Search Results

Search found 16783 results on 672 pages for 'static typing'.

Page 224/672 | < Previous Page | 220 221 222 223 224 225 226 227 228 229 230 231  | Next Page >

  • WNDR3700 Router + Cisco SG200-08 + LACP + Dual Uplink

    - by kobaltz
    Background I have a storage server that has several virtual machine images stored on them. I would store them locally, but I have limited space on my desktop (using SSD storage). I would like to increase the bandwidth between the desktop and the storage server by using two NICs on each computer. My original configuration allowed about 55MBps between the desktop and storage server. This storage server also has several TBs of documents, pictures, movies, vms, and ISO/programs. The storage server has 8 1.5TB hard drives in a RAID 10 configuration with a hardware RAID controller. The benchmarks on the RAID 10 are about 300MBps. Configuration In short, I am trying to bridge my switch and router. The switch is a small 8 port Cisco smart switch that supports 802.3ad LACP. I have two computers plugged into the switch, each with 2 Intel Gigabit NICs. The first computer is a Windows 7 machine that has the Intel ANS software installed. I have LACP configured with the computer and now show 3 NICs (2 Physical + 1 TEAM Virtual @ 2Gbps). It looks like this computer is configured correctly. I trunked the two ports that this computer is plugged into with the switch's web interface. The second computer is a homebrew storage box running debian. I also have the bonding enabled on this machine and the switch configured with LACP. Without having the WNDR3700 router in the picture yet, I am able to communicate between the Windows 7 machine and the debian box since they both have static IP addresses. With LACP enabled on both machines I am getting about 106-108MBps speeds. Issue I plug in a network cable from the switch into the router and enable DHCP on the desktop. I saw no need to have a static address on the desktop. My transfer rates are still from 106MBps-108MBps. While this is still a boost, I am trying to figure out how to get about 140-180MBps. I am thinking that I need to increase the bandwidth from the router to the switch. My switch allows 4 groups for port trunking. I plugged in a second network cable from the router to the switch. My question is, what is the proper way to fix this issue. Should I port trunk the two ports that are going from the switch to the router? Keep in mind that the router is a WNDR3700 and is unsure whether or not it supports LACP. I do have OpenWRT installed on the router, but it still wasn't clear in any documentation that I found if it supported 802.3ad LACP standards. I am also wondering if there needs to be anything changed within the Cisco settings. [Edit] - Corrected some numbers, wasn't really paying attention. It looks like the speeds though at least two NICs are bonded with LACP is still reaching the max bandwidth of one port. Is there a way to configure the switch so that I can increase this bandwidth? Also, on the storage server, I had a couple of extra NICs laying around and threw them on there as well. Another EDIT and More Findings I happened to look at the traffic of each individual NIC and think that I see the problem. I tested with a simple transfer for a 4GB file. I noticed that only one of the NICs was taking the load of the traffic. I then copied the file back to the Storage Server and noticed that the other NIC was sending out the traffic. I have 802.3ad LACP enabled on the two NICs and I see that it gets enabled dynamically on the switch's interface. Should I be using Static Link Aggregation?

    Read the article

  • KVM with one host IP and a different subnet for machines

    - by Jguy
    I've already setup a KVM host with proper IP configurations, but my host had me create DHCP and use that to assign the IP's to the machines. I want to see if there's an easier way to do it (or better). Upon my first setting out on this, I didn't find anything that pointed me in the right direction. I'm coming off a fresh install of Debian 6.0 x64, so I have nothing installed. I've logged in, queried for the below information and changed the password from my host set one. I have a Debian 6.0 x64 system with the following initial network configuration (substituted 255 in place of my real first octave): # tail /etc/network/interfaces auto eth0 iface eth0 inet static address 255.9.24.80 broadcast 255.9.24.95 netmask 255.255.255.224 gateway 255.9.24.65 # default route to access subnet up route add -net 255.9.24.64 netmask 255.255.255.224 gw 255.9.24.65 eth0 I have a /29 subnet that I want the virtual machines to use from my host: IP: 255.46.187.152 /29 Mask: 255.255.255.248 Broadcast: 255.46.187.159 Usable IP addresses: 255.46.187.153 to 255.46.187.158 I like the interface of Cloudmin, so I want to try and use that if I can to administrate my guests. So, my questions: How do I set this up on the host system the best so that I can use the additional Subnet IP's on the guests and have them accessible from the internet? I also need to host a DNS server, which means one of these VM's has to have two IP's assigned to it and accessable from the outside world. How can I do that using Cloudmin? I had a question about this here: Multiple IP addresses assigned to one KVM VM But I just reformatted the entire server and am trying to figure out a better way of doing this. Machine information: # ip route show 255.9.24.64/27 via 255.9.24.65 dev eth0 255.9.24.64/27 dev eth0 proto kernel scope link src 255.9.24.80 default via 255.9.24.65 dev eth0 brctl is empty # ip addr list 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether c8:60:00:54:b5:d8 brd ff:ff:ff:ff:ff:ff inet 255.9.24.80/27 brd 255.9.24.95 scope global eth0 inet6 fe80::ca60:ff:fe54:b5d8/64 scope link valid_lft forever preferred_lft forever Thank you for any help you can provide me. EDIT: I've installed kvm and cloudmin: aptitude install qemu-kvm libvirt-bin wget http://cloudmin.virtualmin.com/gpl/scripts/cloudmin-kvm-debian-install.sh ./cloudmin-kvm-debian-install.sh Rebooted and now my network configuration looks like this: # device: eth0 iface eth0 inet manual # default route to access subnet iface br0 inet static address 255.9.24.80 netmask 255.255.255.224 broadcast 255.9.24.95 network 255.9.24.64 bridge_ports eth0 gateway 255.9.24.65 I setup in Cloudmin the Start IP as 255.46.187.153 and End IP as 255.46.187.158. The CIDR is 29 and the gateway is 255.46.187.152. I've installed a guest with ubuntuserver 12.04 x64, which was able to get and retrieve internet resources during installation, but now cannot reach anything nor can it be reached from anything. Its network configuration is: iface eth0 inet static address 255.46.187.153 netmask 255.255.255.224 broadcast 255.46.187.159 gateway 255.46.187.152 dns-nameservers <host provided nameservers> And is not able to ping google.com through DNS or direct IP, I can't ping the VM from the outside or the host. any ideas now?

    Read the article

  • error while installing the libmemcached

    - by Ahmet vardar
    I get this while installing libmemcached root@server [/libmemcached]# make make all-am make[1]: Entering directory `/libmemcached' if /bin/sh ./libtool --tag=CXX --mode=compile g++ -DHAVE_CONFIG_H -I. -I. -I. -I. -I. -ggdb -DBUILDING_HASHKIT -MT libhashkit/libhashkit_libhashkit_la-aes.lo -MD -MP -MF "libhashkit/.deps/libhashkit_libhashkit_la-aes.Tpo" -c -o libhashkit/libhashkit_libhashkit_la-aes.lo `test -f 'libhashkit/aes.cc' || echo './'`libhashkit/aes.cc; \ then mv -f "libhashkit/.deps/libhashkit_libhashkit_la-aes.Tpo" "libhashkit/.deps/libhashkit_libhashkit_la-aes.Plo"; else rm -f "libhashkit/.deps/libhashkit_libhashkit_la-aes.Tpo"; exit 1; fi ./libtool: line 866: X--tag=CXX: command not found ./libtool: line 899: libtool: ignoring unknown tag : command not found ./libtool: line 866: X--mode=compile: command not found ./libtool: line 1032: *** Warning: inferring the mode of operation is deprecated.: command not found ./libtool: line 1033: *** Future versions of Libtool will require --mode=MODE be specified.: command not found ./libtool: line 1176: Xg++: command not found ./libtool: line 1176: X-DHAVE_CONFIG_H: command not found ./libtool: line 1176: X-I.: command not found ./libtool: line 1176: X-I.: command not found ./libtool: line 1176: X-I.: command not found ./libtool: line 1176: X-I.: command not found ./libtool: line 1176: X-I.: command not found ./libtool: line 1176: X-ggdb: command not found ./libtool: line 1176: X-DBUILDING_HASHKIT: command not found ./libtool: line 1176: X-MT: command not found ./libtool: line 1176: Xlibhashkit/libhashkit_libhashkit_la-aes.lo: No such file or directory ./libtool: line 1176: X-MD: command not found ./libtool: line 1176: X-MP: command not found ./libtool: line 1176: X-MF: command not found ./libtool: line 1176: Xlibhashkit/.deps/libhashkit_libhashkit_la-aes.Tpo: No such file or directory ./libtool: line 1176: X-c: command not found ./libtool: line 1228: Xlibhashkit/libhashkit_libhashkit_la-aes.lo: No such file or directory ./libtool: line 1233: libtool: compile: cannot determine name of library object from `': command not found make[1]: *** [libhashkit/libhashkit_libhashkit_la-aes.lo] Error 1 make[1]: Leaving directory `/libmemcached' make: *** [all] Error 2 OUTPUT OF ./configure checking build system type... x86_64-unknown-linux-gnu checking host system type... x86_64-unknown-linux-gnu checking target system type... x86_64-unknown-linux-gnu checking for a BSD-compatible install... /usr/bin/install -c checking whether build environment is sane... yes checking for gawk... gawk checking whether make sets $(MAKE)... yes checking for style of include used by make... GNU checking for gcc... gcc checking whether the C compiler works... yes checking for C compiler default output file name... a.out checking for suffix of executables... checking whether we are cross compiling... no checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ISO C89... none needed checking dependency style of gcc... gcc3 checking dependency style of gcc... (cached) gcc3 checking how to run the C preprocessor... gcc -E checking for grep that handles long lines and -e... /bin/grep checking for egrep... /bin/grep -E checking for ANSI C header files... yes checking for sys/types.h... yes checking for sys/stat.h... yes checking for stdlib.h... yes checking for string.h... yes checking for memory.h... yes checking for strings.h... yes checking for inttypes.h... yes checking for stdint.h... yes checking for unistd.h... yes checking minix/config.h usability... no checking minix/config.h presence... no checking for minix/config.h... no checking whether it is safe to define __EXTENSIONS__... yes checking for isainfo... no checking for g++... g++ checking whether we are using the GNU C++ compiler... yes checking whether g++ accepts -g... yes checking dependency style of g++... gcc3 checking dependency style of g++... (cached) gcc3 checking whether gcc and cc understand -c and -o together... yes checking how to create a ustar tar archive... gnutar checking whether __SUNPRO_C is declared... no checking whether __ICC is declared... no checking "C Compiler version--yes"... "gcc (GCC) 4.1.2 20080704 (Red Hat 4.1.2-52)" checking "C++ Compiler version"... "g++ (GCC) 4.1.2 20080704 (Red Hat 4.1.2-52)" checking whether time.h and sys/time.h may both be included... yes checking whether struct tm is in sys/time.h or time.h... time.h checking for size_t... yes checking for special C compiler options needed for large files... no checking for _FILE_OFFSET_BITS value needed for large files... no checking for library containing clock_gettime... -lrt checking sys/socket.h usability... yes checking sys/socket.h presence... yes checking for sys/socket.h... yes checking size of off_t... 8 checking size of size_t... 8 checking size of long long... 8 checking if time_t is unsigned... no checking for setsockopt... yes checking for bind... yes checking whether the compiler provides atomic builtins... yes checking assert.h usability... yes checking assert.h presence... yes checking for assert.h... yes checking whether to enable assertions... yes checking whether it is safe to use -fdiagnostics-show-option... yes checking whether it is safe to use -floop-parallelize-all... no checking whether it is safe to use -Wextra... yes checking whether it is safe to use -Wformat... yes checking whether it is safe to use -Wconversion... no checking whether it is safe to use -Wmissing-declarations from C++... no checking whether it is safe to use -Wframe-larger-than... no checking whether it is safe to use -Wlogical-op... no checking whether it is safe to use -Wredundant-decls from C++... yes checking whether it is safe to use -Wattributes from C++... no checking whether it is safe to use -Wno-attributes... no checking for perl... perl checking for dpkg-gensymbols... no checking for lcov... no checking for genhtml... no checking for sphinx-build... no checking for working -pipe... yes checking for bison... bison checking for flex... flex checking how to print strings... printf checking for a sed that does not truncate output... /bin/sed checking for fgrep... /bin/grep -F checking for ld used by gcc... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking for BSD- or MS-compatible name lister (nm)... /usr/bin/nm -B checking the name lister (/usr/bin/nm -B) interface... BSD nm checking whether ln -s works... yes checking the maximum length of command line arguments... 