Search Results

Search found 7529 results on 302 pages for 'replace'.

Page 224/302 | < Previous Page | 220 221 222 223 224 225 226 227 228 229 230 231  | Next Page >

  • Ethernet/8P8C crimp contacts bent

    - by Fire Lancer
    (if anyone knows correct terminology please correct). Ive got a (fairly large) number of existing Ethernet cables that over the years many have got damaged connector clips, so got a crimp tool and some new connectors for them. However out of all 4 attempts I have tried, on crimping 2+ of the little copper contacts that bite into the wires have instead just bent to one side, and so gone between the gaps in in the crimp tool... Unless this really is me doing something wrong (what?) I am inclined to blame the hardware, but is this the crimper or the new connectors I got? I tried to take a picture, as you can just about see looking from the left 3rd, 6th, 7th and 8th pins didn't get pushed in, and so don't form a connector. Unfortunately my camera was barely able to focus on it and then this website converted it to a JPEG... Update: Connectors/Cable/Tools: The wires are stranded (looks about 6 and no evidence of being aluminum/not copper), and the pins(?) have 2 little flat spikes lengthways along the cables (I understand to dig into it, while solid core connectors would have like 2 plates designed to go around the core?). Crimper was http://www.amazon.co.uk/gp/product/B0013EXTKK/ref=oh_aui_detailpage_o02_s00?ie=UTF8&psc=1 (seemed to be highly rated, I already had tools for cutting/stripping). Update2: Picture of crimp "prongs" (?) Update3: Side picture of connector Update4: Comparison with old connector. The top (used) connector is one from a few years back (different tool and connectors), the thing that concerns me that it might not be the tool I need to replace is just how thin the pins are on the new one that maybe a tool could legitimately bend some into a gap rather than pushing them in fully? In fact I can move individual pins to the sides significantly with my fingernail, is that normal?

    Read the article

  • Recover deleted folder form bookmarks bar?

    - by OverTheRainbow
    I googled for this, but didn't find an answer. I removed a folder in Google Chrome's Bookmarks bar. Chrome says nothing when doing this, and I assumed it wouldn't actually delete the data from the Bookmarks manager, just the folder in the Bookmarks bar. Turns out I was wrong, and now I lost hundred's of URLs. I closed and restarted Chrome since then, so data is apparently no longer on disk. Since Google Sync is on by default, it says I have "536 bookmarks", I installed Chrome on another computer, logged on to Google... but the folder is still gone. I can't believe Chrome doesn't prompt the user with an obvious message for something that important. Is there somehow a way to recover a folder removed from the Bookmarks bar? Thank you. Edit: Amazingly, Chrome doesn't 1) provide a way to remove an item from the Bookmarks bar without also deleting it from the Bookmarks list, and 2) doesn't even warn the user of the consequences when doing so! The only way to recover data is: if you haven't closed the browser yet, make a backup of the Bookmarks file, close the browser, replace the now-leaner Bookmarks file with the previous version, and restart Chrome if you have closed it, recover the file from your backup. You did backup that file, right? ;-)

    Read the article

  • Deploying Memcached as 32bit or 64bit?

    - by rlotun
    I'm curious about how people deploy memcached on 64 bit machines. Do you compile a 64bit (standard) memcached binary and run that, or do people compile it in 32bit mode and run N instances (where N = machine_RAM / 4GB)? Consider a recommended deployment of Redis (from the Redis FAQ): Redis uses a lot more memory when compiled for 64 bit target, especially if the dataset is composed of many small keys and values. Such a database will, for instance, consume 50 MB of RAM when compiled for the 32 bit target, and 80 MB for 64 bit! That's a big difference. You can run 32 bit Redis binaries in a 64 bit Linux and Mac OS X system without problems. For OS X just use make 32bit. For Linux instead, make sure you have libc6-dev-i386 installed, then use make 32bit if you are using the latest Git version. Instead for Redis <= 1.2.2 you have to edit the Makefile and replace "-arch i386" with "-m32". If your application is already able to perform application-level sharding, it is very advisable to run N instances of Redis 32bit against a big 64 bit Redis box (with more than 4GB of RAM) instead than a single 64 bit instance, as this is much more memory efficient. Would not the same recommendation also apply to a memcached cluster?

    Read the article

  • VM automatic provisioning advice

    - by jdgregson
    In my lab we have 24 workstations, each with five technician-maintained virtual machines set up in VMware Workstation. These provide a lot of management overhead, as we have to update them as well as the host operating systems every three months (the start of the next quarter), which adds up to 144 systems to update instead of just 24. Whenever we need to reimage the hosts, the VMs add another 130GB to each image, which is over 3TB of extra data to send over the network, and a lot more time to apply each image, and then we still have to boot all 120 VMs and assign them a unique IP Address and host names. We would like to get the VMs off the hosts and onto a server, but after looking around for a few days, I still don't know where to begin looking for a solution. There may be a better way to do this, but in my mind, the ideal solution would be to replace the VMs on the host machines with five Thin Client operating systems, each configured to connect to a server and be sent or connected to a unique virtual machine. We can't have 120 VMs running on the server all the time, so the server would have to create a copy of the VM from a template whenever a student tries to boot one, and destroy the VM after the student is finished with it. If there is another client application that has to be installed on the hosts that would be fine, the only reason I'd like to keep them in VMware Workstation is because students already know to look there for the VMs when they need to use them. What, if any, virtualization software will allow this? Is there some other solution I'm not seeing?

    Read the article

  • Can't install flash on Firefox or Chrome (but works fine on IE...)

    - by WP
    I'm using a work computer (Lenovo) that I recently got from my IT department to replace an old machine. When I installed Firefox and Chrome, I needed to install Adobe Flash. However, the installation has failed on several occasions. I've taken all the usual steps: closing all programs and windows, installing updates and restarting machine, etc, but still the installation does not work. The download manager and status bars say that installation is complete, but I still can't view flash sites on FF or Chrome. Flash is working fine on IE though. Last thing: when I reboot the first dialog box that comes up is from Adobe Download Manager, and it says "Please shut down Internet Explorer before uninstall can complete". I'm confused since a) I've just rebooted so have yet to start IE and b) why UNinstall? My company does not support non-IE browsers so I'm not getting much help from our IT department. If necessary I can post screenshots of error messages and stuff if it comes to that, but hopefully someone will be able to diagnose the problem before that's necessary as I'm not the most tech savvy (despite being a huge fan of reddit...)

    Read the article

  • What is the fastest cyclic synchronization in Java (ExecutorService vs. CyclicBarrier vs. X)?

