. (42) The pinging of a domain is what worries me, because it looks like it is checking my DNS files for the resolution. Here is etc/resolv.conf nameserver 8.8.8.8 nameserver 8.8.4.4 /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6 SITE_iP server.MY_DOMAIN.com server Will also add that I am seeing a number of 'SERVFAIL'.. I have no idea what could be causing this problem. If there is any other information I need to provide, let me know. I'm using CentOS.

    Read the article

  • How to get my external IP address (over NAT) from the Windows command-line?

    - by Diogo Rocha
    The Windows "ipconfig" command can only show me the parameters from the Ethernet interfaces from my machine (even with the "ipconfig /all" argument). It can show detailed information about the interface, but it will never show me my external IP address over a NAT network. However, there are several websites, such as "What is my IP address" that can get and show my external IP address. So I'm wondering, is possible to get this value externally? Should I expect that there is some way to get this information from a command line at my local machine... I need to get this value to log on an application that I'm doing with VBScript. There is some way to do this, from a "cmd" on Windows?

    Read the article

  • How to get my external IP address(over NAT) from Windows command-line?

    - by Diogo Rocha
    Windows "ipconfig" command can only show me the parameters from the ethernet interfaces from my machine(even with the "ipconfig /all" argument), it can show detailed information about the interface, but will never show me my external IP address over a NAT network. However, there are several websites, such as "What is my IP" that can get and show my external IP addres. So I'm wondering, if is possible to get this value externally, should I expect that there is some way to get this information from a command line at my local machine... I need to get this value to log on an application that I'm doing with VB Script. There is some way to do this, from a "cmd" on Windows?

    Read the article

  • Can i setup my second ip adress as secondary nameserver.

    - by Saif Bechan
    I have a server with 2 ip adresses. If i type the first one into my browser i end up with my website. 62.212.66.33 If i type my second ip adress in the bar i end up somewhere else. 62.212.66.56 Can i set this second ip to act as secondary nameserver. I made NS and a records for the domains. Waited 72 hours. But it returns no records. for dns check. Is this type of setup possible?

    Read the article

< Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >