Search Results

Search found 7077 results on 284 pages for 'concurrent processing'.

Page 220/284 | < Previous Page | 216 217 218 219 220 221 222 223 224 225 226 227  | Next Page >

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Invalid or expired security context token in WCF web service

    - by Damian
    All, I have a WCF web service (let's called service "B") hosted under IIS using a service account (VM, Windows 2003 SP2). The service exposes an endpoint that use WSHttpBinding with the default values except for maxReceivedMessageSize, maxBufferPoolSize, maxBufferSize and some of the time outs that have been increased. The web service has been load tested using Visual Studio Load Test framework with around 800 concurrent users and successfully passed all tests with no exceptions being thrown. The proxy in the unit test has been created from configuration. There is a sharepoint application that use the Office Sharepoint Server Search service to call web services "A" and "B". The application will get data from service "A" to create a request that will be sent to service "B". The response coming from service "B" is indexed for search. The proxy is created programmatically using the ChannelFactory. When service "A" takes less than 10 minutes, the calls to service "B" are successfull. But when service "A" takes more time (~20 minutes) the calls to service "B" throw the following exception: Exception Message: An unsecured or incorrectly secured fault was received from the other party. See the inner FaultException for the fault code and detail Inner Exception Message: The message could not be processed. This is most likely because the action 'namespace/OperationName' is incorrect or because the message contains an invalid or expired security context token or because there is a mismatch between bindings. The security context token would be invalid if the service aborted the channel due to inactivity. To prevent the service from aborting idle sessions prematurely increase the Receive timeout on the service endpoint's binding. The binding settings are the same, the time in both client server and web service server are synchronize with the Windows Time service, same time zone. When i look at the server where web service "B" is hosted i can see the following security errors being logged: Source: Security Category: Logon/Logoff Event ID: 537 User NT AUTHORITY\SYSTEM Logon Failure: Reason: An error occurred during logon Logon Type: 3 Logon Process: Kerberos Authentication Package: Kerberos Status code: 0xC000006D Substatus code: 0xC0000133 After reading some of the blogs online, the Status code means STATUS_LOGON_FAILURE and the substatus code means STATUS_TIME_DIFFERENCE_AT_DC. but i already checked both server and client clocks and they are syncronized. I also noticed that the security token seems to be cached somewhere in the client server because they have another process that calls the web service "B" using the same service account and successfully gets data the first time is called. Then they start the proccess to update the office sharepoint server search service indexes and it fails. Then if they called the first proccess again it will fail too. Has anyone experienced this type of problems or have any ideas? Regards, --Damian

    Read the article

  • Unable to resolve class in build.gradle using Android Studio 0.60/Gradle 0.11

    - by saywhatnow
    Established app working fine using Android Studio 0.5.9/ Gradle 0.9 but upgrading to Android Studio 0.6.0/ Gradle 0.11 causes the error below. Somehow Studio seems to have lost the ability to resolve the android tools import at the top of the build.gradle file. Anyone got any ideas on how to solve this? build file 'Users/[me]/Repositories/[project]/[module]/build.gradle': 1: unable to resolve class com.android.builder.DefaultManifestParser @ line 1, column 1. import com.android.builder.DefaultManifestParser 1 error at org.codehaus.groovy.control.ErrorCollector.failIfErrors(ErrorCollector.java:302) at org.codehaus.groovy.control.CompilationUnit.applyToSourceUnits(CompilationUnit.java:858) at org.codehaus.groovy.control.CompilationUnit.doPhaseOperation(CompilationUnit.java:548) at org.codehaus.groovy.control.CompilationUnit.compile(CompilationUnit.java:497) at groovy.lang.GroovyClassLoader.doParseClass(GroovyClassLoader.java:306) at groovy.lang.GroovyClassLoader.parseClass(GroovyClassLoader.java:287) at org.gradle.groovy.scripts.internal.DefaultScriptCompilationHandler.compileScript(DefaultScriptCompilationHandler.java:115) ... 77 more 2014-06-09 10:15:28,537 [ 92905] INFO - .BaseProjectImportErrorHandler - Failed to import Gradle project at '/Users/[me]/Repositories/[project]' org.gradle.tooling.BuildException: Could not run build action using Gradle distribution 'http://services.gradle.org/distributions/gradle-1.12-all.zip'. at org.gradle.tooling.internal.consumer.ResultHandlerAdapter.onFailure(ResultHandlerAdapter.java:53) at org.gradle.tooling.internal.consumer.async.DefaultAsyncConsumerActionExecutor$1$1.run(DefaultAsyncConsumerActionExecutor.java:57) at org.gradle.internal.concurrent.DefaultExecutorFactory$StoppableExecutorImpl$1.run(DefaultExecutorFactory.java:64) [project]/[module]/build.gradle import com.android.builder.DefaultManifestParser apply plugin: 'android-sdk-manager' apply plugin: 'android' android { sourceSets { main { manifest.srcFile 'src/main/AndroidManifest.xml' res.srcDirs = ['src/main/res'] } debug { res.srcDirs = ['src/debug/res'] } release { res.srcDirs = ['src/release/res'] } } compileSdkVersion 19 buildToolsVersion '19.0.0' defaultConfig { minSdkVersion 14 targetSdkVersion 19 } signingConfigs { release } buildTypes { release { runProguard false proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.txt' signingConfig signingConfigs.release applicationVariants.all { variant -> def file = variant.outputFile def manifestParser = new DefaultManifestParser() def wmgVersionCode = manifestParser.getVersionCode(android.sourceSets.main.manifest.srcFile) println wmgVersionCode variant.outputFile = new File(file.parent, file.name.replace("-release.apk", "_" + wmgVersionCode + ".apk")) } } } packagingOptions { exclude 'META-INF/LICENSE.txt' exclude 'META-INF/NOTICE.txt' } } def Properties props = new Properties() def propFile = file('signing.properties') if (propFile.canRead()){ props.load(new FileInputStream(propFile)) if (props!=null && props.containsKey('STORE_FILE') && props.containsKey('STORE_PASSWORD') && props.containsKey('KEY_ALIAS') && props.containsKey('KEY_PASSWORD')) { println 'RELEASE BUILD SIGNING' android.signingConfigs.release.storeFile = file(props['STORE_FILE']) android.signingConfigs.release.storePassword = props['STORE_PASSWORD'] android.signingConfigs.release.keyAlias = props['KEY_ALIAS'] android.signingConfigs.release.keyPassword = props['KEY_PASSWORD'] } else { println 'RELEASE BUILD NOT FOUND SIGNING PROPERTIES' android.buildTypes.release.signingConfig = null } }else { println 'RELEASE BUILD NOT FOUND SIGNING FILE' android.buildTypes.release.signingConfig = null } repositories { maven { url 'https://repo.commonsware.com.s3.amazonaws.com' } maven { url 'https://oss.sonatype.org/content/repositories/snapshots/' } } dependencies { compile 'com.github.gabrielemariotti.changeloglib:library:1.4.+' compile 'com.google.code.gson:gson:2.2.4' compile 'com.google.android.gms:play-services:+' compile 'com.android.support:appcompat-v7:+' compile 'com.squareup.okhttp:okhttp:1.5.+' compile 'com.octo.android.robospice:robospice:1.4.11' compile 'com.octo.android.robospice:robospice-cache:1.4.11' compile 'com.octo.android.robospice:robospice-retrofit:1.4.11' compile 'com.commonsware.cwac:security:0.1.+' compile 'com.readystatesoftware.sqliteasset:sqliteassethelper:+' compile 'com.android.support:support-v4:19.+' compile 'uk.co.androidalliance:edgeeffectoverride:1.0.1+' compile 'de.greenrobot:eventbus:2.2.1+' compile project(':captureActivity') compile ('de.keyboardsurfer.android.widget:crouton:1.8.+') { exclude group: 'com.google.android', module: 'support-v4' } compile files('libs/CWAC-LoaderEx.jar') }

    Read the article

  • Conversion from YUV444 to RGB888

    - by Abhi
    I am new in this field and i desperately need some guidance from u all. I have to support yuv444 to rgb 888 in display driver module. There is one test which i have done for yv12 → rgb565 in wince 6.0 r3 which is mentioned below. //------------------------------------------------------------------------------ // // Function: PP_CSC_YV12_RGB565Test // // This function tests the Post-processor // // // // Parameters: // uiMsg // [in] Ignored. // // tpParam // [in] Ignored. // // lpFTE // [in] Ignored. // // Returns: // Specifies if the test passed (TPR_PASS), failed (TPR_FAIL), or was // skipped (TPR_SKIP). // // TESTPROCAPI PP_CSC_YV12_RGB565Test(UINT uMsg, TPPARAM tpParam, LPFUNCTION_TABLE_ENTRY lpFTE) { LogEntry(L"%d : In %s Function \r\n",++abhineet,__WFUNCTION__); UNREFERENCED_PARAMETER(tpParam); UNREFERENCED_PARAMETER(lpFTE); DWORD dwResult= TPR_SKIP; ppConfigData ppData; DWORD iInputBytesPerFrame, iOutputBytesPerFrame; UINT32 iInputStride, iOutputStride; UINT16 iOutputWidth, iOutputHeight, iOutputBPP; UINT16 iInputWidth, iInputHeight, iInputBPP; int iOption; PP_TEST_FUNCTION_ENTRY(); // Validate that the shell wants the test to run if (uMsg != TPM_EXECUTE) { return TPR_NOT_HANDLED; } PPTestInit(); iInputWidth = PP_TEST_FRAME_WIDTH; //116 iInputHeight = PP_TEST_FRAME_HEIGHT; //160 iInputBPP = PP_TEST_FRAME_BPP; //2 iInputStride = iInputWidth * 3/2; // YV12 is 12 bits per pixel iOutputWidth = PP_TEST_FRAME_WIDTH; iOutputHeight = PP_TEST_FRAME_HEIGHT; iOutputBPP = PP_TEST_FRAME_BPP; iOutputStride = iOutputWidth * iOutputBPP; // Allocate buffers for input and output frames iInputBytesPerFrame = iInputStride * iInputHeight; pInputFrameVirtAddr = (UINT32 *) AllocPhysMem(iInputBytesPerFrame, PAGE_EXECUTE_READWRITE, 0, 0, (ULONG *) &pInputFramePhysAddr); iOutputBytesPerFrame = iOutputStride * iOutputHeight; pOutputFrameVirtAddr = (UINT32 *) AllocPhysMem(iOutputBytesPerFrame, PAGE_EXECUTE_READWRITE, 0, 0, (ULONG *) &pOutputFramePhysAddr); if ((NULL == pInputFrameVirtAddr) || (NULL == pOutputFrameVirtAddr)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } //----------------------------- // Configure PP //----------------------------- // Set up post-processing configuration data memset(&ppData, 0 , sizeof(ppData)); // Set up input format and data width ppData.inputIDMAChannel.FrameFormat = icFormat_YUV420; ppData.inputIDMAChannel.DataWidth = icDataWidth_8BPP; // dummy value for YUV ppData.inputIDMAChannel.PixelFormat.component0_offset = 0; ppData.inputIDMAChannel.PixelFormat.component1_offset = 8; ppData.inputIDMAChannel.PixelFormat.component2_offset = 16; ppData.inputIDMAChannel.PixelFormat.component3_offset = 24; ppData.inputIDMAChannel.PixelFormat.component0_width = 8-1; ppData.inputIDMAChannel.PixelFormat.component1_width = 8-1; ppData.inputIDMAChannel.PixelFormat.component2_width = 8-1; ppData.inputIDMAChannel.PixelFormat.component3_width = 8-1; ppData.inputIDMAChannel.FrameSize.height = iInputHeight; ppData.inputIDMAChannel.FrameSize.width = iInputWidth; ppData.inputIDMAChannel.LineStride = iInputWidth; // Set up output format and data width ppData.outputIDMAChannel.FrameFormat = icFormat_RGB; ppData.outputIDMAChannel.DataWidth = icDataWidth_16BPP; ppData.outputIDMAChannel.PixelFormat.component0_offset = RGB_COMPONET0_OFFSET; ppData.outputIDMAChannel.PixelFormat.component1_offset = RGB_COMPONET1_OFFSET; ppData.outputIDMAChannel.PixelFormat.component2_offset = RGB_COMPONET2_OFFSET; ppData.outputIDMAChannel.PixelFormat.component3_offset = RGB_COMPONET3_OFFSET; ppData.outputIDMAChannel.PixelFormat.component0_width = RGB_COMPONET0_WIDTH -1; ppData.outputIDMAChannel.PixelFormat.component1_width = RGB_COMPONET1_WIDTH -1; ppData.outputIDMAChannel.PixelFormat.component2_width = RGB_COMPONET2_WIDTH -1; ppData.outputIDMAChannel.PixelFormat.component3_width = RGB_COMPONET3_WIDTH; ppData.outputIDMAChannel.FrameSize.height = iOutputHeight; ppData.outputIDMAChannel.FrameSize.width = iOutputWidth; ppData.outputIDMAChannel.LineStride = iOutputStride; // Set up post-processing channel CSC parameters // based on input and output ppData.CSCEquation = CSCY2R_A1; ppData.inputIDMAChannel.UBufOffset = iInputHeight * iInputWidth + (iInputHeight * iInputWidth)/4; ppData.inputIDMAChannel.VBufOffset = iInputHeight * iInputWidth; ppData.FlipRot.verticalFlip = FALSE; ppData.FlipRot.horizontalFlip = FALSE; ppData.FlipRot.rotate90 = FALSE; if (!PPConfigure(hPP, &ppData)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } //----------------------------- // Read first input buffer //----------------------------- // Read Input file for new frame if (!ReadImage(PP_TEST_YV12_FILENAME,pInputFrameVirtAddr,iInputBytesPerFrame,PP_TEST_FRAME_WIDTH,PP_TEST_FRAME_HEIGHT)) { g_pKato->Log(PP_ZONE_ERROR, (TEXT("fail to ReadImage()!\r\n"))); dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } //----------------------------- // Start PP //----------------------------- if (!PPStart(hPP)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } if (!PPInterruptEnable(hPP, FRAME_INTERRUPT)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } //----------------------------- // Queue Input/Output Buffers //----------------------------- UINT32 starttime = GetTickCount(); // Add input and output buffers to PP queues. if (!PPAddInputBuffer(hPP, (UINT32) pInputFramePhysAddr)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } if (!PPAddOutputBuffer(hPP,(UINT32) pOutputFramePhysAddr)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } if (!PPWaitForNotBusy(hPP, FRAME_INTERRUPT)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } RETAILMSG(1, (TEXT("===========FLIP TIME: %dms====== \r\n"), GetTickCount()-starttime)); //----------------------------- // Stop PP //----------------------------- if (!PPStop(hPP)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } if (!PPClearBuffers(hPP)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } ShowRGBContent((UINT8 *) pOutputFrameVirtAddr, PP_TEST_FRAME_WIDTH, PP_TEST_FRAME_HEIGHT); iOption = MessageBox( NULL,TEXT("After CSC(YV12->RGB565). Is it correct?"),TEXT("Test result"),MB_YESNO ); if ( IDNO == iOption ) { dwResult = TPR_FAIL; } else { dwResult = TPR_PASS; } PP_CSC_YV12_RGB565Test_clean_up: if(NULL != pInputFrameVirtAddr) { FreePhysMem( pInputFrameVirtAddr ); pInputFrameVirtAddr = NULL; } if(NULL != pOutputFrameVirtAddr) { FreePhysMem( pOutputFrameVirtAddr ); pOutputFrameVirtAddr = NULL; } PPTestDeInit(); LogEntry(L"%d :Out %s Function \r\n",++abhineet,__WFUNCTION__); return dwResult; } The below is the flow for this function. It tells the start and end of this test. *** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv *** TEST STARTING *** *** Test Name: PP CSC(YV12-RGB565) Test *** Test ID: 500 *** Library Path: pp_test.dll *** Command Line: *** Kernel Mode: Yes *** Random Seed: 24421 *** Thread Count: 0 *** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv *******Abhineet-PPTEST : 338 : In ShellProc Function *******Abhineet-PPTEST : 339 : In Debug Function PP_TEST: ShellProc(SPM_BEGIN_TEST, ...) called *******Abhineet-PPTEST : 340 :Out Debug Function BEGIN TEST: "PP CSC(YV12-RGB565) Test", Threads=0, Seed=24421 *******Abhineet-PPTEST : 341 :Out ShellProc Function *******Abhineet-PPTEST : 342 : In PP_CSC_YV12_RGB565Test Function PP_CSC_YV12_RGB565Test *******Abhineet-PPTEST : 343 : In PPTestInit Function *******Abhineet-PPTEST : 344 : In GetPanelDimensions Function *******Abhineet-PPTEST : 345 :Out GetPanelDimensions Function GetPanelDimensions: width=1024 height=768 bpp=16 *******Abhineet-PPTEST : 346 :Out PPTestInit Function *******Abhineet-PPTEST : 347 : In ReadImage Function RELFSD: Opening file flags_112x160.yv12 from desktop *******Abhineet-PPTEST : 348 :Out ReadImage Function ===========FLIP TIME: 1ms====== *******Abhineet-PPTEST : 349 : In ShowRGBContent Function *******Abhineet-PPTEST : 350 :Out ShowRGBContent Function *******Abhineet-PPTEST : 351 : In PPTestDeInit Function *******Abhineet-PPTEST : 352 :Out PPTestDeInit Function *******Abhineet-PPTEST : 353 :Out PP_CSC_YV12_RGB565Test Function *******Abhineet-PPTEST : 354 : In DllMain Function *******Abhineet-PPTEST : 355 :Out DllMain Function *******Abhineet-PPTEST : 356 : In ShellProc Function *******Abhineet-PPTEST : 357 : In Debug Function PP_TEST: ShellProc(SPM_END_TEST, ...) called *******Abhineet-PPTEST : 358 :Out Debug Function END TEST: "PP CSC(YV12-RGB565) Test", PASSED, Time=6.007 *******Abhineet-PPTEST : 359 :Out ShellProc Function *** ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ *** TEST COMPLETED *** *** Test Name: PP CSC(YV12-RGB565) Test *** Test ID: 500 *** Library Path: pp_test.dll *** Command Line: *** Kernel Mode: Yes *** Result: Passed *** Random Seed: 24421 *** Thread Count: 1 *** Execution Time: 0:00:06.007 *** ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Please help me out to make changes to the above function for yuv444-rgb888.

    Read the article

  • Memory Leak Issue in Weblogic, SUN, Apache and Oracle classes Options

    - by Amit
    Hi All, Please find below the description of memory leaks issues. Statistics show major growth in the perm area (static classes). Flows were ran for 8 hours , Heap dump was taken after 2 hours and at the end. A growth in Perm area was identified Statistics show from our last run 240MB growth in 6 hour,40mb growth every hour 2GB heap –can hold ¾ days ,heap will be full in ¾ days Heap dump show –growth in area as mentioned below JMS connection/session Area Apache org.apache.xml.dtm.DTM[] org.apache.xml.dtm.ref.ExpandedNameTable$ExtendedType org.jdom.AttributeList org.jdom.Content[] org.jdom.ContentList org.jdom.Element SUN * ConstantPoolCacheKlass * ConstantPoolKlass * ConstMethodKlass * MethodDataKlass * MethodKlass * SymbolKlass byte[] char[] com.sun.org.apache.xml.internal.dtm.DTM[] com.sun.org.apache.xml.internal.dtm.ref.ExtendedType java.beans.PropertyDescriptor java.lang.Class java.lang.Long java.lang.ref.WeakReference java.lang.ref.SoftReference java.lang.String java.text.Format[] java.util.concurrent.ConcurrentHashMap$Segment java.util.LinkedList$Entry Weblogic com.bea.console.cvo.ConsoleValueObject$PropertyInfo com.bea.jsptools.tree.TreeNode com.bea.netuix.servlets.controls.content.StrutsContent com.bea.netuix.servlets.controls.layout.FlowLayout com.bea.netuix.servlets.controls.layout.GridLayout com.bea.netuix.servlets.controls.layout.Placeholder com.bea.netuix.servlets.controls.page.Book com.bea.netuix.servlets.controls.window.Window[] com.bea.netuix.servlets.controls.window.WindowMode javax.management.modelmbean.ModelMBeanAttributeInfo weblogic.apache.xerces.parsers.SecurityConfiguration weblogic.apache.xerces.util.AugmentationsImpl weblogic.apache.xerces.util.AugmentationsImpl$SmallContainer weblogic.apache.xerces.util.SymbolTable$Entry weblogic.apache.xerces.util.XMLAttributesImpl$Attribute weblogic.apache.xerces.xni.QName weblogic.apache.xerces.xni.QName[] weblogic.ejb.container.cache.CacheKey weblogic.ejb20.manager.SimpleKey weblogic.jdbc.common.internal.ConnectionEnv weblogic.jdbc.common.internal.StatementCacheKey weblogic.jms.common.Item weblogic.jms.common.JMSID weblogic.jms.frontend.FEConnection weblogic.logging.MessageLogger$1 weblogic.logging.WLLogRecord weblogic.rjvm.BubblingAbbrever$BubblingAbbreverEntry weblogic.rjvm.ClassTableEntry weblogic.rjvm.JVMID weblogic.rmi.cluster.ClusterableRemoteRef weblogic.rmi.internal.CollocatedRemoteRef weblogic.rmi.internal.PhantomRef weblogic.rmi.spi.ServiceContext[] weblogic.security.acl.internal.AuthenticatedSubject weblogic.security.acl.internal.AuthenticatedSubject$SealableSet weblogic.servlet.internal.ServletRuntimeMBeanImpl weblogic.transaction.internal.XidImpl weblogic.utils.collections.ConcurrentHashMap$Entry Oracle XA Transaction oracle.jdbc.driver.Binder[] oracle.jdbc.driver.OracleDatabaseMetaData oracle.jdbc.driver.T4C7Ocommoncall oracle.jdbc.driver.T4C7Oversion oracle.jdbc.driver.T4C8Oall oracle.jdbc.driver.T4C8Oclose oracle.jdbc.driver.T4C8TTIBfile oracle.jdbc.driver.T4C8TTIBlob oracle.jdbc.driver.T4C8TTIClob oracle.jdbc.driver.T4C8TTIdty oracle.jdbc.driver.T4C8TTILobd oracle.jdbc.driver.T4C8TTIpro oracle.jdbc.driver.T4C8TTIrxh oracle.jdbc.driver.T4C8TTIuds oracle.jdbc.driver.T4CCallableStatement oracle.jdbc.driver.T4CClobAccessor oracle.jdbc.driver.T4CConnection oracle.jdbc.driver.T4CMAREngine oracle.jdbc.driver.T4CNumberAccessor oracle.jdbc.driver.T4CPreparedStatement oracle.jdbc.driver.T4CTTIdcb oracle.jdbc.driver.T4CTTIk2rpc oracle.jdbc.driver.T4CTTIoac oracle.jdbc.driver.T4CTTIoac[] oracle.jdbc.driver.T4CTTIoauthenticate oracle.jdbc.driver.T4CTTIokeyval oracle.jdbc.driver.T4CTTIoscid oracle.jdbc.driver.T4CTTIoses oracle.jdbc.driver.T4CTTIOtxen oracle.jdbc.driver.T4CTTIOtxse oracle.jdbc.driver.T4CTTIsto oracle.jdbc.driver.T4CXAConnection oracle.jdbc.driver.T4CXAResource oracle.jdbc.oracore.OracleTypeADT[] oracle.jdbc.xa.OracleXAResource$XidListEntry oracle.net.ano.Ano oracle.net.ns.ClientProfile oracle.net.ns.ClientProfile oracle.net.ns.NetInputStream oracle.net.ns.NetOutputStream oracle.net.ns.SessionAtts oracle.net.nt.ConnOption oracle.net.nt.ConnStrategy oracle.net.resolver.AddrResolution oracle.sql.CharacterSet1Byte we are using Oracle BEA Weblogic 9.2 MP3 JDK 1.5.12 Oracle versoin 10.2.0.4 (for oracle we found one path which is needed to applied to avoid XA transaction memory leaks). But we are stuck to resolve SUN, BEA Weblgogic and Apache leaks. please suggest... regards, Amit J.

    Read the article

  • tapestry 4 session expired

    - by cometta
    is below caused by user session expired? if yes, how to exend session on tapestry 4 ? or any other way to solve this problem? Unable to process client request: Unable to forward to local resource '/app?service=page&page=Home&id=692': java.lang.NullPointerException: Property 'webRequest' of <OuterProxy for tapestry.globals.RequestGlobals(org.apache.tapestry.services.RequestGlobals)> is null. Apr 22, 2010 5:14:43 PM org.apache.catalina.core.ApplicationContext log SEVERE: app: ServletException javax.servlet.ServletException: java.lang.NullPointerException: Property 'webRequest' of <OuterProxy for tapestry.globals.RequestGlobals(org.apache.tapestry.services.RequestGlobals)> is null. at org.apache.tapestry.services.impl.WebRequestServicerPipelineBridge.service(WebRequestServicerPipelineBridge.java:65) at $ServletRequestServicer_128043b52ea.service($ServletRequestServicer_128043b52ea.java) at org.apache.tapestry.request.DecodedRequestInjector.service(DecodedRequestInjector.java:55) at $ServletRequestServicerFilter_128043b52e6.service($ServletRequestServicerFilter_128043b52e6.java) at $ServletRequestServicer_128043b52ec.service($ServletRequestServicer_128043b52ec.java) at org.apache.tapestry.multipart.MultipartDecoderFilter.service(MultipartDecoderFilter.java:52) at $ServletRequestServicerFilter_128043b52e4.service($ServletRequestServicerFilter_128043b52e4.java) at $ServletRequestServicer_128043b52ec.service($ServletRequestServicer_128043b52ec.java) at org.apache.tapestry.services.impl.SetupRequestEncoding.service(SetupRequestEncoding.java:53) at $ServletRequestServicerFilter_128043b52e8.service($ServletRequestServicerFilter_128043b52e8.java) at $ServletRequestServicer_128043b52ec.service($ServletRequestServicer_128043b52ec.java) at $ServletRequestServicer_128043b52de.service($ServletRequestServicer_128043b52de.java) at org.apache.tapestry.ApplicationServlet.doService(ApplicationServlet.java:126) at org.apache.tapestry.ApplicationServlet.doPost(ApplicationServlet.java:171) at javax.servlet.http.HttpServlet.service(HttpServlet.java:637) at javax.servlet.http.HttpServlet.service(HttpServlet.java:717) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.springframework.security.util.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:378) at org.springframework.security.intercept.web.FilterSecurityInterceptor.invoke(FilterSecurityInterceptor.java:109) at org.springframework.security.intercept.web.FilterSecurityInterceptor.doFilter(FilterSecurityInterceptor.java:83) at org.springframework.security.util.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:390) at org.springframework.security.ui.SessionFixationProtectionFilter.doFilterHttp(SessionFixationProtectionFilter.java:67) at org.springframework.security.ui.SpringSecurityFilter.doFilter(SpringSecurityFilter.java:53) at org.springframework.security.util.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:390) at org.springframework.security.ui.ntlm.NtlmProcessingFilter.doFilterHttp(NtlmProcessingFilter.java:358) at org.springframework.security.ui.SpringSecurityFilter.doFilter(SpringSecurityFilter.java:53) at org.springframework.security.util.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:390) at org.springframework.security.ui.ExceptionTranslationFilter.doFilterHttp(ExceptionTranslationFilter.java:101) at org.springframework.security.ui.SpringSecurityFilter.doFilter(SpringSecurityFilter.java:53) at org.springframework.security.util.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:390) at org.springframework.security.context.HttpSessionContextIntegrationFilter.doFilterHttp(HttpSessionContextIntegrationFilter.java:235) at org.springframework.security.ui.SpringSecurityFilter.doFilter(SpringSecurityFilter.java:53) at org.springframework.security.util.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:390) at org.springframework.security.concurrent.ConcurrentSessionFilter.doFilterHttp(ConcurrentSessionFilter.java:99) at org.springframework.security.ui.SpringSecurityFilter.doFilter(SpringSecurityFilter.java:53) at org.springframework.security.util.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:390) at org.springframework.security.util.FilterChainProxy.doFilter(FilterChainProxy.java:175) at org.springframework.web.filter.DelegatingFilterProxy.invokeDelegate(DelegatingFilterProxy.java:236) at org.springframework.web.filter.DelegatingFilterProxy.doFilter(DelegatingFilterProxy.java:167) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:128) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:286) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:845) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:583) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:447) at java.lang.Thread.run(Thread.java:619)

    Read the article

  • multiple stateful iframes per page will overwrite JSESSIONID?