    - by Alex Dunlop
    Which Java synchronization construct is likely to provide the best performance for a concurrent, iterative processing scenario with a fixed number of threads like the one outlined below? After experimenting on my own for a while (using ExecutorService and CyclicBarrier) and being somewhat surprised by the results, I would be grateful for some expert advice and maybe some new ideas. Existing questions here do not seem to focus primarily on performance, hence this new one. Thanks in advance! The core of the app is a simple iterative data processing algorithm, parallelized to the spread the computational load across 8 cores on a Mac Pro, running OS X 10.6 and Java 1.6.0_07. The data to be processed is split into 8 blocks and each block is fed to a Runnable to be executed by one of a fixed number of threads. Parallelizing the algorithm was fairly straightforward, and it functionally works as desired, but its performance is not yet what I think it could be. The app seems to spend a lot of time in system calls synchronizing, so after some profiling I wonder whether I selected the most appropriate synchronization mechanism(s). A key requirement of the algorithm is that it needs to proceed in stages, so the threads need to sync up at the end of each stage. The main thread prepares the work (very low overhead), passes it to the threads, lets them work on it, then proceeds when all threads are done, rearranges the work (again very low overhead) and repeats the cycle. The machine is dedicated to this task, Garbage Collection is minimized by using per-thread pools of pre-allocated items, and the number of threads can be fixed (no incoming requests or the like, just one thread per CPU core). V1 - ExecutorService My first implementation used an ExecutorService with 8 worker threads. The program creates 8 tasks holding the work and then lets them work on it, roughly like this: // create one thread per CPU executorService = Executors.newFixedThreadPool( 8 ); ... // now process data in cycles while( ...) { // package data into 8 work items ... // create one Callable task per work item ... // submit the Callables to the worker threads executorService.invokeAll( taskList ); } This works well functionally (it does what it should), and for very large work items indeed all 8 CPUs become highly loaded, as much as the processing algorithm would be expected to allow (some work items will finish faster than others, then idle). However, as the work items become smaller (and this is not really under the program's control), the user CPU load shrinks dramatically: blocksize | system | user | cycles/sec 256k 1.8% 85% 1.30 64k 2.5% 77% 5.6 16k 4% 64% 22.5 4096 8% 56% 86 1024 13% 38% 227 256 17% 19% 420 64 19% 17% 948 16 19% 13% 1626 Legend: - block size = size of the work item (= computational steps) - system = system load, as shown in OS X Activity Monitor (red bar) - user = user load, as shown in OS X Activity Monitor (green bar) - cycles/sec = iterations through the main while loop, more is better The primary area of concern here is the high percentage of time spent in the system, which appears to be driven by thread synchronization calls. As expected, for smaller work items, ExecutorService.invokeAll() will require relatively more effort to sync up the threads versus the amount of work being performed in each thread. But since ExecutorService is more generic than it would need to be for this use case (it can queue tasks for threads if there are more tasks than cores), I though maybe there would be a leaner synchronization construct. V2 - CyclicBarrier The next implementation used a CyclicBarrier to sync up the threads before receiving work and after completing it, roughly as follows: main() { // create the barrier barrier = new CyclicBarrier( 8 + 1 ); // create Runable for thread, tell it about the barrier Runnable task = new WorkerThreadRunnable( barrier ); // start the threads for( int i = 0; i < 8; i++ ) { // create one thread per core new Thread( task ).start(); } while( ... ) { // tell threads about the work ... // N threads + this will call await(), then system proceeds barrier.await(); // ... now worker threads work on the work... // wait for worker threads to finish barrier.await(); } } class WorkerThreadRunnable implements Runnable { CyclicBarrier barrier; WorkerThreadRunnable( CyclicBarrier barrier ) { this.barrier = barrier; } public void run() { while( true ) { // wait for work barrier.await(); // do the work ... // wait for everyone else to finish barrier.await(); } } } Again, this works well functionally (it does what it should), and for very large work items indeed all 8 CPUs become highly loaded, as before. However, as the work items become smaller, the load still shrinks dramatically: blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.7% 78% 6.1 16k 5.5% 52% 25 4096 9% 29% 64 1024 11% 15% 117 256 12% 8% 169 64 12% 6.5% 285 16 12% 6% 377 For large work items, synchronization is negligible and the performance is identical to V1. But unexpectedly, the results of the (highly specialized) CyclicBarrier seem MUCH WORSE than those for the (generic) ExecutorService: throughput (cycles/sec) is only about 1/4th of V1. A preliminary conclusion would be that even though this seems to be the advertised ideal use case for CyclicBarrier, it performs much worse than the generic ExecutorService. V3 - Wait/Notify + CyclicBarrier It seemed worth a try to replace the first cyclic barrier await() with a simple wait/notify mechanism: main() { // create the barrier // create Runable for thread, tell it about the barrier // start the threads while( ... ) { // tell threads about the work // for each: workerThreadRunnable.setWorkItem( ... ); // ... now worker threads work on the work... // wait for worker threads to finish barrier.await(); } } class WorkerThreadRunnable implements Runnable { CyclicBarrier barrier; @NotNull volatile private Callable<Integer> workItem; WorkerThreadRunnable( CyclicBarrier barrier ) { this.barrier = barrier; this.workItem = NO_WORK; } final protected void setWorkItem( @NotNull final Callable<Integer> callable ) { synchronized( this ) { workItem = callable; notify(); } } public void run() { while( true ) { // wait for work while( true ) { synchronized( this ) { if( workItem != NO_WORK ) break; try { wait(); } catch( InterruptedException e ) { e.printStackTrace(); } } } // do the work ... // wait for everyone else to finish barrier.await(); } } } Again, this works well functionally (it does what it should). blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.4% 80% 6.3 16k 4.6% 60% 30.1 4096 8.6% 41% 98.5 1024 12% 23% 202 256 14% 11.6% 299 64 14% 10.0% 518 16 14.8% 8.7% 679 The throughput for small work items is still much worse than that of the ExecutorService, but about 2x that of the CyclicBarrier. Eliminating one CyclicBarrier eliminates half of the gap. V4 - Busy wait instead of wait/notify Since this app is the primary one running on the system and the cores idle anyway if they're not busy with a work item, why not try a busy wait for work items in each thread, even if that spins the CPU needlessly. The worker thread code changes as follows: class WorkerThreadRunnable implements Runnable { // as before final protected void setWorkItem( @NotNull final Callable<Integer> callable ) { workItem = callable; } public void run() { while( true ) { // busy-wait for work while( true ) { if( workItem != NO_WORK ) break; } // do the work ... // wait for everyone else to finish barrier.await(); } } } Also works well functionally (it does what it should). blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.2% 81% 6.3 16k 4.2% 62% 33 4096 7.5% 40% 107 1024 10.4% 23% 210 256 12.0% 12.0% 310 64 11.9% 10.2% 550 16 12.2% 8.6% 741 For small work items, this increases throughput by a further 10% over the CyclicBarrier + wait/notify variant, which is not insignificant. But it is still much lower-throughput than V1 with the ExecutorService. V5 - ? So what is the best synchronization mechanism for such a (presumably not uncommon) problem? I am weary of writing my own sync mechanism to completely replace ExecutorService (assuming that it is too generic and there has to be something that can still be taken out to make it more efficient). It is not my area of expertise and I'm concerned that I'd spend a lot of time debugging it (since I'm not even sure my wait/notify and busy wait variants are correct) for uncertain gain. Any advice would be greatly appreciated.

    Read the article

  • audio onprogress in chrome not working

    - by user351709
    Hi I am having a problem getting onprogress event for the audio tag working on chrome. it seems to work on fire fox. http://www.scottandrew.com/pub/html5audioplayer/ works on chrome but there is no progress bar update. When I copy the code and change the src to a .wav file and run it on fire fox it works perfectly. <style type="text/css"> #content { clear:both; width:60%; } .player_control { float:left; margin-right:5px; height: 20px; } #player { height:22px; } #duration { width:400px; height:15px; border: 2px solid #50b; } #duration_background { width:400px; height:15px; background-color:#ddd; } #duration_bar { width:0px; height:13px; background-color:#bbd; } #loader { width:0px; height:2px; } .style1 { height: 35px; } </style> <script type="text/javascript"> var audio_duration; var audio_player; function pageLoaded() { audio_player = $("#aplayer").get(0); //get the duration audio_duration = audio_player.duration; $('#totalTime').text(formatTimeSeconds(audio_player.duration)); //set the volume } function update(){ //get the duration of the player dur = audio_player.duration; time = audio_player.currentTime; fraction = time/dur; percent = (fraction*100); wrapper = document.getElementById("duration_background"); new_width = wrapper.offsetWidth*fraction; document.getElementById("duration_bar").style.width = new_width + "px"; $('#currentTime').text(formatTimeSeconds(audio_player.currentTime)); $('#totalTime').text(formatTimeSeconds(audio_player.duration)); } function formatTimeSeconds(time) { var minutes = Math.floor(time / 60); var seconds = "0" + (Math.floor(time) - (minutes * 60)).toString(); if (isNaN(minutes) || isNaN(seconds)) { return "0:00"; } var Strseconds = seconds.substr(seconds.length - 2); return minutes + ":" + Strseconds; } function playClicked(element){ //get the state of the player if(audio_player.paused) { audio_player.play(); newdisplay = "||"; }else{ audio_player.pause(); newdisplay = ">"; } $('#totalTime').text(formatTimeSeconds(audio_player.duration)); element.value = newdisplay; } function trackEnded(){ //reset the playControl to 'play' document.getElementById("playControl").value=">"; } function durationClicked(event){ //get the position of the event clientX = event.clientX; left = event.currentTarget.offsetLeft; clickoffset = clientX - left; percent = clickoffset/event.currentTarget.offsetWidth; duration_seek = percent*audio_duration; document.getElementById("aplayer").currentTime=duration_seek; } function Progress(evt){ $('#progress').val(Math.round(evt.loaded / evt.total * 100)); var width = $('#duration_background').css('width') $('#loader').css('width', evt.loaded / evt.total * width.replace("px","")); } function getPosition(name) { var obj = document.getElementById(name); var topValue = 0, leftValue = 0; while (obj) { leftValue += obj.offsetLeft; obj = obj.offsetParent; } finalvalue = leftValue; return finalvalue; } function SetValues() { var xPos = xMousePos; var divPos = getPosition("duration_background"); var divWidth = xPos - divPos; var Totalwidth = $('#duration_background').css('width').replace("px","") audio_player.currentTime = divWidth / Totalwidth * audio_duration; $('#duration_bar').css('width', divWidth); } </script> </head> <script type="text/javascript" src="js/MousePosition.js" ></script> <body onLoad="pageLoaded();"> <table> <tr> <td valign="bottom"><input id="playButton" type="button" onClick="playClicked(this);" value=">"/></td> <td colspan="2" class="style1" valign="bottom"> <div id='player'> <div id="duration" class='player_control' > <div id="duration_background" onClick="SetValues();"> <div id="loader" style="background-color: #00FF00; width: 0px;"></div> <div id="duration_bar" class="duration_bar"></div> </div> </div> </div> </td> </tr> <tr> <td> </td> <td> <span id="currentTime">0:00</span> </td> <td align="right" > <span id="totalTime">0:00</span> </td> </tr> </table> <audio id='aplayer' src='<%=getDownloadLink() %>' type="audio/ogg; codecs=vorbis" onProgress="Progress(event);" onTimeUpdate="update();" onEnded="trackEnded();" > <b>Your browser does not support the <code>audio</code> element. </b> </audio> </body>