98304 checking whether the shell understands some XSI constructs... yes checking whether the shell understands "+="... yes checking how to convert x86_64-unknown-linux-gnu file names to x86_64-unknown-linux-gnu format... func_convert_file_noop checking how to convert x86_64-unknown-linux-gnu file names to toolchain format... func_convert_file_noop checking for /usr/bin/ld option to reload object files... -r checking for objdump... objdump checking how to recognize dependent libraries... pass_all checking for dlltool... no checking how to associate runtime and link libraries... printf %s\n checking for ar... ar checking for archiver @FILE support... @ checking for strip... strip checking for ranlib... ranlib checking command to parse /usr/bin/nm -B output from gcc object... ok checking for sysroot... no checking for mt... no checking if : is a manifest tool... no checking for dlfcn.h... yes checking for objdir... .libs checking if gcc supports -fno-rtti -fno-exceptions... no checking for gcc option to produce PIC... -fPIC -DPIC checking if gcc PIC flag -fPIC -DPIC works... yes checking if gcc static flag -static works... yes checking if gcc supports -c -o file.o... yes checking if gcc supports -c -o file.o... (cached) yes checking whether the gcc linker (/usr/bin/ld -m elf_x86_64) supports shared libraries... yes checking whether -lc should be explicitly linked in... no checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether stripping libraries is possible... yes checking if libtool supports shared libraries... yes checking whether to build shared libraries... yes checking whether to build static libraries... yes checking how to run the C++ preprocessor... g++ -E checking for ld used by g++... /usr/bin/ld -m elf_x86_64 checking if the linker (/usr/bin/ld -m elf_x86_64) is GNU ld... yes checking whether the g++ linker (/usr/bin/ld -m elf_x86_64) supports shared libraries... yes checking for g++ option to produce PIC... -fPIC -DPIC checking if g++ PIC flag -fPIC -DPIC works... yes checking if g++ static flag -static works... yes checking if g++ supports -c -o file.o... yes checking if g++ supports -c -o file.o... (cached) yes checking whether the g++ linker (/usr/bin/ld -m elf_x86_64) supports shared libraries... yes checking dynamic linker characteristics... (cached) GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether the -Werror option is usable... yes checking for simple visibility declarations... yes checking for ISO C++ 98 include files... checking whether memcached executable path has been provided... no checking for memcached... /usr/local/bin/memcached checking whether memcached_sasl executable path has been provided... no checking for memcached_sasl... no checking whether gearmand executable path has been provided... no checking for gearmand... no checking libgearman/gearmand.h usability... no checking libgearman/gearmand.h presence... no checking for libgearman/gearmand.h... no checking for library containing getopt_long... none required checking for library containing gethostbyname... none required checking for the pthreads library -lpthreads... no checking whether pthreads work without any flags... yes checking for joinable pthread attribute... PTHREAD_CREATE_JOINABLE checking if more special flags are required for pthreads... no checking for PTHREAD_PRIO_INHERIT... yes checking the location of cstdint... configure: WARNING: Could not find a cstdint header. <stdint.h> checking the location of cinttypes... configure: WARNING: Could not find a cinttypes header. <inttypes.h> checking whether byte ordering is bigendian... no checking for htonll... no checking for working SO_SNDTIMEO... yes checking for working SO_RCVTIMEO... yes checking for supported struct padding... yes checking for alarm... yes checking for dup2... yes checking for getline... yes checking for gettimeofday... yes checking for memchr... yes checking for memmove... yes checking for memset... yes checking for pipe2... no checking for select... yes checking for setenv... yes checking for socket... yes checking for sqrt... yes checking for strcasecmp... yes checking for strchr... yes checking for strdup... yes checking for strerror... yes checking for strtol... yes checking for strtoul... yes checking for strtoull... yes checking arpa/inet.h usability... yes checking arpa/inet.h presence... yes checking for arpa/inet.h... yes checking fcntl.h usability... yes checking fcntl.h presence... yes checking for fcntl.h... yes checking libintl.h usability... yes checking libintl.h presence... yes checking for libintl.h... yes checking limits.h usability... yes checking limits.h presence... yes checking for limits.h... yes checking malloc.h usability... yes checking malloc.h presence... yes checking for malloc.h... yes checking netdb.h usability... yes checking netdb.h presence... yes checking for netdb.h... yes checking netinet/in.h usability... yes checking netinet/in.h presence... yes checking for netinet/in.h... yes checking stddef.h usability... yes checking stddef.h presence... yes checking for stddef.h... yes checking sys/time.h usability... yes checking sys/time.h presence... yes checking for sys/time.h... yes checking execinfo.h usability... yes checking execinfo.h presence... yes checking for execinfo.h... yes checking cxxabi.h usability... yes checking cxxabi.h presence... yes checking for cxxabi.h... yes checking sys/sysctl.h usability... yes checking sys/sysctl.h presence... yes checking for sys/sysctl.h... yes checking umem.h usability... no checking umem.h presence... no checking for umem.h... no checking for C++ compiler vendor... gnu checking for working alloca.h... yes checking for alloca... yes checking for error_at_line... yes checking for pid_t... yes checking vfork.h usability... no checking vfork.h presence... no checking for vfork.h... no checking for fork... yes checking for vfork... yes checking for working fork... yes checking for working vfork... (cached) yes checking for stdlib.h... (cached) yes checking for GNU libc compatible malloc... yes checking for stdlib.h... (cached) yes checking for GNU libc compatible realloc... yes checking whether strerror_r is declared... yes checking for strerror_r... yes checking whether strerror_r returns char *... yes checking for stdbool.h that conforms to C99... yes checking for _Bool... no checking for int16_t... yes checking for int32_t... yes checking for int64_t... yes checking for int8_t... yes checking for off_t... yes checking for pid_t... (cached) yes checking for ssize_t... yes checking for uint16_t... yes checking for uint32_t... yes checking for uint64_t... yes checking for uint8_t... yes checking whether byte ordering is bigendian... (cached) no checking for an ANSI C-conforming const... yes checking for inline... inline checking for working volatile... yes checking for C/C++ restrict keyword... __restrict checking whether the compiler supports GCC C++ ABI name demangling... yes checking sasl/sasl.h usability... no checking sasl/sasl.h presence... no checking for sasl/sasl.h... no checking uuid/uuid.h usability... yes checking uuid/uuid.h presence... yes checking for uuid/uuid.h... yes checking for main in -luuid... yes checking for clock_gettime in -lrt... yes checking for floor in -lm... yes checking for sigignore... yes checking atomic.h usability... no checking atomic.h presence... no checking for atomic.h... no checking for setppriv... no checking for winsock2.h... no checking for poll.h... yes checking for sys/wait.h... yes checking for fnmatch.h... yes checking for MSG_NOSIGNAL... yes checking for MSG_DONTWAIT... yes checking for MSG_MORE... yes checking event.h usability... yes checking event.h presence... yes checking for event.h... yes checking for main in -levent... yes checking for endianness... little configure: creating ./config.status config.status: creating Makefile config.status: creating docs/conf.py config.status: creating libhashkit-1.0/configure.h config.status: creating libmemcached-1.0/configure.h config.status: creating libmemcached-1.2/configure.h config.status: creating libmemcached-2.0/configure.h config.status: creating support/libmemcached.pc config.status: creating support/libmemcached.spec config.status: creating support/libmemcached-fc.spec config.status: creating libtest/version.h config.status: creating config.h config.status: config.h is unchanged config.status: executing depfiles commands config.status: executing libtool commands --- Configuration summary for libmemcached version 1.0.6 * Installation prefix: /usr/local * System type: unknown-linux-gnu * Host CPU: x86_64 * C Compiler: gcc (GCC) 4.1.2 20080704 (Red Hat 4.1.2-52) * Assertions enabled: yes * Debug enabled: no * Warnings as failure: no * SASL support: --- anyone knows how to solve this ?

