Search Results

Search found 12674 results on 507 pages for 'programming competitions'.

Page 221/507 | < Previous Page | 217 218 219 220 221 222 223 224 225 226 227 228  | Next Page >

  • How does copyrights apply to source code header files?

    - by Jim McKeeth
    It seems I heard that header files are not considered copyrightable since they can only be written one way (like a list of ingredients or facts). So a header file for a specific DLL will always look the same when written in a given programming language. Unfortunately I can't find any resources to back this up. So if a vendor provides an SDK with headers in one programming language, and then those headers are translated into another programming language by a third party. Does the 3rd party need permission from the vendor to provide the header translation? Who owns the copyright on the translation? Isn't it a derivative work still owned by the vendor, or is there no copyright, like a list of ingredients? Does this vary from jurisdiction to jurisdiction?

    Read the article

  • What are the pro/cons of Unity3D as a choice to make games ?

    - by jokoon
    We are doing our school project with Unity3d, since they were using Shiva the previous year (which seems horrible to me), and I wanted to know your point of view for this tool. Pros: multi platform, I even heard Google is going to implement it in Chrome everything you need is here scripting languages makes it a good choice for people who are not programming gurus Cons: multiplayer ? proprietary, you are totally dependent of unity and its limit and can't extend it it's less "making a game from scratch" C++ would have been a cool thing I really think this kind of tool is interesting, but is it worth it to use at school for a project that involves more than 3 programming persons ? What do we really learn in term of programming from using this kind of tool (I'm ok with python and js, but I hate C#) ? We could have use Ogre instead, even if we were learning direct x starting january...

    Read the article

  • Weblogic Virtual Developer Day Reminder - Feb 1 @ 9:30am PT

    - by Cassandra Clark
    Don't forget to register and attend the next Oracle Technology Network Virtual Developer Day- Weblogic Server tomorrow starting at 9:30 am PST. Learn how Oracle WebLogic Server enables a whole new level of productivity for enterprise developers. Also hear the latest on Java EE 6 and the programming tenets that have made it a true platform breakthrough, with new programming paradigms, persistence strategies, and more: * Convention over configuration - minimal XML * Leaner and meaner API - and one that is an open standard * POJO model - managed beans for testable components * Annotation-based programming model - decorate and inject * Reduce or eliminate need for deployment descriptors * Traditional API for advanced users We will have three live events - N. America - Tuesday, Feb 1, 2011 09:30 a.m. - 1:30 p.m. US Pacific TIme Register Europe / Russia - February 10, 2011 9:30 a.m. UK Time / 10:30 a.m. CET Register India - February 17, 2011 9:30 a.m. India time Register

    Read the article

  • Computer Science Fundamentals - Recommended books

    - by contactmatt
    Hey, I'm looking to see if anyone can recommend any books in fundamentals of computer science. I obtained my associates degree as a programmer/analyst a couple years ago and I know a good amount about programming on the .NET framework. I'm even certified on the .NET 4 framework as a web application developer. However, since I was only able to obtain my associates degree, I was deprived at my college on the low-level basics and operations of computers and basic computer science information. I'm really interesting in learning about the low-level operations of a computer and in programming (bytes, bits, memory management, etc.) Can anyone recommend any good computer science books for someone who is decently experienced in programming? Thank You

    Read the article

  • Is the "App" side of Windows 8 practical for programmers?

    - by jt0dd
    I like the tablet-friendliness of Windows 8 Apps, and some of the programming apps seem pretty neat, but there are many aspects that make me think I would have difficulty using this format for an efficient programming environment: Unlike the desktop + multiple windows setup, I can't simply drag my files around from source, to FTP or SFTP file managers, between folders, web applications, and into other apps, etc. I can't switch between apps as fast. This could have different implications with different monitor setups, but it seems like a shaky setup for an agile workflow. The split screen functionality is cool, but it doesn't seem to allow for as much maneuverability as the classic desktop setup. This could just require me getting used to the top-left corner shortcut, but it does bother me that I have to move my mouse all the way up there to see my different windows. These aspects could become relevant in the event that Windows were to move further towards their "app" structure and less towards the Windows 7 style. I'm wondering if anyone has been able to utilize the "App" side of Windows 8 for an efficient programming workflow.