    - by Nikita
    Hello, Looking for someone to either confirm or refute my theory that deploying two iframes pointing to two different stateful pages on the same domain can lead to JSESSIONIDs being overwritten. Here's what I mean: Setup suppose you have two pages that require HttpSession state (session affinity) to function correctly - deployed at http://www.foo.com/page1 and http://www.foo.com/page2 assume www.foo.com is a single host running a Tomcat (6.0.20, fwiw) that uses JSESSIONID for session id's. suppose these pages are turned into two iframe widgets to be embedded on 3rd party sites: http://www.site.com/page1" / (and /page2 respectively) suppose there a 3rd party site that wishes to place both widgets on the same page at http://www.bar.com/foowidgets.html Can the following race condition occur? a new visitor goes to http://www.bar.com/foowidgets.html browser starts loading URLs in foowidgets.html including the two iframe 'src' URLs because browsers open multiple concurrent connections against the same host (afaik up to 6 in chrome/ff case) the browser happens to simultaneously issue requests for http://www.foo.com/page1 and http://www.foo.com/page2 The tomcat @ foo.com receives both requests at about the same time, calls getSession() for the first time (on two different threads) and lazily creates two HttpSessions and, thus, two JSESSIONIDs, with values $Page1 and $Page2. The requests also stuff data into respective sessions (that data will be required to process subsequent requests) assume that the browser first receives response to the page1 request. Browser sets cookie JSESSIONID=$Page1 for HOST www.foo.com next response to the page2 request is received and the browser overwrites cookie JSESSIONID for HOST www.foo.com with $Page2 user clicks on something in 'page1' iframe on foowidgets.html; browser issues 2nd request to http://www.foo.com/page1?action=doSomethingStateful. That request carries JSESSIONID=$Page2 (and not $Page1 - because cookie value was overwritten) when foo.com receives this request it looks up the wrong HttpSession instance (because JSESSIONID key is $Page2 and NOT $Page1). Foobar! Can the above happen? I think so, but would appreciate a confirmation. If the above is clearly possible, what are some solutions given that we'd like to support multiple iframes per page? We don't have a firm need for the iframes to share the same HttpSession, though that would be nice. In the event that the solution will still stipulate a separate HttpSession per iframe, it is - of course - mandatory that iframe 1 does not end up referencing httpSession state for iframe 2 instead of own. off top of my head I can think of: map page1 and page2 to different domains (ops overhead) use URL rewriting and never cookies (messes up analytics) anything else? thanks a lot, -nikita

    Read the article

  • debugging JBoss 100% CPU usage

    - by NateS
    Originally posted on Server Fault, where it was suggested this question might better asked here. We are using JBoss to run two of our WARs. One is our web app, the other is our web service. The web app accesses a database on another machine and makes requests to the web service. The web service makes JMS requests to other machines, aggregates the data, and returns it. At our biggest client, about once a month the JBoss Java process takes 100% of all CPUs. The machine running JBoss has 8 CPUs. Our web app is still accessible during this time, however pages take about 3 minutes to load. Restarting JBoss restores everything to normal. The database machine and all the other machines are fine, only the machine running JBoss is affected. Memory usage is normal. Network utilization is normal. There are no suspect error messages in the JBoss logs. I have set up a test environment as close as possible to the client's production environment and I've done load testing with as much as 2x the number of concurrent users. I have not gotten my test environment to replicate the problem. Where do we go from here? How can we narrow down the problem? Currently the only plan we have is to wait until the problem occurs in production on its own, then do some debugging to determine the cause. So far people have just restarted JBoss when the problem occurred to minimize down time. Next time it happens they will get a developer to take a look. The question is, next time it happens, what can be done to determine the cause? We could setup a separate JBoss instance on the same box and install the web app separately from the web service. This way when the problem next occurs we will know which WAR has the problem (assuming it is our code). This doesn't narrow it down much though. Should I enable JMX remote? This way the next time the problem occurs I can connect with VisualVM and see which threads are taking the CPU and what the hell they are doing. However, is there a significant down side to enabling JMX remote in a production environment? Is there another way to see what threads are eating the CPU and to get a stacktrace to see what they are doing? Any other ideas? Thanks!

    Read the article

  • Is this (Lock-Free) Queue Implementation Thread-Safe?

    - by Hosam Aly
    I am trying to create a lock-free queue implementation in Java, mainly for personal learning. The queue should be a general one, allowing any number of readers and/or writers concurrently. Would you please review it, and suggest any improvements/issues you find? Thank you. import java.util.concurrent.atomic.AtomicReference; public class LockFreeQueue<T> { private static class Node<E> { E value; volatile Node<E> next; Node(E value) { this.value = value; } } private AtomicReference<Node<T>> head, tail; public LockFreeQueue() { // have both head and tail point to a dummy node Node<T> dummyNode = new Node<T>(null); head = new AtomicReference<Node<T>>(dummyNode); tail = new AtomicReference<Node<T>>(dummyNode); } /** * Puts an object at the end of the queue. */ public void putObject(T value) { Node<T> newNode = new Node<T>(value); Node<T> prevTailNode = tail.getAndSet(newNode); prevTailNode.next = newNode; } /** * Gets an object from the beginning of the queue. The object is removed * from the queue. If there are no objects in the queue, returns null. */ public T getObject() { Node<T> headNode, valueNode; // move head node to the next node using atomic semantics // as long as next node is not null do { headNode = head.get(); valueNode = headNode.next; // try until the whole loop executes pseudo-atomically // (i.e. unaffected by modifications done by other threads) } while (valueNode != null && !head.compareAndSet(headNode, valueNode)); T value = (valueNode != null ? valueNode.value : null); // release the value pointed to by head, keeping the head node dummy if (valueNode != null) valueNode.value = null; return value; }

    Read the article

  • Tomcat JNDI Connection Pool docs - Random Connection Closed Exceptions

    - by Andy Faibishenko
    I found this in the Tomcat documentation here What I don't understand is why they close all the JDBC objects twice - once in the try{} block and once in the finally{} block. Why not just close them once in the finally{} clause? This is the relevant docs: Random Connection Closed Exceptions These can occur when one request gets a db connection from the connection pool and closes it twice. When using a connection pool, closing the connection just returns it to the pool for reuse by another request, it doesn't close the connection. And Tomcat uses multiple threads to handle concurrent requests. Here is an example of the sequence of events which could cause this error in Tomcat: Request 1 running in Thread 1 gets a db connection. Request 1 closes the db connection. The JVM switches the running thread to Thread 2 Request 2 running in Thread 2 gets a db connection (the same db connection just closed by Request 1). The JVM switches the running thread back to Thread 1 Request 1 closes the db connection a second time in a finally block. The JVM switches the running thread back to Thread 2 Request 2 Thread 2 tries to use the db connection but fails because Request 1 closed it. Here is an example of properly written code to use a db connection obtained from a connection pool: Connection conn = null; Statement stmt = null; // Or PreparedStatement if needed ResultSet rs = null; try { conn = ... get connection from connection pool ... stmt = conn.createStatement("select ..."); rs = stmt.executeQuery(); ... iterate through the result set ... rs.close(); rs = null; stmt.close(); stmt = null; conn.close(); // Return to connection pool conn = null; // Make sure we don't close it twice } catch (SQLException e) { ... deal with errors ... } finally { // Always make sure result sets and statements are closed, // and the connection is returned to the pool if (rs != null) { try { rs.close(); } catch (SQLException e) { ; } rs = null; } if (stmt != null) { try { stmt.close(); } catch (SQLException e) { ; } stmt = null; } if (conn != null) { try { conn.close(); } catch (SQLException e) { ; } conn = null; } }

    Read the article

  • c++ stl priority queue insert bad_alloc exception

    - by bsg
    Hi, I am working on a query processor that reads in long lists of document id's from memory and looks for matching id's. When it finds one, it creates a DOC struct containing the docid (an int) and the document's rank (a double) and pushes it on to a priority queue. My problem is that when the word(s) searched for has a long list, when I try to push the DOC on to the queue, I get the following exception: Unhandled exception at 0x7c812afb in QueryProcessor.exe: Microsoft C++ exception: std::bad_alloc at memory location 0x0012ee88.. When the word has a short list, it works fine. I tried pushing DOC's onto the queue in several places in my code, and they all work until a certain line; after that, I get the above error. I am completely at a loss as to what is wrong because the longest list read in is less than 1 MB and I free all memory that I allocate. Why should there suddenly be a bad_alloc exception when I try to push a DOC onto a queue that has a capacity to hold it (I used a vector with enough space reserved as the underlying data structure for the priority queue)? I know that questions like this are almost impossible to answer without seeing all the code, but it's too long to post here. I'm putting as much as I can and am anxiously hoping that someone can give me an answer, because I am at my wits' end. The NextGEQ function is too long to put here, but it reads a list of compressed blocks of docids block by block. That is, if it sees that the lastdocid in the block (in a separate list) is larger than the docid passed in, it decompresses the block and searches until it finds the right one. If it sees that it was already decompressed, it just searches. Below, when I call the function the first time, it decompresses a block and finds the docid; the push onto the queue after that works. The second time, it doesn't even need to decompress; that is, no new memory is allocated, but after that time, pushing on to the queue gives a bad_alloc error. struct DOC{ long int docid; long double rank; public: DOC() { docid = 0; rank = 0.0; } DOC(int num, double ranking) { docid = num; rank = ranking; } bool operator>( const DOC & d ) const { return rank > d.rank; } bool operator<( const DOC & d ) const { return rank < d.rank; } }; struct listnode{ int* metapointer; int* blockpointer; int docposition; int frequency; int numberdocs; int* iquery; listnode* nextnode; }; void QUERYMANAGER::SubmitQuery(char *query){ vector<DOC> docvec; docvec.reserve(20); DOC doct; //create a priority queue to use as a min-heap to store the documents and rankings; //although the priority queue uses the heap as its underlying data structure, //I found it easier to use the STL priority queue implementation priority_queue<DOC, vector<DOC>,std::greater<DOC>> q(docvec.begin(), docvec.end()); q.push(doct); //do some processing here; startlist is a pointer to a listnode struct that starts the //linked list cout << "Opening lists:" << endl; //point the linked list start pointer to the node returned by the OpenList method startlist = &OpenList(value); listnode* minpointer; q.push(doct); //more processing here; else{ //start by finding the first docid in the shortest list int i = 0; q.push(doct); num = NextGEQ(0, *startlist); q.push(doct); while(num != -1) cout << "finding nextGEQ from shortest list" << endl; q.push(doct); //the is where the problem starts - every previous q.push(doct) works; the one after //NextGEQ(num +1, *startlist) gives the bad_alloc error num = NextGEQ(num + 1, *startlist); q.push(doct); //if you didn't break out of the loop; i.e., all lists contain a matching docid, //calculate the document's rank; if it's one of the top 20, create a struct //containing the docid and the rank and add it to the priority queue if(!loop) { cout << "found match" << endl; if(num < 0) { cout << "reached end of list" << endl; //reached the end of the shortest list; close the list CloseList(startlist); break; } rank = calculateRanking(table, num); try{ //if the heap is not full, create a DOC struct with the docid and //rank and add it to the heap if(q.size() < 20) { doc.docid = num; doc.rank = rank; q.push(doct); q.push(doc); } } catch (exception& e) { cout << e.what() << endl; } } } Thank you very much, bsg.