    Read the article

  • Uploading multiple files using Spring MVC 3.0.2 after HiddenHttpMethodFilter has been enabled

    - by Tiny
    I'm using Spring version 3.0.2. I need to upload multiple files using the multiple="multiple" attribute of a file browser such as, <input type="file" id="myFile" name="myFile" multiple="multiple"/> (and not using multiple file browsers something like the one stated by this answer, it indeed works I tried). Although no versions of Internet Explorer supports this approach unless an appropriate jQuery plugin/widget is used, I don't care about it right now (since most other browsers support this). This works fine with commons fileupload but in addition to using RequestMethod.POST and RequestMethod.GET methods, I also want to use other request methods supported and suggested by Spring like RequestMethod.PUT and RequestMethod.DELETE in their own appropriate places. For this to be so, I have configured Spring with HiddenHttpMethodFilter which goes fine as this question indicates. but it can upload only one file at a time even though multiple files in the file browser are chosen. In the Spring controller class, a method is mapped as follows. @RequestMapping(method={RequestMethod.POST}, value={"admin_side/Temp"}) public String onSubmit(@RequestParam("myFile") List<MultipartFile> files, @ModelAttribute("tempBean") TempBean tempBean, BindingResult error, Map model, HttpServletRequest request, HttpServletResponse response) throws IOException, FileUploadException { for(MultipartFile file:files) { System.out.println(file.getOriginalFilename()); } } Even with the request parameter @RequestParam("myFile") List<MultipartFile> files which is a List of type MultipartFile (it can always have only one file at a time). I could find a strategy which is likely to work with multiple files on this blog. I have gone through it carefully. The solution below the section SOLUTION 2 – USE THE RAW REQUEST says, If however the client insists on using the same form input name such as ‘files[]‘ or ‘files’ and then populating that name with multiple files then a small hack is necessary as follows. As noted above Spring 2.5 throws an exception if it detects the same form input name of type file more than once. CommonsFileUploadSupport – the class which throws that exception is not final and the method which throws that exception is protected so using the wonders of inheritance and subclassing one can simply fix/modify the logic a little bit as follows. The change I’ve made is literally one word representing one method invocation which enables us to have multiple files incoming under the same form input name. It attempts to override the method protected MultipartParsingResult parseFileItems(List fileItems, String encoding) {} of the abstract class CommonsFileUploadSupport by extending the class CommonsMultipartResolver such as, package multipartResolver; import java.io.UnsupportedEncodingException; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.Map; import javax.servlet.ServletContext; import org.apache.commons.fileupload.FileItem; import org.springframework.util.StringUtils; import org.springframework.web.multipart.MultipartException; import org.springframework.web.multipart.MultipartFile; import org.springframework.web.multipart.commons.CommonsMultipartFile; import org.springframework.web.multipart.commons.CommonsMultipartResolver; final public class MultiCommonsMultipartResolver extends CommonsMultipartResolver { public MultiCommonsMultipartResolver() { } public MultiCommonsMultipartResolver(ServletContext servletContext) { super(servletContext); } @Override @SuppressWarnings("unchecked") protected MultipartParsingResult parseFileItems(List fileItems, String encoding) { Map<String, MultipartFile> multipartFiles = new HashMap<String, MultipartFile>(); Map multipartParameters = new HashMap(); // Extract multipart files and multipart parameters. for (Iterator it = fileItems.iterator(); it.hasNext();) { FileItem fileItem = (FileItem) it.next(); if (fileItem.isFormField()) { String value = null; if (encoding != null) { try { value = fileItem.getString(encoding); } catch (UnsupportedEncodingException ex) { if (logger.isWarnEnabled()) { logger.warn("Could not decode multipart item '" + fileItem.getFieldName() + "' with encoding '" + encoding + "': using platform default"); } value = fileItem.getString(); } } else { value = fileItem.getString(); } String[] curParam = (String[]) multipartParameters.get(fileItem.getFieldName()); if (curParam == null) { // simple form field multipartParameters.put(fileItem.getFieldName(), new String[] { value }); } else { // array of simple form fields String[] newParam = StringUtils.addStringToArray(curParam, value); multipartParameters.put(fileItem.getFieldName(), newParam); } } else { // multipart file field CommonsMultipartFile file = new CommonsMultipartFile(fileItem); if (multipartFiles.put(fileItem.getName(), file) != null) { throw new MultipartException("Multiple files for field name [" + file.getName() + "] found - not supported by MultipartResolver"); } if (logger.isDebugEnabled()) { logger.debug("Found multipart file [" + file.getName() + "] of size " + file.getSize() + " bytes with original filename [" + file.getOriginalFilename() + "], stored " + file.getStorageDescription()); } } } return new MultipartParsingResult(multipartFiles, multipartParameters); } } What happens is that the last line in the method parseFileItems() (the return statement) i.e. return new MultipartParsingResult(multipartFiles, multipartParameters); causes a compile-time error because the first parameter multipartFiles is a type of Map implemented by HashMap but in reality, it requires a parameter of type MultiValueMap<String, MultipartFile> It is a constructor of a static class inside the abstract class CommonsFileUploadSupport, public abstract class CommonsFileUploadSupport { protected static class MultipartParsingResult { public MultipartParsingResult(MultiValueMap<String, MultipartFile> mpFiles, Map<String, String[]> mpParams) { } } } The reason might be - this solution is about the Spring version 2.5 and I'm using the Spring version 3.0.2 which might be inappropriate for this version. I however tried to replace the Map with MultiValueMap in various ways such as the one shown in the following segment of code, MultiValueMap<String, MultipartFile>mul=new LinkedMultiValueMap<String, MultipartFile>(); for(Entry<String, MultipartFile>entry:multipartFiles.entrySet()) { mul.add(entry.getKey(), entry.getValue()); } return new MultipartParsingResult(mul, multipartParameters); but no success. I'm not sure how to replace Map with MultiValueMap and even doing so could work either. After doing this, the browser shows the Http response, HTTP Status 400 - type Status report message description The request sent by the client was syntactically incorrect (). Apache Tomcat/6.0.26 I have tried to shorten the question as possible as I could and I haven't included unnecessary code. How could be made it possible to upload multiple files after Spring has been configured with HiddenHttpMethodFilter? That blog indicates that It is a long standing, high priority bug. If there is no solution regarding the version 3.0.2 (3 or higher) then I have to disable Spring support forever and continue to use commons-fileupolad as suggested by the third solution on that blog omitting the PUT, DELETE and other request methods forever. Just curiously waiting for a solution and/or suggestion. Very little changes to the code in the parseFileItems() method inside the class MultiCommonsMultipartResolver might make it to upload multiple files but I couldn't succeed in my attempts (again with the Spring version 3.0.2 (3 or higher)).