    Read the article

  • Finding a Relative Path in .NET

    - by Rick Strahl
    Here’s a nice and simple path utility that I’ve needed in a number of applications: I need to find a relative path based on a base path. So if I’m working in a folder called c:\temp\templates\ and I want to find a relative path for c:\temp\templates\subdir\test.txt I want to receive back subdir\test.txt. Or if I pass c:\ I want to get back ..\..\ – in other words always return a non-hardcoded path based on some other known directory. I’ve had a routine in my library that does this via some lengthy string parsing routines, but ran into some Uri processing today that made me realize that this code could be greatly simplified by using the System.Uri class instead. Here’s the simple static method: /// <summary> /// Returns a relative path string from a full path based on a base path /// provided. /// </summary> /// <param name="fullPath">The path to convert. Can be either a file or a directory</param> /// <param name="basePath">The base path on which relative processing is based. Should be a directory.</param> /// <returns> /// String of the relative path. /// /// Examples of returned values: /// test.txt, ..\test.txt, ..\..\..\test.txt, ., .., subdir\test.txt /// </returns> public static string GetRelativePath(string fullPath, string basePath ) { // ForceBasePath to a path if (!basePath.EndsWith("\\")) basePath += "\\"; Uri baseUri = new Uri(basePath); Uri fullUri = new Uri(fullPath); Uri relativeUri = baseUri.MakeRelativeUri(fullUri); // Uri's use forward slashes so convert back to backward slashes return relativeUri.ToString().Replace("/", "\\"); } You can then call it like this: string relPath = FileUtils.GetRelativePath("c:\temp\templates","c:\temp\templates\subdir\test.txt") It’s not exactly rocket science but it’s useful in many scenarios where you’re working with files based on an application base directory. Right now I’m working on a templating solution (using the Razor Engine) where templates live in a base directory and are supplied as relative paths to that base directory. Resolving these relative paths both ways is important in order to properly check for existance of files and their change status in this case. Not the kind of thing you use every day, but useful to remember.© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  

    Read the article

  • Will these headphones work with Ubuntu?

    - by david99world
    Sorry for the vagueness of this question, but I just wondered if (shot in the dark) anyone knew if these wireless headphones... http://www.argos.co.uk/static/Product/partNumber/9004203.htm#pdpFullProductInformation Would work with ubuntu? I was thinking if the trasnmitter is USB then I might not get the drivers. Does anyone have any ideas of a way I could find out without paying for them then finding out I cant use them? Thanks, Dave

    Read the article

  • NoSQL with RavenDB and ASP.NET MVC - Part 1

    - by shiju
     A while back, I have blogged NoSQL with MongoDB, NoRM and ASP.NET MVC Part 1 and Part 2 on how to use MongoDB with an ASP.NET MVC application. The NoSQL movement is getting big attention and RavenDB is the latest addition to the NoSQL and document database world. RavenDB is an Open Source (with a commercial option) document database for the .NET/Windows platform developed  by Ayende Rahien.  Raven stores schema-less JSON documents, allow you to define indexes using Linq queries and focus on low latency and high performance. RavenDB is .NET focused document database which comes with a fully functional .NET client API  and supports LINQ. RavenDB comes with two components, a server and a client API. RavenDB is a REST based system, so you can write your own HTTP cleint API. As a .NET developer, RavenDB is becoming my favorite document database. Unlike other document databases, RavenDB is supports transactions using System.Transactions. Also it's supports both embedded and server mode of database. You can access RavenDB site at http://ravendb.netA demo App with ASP.NET MVCLet's create a simple demo app with RavenDB and ASP.NET MVC. To work with RavenDB, do the following steps. Go to http://ravendb.net/download and download the latest build.Unzip the downloaded file.Go to the /Server directory and run the RavenDB.exe. This will start the RavenDB server listening on localhost:8080You can change the port of RavenDB  by modifying the "Raven/Port" appSetting value in the RavenDB.exe.config file.When running the RavenDB, it will automatically create a database in the /Data directory. You can change the directory name data by modifying "Raven/DataDirt" appSetting value in the RavenDB.exe.config file.RavenDB provides a browser based admin tool. When the Raven server is running, You can be access the browser based admin tool and view and edit documents and index using your browser admin tool. The web admin tool available at http://localhost:8080The below is the some screen shots of web admin tool     Working with ASP.NET MVC  To working with RavenDB in our demo ASP.NET MVC application, do the following steps Step 1 - Add reference to Raven Cleint API In our ASP.NET MVC application, Add a reference to the Raven.Client.Lightweight.dll from the Client directory. Step 2 - Create DocumentStoreThe document store would be created once per application. Let's create a DocumentStore on application start-up in the Global.asax.cs. documentStore = new DocumentStore { Url = "http://localhost:8080/" }; documentStore.Initialise(); The above code will create a Raven DB document store and will be listening the server locahost at port 8080    Step 3 - Create DocumentSession on BeginRequest   Let's create a DocumentSession on BeginRequest event in the Global.asax.cs. We are using the document session for every unit of work. In our demo app, every HTTP request would be a single Unit of Work (UoW). BeginRequest += (sender, args) =>   HttpContext.Current.Items[RavenSessionKey] = documentStore.OpenSession(); Step 4 - Destroy the DocumentSession on EndRequest  EndRequest += (o, eventArgs) => {     var disposable = HttpContext.Current.Items[RavenSessionKey] as IDisposable;     if (disposable != null)         disposable.Dispose(); };  At the end of HTTP request, we are destroying the DocumentSession  object.The below  code block shown all the code in the Global.asax.cs  private const string RavenSessionKey = "RavenMVC.Session"; private static DocumentStore documentStore;   protected void Application_Start() { //Create a