    Read the article

  • Would you consider using training/mentoring from LearnersParadise.com?

    - by HK1
    My initial question deserves some explanation. I signed up for an account at learnersparadise.com. After signing up I couldn't login so I opted to use their "send password" feature. Upon receiving my password in my email I confirmed two things A) They trimmed off 2 of the last digits of my 10-digit password without informing me and saved it that way in their database B) my password is not saved in their database using a one-way hash since they were able to email me my password. I'm quite certain that both of these are perfectly awful programming practices. I suspect that the mentors/trainers at learnersparadise are not necessarily affiliated with the website and it's design since they are basically people like you and me (hopefully more skill than me) who have signed up to become mentors. However, I'm still uncertain about signing up for training/mentoring at a site that uses such poor programming practices themselves? Would you let learnersparadise poor programming practices affect your opinion of their trainers/mentors?

    Read the article

  • Software development, basics of design, conventions and scalability

    - by goce ribeski
    I need to improve my programming skills in order to achieve better scalability for the software I'm working on. Purpose is to learn the rules of adding new modules and features, so when it comes to maintaining existing ones there is some concept. So, I'm looking for a good book, tutorial or websites where I can continue to read about this. Currently, what I know and what I do is: to design relational database(3NF), make separate class for each table put that in MVC implement modular programming ...write code and hope for the best... I presume that next things I need to learn more deeply are: programming codex(naming, commenting, conventions...), organize functions building interfaces organizing custom made libraries, organizing API that I'm using, documenting, team work... ... At last what my job is, it does't need to affect your answer, PHP CodeIgniter developer.

    Read the article

  • What is it going here in my solution?

    - by bbb
    I am a asp.net mvc programmer and if I want to start a project I do this: I make a class library named Model for my models. I make a class library named Infrastructure.Repository for database processes I make a class library named Application for business logic layer And finally I make a MVC project for the UI. But now some things are confusing me. Am I using 3-tier programming? If yes so what is n-tier programming and which one is better? If no so what is 3-tier programming? Some where I see that the tiers namings are DAL and BIZ. Which one is correct according to the naming convention?

    Read the article

  • Cost of maintenance depending on paradigms

    - by Anto
    Is there any data on which paradigms allow for code which is easier/cheaper to maintain? Certainly, independantly of the chosen paradigm, good design is cheaper to maintain than bad, but there should probably be major differences coming only from the paradigm choice. Unstructured programming, for instance, generates very messy code (spaghetti code) which is expensive to maintain. In object oriented programming, implementation details are hidden and thus it should be pretty cheap to change those. In functional programming, there are no side effects, thus there is lesser risk of introducing bugs during maintainance, which should be cheaper. Is there any data on which paradigms are the most cost-efficient when coming down to maintenance? If no such data exists, what is your take on the question?

    Read the article

  • What are the pro/cons of Unity3D as a choice to make games?

    - by jokoon
    We are doing our school project with Unity3d, since they were using Shiva the previous year (which seems horrible to me), and I wanted to know your point of view for this tool. Pros: multi platform, I even heard Google is going to implement it in Chrome everything you need is here scripting languages makes it a good choice for people who are not programming gurus Cons: multiplayer ? proprietary, you are totally dependent of unity and its limit and can't extend it it's less "making a game from scratch" C++ would have been a cool thing I really think this kind of tool is interesting, but is it worth it to use at school for a project that involves more than 3 programming persons ? What do we really learn in term of programming from using this kind of tool (I'm ok with python and js, but I hate C#) ? We could have use Ogre instead, even if we were learning direct x starting january...

    Read the article

  • What is the worst programmer habit?