    Read the article

  • iPhone: Speeding up a search that's polling 17,000 Core Data objects

    - by randombits
    I have a class that conforms to UISearchDisplayDelegate and contains a UISearchBar. This view is responsible for allowing the user to poll a store of about 17,000 objects that are currently managed by Core Data. Everytime the user types in a character, I created an instance of a SearchOperation (subclasses NSOperation) that queries Core Data to find results that might match the search. The code in the search controller looks something like: - (void)filterContentForSearchText:(NSString*)searchText scope:(NSString*)scope { // Update the filtered array based on the search text and scope in a secondary thread if ([searchText length] < 3) { [filteredList removeAllObjects]; // First clear the filtered array. [self setFilteredList:NULL]; [self.tableView reloadData]; return; } NSDictionary *searchdict = [NSDictionary dictionaryWithObjectsAndKeys:scope, @"scope", searchText, @"searchText", nil]; [aSearchQueue cancelAllOperations]; SearchOperation *searchOp = [[SearchOperation alloc] initWithDelegate:self dataDict:searchdict]; [aSearchQueue addOperation:searchOp]; } And my search is rather straight forward. SearchOperation is a subclass of NSOperation. I overwrote the main method with the following code: - (void)main { if ([self isCancelled]) { return; } NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; NSEntityDescription *entity = [NSEntityDescription entityForName:@"MyEntity" inManagedObjectContext:managedObjectContext]; NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init]; [fetchRequest setEntity:entity]; NSPredicate *predicate = NULL; predicate = [NSPredicate predicateWithFormat:@"(someattr contains[cd] %@)", searchText]; [fetchRequest setPredicate:predicate]; NSError *error = NULL; NSArray *fetchResults = [managedObjectContext executeFetchRequest:fetchRequest error:&error]; [fetchRequest release]; if (self.delegate != nil) [self.delegate didFinishSearching:fetchResults]; [pool drain]; } This code works, but it has several issues. It's slow. Even though I have the search happening in a separate thread other than the UI thread, querying 17,000 objects is clearly not optimal. If I'm not careful, crashes can happen. I set the max concurrent searches in my NSOperationQueue to 1 to avoid this. What else can I do to make this search faster? I think preloading all 17,000 objects into memory might be risky. There has to be a smarter way to conduct this search to give results back to the user faster.

    Read the article

  • Core-Data + AFNetworking + UI Updating (Responsiveness)

    - by Mustafa
    Here's the scenario: I'm writing a DownloadManager, that allows the user to download, pause, cancel, download all, and pause all. The DownloadManager is a singleton, and uses AFNetworking to download files. It has it's own private managed object context, so that user can freely use other parts of the application (by adding, editing, deleting) core-data objects. I have a core-data entity DownloadInfo that stores the download information i.e. fileURL, fileSize, bytesRead, etc. The DownloadManager updates the download progress in DownloadInfo (one for each file). I have a DownloadManagerViewController which uses NSFetchedResultsController to show the download status to the user. This download view controller is using the main managed object context. Now let's say that I have 20 files in the download queue. And let's say that only 3 concurrent downloads are allowed. The download manager should download the file, and show the download progress. Problem: The DownloadInfo objects are being updated by the DownloadManager at a very high rate. The DownloadManagerViewController (responsible for showing the download progress) is updating the list using NSFetchedResultsControllerDelegate methods. The result is that a lot is happening in the main queue and application has very poor responsiveness. How can I fix this? How can I make the application responsive, while showing the download progress? I don't know how else to communicate that the download status between DownloadManager and DownloadManagerViewController. Is there another/ a better way to do this? I don't want to use main managed object context in my DownloadManager, for reasons mentioned above. Note, that the DownloadManager is using AFNetworking which is handling the requests asynchronously, but eventually the DownloadInfo objects are updated in the main thread (as a result of the callback methods). Maybe there's a way to handle the downloads and status update operations in a background thread? but how? How will I communicate between the main thread and the background thread i.e. how will I tell the background thread to queue another file for download? Thanks.

    Read the article

  • Using VCL for the web (intraweb) as a trick for adding web interface to a legacy non-tiered (2 tiers

    - by user193655
    My team is maintaining a huge Client Server win32 Delphi application. It is a client/server application (Thick client) that uses DevArt (SDAC) components to connect to SQL Server. The business logic is often "trapped" in Component's event handlers, anyway with some degree of refactoring it is doable to move the business logic in common units (a big part of this work has already been done during refactoring... Maintaing legacy applications someone else wrote is very frustrating, but this is a very common job). Now there is the request of a web interface, I have several options of course, in this question i want to focus on the VCL for the web (intraweb) option. The idea is to use the common code (the same pas files) for both the client/server application and the web application. I heard of many people that moved legacy apps from delphi to intraweb, but here I am trying to keep the Thick client too. The idea is to use common code, may be with some compiler directives to write specific code: {$IFDEF CLIENTSERVER} {here goes the thick client specific code} {$ELSE} {here goes the Intraweb specific code} {$ENDIF} Then another problem is the "migration plan", let's say I have 300 features and on the first release I will have only 50 of them available in the web application. How to keep track of it? I was thinking of (ab)using Delphi interfaces to handle this. For example for the User Authentication I could move all the related code in a procedure and declare an interface like: type IUserAuthentication= interface['{0D57624C-CDDE-458B-A36C-436AE465B477}'] procedure UserAuthentication; end; In this way as I implement the IUserAuthentication interface in both the applications (Thick Client and Intraweb) I know that That feature has been "ported" to the web. Anyway I don't know if this approach makes sense. I made a prototype to simulate the whole process. It works for a "Hello world" application, but I wonder if it makes sense on a large application or this Interface idea is only counter-productive and can backfire. My question is: does this approach make sense? (the Interface idea is just an extra idea, it is not so important as the common code part described above) Is it a viable option? I understand it depends a lot of the kind of application, anyway to be generic my one is in the CRM/Accounting domain, and the number of concurrent users on a single installation is typically less than 20 with peaks of 50. EXTRA COMMENT (UPDATE): I ask this question because since I don't have a n-tier application I see Intraweb as the unique option for having a web application that has common code with the thick client. Developing webservices from the Delphi code makes no sense in my specific case, so the alternative I have is to write the web interface using ASP.NET (duplicating the business logic), but in this case I cannot take advantage of the common code in an easy way. Yes I could use dlls maybe, but my code is not suitable for that.

    Read the article

  • Customized listfield with image displaying from a url

    - by arunabha
    I am displaying a customized list field with text on the right side and image on the left side.The image comes from a URL dynamically.Initially i am placing a blank image on the left of the list field,then call URLBitmapField class's setURL method,which actually does the processing and places the processed image on top of the blank image.The image gets displayed on the list field,but to see that processed image i need to press any key or click on the list field items.I want the processed image to be displayed automatically in the list field after the processing.Can anyone tell me where i am getting wrong? import java.util.Vector; import net.rim.device.api.system.Bitmap; import net.rim.device.api.system.Display; import net.rim.device.api.ui.ContextMenu; import net.rim.device.api.ui.DrawStyle; import net.rim.device.api.ui.Field; import net.rim.device.api.ui.Font; import net.rim.device.api.ui.Graphics; import net.rim.device.api.ui.Manager; import net.rim.device.api.ui.MenuItem; import net.rim.device.api.ui.UiApplication; import net.rim.device.api.ui.component.BitmapField; import net.rim.device.api.ui.component.Dialog; import net.rim.device.api.ui.component.LabelField; import net.rim.device.api.ui.component.ListField; import net.rim.device.api.ui.component.ListFieldCallback; import net.rim.device.api.ui.component.NullField; import net.rim.device.api.ui.container.FullScreen; import net.rim.device.api.ui.container.MainScreen; import net.rim.device.api.ui.container.VerticalFieldManager; import net.rim.device.api.util.Arrays; import net.rim.device.api.ui.component.ListField; public class TaskListField extends UiApplication { // statics // ------------------------------------------------------------------ public static void main(String[] args) { TaskListField theApp = new TaskListField(); theApp.enterEventDispatcher(); } public TaskListField() { pushScreen(new TaskList()); } } class TaskList extends MainScreen implements ListFieldCallback { private Vector rows; private Bitmap p1; private Bitmap p2; private Bitmap p3; String Task; ListField listnew = new ListField(); private VerticalFieldManager metadataVFM; TableRowManager row; public TaskList() { super(); URLBitmapField artistImgField; listnew.setRowHeight(80); listnew.setCallback(this); rows = new Vector(); for (int x = 0; x <3; x++) { row = new TableRowManager(); artistImgField = new URLBitmapField(Bitmap .getBitmapResource("res/images/bg.jpg")); row.add(artistImgField); String photoURL = "someimagefrmurl.jpg"; Log.info(photoURL); // strip white spaces in the url, which is causing the // images to not display properly for (int i = 0; i < photoURL.length(); i++) { if (photoURL.charAt(i) == ' ') { photoURL = photoURL.substring(0, i) + "%20" + photoURL.substring(i + 1, photoURL.length()); } } Log.info("Processed URL: " + photoURL); artistImgField.setURL(photoURL); LabelField task = new LabelField("Display"); row.add(task); LabelField task1 = new LabelField( "Now Playing" + String.valueOf(x)); Font myFont = Font.getDefault().derive(Font.PLAIN, 12); task1.setFont(myFont); row.add(task1); rows.addElement(row); } listnew.setSize(rows.size()); this.add(listnew); //listnew.invalidate(); } // ListFieldCallback Implementation public void drawListRow(ListField listField, Graphics g, int index, int y, int width) { TableRowManager rowManager = (TableRowManager) rows.elementAt(index); rowManager.drawRow(g, 0, y, width, listnew.getRowHeight()); } protected void drawFocus(Graphics graphics, boolean on) { } private class TableRowManager extends Manager { public TableRowManager() { super(0); } // Causes the fields within this row manager to be layed out then // painted. public void drawRow(Graphics g, int x, int y, int width, int height) { // Arrange the cell fields within this row manager. layout(width, height); // Place this row manager within its enclosing list. setPosition(x, y); // Apply a translating/clipping transformation to the graphics // context so that this row paints in the right area. g.pushRegion(getExtent()); // Paint this manager's controlled fields. subpaint(g); g.setColor(0x00CACACA); g.drawLine(0, 0, getPreferredWidth(), 0); // Restore the graphics context. g.popContext(); } // Arrages this manager's controlled fields from left to right within // the enclosing table's columns. protected void sublayout(int width, int height) { // set the size and position of each field. int fontHeight = Font.getDefault().getHeight(); int preferredWidth = getPreferredWidth(); // start with the Bitmap Field of the priority icon Field field = getField(0); layoutChild(field, 146,80); setPositionChild(field, 0, 0); // set the task name label field field = getField(1); layoutChild(field, preferredWidth - 16, fontHeight + 1); setPositionChild(field, 149, 3); // set the list name label field field = getField(2); layoutChild(field, 150, fontHeight + 1); setPositionChild(field, 149, fontHeight + 6); setExtent(360, 480); } // The preferred width of a row is defined by the list renderer. public int getPreferredWidth() { return listnew.getWidth(); } // The preferred height of a row is the "row height" as defined in the // enclosing list. public int getPreferredHeight() { return listnew.getRowHeight(); } } public Object get(ListField listField, int index) { // TODO Auto-generated method stub return null; } public int getPreferredWidth(ListField listField) { return 0; } public int indexOfList(ListField listField, String prefix, int start) { // TODO Auto-generated method stub return 0; } }