    Read the article

  • Little more help with writing a o buffer with libjpeg

    - by Richard Knop
    So I have managed to find another question discussing how to use the libjpeg to compress an image to jpeg. I have found this code which is supposed to work: Compressing IplImage to JPEG using libjpeg in OpenCV Here's the code (it compiles ok): /* This a custom destination manager for jpeglib that enables the use of memory to memory compression. See IJG documentation for details. */ typedef struct { struct jpeg_destination_mgr pub; /* base class */ JOCTET* buffer; /* buffer start address */ int bufsize; /* size of buffer */ size_t datasize; /* final size of compressed data */ int* outsize; /* user pointer to datasize */ int errcount; /* counts up write errors due to buffer overruns */ } memory_destination_mgr; typedef memory_destination_mgr* mem_dest_ptr; /* ------------------------------------------------------------- */ /* MEMORY DESTINATION INTERFACE METHODS */ /* ------------------------------------------------------------- */ /* This function is called by the library before any data gets written */ METHODDEF(void) init_destination (j_compress_ptr cinfo) { mem_dest_ptr dest = (mem_dest_ptr)cinfo->dest; dest->pub.next_output_byte = dest->buffer; /* set destination buffer */ dest->pub.free_in_buffer = dest->bufsize; /* input buffer size */ dest->datasize = 0; /* reset output size */ dest->errcount = 0; /* reset error count */ } /* This function is called by the library if the buffer fills up I just reset destination pointer and buffer size here. Note that this behavior, while preventing seg faults will lead to invalid output streams as data is over- written. */ METHODDEF(boolean) empty_output_buffer (j_compress_ptr cinfo) { mem_dest_ptr dest = (mem_dest_ptr)cinfo->dest; dest->pub.next_output_byte = dest->buffer; dest->pub.free_in_buffer = dest->bufsize; ++dest->errcount; /* need to increase error count */ return TRUE; } /* Usually the library wants to flush output here. I will calculate output buffer size here. Note that results become incorrect, once empty_output_buffer was called. This situation is notified by errcount. */ METHODDEF(void) term_destination (j_compress_ptr cinfo) { mem_dest_ptr dest = (mem_dest_ptr)cinfo->dest; dest->datasize = dest->bufsize - dest->pub.free_in_buffer; if (dest->outsize) *dest->outsize += (int)dest->datasize; } /* Override the default destination manager initialization provided by jpeglib. Since we want to use memory-to-memory compression, we need to use our own destination manager. */ GLOBAL(void) jpeg_memory_dest (j_compress_ptr cinfo, JOCTET* buffer, int bufsize, int* outsize) { mem_dest_ptr dest; /* first call for this instance - need to setup */ if (cinfo->dest == 0) { cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof (memory_destination_mgr)); } dest = (mem_dest_ptr) cinfo->dest; dest->bufsize = bufsize; dest->buffer = buffer; dest->outsize = outsize; /* set method callbacks */ dest->pub.init_destination = init_destination; dest->pub.empty_output_buffer = empty_output_buffer; dest->pub.term_destination = term_destination; } /* ------------------------------------------------------------- */ /* MEMORY SOURCE INTERFACE METHODS */ /* ------------------------------------------------------------- */ /* Called before data is read */ METHODDEF(void) init_source (j_decompress_ptr dinfo) { /* nothing to do here, really. I mean. I'm not lazy or something, but... we're actually through here. */ } /* Called if the decoder wants some bytes that we cannot provide... */ METHODDEF(boolean) fill_input_buffer (j_decompress_ptr dinfo) { /* we can't do anything about this. This might happen if the provided buffer is either invalid with regards to its content or just a to small bufsize has been given. */ /* fail. */ return FALSE; } /* From IJG docs: "it's not clear that being smart is worth much trouble" So I save myself some trouble by ignoring this bit. */ METHODDEF(void) skip_input_data (j_decompress_ptr dinfo, INT32 num_bytes) { /* There might be more data to skip than available in buffer. This clearly is an error, so screw this mess. */ if ((size_t)num_bytes > dinfo->src->bytes_in_buffer) { dinfo->src->next_input_byte = 0; /* no buffer byte */ dinfo->src->bytes_in_buffer = 0; /* no input left */ } else { dinfo->src->next_input_byte += num_bytes; dinfo->src->bytes_in_buffer -= num_bytes; } } /* Finished with decompression */ METHODDEF(void) term_source (j_decompress_ptr dinfo) { /* Again. Absolute laziness. Nothing to do here. Boring. */ } GLOBAL(void) jpeg_memory_src (j_decompress_ptr dinfo, unsigned char* buffer, size_t size) { struct jpeg_source_mgr* src; /* first call for this instance - need to setup */ if (dinfo->src == 0) { dinfo->src = (struct jpeg_source_mgr *) (*dinfo->mem->alloc_small) ((j_common_ptr) dinfo, JPOOL_PERMANENT, sizeof (struct jpeg_source_mgr)); } src = dinfo->src; src->next_input_byte = buffer; src->bytes_in_buffer = size; src->init_source = init_source; src->fill_input_buffer = fill_input_buffer; src->skip_input_data = skip_input_data; src->term_source = term_source; /* IJG recommend to use their function - as I don't know **** about how to do better, I follow this recommendation */ src->resync_to_restart = jpeg_resync_to_restart; } All I need to do is replace the jpeg_stdio_dest in my program with this code: int numBytes = 0; //size of jpeg after compression char * storage = new char[150000]; //storage buffer JOCTET *jpgbuff = (JOCTET*)storage; //JOCTET pointer to buffer jpeg_memory_dest(&cinfo,jpgbuff,150000,&numBytes); So I need some help to incorporate the above four lines into this function which now works but writes to a file instead of a memory: int write_jpeg_file( char *filename ) { struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; /* this is a pointer to one row of image data */ JSAMPROW row_pointer[1]; FILE *outfile = fopen( filename, "wb" ); if ( !outfile ) { printf("Error opening output jpeg file %s\n!", filename ); return -1; } cinfo.err = jpeg_std_error( &jerr ); jpeg_create_compress(&cinfo); jpeg_stdio_dest(&cinfo, outfile); /* Setting the parameters of the output file here */ cinfo.image_width = width; cinfo.image_height = height; cinfo.input_components = bytes_per_pixel; cinfo.in_color_space = color_space; /* default compression parameters, we shouldn't be worried about these */ jpeg_set_defaults( &cinfo ); /* Now do the compression .. */ jpeg_start_compress( &cinfo, TRUE ); /* like reading a file, this time write one row at a time */ while( cinfo.next_scanline < cinfo.image_height ) { row_pointer[0] = &raw_image[ cinfo.next_scanline * cinfo.image_width * cinfo.input_components]; jpeg_write_scanlines( &cinfo, row_pointer, 1 ); } /* similar to read file, clean up after we're done compressing */ jpeg_finish_compress( &cinfo ); jpeg_destroy_compress( &cinfo ); fclose( outfile ); /* success code is 1! */ return 1; } Anybody could help me out a bit with it? I've tried meddling with it but I am not sure how to do it. I I just replace this line: jpeg_stdio_dest(&cinfo, outfile); It's not going to work. There is more stuff that needs to be changed a bit in that function and I am being a little lost from all those pointers and memory management.

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • LSI 9285-8e and Supermicro SC837E26-RJBOD1 duplicate enclosure ID and slot numbers