DocumentStore in Application_Start //DocumentStore should be created once per application and stored as a singleton. documentStore = new DocumentStore { Url = "http://localhost:8080/" }; documentStore.Initialise(); AreaRegistration.RegisterAllAreas(); RegisterRoutes(RouteTable.Routes); //DI using Unity 2.0 ConfigureUnity(); }   public MvcApplication() { //Create a DocumentSession on BeginRequest   //create a document session for every unit of work BeginRequest += (sender, args) =>     HttpContext.Current.Items[RavenSessionKey] = documentStore.OpenSession(); //Destroy the DocumentSession on EndRequest EndRequest += (o, eventArgs) => { var disposable = HttpContext.Current.Items[RavenSessionKey] as IDisposable; if (disposable != null) disposable.Dispose(); }; }   //Getting the current DocumentSession public static IDocumentSession CurrentSession {   get { return (IDocumentSession)HttpContext.Current.Items[RavenSessionKey]; } }  We have setup all necessary code in the Global.asax.cs for working with RavenDB. For our demo app, Let’s write a domain class  public class Category {       public string Id { get; set; }       [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }   } We have created simple domain entity Category. Let's create repository class for performing CRUD operations against our domain entity Category.  public interface ICategoryRepository {     Category Load(string id);     IEnumerable<Category> GetCategories();     void Save(Category category);     void Delete(string id);       }    public class CategoryRepository : ICategoryRepository {     private IDocumentSession session;     public CategoryRepository()     {             session = MvcApplication.CurrentSession;     }     //Load category based on Id     public Category Load(string id)     {         return session.Load<Category>(id);     }     //Get all categories     public IEnumerable<Category> GetCategories()     {         var categories= session.LuceneQuery<Category>()                 .WaitForNonStaleResults()             .ToArray();         return categories;       }     //Insert/Update category     public void Save(Category category)     {         if (string.IsNullOrEmpty(category.Id))         {             //insert new record             session.Store(category);         }         else         {             //edit record             var categoryToEdit = Load(category.Id);             categoryToEdit.Name = category.Name;             categoryToEdit.Description = category.Description;         }         //save the document session         session.SaveChanges();     }     //delete a category     public void Delete(string id)     {         var category = Load(id);         session.Delete<Category>(category);         session.SaveChanges();     }        } For every CRUD operations, we are taking the current document session object from HttpContext object. session = MvcApplication.CurrentSession; We are calling the static method CurrentSession from the Global.asax.cs public static IDocumentSession CurrentSession {     get { return (IDocumentSession)HttpContext.Current.Items[RavenSessionKey]; } }  Retrieve Entities  The Load method get the single Category object based on the Id. RavenDB is working based on the REST principles and the Id would be like categories/1. The Id would be created by automatically when a new object is inserted to the document store. The REST uri categories/1 represents a single category object with Id representation of 1.   public Category Load(string id) {    return session.Load<Category>(id); } The GetCategories method returns all the categories calling the session.LuceneQuery method. RavenDB is using a lucen query syntax for querying. I will explain more details about querying and indexing in my future posts.   public IEnumerable<Category> GetCategories() {     var categories= session.LuceneQuery<Category>()             .WaitForNonStaleResults()         .ToArray();     return categories;   } Insert/Update entityFor insert/Update a Category entity, we have created Save method in repository class. If  the Id property of Category is null, we call Store method of Documentsession for insert a new record. For editing a existing record, we load the Category object and assign the values to the loaded Category object. The session.SaveChanges() will save the changes to document store.  //Insert/Update category public void Save(Category category) {     if (string.IsNullOrEmpty(category.Id))     {         //insert new record         session.Store(category);     }     else     {         //edit record         var categoryToEdit = Load(category.Id);         categoryToEdit.Name = category.Name;         categoryToEdit.Description = category.Description;     }     //save the document session     session.SaveChanges(); }  Delete Entity  In the Delete method, we call the document session's delete method and call the SaveChanges method to reflect changes in the document store.  public void Delete(string id) {     var category = Load(id);     session.Delete<Category>(category);     session.SaveChanges(); }  Let’s create ASP.NET MVC controller and controller actions for handling CRUD operations for the domain class Category  public class CategoryController : Controller { private ICategoryRepository categoyRepository; //DI enabled constructor public CategoryController(ICategoryRepository categoyRepository) {     this.categoyRepository = categoyRepository; } public ActionResult Index() {         var categories = categoyRepository.GetCategories();     if (categories == null)         return RedirectToAction("Create");     return View(categories); }   [HttpGet] public ActionResult Edit(string id) {     var category = categoyRepository.Load(id);         return View("Save",category); } // GET: /Category/Create [HttpGet] public ActionResult Create() {     var category = new Category();     return View("Save", category); } [HttpPost] public ActionResult Save(Category category) {     if (!ModelState.IsValid)     {         return View("Save", category);     }           categoyRepository.Save(category);         return RedirectToAction("Index");     }        [HttpPost] public ActionResult Delete(string id) {     categoyRepository.Delete(id);     var categories = categoyRepository.GetCategories();     return PartialView("CategoryList", categories);      }        }  RavenDB is an awesome document database and I hope that it will be the winner in .NET space of document database world.  The source code of demo application available at http://ravenmvc.codeplex.com/