    Read the article

  • Fairness: Where can it be better handled?

    - by Srinivas Nayak
    Hi, I would like to share one of my practical experience with multiprogramming here. Yesterday I had written a multiprogram. Modifications to sharable resources were put under critical sections protected by P(mutex) and V(mutex) and those critical section code were put in a common library. The library will be used by concurrent applications (of my own). I had three applications that will use the common code from library and do their stuff independently. my library --------- work_on_shared_resource { P(mutex) get_shared_resource work_with_it V(mutex) } --------- my application ----------- application1 { *[ work_on_shared_resource do_something_else_non_ctitical ] } application2 { *[ work_on_shared_resource do_something_else_non_ctitical ] } application3 { *[ work_on_shared_resource ] } *[...] denote a loop. ------------ I had to run the applications on Linux OS. I had a thought in my mind, hanging over years, that, OS shall schedule all the processes running under him with all fairness. In other words, it will give all the processes, their pie of resource-usage equally well. When first two applications were put to work, they run perfectly well without deadlock. But when the third application started running, always the third one got the resources, but since it is not doing anything in its non-critical region, it gets the shared resource more often when other tasks are doing something else. So the other two applications were found almost totally halted. When the third application got terminated forcefully, the previous two applications resumed their work as before. I think, this is a case of starvation, first two applications had to starve. Now how can we ensure fairness? Now I started believing that OS scheduler is innocent and blind. It depends upon who won the race; he got the largest pie of CPU and resource. Shall we attempt to ensure fairness of resource users in the critical-section code in library? Or shall we leave it up to the applications to ensure fairness by being liberal, not greedy? To my knowledge, adding code to ensure fairness to the common library shall be an overwhelming task. On the other hand, believing on the applications will also never ensure 100% fairness. The application which does a very little task after working with shared resources shall win the race where as the application which does heavy processing after their work with shared resources shall always starve. What is the best practice in this case? Where we ensure fairness and how? Sincerely, Srinivas Nayak

    Read the article

  • C++ Unlocking a std::mutex before calling std::unique_lock wait

    - by Sant Kadog
    I have a multithreaded application (using std::thread) with a manager (class Tree) that executes some piece of code on different subtrees (embedded struct SubTree) in parallel. The basic idea is that each instance of SubTree has a deque that store objects. If the deque is empty, the thread waits until a new element is inserted in the deque or the termination criteria is reached. One subtree can generate objects and push them in the deque of another subtree. For convenience, all my std::mutex, std::locks and std::variable_condition are stored in a struct called "locks". The class Tree creates some threads that run the following method (first attempt) : void Tree::launch(SubTree & st, Locks & locks ) { /* some code */ std::lock_guard<std::mutex> deque_lock(locks.deque_mutex_[st.id_]) ; // lock the access to the deque of subtree st if (st.deque_.empty()) // check that the deque is still empty { // some threads are still running, wait for them to terminate std::unique_lock<std::mutex> wait_lock(locks.restart_mutex_[st.id_]) ; locks.restart_condition_[st.id_].wait(wait_lock) ; } /* some code */ } The problem is that "deque_lock" is still locked while the thread is waiting. Hence no object can be added in the deque of the current thread by a concurrent one. So I turned the lock_guard into a unique_lock and managed the lock/unlock manually : void launch(SubTree & st, Locks & locks ) { /* some code */ std::unique_lock<std::mutex> deque_lock(locks.deque_mutex_[st.id_]) ; // lock the access to the deque of subtree st if (st.deque_.empty()) // check that the deque is still empty { deque_lock.unlock() ; // unlock the access to the deque to enable the other threads to add objects // DATA RACE : nothing must happen to the unprotected deque here !!!!!! // some threads are still running, wait for them to terminate std::unique_lock<std::mutex> wait_lock(locks.restart_mutex_[st.id_]) ; locks.restart_condition_[st.id_].wait(wait_lock) ; } /* some code */ } The problem now, is that there is a data race, and I would like to make sure that the "wait" instruction is performed directly after the "deque_lock.unlock()" one. Would anyone know a way to create such a critical instruction sequence with the standard library ? Thanks in advance.

    Read the article

  • Available Coroutine Libraries in Java

    - by JUST MY correct OPINION
    I would like to do some stuff in Java that would be clearer if written using concurrent routines, but for which full-on threads are serious overkill. The answer, of course, is the use of coroutines, but there doesn't appear to be any coroutine support in the standard Java libraries and a quick Google on it brings up tantalising hints here or there, but nothing substantial. Here's what I've found so far: JSIM has a coroutine class, but it looks pretty heavyweight and conflates, seemingly, with threads at points. The point of this is to reduce the complexity of full-on threading, not to add to it. Further I'm not sure that the class can be extracted from the library and used independently. Xalan has a coroutine set class that does coroutine-like stuff, but again it's dubious if this can be meaningfully extracted from the overall library. It also looks like it's implemented as a tightly-controlled form of thread pool, not as actual coroutines. There's a Google Code project which looks like what I'm after, but if anything it looks more heavyweight than using threads would be. I'm basically nervous of something that requires software to dynamically change the JVM bytecode at runtime to do its work. This looks like overkill and like something that will cause more problems than coroutines would solve. Further it looks like it doesn't implement the whole coroutine concept. By my glance-over it gives a yield feature that just returns to the invoker. Proper coroutines allow yields to transfer control to any known coroutine directly. Basically this library, heavyweight and scary as it is, only gives you support for iterators, not fully-general coroutines. The promisingly-named Coroutine for Java fails because it's a platform-specific (obviously using JNI) solution. And that's about all I've found. I know about the native JVM support for coroutines in the Da Vinci Machine and I also know about the JNI continuations trick for doing this. These are not really good solutions for me, however, as I would not necessarily have control over which VM or platform my code would run on. (Indeed any bytecode manipulation system would suffer similar problems -- it would be best were this pure Java if possible. Runtime bytecode manipulation would restrict me from using this on Android, for example.) So does anybody have any pointers? Is this even possible? If not, will it be possible in Java 7? Edited to add: Just to ensure that confusion is contained, this is a related question to my other one, but not the same. This one is looking for an existing implementation in a bid to avoid reinventing the wheel unnecessarily. The other one is a question relating to how one would go about implementing coroutines in Java should this question prove unanswerable. The intent is to keep different questions on different threads.

    Read the article

  • Dynamic data-entry value store

    - by simendsjo
    I'm creating a data-entry application where users are allowed to create the entry schema. My first version of this just created a single table per entry schema with each entry spanning a single or multiple columns (for complex types) with the appropriate data type. This allowed for "fast" querying (on small datasets as I didn't index all columns) and simple synchronization where the data-entry was distributed on several databases. I'm not quite happy with this solution though; the only positive thing is the simplicity... I can only store a fixed number of columns. I need to create indexes on all columns. I need to recreate the table on schema changes. Some of my key design criterias are: Very fast querying (Using a simple domain specific query language) Writes doesn't have to be fast Many concurrent users Schemas will change often Schemas might contain many thousand columns The data-entries might be distributed and needs syncronization. Preferable MySQL and SQLite - Databases like DB2 and Oracle is out of the question. Using .Net/Mono I've been thinking of a couple of possible designs, but none of them seems like a good choice. Solution 1: Union like table containing a Type column and one nullable column per type. This avoids joins, but will definitly use a lot of space. Solution 2: Key/value store. All values are stored as string and converted when needed. Also use a lot of space, and of course, I hate having to convert everything to string. Solution 3: Use an xml database or store values as xml. Without any experience I would think this is quite slow (at least for the relational model unless there is some very good xpath support). I also would like to avoid an xml database as other parts of the application fits better as a relational model, and being able to join the data is helpful. I cannot help to think that someone has solved (some of) this already, but I'm unable to find anything. Not quite sure what to search for either... I know market research is doing something like this for their questionnaires, but there are few open source implementations, and the ones I've found doesn't quite fit the bill. PSPP has much of the logic I'm thinking of; primitive column types, many columns, many rows, fast querying and merging. Too bad it doesn't work against a database.. And of course... I don't need 99% of the provided functionality, but a lot of stuff not included. I'm not sure this is the right place to ask such a design related question, but I hope someone here has some tips, know of any existing work, or can point me to a better place to ask such a question. Thanks in advance!