    - by Andy Shinn
    I am working with 2 x Supermicro SC837E26-RJBOD1 chassis connected to a single LSI 9285-8e card in a Supermicro 1U host. There are 28 drives in each chassis for a total of 56 drives in 28 RAID1 mirrors. The problem I am running in to is that there are duplicate slots for the 2 chassis (the slots list twice and only go from 0 to 27). All the drives also show the same enclosure ID (ID 36). However, MegaCLI -encinfo lists the 2 enclosures correctly (ID 36 and ID 65). My question is, why would this happen? Is there an option I am missing to use 2 enclosures effectively? This is blocking me rebuilding a drive that failed in slot 11 since I can only specify enclosure and slot as parameters to replace a drive. When I do this, it picks the wrong slot 11 (device ID 46 instead of device ID 19). Adapter #1 is the LSI 9285-8e, adapter #0 (which I removed due to space limitations) is the onboard LSI. Adapter information: Adapter #1 ============================================================================== Versions ================ Product Name : LSI MegaRAID SAS 9285-8e Serial No : SV12704804 FW Package Build: 23.1.1-0004 Mfg. Data ================ Mfg. Date : 06/30/11 Rework Date : 00/00/00 Revision No : 00A Battery FRU : N/A Image Versions in Flash: ================ BIOS Version : 5.25.00_4.11.05.00_0x05040000 WebBIOS Version : 6.1-20-e_20-Rel Preboot CLI Version: 05.01-04:#%00001 FW Version : 3.140.15-1320 NVDATA Version : 2.1106.03-0051 Boot Block Version : 2.04.00.00-0001 BOOT Version : 06.253.57.219 Pending Images in Flash ================ None PCI Info ================ Vendor Id : 1000 Device Id : 005b SubVendorId : 1000 SubDeviceId : 9285 Host Interface : PCIE ChipRevision : B0 Number of Frontend Port: 0 Device Interface : PCIE Number of Backend Port: 8 Port : Address 0 5003048000ee8e7f 1 5003048000ee8a7f 2 0000000000000000 3 0000000000000000 4 0000000000000000 5 0000000000000000 6 0000000000000000 7 0000000000000000 HW Configuration ================ SAS Address : 500605b0038f9210 BBU : Present Alarm : Present NVRAM : Present Serial Debugger : Present Memory : Present Flash : Present Memory Size : 1024MB TPM : Absent On board Expander: Absent Upgrade Key : Absent Temperature sensor for ROC : Present Temperature sensor for controller : Absent ROC temperature : 70 degree Celcius Settings ================ Current Time : 18:24:36 3/13, 2012 Predictive Fail Poll Interval : 300sec Interrupt Throttle Active Count : 16 Interrupt Throttle Completion : 50us Rebuild Rate : 30% PR Rate : 30% BGI Rate : 30% Check Consistency Rate : 30% Reconstruction Rate : 30% Cache Flush Interval : 4s Max Drives to Spinup at One Time : 2 Delay Among Spinup Groups : 12s Physical Drive Coercion Mode : Disabled Cluster Mode : Disabled Alarm : Enabled Auto Rebuild : Enabled Battery Warning : Enabled Ecc Bucket Size : 15 Ecc Bucket Leak Rate : 1440 Minutes Restore HotSpare on Insertion : Disabled Expose Enclosure Devices : Enabled Maintain PD Fail History : Enabled Host Request Reordering : Enabled Auto Detect BackPlane Enabled : SGPIO/i2c SEP Load Balance Mode : Auto Use FDE Only : No Security Key Assigned : No Security Key Failed : No Security Key Not Backedup : No Default LD PowerSave Policy : Controller Defined Maximum number of direct attached drives to spin up in 1 min : 10 Any Offline VD Cache Preserved : No Allow Boot with Preserved Cache : No Disable Online Controller Reset : No PFK in NVRAM : No Use disk activity for locate : No Capabilities ================ RAID Level Supported : RAID0, RAID1, RAID5, RAID6, RAID00, RAID10, RAID50, RAID60, PRL 11, PRL 11 with spanning, SRL 3 supported, PRL11-RLQ0 DDF layout with no span, PRL11-RLQ0 DDF layout with span Supported Drives : SAS, SATA Allowed Mixing: Mix in Enclosure Allowed Mix of SAS/SATA of HDD type in VD Allowed Status ================ ECC Bucket Count : 0 Limitations ================ Max Arms Per VD : 32 Max Spans Per VD : 8 Max Arrays : 128 Max Number of VDs : 64 Max Parallel Commands : 1008 Max SGE Count : 60 Max Data Transfer Size : 8192 sectors Max Strips PerIO : 42 Max LD per array : 16 Min Strip Size : 8 KB Max Strip Size : 1.0 MB Max Configurable CacheCade Size: 0 GB Current Size of CacheCade : 0 GB Current Size of FW Cache : 887 MB Device Present ================ Virtual Drives : 28 Degraded : 0 Offline : 0 Physical Devices : 59 Disks : 56 Critical Disks : 0 Failed Disks : 0 Supported Adapter Operations ================ Rebuild Rate : Yes CC Rate : Yes BGI Rate : Yes Reconstruct Rate : Yes Patrol Read Rate : Yes Alarm Control : Yes Cluster Support : No BBU : No Spanning : Yes Dedicated Hot Spare : Yes Revertible Hot Spares : Yes Foreign Config Import : Yes Self Diagnostic : Yes Allow Mixed Redundancy on Array : No Global Hot Spares : Yes Deny SCSI Passthrough : No Deny SMP Passthrough : No Deny STP Passthrough : No Support Security : No Snapshot Enabled : No Support the OCE without adding drives : Yes Support PFK : Yes Support PI : No Support Boot Time PFK Change : Yes Disable Online PFK Change : No PFK TrailTime Remaining : 0 days 0 hours Support Shield State : Yes Block SSD Write Disk Cache Change: Yes Supported VD Operations ================ Read Policy : Yes Write Policy : Yes IO Policy : Yes Access Policy : Yes Disk Cache Policy : Yes Reconstruction : Yes Deny Locate : No Deny CC : No Allow Ctrl Encryption: No Enable LDBBM : No Support Breakmirror : No Power Savings : Yes Supported PD Operations ================ Force Online : Yes Force Offline : Yes Force Rebuild : Yes Deny Force Failed : No Deny Force Good/Bad : No Deny Missing Replace : No Deny Clear : No Deny Locate : No Support Temperature : Yes Disable Copyback : No Enable JBOD : No Enable Copyback on SMART : No Enable Copyback to SSD on SMART Error : Yes Enable SSD Patrol Read : No PR Correct Unconfigured Areas : Yes Enable Spin Down of UnConfigured Drives : Yes Disable Spin Down of hot spares : No Spin Down time : 30 T10 Power State : Yes Error Counters ================ Memory Correctable Errors : 0 Memory Uncorrectable Errors : 0 Cluster Information ================ Cluster Permitted : No Cluster Active : No Default Settings ================ Phy Polarity : 0 Phy PolaritySplit : 0 Background Rate : 30 Strip Size : 64kB Flush Time : 4 seconds Write Policy : WB Read Policy : Adaptive Cache When BBU Bad : Disabled Cached IO : No SMART Mode : Mode 6 Alarm Disable : Yes Coercion Mode : None ZCR Config : Unknown Dirty LED Shows Drive Activity : No BIOS Continue on Error : No Spin Down Mode : None Allowed Device Type : SAS/SATA Mix Allow Mix in Enclosure : Yes Allow HDD SAS/SATA Mix in VD : Yes Allow SSD SAS/SATA Mix in VD : No Allow HDD/SSD Mix in VD : No Allow SATA in Cluster : No Max Chained Enclosures : 16 Disable Ctrl-R : Yes Enable Web BIOS : Yes Direct PD Mapping : No BIOS Enumerate VDs : Yes Restore Hot Spare on Insertion : No Expose Enclosure Devices : Yes Maintain PD Fail History : Yes Disable Puncturing : No Zero Based Enclosure Enumeration : No PreBoot CLI Enabled : Yes LED Show Drive Activity : Yes Cluster Disable : Yes SAS Disable : No Auto Detect BackPlane Enable : SGPIO/i2c SEP Use FDE Only : No Enable Led Header : No Delay during POST : 0 EnableCrashDump : No Disable Online Controller Reset : No EnableLDBBM : No Un-Certified Hard Disk Drives : Allow Treat Single span R1E as R10 : No Max LD per array : 16 Power Saving option : Don't Auto spin down Configured Drives Max power savings option is not allowed for LDs. Only T10 power conditions are to be used. Default spin down time in minutes: 30 Enable JBOD : No TTY Log In Flash : No Auto Enhanced Import : No BreakMirror RAID Support : No Disable Join Mirror : No Enable Shield State : Yes Time taken to detect CME : 60s Exit Code: 0x00 Enclosure information: # /opt/MegaRAID/MegaCli/MegaCli64 -encinfo -a1 Number of enclosures on adapter 1 -- 3 Enclosure 0: Device ID : 36 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port B Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 65 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11820 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 48 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 1: Device ID : 65 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port A Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 36 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11760 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 47 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 2: Device ID : 252 Number of Slots : 8 Number of Power Supplies : 0 Number of Fans : 0 Number of Temperature Sensors : 0 Number of Alarms : 0 Number of SIM Modules : 1 Number of Physical Drives : 0 Status : Normal Position : 1 Connector Name : Unavailable Enclosure type : SGPIO Failed in first Inquiry commnad FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : Unavailable Inquiry data : Vendor Identification : LSI Product Identification : SGPIO Product Revision Level : N/A Vendor Specific : Exit Code: 0x00 Now, notice that each slot 11 device shows an enclosure ID of 36, I think this is where the discrepancy happens. One should be 36. But the other should be on enclosure 65. Drives in slot 11: Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 5, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 48 WWN: Sequence Number: 11 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : YES Device Firmware Level: A5C0 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8a53 Connected Port Number: 1(path0) Inquiry Data: MJ1311YNG6YYXAHitachi HDS5C3030ALA630 MEAOA5C0 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 19, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 19 WWN: Sequence Number: 4 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : NO Device Firmware Level: A580 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8e53 Connected Port Number: 0(path0) Inquiry Data: MJ1313YNG1VA5CHitachi HDS5C3030ALA630 MEAOA580 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Update 06/28/12: I finally have some new information about (what we think) the root cause of this problem so I thought I would share. After getting in contact with a very knowledgeable Supermicro tech, they provided us with a tool called Xflash (doesn't appear to be readily available on their FTP). When we gathered some information using this utility, my colleague found something very strange: root@mogile2 test]# ./xflash.dat -i get avail Initializing Interface. Expander: SAS2X36 (SAS2x36) 1) SAS2X36 (SAS2x36) (50030480:00EE917F) (0.0.0.0) 2) SAS2X36 (SAS2x36) (50030480:00E9D67F) (0.0.0.0) 3) SAS2X36 (SAS2x36) (50030480:0112D97F) (0.0.0.0) This lists the connected enclosures. You see the 3 connected (we have since added a 3rd and a 4th which is not yet showing up) with their respective SAS address / WWN (50030480:00EE917F). Now we can use this address to get information on the individual enclosures: [root@mogile2 test]# ./xflash.dat -i 5003048000EE917F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00EE917F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 5003048000E9D67F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00E9D67F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 500304800112D97F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:0112D97F Enclosure Logical Id: 50030480:0112D97F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 Did you catch it? The first 2 enclosures logical ID is partially masked out where the 3rd one (which has a correct unique enclosure ID) is not. We pointed this out to Supermicro and were able to confirm that this address is supposed to be set during manufacturing and there was a problem with a certain batch of these enclosures where the logical ID was not set. We believe that the RAID controller is determining the ID based on the logical ID and since our first 2 enclosures have the same logical ID, they get the same enclosure ID. We also confirmed that 0000007F is the default which comes from LSI as an ID. The next pointer that helps confirm this could be a manufacturing problem with a run of JBODs is the fact that all 6 of the enclosures that have this problem begin with 00E. I believe that between 00E8 and 00EE Supermicro forgot to program the logical IDs correctly and neglected to recall or fix the problem post production. Fortunately for us, there is a tool to manage the WWN and logical ID of the devices from Supermicro: ftp://ftp.supermicro.com/utility/ExpanderXtools_Lite/. Our next step is to schedule a shutdown of these JBODs (after data migration) and reprogram the logical ID and see if it solves the problem. Update 06/28/12 #2: I just discovered this FAQ at Supermicro while Google searching for "lsi 0000007f": http://www.supermicro.com/support/faqs/faq.cfm?faq=11805. I still don't understand why, in the last several times we contacted Supermicro, they would have never directed us to this article :\