    Read the article

  • Introducing the Earthquake Locator – A Bing Maps Silverlight Application, part 1

    - by Bobby Diaz
    Update: Live demo and source code now available!  The recent wave of earthquakes (no pun intended) being reported in the news got me wondering about the frequency and severity of earthquakes around the world. Since I’ve been doing a lot of Silverlight development lately, I decided to scratch my curiosity with a nice little Bing Maps application that will show the location and relative strength of recent seismic activity. Here is a list of technologies this application will utilize, so be sure to have everything downloaded and installed if you plan on following along. Silverlight 3 WCF RIA Services Bing Maps Silverlight Control * Managed Extensibility Framework (optional) MVVM Light Toolkit (optional) log4net (optional) * If you are new to Bing Maps or have not signed up for a Developer Account, you will need to visit www.bingmapsportal.com to request a Bing Maps key for your application. Getting Started We start out by creating a new Silverlight Application called EarthquakeLocator and specify that we want to automatically create the Web Application Project with RIA Services enabled. I cleaned up the web app by removing the Default.aspx and EarthquakeLocatorTestPage.html. Then I renamed the EarthquakeLocatorTestPage.aspx to Default.aspx and set it as my start page. I also set the development server to use a specific port, as shown below. RIA Services Next, I created a Services folder in the EarthquakeLocator.Web project and added a new Domain Service Class called EarthquakeService.cs. This is the RIA Services Domain Service that will provide earthquake data for our client application. I am not using LINQ to SQL or Entity Framework, so I will use the <empty domain service class> option. We will be pulling data from an external Atom feed, but this example could just as easily pull data from a database or another web service. This is an important distinction to point out because each scenario I just mentioned could potentially use a different Domain Service base class (i.e. LinqToSqlDomainService<TDataContext>). Now we can start adding Query methods to our EarthquakeService that pull data from the USGS web site. Here is the complete code for our service class: using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.ServiceModel.Syndication; using System.Web.DomainServices; using System.Web.Ria; using System.Xml; using log4net; using EarthquakeLocator.Web.Model;   namespace EarthquakeLocator.Web.Services {     /// <summary>     /// Provides earthquake data to client applications.     /// </summary>     [EnableClientAccess()]     public class EarthquakeService : DomainService     {         private static readonly ILog log = LogManager.GetLogger(typeof(EarthquakeService));           // USGS Data Feeds: http://earthquake.usgs.gov/earthquakes/catalogs/         private const string FeedForPreviousDay =             "http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml";         private const string FeedForPreviousWeek =             "http://earthquake.usgs.gov/earthquakes/catalogs/7day-M2.5.xml";           /// <summary>         /// Gets the earthquake data for the previous week.         /// </summary>         /// <returns>A queryable collection of <see cref="Earthquake"/> objects.</returns>         public IQueryable<Earthquake> GetEarthquakes()         {             var feed = GetFeed(FeedForPreviousWeek);             var list = new List<Earthquake>();               if ( feed != null )             {                 foreach ( var entry in feed.Items )                 {                     var quake = CreateEarthquake(entry);                     if ( quake != null )                     {                         list.Add(quake);                     }                 }             }               return list.AsQueryable();         }           /// <summary>         /// Creates an <see cref="Earthquake"/> object for each entry in the Atom feed.         /// </summary>         /// <param name="entry">The Atom entry.</param>         /// <returns></returns>         private Earthquake CreateEarthquake(SyndicationItem entry)         {             Earthquake quake = null;             string title = entry.Title.Text;             string summary = entry.Summary.Text;             string point = GetElementValue<String>(entry, "point");             string depth = GetElementValue<String>(entry, "elev");             string utcTime = null;             string localTime = null;             string depthDesc = null;             double? magnitude = null;             double? latitude = null;             double? longitude = null;             double? depthKm = null;               if ( !String.IsNullOrEmpty(title) && title.StartsWith("M") )             {                 title = title.Substring(2, title.IndexOf(',')-3).Trim();                 magnitude = TryParse(title);             }             if ( !String.IsNullOrEmpty(point) )             {                 var values = point.Split(' ');                 if ( values.Length == 2 )                 {                     latitude = TryParse(values[0]);                     longitude = TryParse(values[1]);                 }             }             if ( !String.IsNullOrEmpty(depth) )             {                 depthKm = TryParse(depth);                 if ( depthKm != null )                 {                     depthKm = Math.Round((-1 * depthKm.Value) / 100, 2);                 }             }             if ( !String.IsNullOrEmpty(summary) )             {                 summary = summary.Replace("</p>", "");                 var values = summary.Split(                     new string[] { "<p>" },                     StringSplitOptions.RemoveEmptyEntries);                   if ( values.Length == 3 )                 {                     var times = values[1].Split(                         new string[] { "<br>" },                         StringSplitOptions.RemoveEmptyEntries);                       if ( times.Length > 0 )                     {                         utcTime = times[0];                     }                     if ( times.Length > 1 )                     {                         localTime = times[1];                     }                       depthDesc = values[2];                     depthDesc = "Depth: " + depthDesc.Substring(depthDesc.IndexOf(":") + 2);                 }             }               if ( latitude != null && longitude != null )             {                 quake = new Earthquake()                 {                     Id = entry.Id,                     Title = entry.Title.Text,                     Summary = entry.Summary.Text,                     Date = entry.LastUpdatedTime.DateTime,                     Url = entry.Links.Select(l => Path.Combine(l.BaseUri.OriginalString,                         l.Uri.OriginalString)).FirstOrDefault(),                     Age = entry.Categories.Where(c => c.Label == "Age")                         .Select(c => c.Name).FirstOrDefault(),                     Magnitude = magnitude.GetValueOrDefault(),                     Latitude = latitude.GetValueOrDefault(),                     Longitude = longitude.GetValueOrDefault(),                     DepthInKm = depthKm.GetValueOrDefault(),                     DepthDesc = depthDesc,                     UtcTime = utcTime,                     LocalTime = localTime                 };             }               return quake;         }           private T GetElementValue<T>(SyndicationItem entry, String name)         {             var el = entry.ElementExtensions.Where(e => e.OuterName == name).FirstOrDefault();             T value = default(T);               if ( el != null )             {                 value = el.GetObject<T>();             }               return value;         }           private double? TryParse(String value)         {             double d;             if ( Double.TryParse(value, out d) )             {                 return d;             }             return null;         }           /// <summary>         /// Gets the feed at the specified URL.         /// </summary>         /// <param name="url">The URL.</param>         /// <returns>A <see cref="SyndicationFeed"/> object.</returns>         public static SyndicationFeed GetFeed(String url)         {             SyndicationFeed feed = null;               try             {                 log.Debug("Loading RSS feed: " + url);                   using ( var reader = XmlReader.Create(url) )                 {                     feed = SyndicationFeed.Load(reader);                 }             }             catch ( Exception ex )             {                 log.Error("Error occurred while loading RSS feed: " + url, ex);             }               return feed;         }     } }   The only method that will be generated in the client side proxy class, EarthquakeContext, will be the GetEarthquakes() method. The reason being that it is the only public instance method and it returns an IQueryable<Earthquake> collection that can be consumed by the client application. GetEarthquakes() calls the static GetFeed(String) method, which utilizes the built in SyndicationFeed API to load the external data feed. You will need to add a reference to the System.ServiceModel.Web library in order to take advantage of the RSS/Atom reader. The API will also allow you to create your own feeds to serve up in your applications. Model I have also created a Model folder and added a new class, Earthquake.cs. The Earthquake object will hold the various properties returned from the Atom feed. Here is a sample of the code for that class. Notice the [Key] attribute on the Id property, which is required by RIA Services to uniquely identify the entity. using System; using System.Collections.Generic; using System.Linq; using System.Runtime.Serialization; using System.ComponentModel.DataAnnotations;   namespace EarthquakeLocator.Web.Model {     /// <summary>     /// Represents an earthquake occurrence and related information.     /// </summary>     [DataContract]     public class Earthquake     {         /// <summary>         /// Gets or sets the id.         /// </summary>         /// <value>The id.</value>         [Key]         [DataMember]         public string Id { get; set; }           /// <summary>         /// Gets or sets the title.         /// </summary>         /// <value>The title.</value>         [DataMember]         public string Title { get; set; }           /// <summary>         /// Gets or sets the summary.         /// </summary>         /// <value>The summary.</value>         [DataMember]         public string Summary { get; set; }           // additional properties omitted     } }   View Model The recent trend to use the MVVM pattern for WPF and Silverlight provides a great way to separate the data and behavior logic out of the user interface layer of your client applications. I have chosen to use the MVVM Light Toolkit for the Earthquake Locator, but there are other options out there if you prefer another library. That said, I went ahead and created a ViewModel folder in the Silverlight project and added a EarthquakeViewModel class that derives from ViewModelBase. Here is the code: using System; using System.Collections.ObjectModel; using System.ComponentModel.Composition; using System.ComponentModel.Composition.Hosting; using Microsoft.Maps.MapControl; using GalaSoft.MvvmLight; using EarthquakeLocator.Web.Model; using EarthquakeLocator.Web.Services;   namespace EarthquakeLocator.ViewModel {     /// <summary>     /// Provides data for views displaying earthquake information.     /// </summary>     public class EarthquakeViewModel : ViewModelBase     {         [Import]         public EarthquakeContext Context;           /// <summary>         /// Initializes a new instance of the <see cref="EarthquakeViewModel"/> class.         /// </summary>         public EarthquakeViewModel()         {             var catalog = new AssemblyCatalog(GetType().Assembly);             var container = new CompositionContainer(catalog);             container.ComposeParts(this);             Initialize();         }           /// <summary>         /// Initializes a new instance of the <see cref="EarthquakeViewModel"/> class.         /// </summary>         /// <param name="context">The context.</param>         public EarthquakeViewModel(EarthquakeContext context)         {             Context = context;             Initialize();         }           private void Initialize()         {             MapCenter = new Location(20, -170);             ZoomLevel = 2;         }           #region Private Methods           private void OnAutoLoadDataChanged()         {             LoadEarthquakes();         }           private void LoadEarthquakes()         {             var query = Context.GetEarthquakesQuery();             Context.Earthquakes.Clear();               Context.Load(query, (op) =>             {                 if ( !op.HasError )                 {                     foreach ( var item in op.Entities )                     {                         Earthquakes.Add(item);                     }                 }             }, null);         }           #endregion Private Methods           #region Properties           private bool autoLoadData;         /// <summary>         /// Gets or sets a value indicating whether to auto load data.         /// </summary>         /// <value><c>true</c> if auto loading data; otherwise, <c>false</c>.</value>         public bool AutoLoadData         {             get { return autoLoadData; }             set             {                 if ( autoLoadData != value )                 {                     autoLoadData = value;                     RaisePropertyChanged("AutoLoadData");                     OnAutoLoadDataChanged();                 }             }         }           private ObservableCollection<Earthquake> earthquakes;         /// <summary>         /// Gets the collection of earthquakes to display.         /// </summary>         /// <value>The collection of earthquakes.</value>         public ObservableCollection<Earthquake> Earthquakes         {             get             {                 if ( earthquakes == null )                 {                     earthquakes = new ObservableCollection<Earthquake>();                 }                   return earthquakes;             }         }           private Location mapCenter;         /// <summary>         /// Gets or sets the map center.         /// </summary>         /// <value>The map center.</value>         public Location MapCenter         {             get { return mapCenter; }             set             {                 if ( mapCenter != value )                 {                     mapCenter = value;                     RaisePropertyChanged("MapCenter");                 }             }         }           private double zoomLevel;         /// <summary>         /// Gets or sets the zoom level.         /// </summary>         /// <value>The zoom level.</value>         public double ZoomLevel         {             get { return zoomLevel; }             set             {                 if ( zoomLevel != value )                 {                     zoomLevel = value;                     RaisePropertyChanged("ZoomLevel");                 }             }         }           #endregion Properties     } }   The EarthquakeViewModel class contains all of the properties that will be bound to by the various controls in our views. Be sure to read through the LoadEarthquakes() method, which handles calling the GetEarthquakes() method in our EarthquakeService via the EarthquakeContext proxy, and also transfers the loaded entities into the view model’s Earthquakes collection. Another thing to notice is what’s going on in the default constructor. I chose to use the Managed Extensibility Framework (MEF) for my composition needs, but you can use any dependency injection library or none at all. To allow the EarthquakeContext class to be discoverable by MEF, I added the following partial class so that I could supply the appropriate [Export] attribute: using System; using System.ComponentModel.Composition;   namespace EarthquakeLocator.Web.Services {     /// <summary>     /// The client side proxy for the EarthquakeService class.     /// </summary>     [Export]     public partial class EarthquakeContext     {     } }   One last piece I wanted to point out before moving on to the user interface, I added a client side partial class for the Earthquake entity that contains helper properties that we will bind to later: using System;   namespace EarthquakeLocator.Web.Model {     /// <summary>     /// Represents an earthquake occurrence and related information.     /// </summary>     public partial class Earthquake     {         /// <summary>         /// Gets the location based on the current Latitude/Longitude.         /// </summary>         /// <value>The location.</value>         public string Location         {             get { return String.Format("{0},{1}", Latitude, Longitude); }         }           /// <summary>         /// Gets the size based on the Magnitude.         /// </summary>         /// <value>The size.</value>         public double Size         {             get { return (Magnitude * 3); }         }     } }   View Now the fun part! Usually, I would create a Views folder to place all of my View controls in, but I took the easy way out and added the following XAML code to the default MainPage.xaml file. Be sure to add the bing prefix associating the Microsoft.Maps.MapControl namespace after adding the assembly reference to your project. The MVVM Light Toolkit project templates come with a ViewModelLocator class that you can use via a static resource, but I am instantiating the EarthquakeViewModel directly in my user control. I am setting the AutoLoadData property to true as a way to trigger the LoadEarthquakes() method call. The MapItemsControl found within the <bing:Map> control binds its ItemsSource property to the Earthquakes collection of the view model, and since it is an ObservableCollection<T>, we get the automatic two way data binding via the INotifyCollectionChanged interface. <UserControl x:Class="EarthquakeLocator.MainPage"     xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"     xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"     xmlns:d="http://schemas.microsoft.com/expression/blend/2008"     xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"     xmlns:bing="clr-namespace:Microsoft.Maps.MapControl;assembly=Microsoft.Maps.MapControl"     xmlns:vm="clr-namespace:EarthquakeLocator.ViewModel"     mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480" >     <UserControl.Resources>         <DataTemplate x:Key="EarthquakeTemplate">             <Ellipse Fill="Red" Stroke="Black" StrokeThickness="1"                      Width="{Binding Size}" Height="{Binding Size}"                      bing:MapLayer.Position="{Binding Location}"                      bing:MapLayer.PositionOrigin="Center">                 <ToolTipService.ToolTip>                     <StackPanel>                         <TextBlock Text="{Binding Title}" FontSize="14" FontWeight="Bold" />                         <TextBlock Text="{Binding UtcTime}" />                         <TextBlock Text="{Binding LocalTime}" />                         <TextBlock Text="{Binding DepthDesc}" />                     </StackPanel>                 </ToolTipService.ToolTip>             </Ellipse>         </DataTemplate>     </UserControl.Resources>       <UserControl.DataContext>         <vm:EarthquakeViewModel AutoLoadData="True" />     </UserControl.DataContext>       <Grid x:Name="LayoutRoot">           <bing:Map x:Name="map" CredentialsProvider="--Your-Bing-Maps-Key--"                   Center="{Binding MapCenter, Mode=TwoWay}"                   ZoomLevel="{Binding ZoomLevel, Mode=TwoWay}">             <bing:MapItemsControl ItemsSource="{Binding Earthquakes}"                                   ItemTemplate="{StaticResource EarthquakeTemplate}" />         </bing:Map>       </Grid> </UserControl>   The EarthquakeTemplate defines the Ellipse that will represent each earthquake, the Width and Height that are determined by the Magnitude, the Position on the map, and also the tooltip that will appear when we mouse over each data point. Running the application will give us the following result (shown with a tooltip example): That concludes this portion of our show but I plan on implementing additional functionality in later blog posts. Be sure to come back soon to see the next installments in this series. Enjoy!   Additional Resources USGS Earthquake Data Feeds Brad Abrams shows how RIA Services and MVVM can work together