    Read the article

  • posting multiple radio button values to mysql using "foreach"

    - by jeansymolanza
    i have adjusted my code slightly but i am still having difficulty posting it to the table. could someone please provide me with an example of the foreach array? form page <div style="padding: 15px;"> <span class="loginfail" style="font-size:24px; font-weight: bold">Notifications</span><p> <?php include("progress_insertcomment.php"); ?> <?php // Make a MySQL Connection mysql_select_db("speedycm_data") or die(mysql_error()); $query_comment = "select * from tbl_alert order by id desc limit 1"; $comment = mysql_query($query_comment, $speedycms) or die(mysql_error()); $row_comment = mysql_fetch_assoc($comment); $totalRows_comment = mysql_num_rows($comment); ?> <!--- add notification ---> <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>"> <span id="sprytextarea1"> <textarea id='comment' name="comment" style="height: 75px; width:330px;"><?php echo $row_comment['comment']; ?></textarea> </span> <p> <button type="submit">Add</button> <input type="hidden" name="notc" value="1"/> </form> <!--- notification history ---> <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>"> <table border="0" cellspacing="2" cellpadding="2"> <?php if ( $row_comment == 0 ) { echo "<span style='font-size: 11px;'>No current alerts.</span>"; } else { // Get all the data from the "example" table $result = mysql_query("SELECT * FROM tbl_alert ORDER BY id DESC") or die(mysql_error()); while($rows=mysql_fetch_array($result)){ ?> <tr> <td> <?php echo "<div class='bubble'><div class='pimped'> <blockquote>" . $rows['comment'] . " </blockquote></div> <cite><strong>" . $rows['user'] . "</strong> @ " . $rows['date'] . "</cite> <span style='font-size: 10px;'> <p> <a href='editalert.php?id=". $rows['id'] ."' class='form' >Edit</a>&nbsp;&#8226;&nbsp;<a href='deletealert.php?id=". $rows['id'] ."' class='form'>Delete</a> </span> </div> "; ?> </td> <td valign="top" align="center"><div style="padding-left: 30px;"><span style="font-size: 10px;">Completed?</span> <p class="field switch"> <!--- determine status of notification ---> <?php $status = $rows['status']; ?> <input type="radio" name="selstatus" value="no" <?php if($status == 'yes') {echo 'checked';} else {echo '';} ?>/> <input type="radio" name="selstatus" value="yes" <?php if($status == 'yes') {echo 'checked';} else {echo '';} ?>/> <input type="hidden" name="statusid" value="<?php echo $rows['id']; ?>"/> <label for="radio1" class="cb-enable <?php if($status == 'yes') {echo 'selected';} else {echo '';} ?>"><span>Yes</span></label> <label for="radio2" class="cb-disable <?php if($status == 'no') {echo 'selected';} else {echo '';} ?>"><span>No</span></label> </p> </div></td> </tr> <tr> <td></td> <?php } } ?> <td align="center"><div style="padding-left: 30px;"> <button type="submit">Update</button> <input type="hidden" name="notc2" value="1"/> </div></td> </tr> </table> </form> </div> </body> processing <?php // 6) update notifications if (array_key_exists('notc2',$_POST)) { echo "<p style='font-size: 12px;'>Thank you. The notifications have been updated successfully.<p>"; echo "<p><span style='font-size: 12px;'> <a onClick=\"history.go(-1)\" class='form'>Return</a></p> <p></span> "; exit; }; ?> after doing some research i learnt that the only way to insert multiple radio values into the MYSQL table is to use arrays. there was a similar question raised somewhere on this site: http://stackoverflow.com/questions/1656260/php-multiple-radio-buttons that recommended using a foreach loop. use a foreach loop <?php foreach ( $_POST as $key => $val ) echo "$key -> $val\n"; ?> $key will be the name of the selected option and $val, well, the value. how would this apply to my situation as i am struggling to find any help on the internet. i understand that i would use this on the processing page to pull out any radio values from the previous page and then loop the INSERT MYSQL code within the process until it was all done. any advice would be appreciated! GOD BLESS.

    Read the article

  • Variable lenght arguments in log4cxx LOG4CXX_ macros

    - by Horacio
    I am using log4cxx in a big C++ project but I really don't like how log4cxx handles multiple variables when logging: LOG4CXX_DEBUG(logger, "test " << var1 << " and " << var3 " and .....) I prefer using printf like variable length arguments: LOG4CXX_DEBUG(logger, "test %d and %d", var1, var3) So I implemented this small wrapper on top of log4cxx #include <string.h> #include <stdio.h> #include <stdarg.h> #include <log4cxx/logger.h> #include "log4cxx/basicconfigurator.h" const char * log_format(const char *fmt, ...); #define MYLOG_TRACE(logger, fmt, ...) LOG4CXX_TRACE(logger, log_format(fmt, ## __VA_ARGS__)) #define MYLOG_DEBUG(logger, fmt, ...) LOG4CXX_DEBUG(logger, log_format(fmt, ## __VA_ARGS__)) #define MYLOG_INFO(logger, fmt, ...) LOG4CXX_INFO(logger, log_format(fmt, ## __VA_ARGS__)) #define MYLOG_WARN(logger, fmt, ...) LOG4CXX_WARN(logger, log_format(fmt, ## __VA_ARGS__)) #define MYLOG_ERROR(logger, fmt, ...) LOG4CXX_ERROR(logger, log_format(fmt, ## __VA_ARGS__)) #define MYLOG_FATAL(logger, fmt, ...) LOG4CXX_FATAL(logger, log_format(fmt, ## __VA_ARGS__)) static log4cxx::LoggerPtr logger(log4cxx::Logger::getRootLogger()); int main(int argc, char **argv) { log4cxx::BasicConfigurator::configure(); MYLOG_INFO(logger, "Start "); MYLOG_WARN(logger, log_format("In running this in %d threads safe?", 1000)); MYLOG_INFO(logger, "End "); return 0; } const char *log_format(const char *fmt, ...) { va_list va; static char formatted[1024]; va_start(va, fmt); vsprintf(formatted, 1024, fmt, va); va_end(va); return formatted; } And this works perfectly but I know using that static variable (formatted) can become problematic if I start using threads and each thread logging to the same place. I am no expert in log4cxx so I was wondering if the LOG4CXX macros are handling concurrent thread access automatically? or do I have to implement some sort of locking around the log_format method? something that I wan't to avoid due to performance implications. Also I would like to ask why if I replace the vsprintf inside the log_format method with vsnprintf (that is more secure) then I get nothing printed? To compile and test this program (in Ubuntu) use : g++ -o loggertest loggertest.cpp -llog4cxx

    Read the article

  • Custom language - FOR loop in a clojure interpeter?