    Read the article

  • Multiple Exception Handlers for one exception type

    - by danish
    I am using Enterprose Library 4.1. I have created a custom exception handler called CustomHandler. This is how the configuration section would look like: <exceptionHandling> <exceptionPolicies> <add name="Exception Policy"> <exceptionTypes> <add type="System.Exception, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" postHandlingAction="NotifyRethrow" name="Exception"> <exceptionHandlers> <add type="WindowsFormsApplication1.CustomHandler, WindowsFormsApplication1" name="Custom Handler" /> <add exceptionMessage="Some test mesage." exceptionMessageResourceName="" exceptionMessageResourceType="" replaceExceptionType="Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.ExceptionHandlingException, Microsoft.Practices.EnterpriseLibrary.ExceptionHandling" type="Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.ReplaceHandler, Microsoft.Practices.EnterpriseLibrary.ExceptionHandling" name="Replace Handler" /> </exceptionHandlers> </add> </exceptionTypes> </add> </exceptionPolicies> </exceptionHandling> There are two handlers for same exception type. What I want is that based on a certain condition one of the handlers should handle the exception. Any ideas how that can be done? Is there a way to call the other handler from inside the HandleException method of the custom handler based on some condition?

    Read the article

  • logparser not matching on a LIKE pattern

    - by user79339
    Hi I seem to have the strangest problem. I am using logparser to search an event log for some text that I know is there (i copied and pasted the string from the event into the sql search string). But the sql LIKE statement is returning a empty results. But other LIKE statments seem to be working file. I have even tried using two '%' symbols in case the shell was trying to replace the search pattern with an environment variable '%%NavigationOccuredEventHandler%%', escaping the % with a \ and with a ' but all these just give me "No valid LIKE mask" error My logparser command - C:\Program Files\Log Parser 2.2LogParser.exe "select * from D:\Temp\07i132ppa1_app.evt where Message like '%NavigationOccuredEventHandler%' " -i:EVT -o:Datagrid The Entry in event log (found using "Select * from D:\Temp\07i132ppa1_app.evt" and doing a copy paste of relevant row) - 'D:\Temp\07i132ppa1_app.evt 5976788 2010-03-09 11:53:23 2010-03-09 11:53:23 2 1 Error event 0 None ICP Timestamp: 9/03/2010 1:53:23 AM Message: Error # 068464030040-07I132PPA1 System.Web.HttpUnhandledException: Exception of type 'System.Web.HttpUnhandledException' was thrown. ---> System.NullReferenceException: Object reference not set to an instance of an object. at ClientRegistration.Controller.ContactDetailsController.NavigationOccuredEventHandler(Object sender, NavigateEventArgs e) at Microsoft.ApplicationBlocks.UIProcess.UIPManager.NavigateEventHandler.Invoke(Object sender, NavigateEventArgs e) at Microsoft.ApplicationBlocks.UIProcess.UIPManager.InvokeEventHandlers(State state) in . . . Truncated for brevity ' output Statistics: Elements processed: 240993 Elements output: 0 Execution time: 59.47 seconds But if i searched for the pattern '%object reference not set%' it works fine, returns results. I copied and pasted the string into a dummy sql table and ran the sql query there and it works fine. Just doesn't seem to work in logparser. Very baffling. Any help would be much appreciated

    Read the article

  • Cannot convert lambda expression to type 'string' because it is not a delegate type

    - by RememberME
    I have the following code written by another developer on 2 pages of my site. This used to work just fine, but now is giving the error "Cannot convert lambda expression to type 'string' because it is not a delegate type" on the Delete line with Ajax.ThemeRollerActionLink. I don't go into this section of the site often, and we recently upgraded from MVC 1.0 to 2.0. I'm guessing that's probably when it stopped working. I've looked up this error and the recommended fix seems to be add using System.Linq However, the page already has <%@ Import Namespace="System.Linq" %> <% Html.Grid(Model).Columns(col => { col.For(c => "<a href='" + Url.Action("Edit", new { userName = c }) + "' class=\"fg-button fg-button-icon-solo ui-state-default ui-corner-all\"><span class=\"ui-icon ui-icon-pencil\"></span></a>").Named("Edit").DoNotEncode(); col.For(c => Ajax.ThemeRollerActionLink("fg-button fg-button-icon-solo ui-state-default ui-corner-all", "ui-icon ui-icon-close", "Delete", new { userName = c }, new AjaxOptions { Confirm = "Delete User?", HttpMethod = "Delete", InsertionMode = InsertionMode.Replace, UpdateTargetId = "gridcontainer", OnSuccess = "successDeleteAssignment", OnFailure = "failureDeleteAssignment" })).Named("Delete").DoNotEncode(); col.For(c => c).Named("User"); }).Attributes(id => "userlist").Render(); %>