    - by 0x4a6f4672
    Many people get into programming because programming is fun. At least in the beginning. After some time doing it professionally, programming is no longer fun, often just hard work. Sometimes we develop bad habits along the way to make it fun again. Some bad habits of programmers are well known, for example the "I fix that in a second" habit, the "reinvent the wheel" practice or the "all code except mine is crap" attitude (which often leads to "I will re-write the entire program from scratch" syndrome). There are things which a programmer should never do. What is the worst programmer habit?

    Read the article

  • Career Shifters: How to compete with IT/ComSci graduates

    - by CareerShifter
    I am wondering what are the chances of a career shifter (mid 20's), who have maybe 3-6 months programming experience vs. younger fresh IT/Com Sci graduates. You see, even though I really love programming (Java/J2EE), but nobody gives me a feedback when I apply online. maybe because they preferred IT/ComSci graduates vs a career shifter like me.. So can you advice on how to improve my chance on being hired. How can i get a real-job programming experince if nobody is hiring me. I can make my own projects (working e-commerce site blah blah) but it is still different from the real job. And my codes are working but it still needs a lot of improvement and no one can tell me how to improve it because no one sees it (because I'm doing it alone?). Do you know any open source websites (java/j2ee/jee) / online home-based jobs who accepts java/j2ee/jee trainees.. Thank you very much

    Read the article

  • Climbing the hacker ladder

    - by cobie
    This is not a question in which I am asking for opinions rather I am asking for first hand experience. I have been programming in python for quite a while and I feel solid enough in python programming. I can come up with algorithms for problems and implement them but I somehow feel I am stuck with remaining an apprentice. What are some first hand experiences on how to climb up the ladder and become better at programming as in learning about browsers security, compilers etc. Personal experiences would be valued in responses.

    Read the article

  • Becoming an expert vs boredom [closed]

    - by QAH
    I am a college student, and I love to program, period. I code all kinds of things in different kinds of languages. Although I enjoy programming, I have an extremely hard time sticking to one project for a long time. I attribute this shortcoming to my high level of curiosity, exploring different technologies, languages, libraries, etc. What would be best? Should I settle down more and spend time on becoming an expert in one or two programming fields, or should I be more of a jack of all trades, trying out all kinds of new technologies, languages, programming methods, etc.? I'm guessing that somewhere in the middle would be best. I'm always amazed at how many developers are able to create one or two projects, and develop on them for years. What techniques do you guys employ to help you stay focused on a project?

    Read the article

  • I'm a beginner Java programmer but I want to be useful

    - by user105418
    Programming has always interested me, but after learning some of the basics of Java(I'm talking high school level), I don't really know what to do from there. I want to be able to apply what I learned in some way, whether it be a volunteer project or something, but I probably don't know enough programming. Is it possible for a novice Java programmer to be useful in some way whatsoever. I want to do this because I feel like I could learn more about programming by helping people in theirs, but I'm not sure if I'm even able to this though. Does anyone have any suggestions on how I can contribute to other people's project in some way or how to apply it in some way?

    Read the article

  • job offer in dead technology

    - by bold
    I have a job offer in a dead technology (specific programming language) that I don't want to work with nor do I believe it will offer many jobs in the future. It requires twice a year travels abroad, which not a plus in my eyes. On the other hand the money on the table is high. What would you do? edit: as its not clear I got a job in a programming language that is different from the academic programming language I worked with. Now I see it as a mistake to head to that direction.

    Read the article

  • Should I continue to learn and program using ansi c or non standard? [closed]

    - by Erik
    I am a Cs Student, enthusiastic about programming. C is my first programming language that I learned. (Never been exposed to programming, data structures, algorithms before) I failed the exam because I studied on my own and didn't know how to use windows non standard libraries like conio.h. (I had to draw circles, etc using get x and get y). I told them but they just don't care. What do I do because for a beginner this is very confusing? Do I continue to study ansi c on my own, or should I study non standard c? Should I do them in parallel? *I did use the search bar but found nothing useful that could help me.