    - by Mark
    I have a basic interpreter in clojure. Now i need to implement for (initialisation; finish-test; loop-update) { statements } Implement a similar for-loop for the interpreted language. The pattern will be: (for variable-declarations end-test loop-update do statement) The variable-declarations will set up initial values for variables.The end-test returns a boolean, and the loop will end if end-test returns false. The statement is interpreted followed by the loop-update for each pass of the loop. Examples of use are: (run ’(for ((i 0)) (< i 10) (set i (+ 1 i)) do (println i))) (run ’(for ((i 0) (j 0)) (< i 10) (seq (set i (+ 1 i)) (set j (+ j (* 2 i)))) do (println j))) inside my interpreter. I will attach my interpreter code I got so far. Any help is appreciated. Interpreter (declare interpret make-env) ;; needed as language terms call out to 'interpret' (def do-trace false) ;; change to 'true' to show calls to 'interpret' ;; simple utilities (def third ; return third item in a list (fn [a-list] (second (rest a-list)))) (def fourth ; return fourth item in a list (fn [a-list] (third (rest a-list)))) (def run ; make it easy to test the interpreter (fn [e] (println "Processing: " e) (println "=> " (interpret e (make-env))))) ;; for the environment (def make-env (fn [] '())) (def add-var (fn [env var val] (cons (list var val) env))) (def lookup-var (fn [env var] (cond (empty? env) 'error (= (first (first env)) var) (second (first env)) :else (lookup-var (rest env) var)))) ;; for terms in language ;; -- define numbers (def is-number? (fn [expn] (number? expn))) (def interpret-number (fn [expn env] expn)) ;; -- define symbols (def is-symbol? (fn [expn] (symbol? expn))) (def interpret-symbol (fn [expn env] (lookup-var env expn))) ;; -- define boolean (def is-boolean? (fn [expn] (or (= expn 'true) (= expn 'false)))) (def interpret-boolean (fn [expn env] expn)) ;; -- define functions (def is-function? (fn [expn] (and (list? expn) (= 3 (count expn)) (= 'lambda (first expn))))) (def interpret-function ; keep function definitions as they are written (fn [expn env] expn)) ;; -- define addition (def is-plus? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '+ (first expn))))) (def interpret-plus (fn [expn env] (+ (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define subtraction (def is-minus? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '- (first expn))))) (def interpret-minus (fn [expn env] (- (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define multiplication (def is-times? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '* (first expn))))) (def interpret-times (fn [expn env] (* (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define division (def is-divides? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '/ (first expn))))) (def interpret-divides (fn [expn env] (/ (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define equals test (def is-equals? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '= (first expn))))) (def interpret-equals (fn [expn env] (= (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define greater-than test (def is-greater-than? (fn [expn] (and (list? expn) (= 3 (count expn)) (= '> (first expn))))) (def interpret-greater-than (fn [expn env] (> (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define not (def is-not? (fn [expn] (and (list? expn) (= 2 (count expn)) (= 'not (first expn))))) (def interpret-not (fn [expn env] (not (interpret (second expn) env)))) ;; -- define or (def is-or? (fn [expn] (and (list? expn) (= 3 (count expn)) (= 'or (first expn))))) (def interpret-or (fn [expn env] (or (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define and (def is-and? (fn [expn] (and (list? expn) (= 3 (count expn)) (= 'and (first expn))))) (def interpret-and (fn [expn env] (and (interpret (second expn) env) (interpret (third expn) env)))) ;; -- define print (def is-print? (fn [expn] (and (list? expn) (= 2 (count expn)) (= 'println (first expn))))) (def interpret-print (fn [expn env] (println (interpret (second expn) env)))) ;; -- define with (def is-with? (fn [expn] (and (list? expn) (= 3 (count expn)) (= 'with (first expn))))) (def interpret-with (fn [expn env] (interpret (third expn) (add-var env (first (second expn)) (interpret (second (second expn)) env))))) ;; -- define if (def is-if? (fn [expn] (and (list? expn) (= 4 (count expn)) (= 'if (first expn))))) (def interpret-if (fn [expn env] (cond (interpret (second expn) env) (interpret (third expn) env) :else (interpret (fourth expn) env)))) ;; -- define function-application (def is-function-application? (fn [expn env] (and (list? expn) (= 2 (count expn)) (is-function? (interpret (first expn) env))))) (def interpret-function-application (fn [expn env] (let [function (interpret (first expn) env)] (interpret (third function) (add-var env (first (second function)) (interpret (second expn) env)))))) ;; the interpreter itself (def interpret (fn [expn env] (cond do-trace (println "Interpret is processing: " expn)) (cond ; basic values (is-number? expn) (interpret-number expn env) (is-symbol? expn) (interpret-symbol expn env) (is-boolean? expn) (interpret-boolean expn env) (is-function? expn) (interpret-function expn env) ; built-in functions (is-plus? expn) (interpret-plus expn env) (is-minus? expn) (interpret-minus expn env) (is-times? expn) (interpret-times expn env) (is-divides? expn) (interpret-divides expn env) (is-equals? expn) (interpret-equals expn env) (is-greater-than? expn) (interpret-greater-than expn env) (is-not? expn) (interpret-not expn env) (is-or? expn) (interpret-or expn env) (is-and? expn) (interpret-and expn env) (is-print? expn) (interpret-print expn env) ; special syntax (is-with? expn) (interpret-with expn env) (is-if? expn) (interpret-if expn env) ; functions (is-function-application? expn env) (interpret-function-application expn env) :else 'error))) ;; tests of using environment (println "Environment tests:") (println (add-var (make-env) 'x 1)) (println (add-var (add-var (add-var (make-env) 'x 1) 'y 2) 'x 3)) (println (lookup-var '() 'x)) (println (lookup-var '((x 1)) 'x)) (println (lookup-var '((x 1) (y 2)) 'x)) (println (lookup-var '((x 1) (y 2)) 'y)) (println (lookup-var '((x 3) (y 2) (x 1)) 'x)) ;; examples of using interpreter (println "Interpreter examples:") (run '1) (run '2) (run '(+ 1 2)) (run '(/ (* (+ 4 5) (- 2 4)) 2)) (run '(with (x 1) x)) (run '(with (x 1) (with (y 2) (+ x y)))) (run '(with (x (+ 2 4)) x)) (run 'false) (run '(not false)) (run '(with (x true) (with (y false) (or x y)))) (run '(or (= 3 4) (> 4 3))) (run '(with (x 1) (if (= x 1) 2 3))) (run '(with (x 2) (if (= x 1) 2 3))) (run '((lambda (n) (* 2 n)) 4)) (run '(with (double (lambda (n) (* 2 n))) (double 4))) (run '(with (sum-to (lambda (n) (if (= n 0) 0 (+ n (sum-to (- n 1)))))) (sum-to 100))) (run '(with (x 1) (with (f (lambda (n) (+ n x))) (with (x 2) (println (f 3))))))

    Read the article

  • java concurrency: many writers, one reader

    - by Janning
    I need to gather some statistics in my software and i am trying to make it fast and correct, which is not easy (for me!) first my code so far with two classes, a StatsService and a StatsHarvester public class StatsService { private Map<String, Long> stats = new HashMap<String, Long>(1000); public void notify ( String key ) { Long value = 1l; synchronized (stats) { if (stats.containsKey(key)) { value = stats.get(key) + 1; } stats.put(key, value); } } public Map<String, Long> getStats ( ) { Map<String, Long> copy; synchronized (stats) { copy = new HashMap<String, Long>(stats); stats.clear(); } return copy; } } this is my second class, a harvester which collects the stats from time to time and writes them to a database. public class StatsHarvester implements Runnable { private StatsService statsService; private Thread t; public void init ( ) { t = new Thread(this); t.start(); } public synchronized void run ( ) { while (true) { try { wait(5 * 60 * 1000); // 5 minutes collectAndSave(); } catch (InterruptedException e) { e.printStackTrace(); } } } private void collectAndSave ( ) { Map<String, Long> stats = statsService.getStats(); // do something like: // saveRecords(stats); } } At runtime it will have about 30 concurrent running threads each calling notify(key) about 100 times. Only one StatsHarvester is calling statsService.getStats() So i have many writers and only one reader. it would be nice to have accurate stats but i don't care if some records are lost on high concurrency. The reader should run every 5 Minutes or whatever is reasonable. Writing should be as fast as possible. Reading should be fast but if it locks for about 300ms every 5 minutes, its fine. I've read many docs (Java concurrency in practice, effective java and so on), but i have the strong feeling that i need your advice to get it right. I hope i stated my problem clear and short enough to get valuable help.

    Read the article

  • question about book example - Java Concurrency in Practice, Listing 4.12

    - by mike
    Hi, I am working through an example in Java Concurrency in Practice and am not understanding why a concurrent-safe container is necessary in the following code. I'm not seeing how the container "locations" 's state could be modified after construction; so since it is published through an 'unmodifiableMap' wrapper, it appears to me that an ordinary HashMap would suffice. EG, it is accessed concurrently, but the state of the map is only accessed by readers, no writers. The value fields in the map are syncronized via delegation to the 'SafePoint' class, so while the points are mutable, the keys for the hash, and their associated values (references to SafePoint instances) in the map never change. I think my confusion is based on what precisely the state of the collection is in the problem. Thanks!! -Mike Listing 4.12, Java Concurrency in Practice, (this listing available as .java here, and also in chapter form via google) /////////////begin code @ThreadSafe public class PublishingVehicleTracker { private final Map<String, SafePoint> locations; private final Map<String, SafePoint> unmodifiableMap; public PublishingVehicleTracker( Map<String, SafePoint> locations) { this.locations = new ConcurrentHashMap<String, SafePoint>(locations); this.unmodifiableMap = Collections.unmodifiableMap(this.locations); } public Map<String, SafePoint> getLocations() { return unmodifiableMap; } public SafePoint getLocation(String id) { return locations.get(id); } public void setLocation(String id, int x, int y) { if (!locations.containsKey(id)) throw new IllegalArgumentException( "invalid vehicle name: " + id); locations.get(id).set(x, y); } } // monitor protected helper-class @ThreadSafe public class SafePoint { @GuardedBy("this") private int x, y; private SafePoint(int[] a) { this(a[0], a[1]); } public SafePoint(SafePoint p) { this(p.get()); } public SafePoint(int x, int y) { this.x = x; this.y = y; } public synchronized int[] get() { return new int[] { x, y }; } public synchronized void set(int x, int y) { this.x = x; this.y = y; } } ///////////end code

    Read the article

  • JPA Inheritance and Relations - Clarification question

    - by Michael
    Here the scenario: I have a unidirectional 1:N Relation from Person Entity to Address Entity. And a bidirectional 1:N Relation from User Entity to Vehicle Entity. Here is the Address class: @Entity public class Address implements Serializable { private static final long serialVersionUID = 1L; @Id @GeneratedValue(strategy = GenerationType.AUTO) privat Long int ... The Vehicles Class: @Entity public class Vehicle implements Serializable { @Id @GeneratedValue(strategy = GenerationType.AUTO) private Long id; @ManyToOne private User owner; ... @PreRemove protected void preRemove() { //this.owner.removeVehicle(this); } public Vehicle(User owner) { this.owner = owner; ... The Person Class: @Entity @Inheritance(strategy = InheritanceType.JOINED) @DiscriminatorColumn(name="PERSON_TYP") public class Person implements Serializable { @Id protected String username; @OneToMany(cascade = CascadeType.ALL, orphanRemoval=true) @JoinTable(name = "USER_ADDRESS", joinColumns = @JoinColumn(name = "USERNAME"), inverseJoinColumns = @JoinColumn(name = "ADDRESS_ID")) protected List<Address> addresses; ... @PreRemove protected void prePersonRemove(){ this.addresses = null; } ... The User Class which is inherited from the Person class: @Entity @Table(name = "Users") @DiscriminatorValue("USER") public class User extends Person { @OneToMany(mappedBy = "owner", cascade = {CascadeType.PERSIST, CascadeType.REMOVE}) private List<Vehicle> vehicles; ... When I try to delete a User who has an address I have to use orphanremoval=true on the corresponding relation (see above) and the preRemove function where the address List is set to null. Otherwise (no orphanremoval and adress list not set to null) a foreign key contraint fails. When i try to delete a user who has an vehicle a concurrent Acces Exception is thrown when do not uncomment the "this.owner.removeVehicle(this);" in the preRemove Function of the vehicle. The thing i do not understand is that before i used this inheritance there was only a User class which had all relations: @Entity @Table(name = "Users") public class User implements Serializable { @Id protected String username; @OneToMany(mappedBy = "owner", cascade = {CascadeType.PERSIST, CascadeType.REMOVE}) private List<Vehicle> vehicles; @OneToMany(cascade = CascadeType.ALL) @JoinTable(name = "USER_ADDRESS", joinColumns = @JoinColumn(name = "USERNAME") inverseJoinColumns = @JoinColumn(name = "ADDRESS_ID")) ptivate List<Address> addresses; ... No orphanremoval, and the vehicle class has used the uncommented statement above in its preRemove function. And - I could delte a user who has an address and i could delte a user who has a vehicle. So why doesn't everything work without changes when i use inheritance? I use JPA 2.0, EclipseLink 2.0.2, MySQL 5.1.x and Netbeans 6.8

    Read the article

< Previous Page | 216 217 218 219 220 221 222 223 224 225 226 227  | Next Page >