    Read the article

  • XamlParseException using Silverlight Toolkit control in Expression Blend

    - by Dan Auclair
    I am having a strange issue opening up my UserControl in Expression Blend when using a Silverlight Toolkit control. My UserControl uses the toolkit's ListBoxDragDropTarget as follows: <controlsToolkit:ListBoxDragDropTarget mswindows:DragDrop.AllowDrop="True" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch"> <ListBox ItemsSource="{Binding MyItemControls}" ScrollViewer.HorizontalScrollBarVisibility="Disabled"> <ListBox.ItemsPanel> <ItemsPanelTemplate> <controlsToolkit:WrapPanel/> </ItemsPanelTemplate> </ListBox.ItemsPanel> </ListBox> </controlsToolkit:ListBoxDragDropTarget> Everything works as expected at runtime and looks fine in Visual Studio 2008. However, when I try to open my UserControl in Blend I get XamlParseException: [Line: 0 Position: 0] and I can not see anything in the design view. More specifically Blend complains: The element "ListBoxDragDropTarget" could not be displayed because of a problem with System.Windows.Controls.ListBoxDragDropTarget: TargetType mismatch. My silverlight application is referencing System.Windows.Controls.Toolkit from the Nov. 2009 toolkit release, and I've made sure to include these namespace declarations for the ListBoxDragDropTarget: xmlns:controlsToolkit="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Toolkit" xmlns:mswindows="clr-namespace:Microsoft.Windows;assembly=System.Windows.Controls.Toolkit" If I comment out the ListBoxDragDropTarget control wrapper and just leave the ListBox I can see everything fine in the design view without errors. Furthermore, I realized this is happening with a variety of Silverlight Toolkit controls because if I comment out ListBoxDragDropTarget and replace it with <controlsToolkit:BusyIndicator /> the same exact error occurs in Blend. What is even weirder is that if I start a brand new silverlight application in blend I can add these toolkit elements without any kind of error, so it seems like something dumb that is happening with my project references to the toolkit assemblies. I'm pretty sure this has something to do with loading the default styles for the toolkit controls from its generic.xaml, since the error has to do with the TargetType and Blend is probably trying to load up the default styles. Has anyone encountered this issue before or have any ideas as to what may be my problem?

    Read the article

  • BinaryWrite exception "OutputStream is not available when a custom TextWriter is used" in MVC 2 ASP.

    - by Grant
    Hi, I have a view rendering a stream using the response BinaryWrite method. This all worked fine under ASP.NET 4 using the Beta 2 but throws this exception in the RC release: "HttpException" , "OutputStream is not available when a custom TextWriter is used." <%@ Page Title="" Language="C#" Inherits="System.Web.Mvc.ViewPage" %> <%@ Import Namespace="System.IO" %> <script runat="server"> protected void Page_Load(object sender, EventArgs e) { if (ViewData["Error"] == null) { Response.Buffer = true; Response.Clear(); Response.ContentType = ViewData["DocType"] as string; Response.AddHeader("content-disposition", ViewData["Disposition"] as string); Response.CacheControl = "No-cache"; MemoryStream stream = ViewData["DocAsStream"] as MemoryStream; Response.BinaryWrite(stream.ToArray()); Response.Flush(); Response.Close(); } } </script> </script> The view is generated from a client side redirect (jquery replace location call in the previous page using Url.Action helper to render the link of course). This is all in an iframe. Anyone have an idea why this occurs?

    Read the article

  • Make a Perl-style regex interpreter behave like a basic or extended regex interpreter

    - by Barry Brown
    I am writing a tool to help students learn regular expressions. I will probably be writing it in Java. The idea is this: the student types in a regular expression and the tool shows which parts of a text will get matched by the regex. Simple enough. But I want to support several different regex "flavors" such as: Basic regular expressions (think: grep) Extended regular expressions (think: egrep) A subset of Perl regular expressions, including the character classes \w, \s, etc. Sed-style regular expressions Java has the java.util.Regex class, but it supports only Perl-style regular expressions, which is a superset of the basic and extended REs. What I think I need is a way to take any given regular expression and escape the meta-characters that aren't part of a given flavor. Then I could give it to the Regex object and it would behave as if it was written for the selected RE interpreter. For example, given the following regex: ^\w+[0-9]{5}-(\d{4})?$ As a basic regular expression, it would be interpreted as: ^\\w\+[0-9]\{5\}-\(\\d\{4\}\)\?$ As an extended regular expression, it would be: ^\\w+[0-9]{5}-(\\d{4})?$ And as a Perl-style regex, it would be the same as the original expression. Is there a "regular expression for regular expressions" than I could run through a regex search-and-replace to quote the non-meta characters? What else could I do? Are there alternative Java classes I could use?

    Read the article

  • Android beginner: Touch events in android gridview

    - by jja
    I am using the following code to do things with gridview(slightly modified from http://developer.android.com/resources/tutorials/views/hello-gridview.html). I want to replace the onClicklistener and the onClick() method with their "touch" equivalents i.e. touchlistener and onTouch() so that when i touch an element in the gridview the image of the element changes and a double touch on the same element takes it back to the orginal state. How do I do this? I can't get my code to do this. The clicklistener works to some extent but the touch isn't. Please help. public class ImageAdapter extends BaseAdapter { private Context mContext; public ImageAdapter(Context c) { mContext = c; } public int getCount() { return mThumbIds.length; } public Object getItem(int position) { return null; } public long getItemId(int position) { return 0; } // create a new ImageView for each item referenced by the Adapter public View getView(int position, View convertView, ViewGroup parent) { ImageView imageView; if (convertView == null) { // if it's not recycled, initialize some attributes imageView = new ImageView(mContext); imageView.setLayoutParams(new GridView.LayoutParams(85, 85)); imageView.setScaleType(ImageView.ScaleType.CENTER_CROP); imageView.setPadding(8, 8, 8, 8); imageView.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View view) { if(position==0) { //do this } else { //do this } } }); } else { imageView = (ImageView) convertView; } imageView.setImageResource(mThumbIds[position]); return imageView; } // references to our images private Integer[] mThumbIds = { R.drawable.sample_2, R.drawable.sample_3, R.drawable.sample_4, R.drawable.sample_5, R.drawable.sample_6, R.drawable.sample_7, R.drawable.sample_0, R.drawable.sample_1, R.drawable.sample_2, R.drawable.sample_3, R.drawable.sample_4, R.drawable.sample_5, R.drawable.sample_6, R.drawable.sample_7, R.drawable.sample_0, R.drawable.sample_1, R.drawable.sample_2, R.drawable.sample_3, R.drawable.sample_4, R.drawable.sample_5, R.drawable.sample_6, R.drawable.sample_7 }; }

    Read the article

  • WPF ObservableCollection CollectionView.CurrentChanged not firing.

    - by EL
    Hi folks, I have a problem with one of my ICollectionViews. The ICollectionView's CurrentChanged event i not firing. Please see my code below. XAML: <!-- Publication --> <TextBlock Name="tbkPublication" Text="{x:Static abConst:Print.tbkPublicationText}" Grid.Row="0" Grid.Column="0" Margin="3" ></TextBlock> <ComboBox Grid.Column="1" Grid.Row="0" Margin="3" Name="cmbPublication" BorderThickness="1" ItemsSource="{Binding Path=EnterpriseList}" DisplayMemberPath="Name" SelectedValuePath="Value" SelectedIndex="0" IsSynchronizedWithCurrentItem="True" /> <!-- Distribution Area Region --> <TextBlock Name="tbkDistributionArea" Text="{x:Static abConst:Print.tbkDistributionAreaText}" Grid.Row="1" Grid.Column="0" Margin="3" ></TextBlock> <ComboBox Grid.Column="1" Grid.Row="1" Margin="3" Name="cmbDistributionArea" BorderThickness="1" ItemsSource="{Binding Path=ZonesList}" DisplayMemberPath="Name" SelectedValuePath="Value" SelectedIndex="0" IsSynchronizedWithCurrentItem="True" /> AND C# (ViewModel) #region Properties public ObservableCollection<GenericNameValuePair<int, string>> EnterpriseList { get { return _abEnterpriseList; } set { _abEnterpriseList = value; } } public ObservableCollection<GenericNameValuePair<int, string>> ZonesList { get { return _abZonesList; } set { _abZonesList = value; } } #endregion private void InitCollections() { _collectionViewEnterprise = CollectionViewSource.GetDefaultView(EnterpriseList); _collectionViewZone = CollectionViewSource.GetDefaultView(ZonesList); //Replace if(_collectionViewEnterprise == null) throw new NullReferenceException("Enterprise collectionView is null."); if (_collectionViewZone == null) throw new NullReferenceException("Zone collectionView is null."); _collectionViewEnterprise.CurrentChanged += new EventHandler(OnCollectionViewEnterpriseCurrentChanged); _collectionViewZone.CurrentChanged += new EventHandler(OnCollectionViewZoneCurrentChanged); } Please help. Thanks in advance.