    Read the article

  • Why do we need private variables?

    - by rak
    Why do we need private variables in classes in the context of programming? Every book on programming I've read says this is a private variable, this is how you define it but stops there. The wording of these explanations always seemed to me like we really have a crisis of trust in our profession. The explanations always sounded like other programmers are out to mess up our code. Yet, there are many programming languages that do not have private variables. What do private variables help prevent? How do you decide if a particular of properties should be private or not? If by default every field SHOULD be private then why are there public data members in a class? Under what circumstances should a variable be made public?

    Read the article

  • Usefull skills from a computer science degree

    - by Tom Squires
    I did my degree in physics and moved later into programming. I have two and a half years experience under my belt and like to think I write good code. I am, however, concerned that not doing a compsci degree has left holes in my knowledge. I would like to fill those up now since I know I want to be doing programming for the rest of my career. What skills/techniques did you learn in your compsci degree that one wouldn't pick up from on-the-job programming?

    Read the article

  • 27 vidéos techniques des Qt DevDays 2005, 2006 et 2008 sont désormais rendues publiques par Qt eLear

    L'équipe eLearning de Qt a depuis quelques temps cherché à récupérer des vidéos techniques issues des conférences des anciens QtDevDays dans l'optique de les faire partager à tout le monde. C'est aujourd'hui chose faite avec la publication en ligne de 27 présentations techniques ce qui correspond à 22h30min de vidéos. Les sujets traités sont toujours valides aujourd'hui, même si le framework a évolué au fil des années. 2005 :All About Qt Widgets Effective Graphics Programming Practical Model/View Programming Threaded Programming with Qt - Good Practise Writing Custom Styles with QStyle Writing plugin applications with Qt 2006 :Advanced Item Views...

    Read the article

  • Windows Phone App with 4SQ

    - by Nuttanon Pornpipak
    I'm want to create a my own Coffee shop app for semester's project. It's Windows Phone App. The App can i.e. view who is check-in here now , view menu , view photo by using 4SQ Endpoint APIs. And my problem is I don't know how to start it...which book i should read about C# and I don't know which knowledge (keyword) should i google it i.e. GET POST METHOD , JSON I ever used 4SQ Endpoint APIs once with javascript (jquery) $.ajax{(.....)} to get data from 4SQ Endpoint APIs So I googled and found JSON.NET Class but I don't know how to use it because i never programming in C# I'm just begin programming. I can programming in C only. Thank you Sorry for my bad grammar

    Read the article

  • For asp.net mvc is this a three tiered solution?

    - by bbb
    I am a asp.net mvc programmer and if I want to start a project I do this: I make a class library named Model for my models. I make a class library named Infrastructure.Repository for database processes I make a class library named Application for business logic layer And finally I make a MVC project for the UI. But now some things are confusing me. Am I using 3-tier programming? If yes so what is n-tier programming and which one is better? If no so what is 3-tier programming? Some where I see that the tiers namings are DAL and BIZ. Which one is correct according to the naming convention?

    Read the article

  • Which C# Book to take?

    - by Fischkopf
    I was searching for a book to learn C#, but now i'm kinda stuck. I found many people asking the same question, and many people gave answers, but there are so many books about C# that it is really hard to decide which one to take. Now i reduced my choice on two books, but I just can't decide between them. Namely, there are: Programming C# 4.0 and C# 4.0 In A Nutshell The first thing I want to know, are these good choices? I'm not completely new to programming, but I just didn't find the right language until know, but i think C# is the one I was searching for. I know all the bassic stuff from Delphi/Java/Python so I think i'm not a complete beginner in programming. Is there anyone out there that read both books and can cleary explain whats the difference between them? I haven't found many reviews and sort of, so I just don't know which one to chose. Or is there any book that is better suiting me?

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

< Previous Page | 217 218 219 220 221 222 223 224 225 226 227 228  | Next Page >