    Read the article

  • ConcurrentDictionary and updating values

    - by rboarman
    Hello, After searching via Google and coming up empty, I decided to ask the gurus here on StackOverflow. I am trying to update entries in a ConcurrentDictionary something like this: class Class1 { public int Counter { get; set; } } class Test { private ConcurrentDictionary<int, Class1> dict = new ConcurrentDictionary<int, Class1>(); public void TestIt() { foreach (var foo in dict) { foo.Value.Counter = foo.Value.Counter + 1; // Simplified example } } } Essentially I need to iterate over the dictionary and update a field on each Value. I understand from the documentation that I need to avoid using the Value property. Instead I think I need to use TryUpdate except that I don’t want to replace my whole object. Instead, I want to update a field on the object. After reading this: http://blogs.msdn.com/b/pfxteam/archive/2010/01/08/9945809.aspx Perhaps I need to use AddOrUpdate and simply do nothing in the add delegate. Does anyone have any insight as to how to do this? Thank you, Rick

    Read the article

  • Android orientation change causes ImageView to dissapear

    - by Jarrod Smith
    Below is my layout for the row template in a SimpleCursorAdapter. The ImageView with id next_arrow disappears on orientation change. If I replace @drawable/arrow with @drawable/icon (copy of the standard sym_def_app_icon) it works fine. I thought it might be somehow related to the icons being of different dimensions, but I resized @drawable/icon to be the exact same dimensions as the arrow and it still worked fine while the arrow didn't. <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orientation="horizontal" android:layout_width="fill_parent" android:layout_height="90dp" android:background="@drawable/product_list_divider" android:paddingTop="10dp"> <ImageView android:src="@drawable/ninja_20_65" android:id="@+id/category_icon" android:layout_marginLeft="20dp" android:layout_marginRight="20dp" android:layout_height="wrap_content" android:layout_width="wrap_content" android:layout_marginTop="3dp"/> <LinearLayout android:orientation="vertical" android:layout_weight="5" android:layout_width="0dp" android:layout_height="wrap_content"> <TextView android:id="@+id/category_name" android:layout_width="fill_parent" android:layout_height="wrap_content" android:text="Name" style="@style/CategoryHeading" android:layout_marginTop="5dp"/> <TextView android:id="@+id/category_description" android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="Description" style="@style/CategoryDescription"/> </LinearLayout> <ImageView android:src="@drawable/arrow" android:layout_weight="1" android:layout_width="0dp" android:layout_marginRight="10dp" android:layout_height="wrap_content" android:layout_marginTop="20dp" android:id="@+id/next_arrow"/> </LinearLayout>

    Read the article

  • uploadify scriptData problem

    - by elpaso66
    Hi, I'm having problems with scriptData on uploadify, I'm pretty sure the config syntax is fine but whatever I do, scriptData is not passed to the upload script. I tested in both FF and Chrome with flash v. Shockwave Flash 9.0 r31 This is the config: $(document).ready(function() { $('#id_file').uploadify({ 'uploader' : '/media/filebrowser/uploadify/uploadify.swf', 'script' : '/admin/filebrowser/upload_file/', 'scriptData' : {'session_key': 'e1b552afde044bdd188ad51af40cfa8e'}, 'checkScript' : '/admin/filebrowser/check_file/', 'cancelImg' : '/media/filebrowser/uploadify/cancel.png', 'auto' : false, 'folder' : '', 'multi' : true, 'fileDesc' : '*.html;*.py;*.js;*.css;*.jpg;*.jpeg;*.gif;*.png;*.tif;*.tiff;*.mp3;*.mp4;*.wav;*.aiff;*.midi;*.m4p;*.mov;*.wmv;*.mpeg;*.mpg;*.avi;*.rm;*.pdf;*.doc;*.rtf;*.txt;*.xls;*.csv;', 'fileExt' : '*.html;*.py;*.js;*.css;*.jpg;*.jpeg;*.gif;*.png;*.tif;*.tiff;*.mp3;*.mp4;*.wav;*.aiff;*.midi;*.m4p;*.mov;*.wmv;*.mpeg;*.mpg;*.avi;*.rm;*.pdf;*.doc;*.rtf;*.txt;*.xls;*.csv;', 'sizeLimit' : 10485760, 'scriptAccess' : 'sameDomain', 'queueSizeLimit' : 50, 'simUploadLimit' : 1, 'width' : 300, 'height' : 30, 'hideButton' : false, 'wmode' : 'transparent', translations : { browseButton: 'BROWSE', error: 'An Error occured', completed: 'Completed', replaceFile: 'Do you want to replace the file', unitKb: 'KB', unitMb: 'MB' } }); $('input:submit').click(function(){ $('#id_file').uploadifyUpload(); return false; }); }); I checked that other values (file name) are passed correctly but session_key is not. This is the decorator code from django-filebrowser, you can see it checks for request.POST.get('session_key'), the problem is that request.POST is empty. def flash_login_required(function): """ Decorator to recognize a user by its session. Used for Flash-Uploading. """ def decorator(request, *args, **kwargs): try: engine = __import__(settings.SESSION_ENGINE, {}, {}, ['']) except: import django.contrib.sessions.backends.db engine = django.contrib.sessions.backends.db print request.POST session_data = engine.SessionStore(request.POST.get('session_key')) user_id = session_data['_auth_user_id'] # will return 404 if the session ID does not resolve to a valid user request.user = get_object_or_404(User, pk=user_id) return function(request, *args, **kwargs) return decorator

    Read the article

  • Upgrading EntLib 4.1 to 5 with Oracle.DataAccess.Client

    - by mlk
    Hello, I am upgrading a project from EntLib 4.1 to EntLib 5. I've skimmed through the Migration Guide, changed all the references and updated all the config files to point to EntLib 5. All worked fine accept Oracle database access. With the config file: <configuration> <configSections> <section name="dataConfiguration" type="Microsoft.Practices.EnterpriseLibrary.Data.Configuration.DatabaseSettings, Microsoft.Practices.EnterpriseLibrary.Data, Version=5.0.414.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" requirePermission="true" /> </configSections> <dataConfiguration defaultDatabase="prod"> <providerMappings> <add databaseType="Microsoft.Practices.EnterpriseLibrary.Data.Oracle.OracleDatabase, Microsoft.Practices.EnterpriseLibrary.Data" name="Oracle.DataAccess.Client" /> </providerMappings> </dataConfiguration> <connectionStrings> <add name="prod" connectionString="Data Source=dev;User Id=dev;Password=dev;" providerName="Oracle.DataAccess.Client" /> </connectionStrings> </configuration> which worked with 4.1 all calls to DatabaseFactory.CreateDatabase() fails with: System.InvalidOperationException: The type Database cannot be constructed. You must configure the container to supply this value. If I replace Oracle.DataAccess.Client with the Microsoft System.Data.Oracleclient it all works again, but is not full of ODP.net lovelyness. Does anyone know how to get this to work with EntLib 5? Cheers, Mlk

    Read the article

  • Vaadin table hide columns and container customization

    - by Alex
    Hello I am testing a project, using Vaadin and Hibernate. I am trying to use the HbnContainer class to show data into table. The problem is that I do not want to show all the properties of the two classes in the table. For example: @Entity @Table(name="users") class User { @Id @GeneratedValue(strategy=GenerationType.AUTO) private Long id; private String name; @ManyToOne(cascade=CascadeType.PERSIST) private UserRole role; //getters and setters } and a second class: @Entity @Table(name="user_roles") class UserRole { @Id @GeneratedValue(strategy=GenerationType.AUTO) private Long id; private String name; //getters and setters } Next, I retrieve my data using the HbnContainer, and connect it to the table: HbnContainer container = new HbnContainer(User.class, app); table.setContainerDataSource(container); The Table will only display the columns from User, and for the "role" it will put the role id instead. How can I hide that column, and replace it with the UserRole.name ? I managed to use a ColumnGenerator() to get the string value in the table, for the UserRole - but I couldn't remove the previous column, with the numerical value. What am I missing? Or, what is the best way to "customize" your data, before displaying a table (if i want to show data in a table from more than one object type.. what do I do?) If I can't find a simple solution soon, I think I will just build the tables "by hand".. So, any advice on this matter? Thank you, Alex

    Read the article

< Previous Page | 220 221 222 223 224 225 226 227 228 229 230 231  | Next Page >