    Read the article

  • Parallelism in .NET – Part 5, Partitioning of Work

    - by Reed
    When parallelizing any routine, we start by decomposing the problem.  Once the problem is understood, we need to break our work into separate tasks, so each task can be run on a different processing element.  This process is called partitioning. Partitioning our tasks is a challenging feat.  There are opposing forces at work here: too many partitions adds overhead, too few partitions leaves processors idle.  Trying to work the perfect balance between the two extremes is the goal for which we should aim.  Luckily, the Task Parallel Library automatically handles much of this process.  However, there are situations where the default partitioning may not be appropriate, and knowledge of our routines may allow us to guide the framework to making better decisions. First off, I’d like to say that this is a more advanced topic.  It is perfectly acceptable to use the parallel constructs in the framework without considering the partitioning taking place.  The default behavior in the Task Parallel Library is very well-behaved, even for unusual work loads, and should rarely be adjusted.  I have found few situations where the default partitioning behavior in the TPL is not as good or better than my own hand-written partitioning routines, and recommend using the defaults unless there is a strong, measured, and profiled reason to avoid using them.  However, understanding partitioning, and how the TPL partitions your data, helps in understanding the proper usage of the TPL. I indirectly mentioned partitioning while discussing aggregation.  Typically, our systems will have a limited number of Processing Elements (PE), which is the terminology used for hardware capable of processing a stream of instructions.  For example, in a standard Intel i7 system, there are four processor cores, each of which has two potential hardware threads due to Hyperthreading.  This gives us a total of 8 PEs – theoretically, we can have up to eight operations occurring concurrently within our system. In order to fully exploit this power, we need to partition our work into Tasks.  A task is a simple set of instructions that can be run on a PE.  Ideally, we want to have at least one task per PE in the system, since fewer tasks means that some of our processing power will be sitting idle.  A naive implementation would be to just take our data, and partition it with one element in our collection being treated as one task.  When we loop through our collection in parallel, using this approach, we’d just process one item at a time, then reuse that thread to process the next, etc.  There’s a flaw in this approach, however.  It will tend to be slower than necessary, often slower than processing the data serially. The problem is that there is overhead associated with each task.  When we take a simple foreach loop body and implement it using the TPL, we add overhead.  First, we change the body from a simple statement to a delegate, which must be invoked.  In order to invoke the delegate on a separate thread, the delegate gets added to the ThreadPool’s current work queue, and the ThreadPool must pull this off the queue, assign it to a free thread, then execute it.  If our collection had one million elements, the overhead of trying to spawn one million tasks would destroy our performance. The answer, here, is to partition our collection into groups, and have each group of elements treated as a single task.  By adding a partitioning step, we can break our total work into small enough tasks to keep our processors busy, but large enough tasks to avoid overburdening the ThreadPool.  There are two clear, opposing goals here: Always try to keep each processor working, but also try to keep the individual partitions as large as possible. When using Parallel.For, the partitioning is always handled automatically.  At first, partitioning here seems simple.  A naive implementation would merely split the total element count up by the number of PEs in the system, and assign a chunk of data to each processor.  Many hand-written partitioning schemes work in this exactly manner.  This perfectly balanced, static partitioning scheme works very well if the amount of work is constant for each element.  However, this is rarely the case.  Often, the length of time required to process an element grows as we progress through the collection, especially if we’re doing numerical computations.  In this case, the first PEs will finish early, and sit idle waiting on the last chunks to finish.  Sometimes, work can decrease as we progress, since previous computations may be used to speed up later computations.  In this situation, the first chunks will be working far longer than the last chunks.  In order to balance the workload, many implementations create many small chunks, and reuse threads.  This adds overhead, but does provide better load balancing, which in turn improves performance. The Task Parallel Library handles this more elaborately.  Chunks are determined at runtime, and start small.  They grow slowly over time, getting larger and larger.  This tends to lead to a near optimum load balancing, even in odd cases such as increasing or decreasing workloads.  Parallel.ForEach is a bit more complicated, however. When working with a generic IEnumerable<T>, the number of items required for processing is not known in advance, and must be discovered at runtime.  In addition, since we don’t have direct access to each element, the scheduler must enumerate the collection to process it.  Since IEnumerable<T> is not thread safe, it must lock on elements as it enumerates, create temporary collections for each chunk to process, and schedule this out.  By default, it uses a partitioning method similar to the one described above.  We can see this directly by looking at the Visual Partitioning sample shipped by the Task Parallel Library team, and available as part of the Samples for Parallel Programming.  When we run the sample, with four cores and the default, Load Balancing partitioning scheme, we see this: The colored bands represent each processing core.  You can see that, when we started (at the top), we begin with very small bands of color.  As the routine progresses through the Parallel.ForEach, the chunks get larger and larger (seen by larger and larger stripes). Most of the time, this is fantastic behavior, and most likely will out perform any custom written partitioning.  However, if your routine is not scaling well, it may be due to a failure in the default partitioning to handle your specific case.  With prior knowledge about your work, it may be possible to partition data more meaningfully than the default Partitioner. There is the option to use an overload of Parallel.ForEach which takes a Partitioner<T> instance.  The Partitioner<T> class is an abstract class which allows for both static and dynamic partitioning.  By overriding Partitioner<T>.SupportsDynamicPartitions, you can specify whether a dynamic approach is available.  If not, your custom Partitioner<T> subclass would override GetPartitions(int), which returns a list of IEnumerator<T> instances.  These are then used by the Parallel class to split work up amongst processors.  When dynamic partitioning is available, GetDynamicPartitions() is used, which returns an IEnumerable<T> for each partition.  If you do decide to implement your own Partitioner<T>, keep in mind the goals and tradeoffs of different partitioning strategies, and design appropriately. The Samples for Parallel Programming project includes a ChunkPartitioner class in the ParallelExtensionsExtras project.  This provides example code for implementing your own, custom allocation strategies, including a static allocator of a given chunk size.  Although implementing your own Partitioner<T> is possible, as I mentioned above, this is rarely required or useful in practice.  The default behavior of the TPL is very good, often better than any hand written partitioning strategy.

    Read the article

  • Compiling examples for consuming the REST Endpoints for WCF Service using Agatha

    - by REA_ANDREW
    I recently made two contributions to the Agatha Project by Davy Brion over on Google Code, and one of the things I wanted to follow up with was a post showing examples and some, seemingly required tid bits.  The contributions which I made where: To support StructureMap To include REST (JSON and XML) support for the service contract The examples which I have made, I want to format them so they fit in with the current format of examples over on Agatha and hopefully create and submit a third patch which will include these examples to help others who wish to use these additions. Whilst building these examples for both XML and JSON I have learnt a couple of things which I feel are not really well documented, but are extremely good practice and once known make perfect sense.  I have chosen a real basic e-commerce context for my example Requests and Responses, and have also made use of the excellent tool AutoMapper, again on Google Code. Setting the scene I have followed the Pipes and Filters Pattern with the IQueryable interface on my Repository and exposed the following methods to query Products: IQueryable<Product> GetProducts(); IQueryable<Product> ByCategoryName(this IQueryable<Product> products, string categoryName) Product ByProductCode(this IQueryable<Product> products, String productCode) I have an interface for the IProductRepository but for the concrete implementation I have simply created a protected getter which populates a private List<Product> with 100 test products with random data.  Another good reason for following an interface based approach is that it will demonstrate usage of my first contribution which is the StructureMap support.  Finally the two Domain Objects I have made are Product and Category as shown below: public class Product { public String ProductCode { get; set; } public String Name { get; set; } public Decimal Price { get; set; } public Decimal Rrp { get; set; } public Category Category { get; set; } }   public class Category { public String Name { get; set; } }   Requirements for the REST Support One of the things which you will notice with Agatha is that you do not have to decorate your Request and Response objects with the WCF Service Model Attributes like DataContract, DataMember etc… Unfortunately from what I have seen, these are required if you want the same types to work with your REST endpoint.  I have not tried but I assume the same result can be achieved by simply decorating the same classes with the Serializable Attribute.  Without this the operation will fail. Another surprising thing I have found is that it did not work until I used the following Attribute parameters: Name Namespace e.g. [DataContract(Name = "GetProductsRequest", Namespace = "AgathaRestExample.Service.Requests")] public class GetProductsRequest : Request { }   Although I was surprised by this, things kind of explained themselves when I got round to figuring out the exact construct required for both the XML and the REST.  One of the things which you already know and are then reminded of is that each of your Requests and Responses ultimately inherit from an abstract base class respectively. This information needs to be represented in a way native to the format being used.  I have seen this in XML but I have not seen the format which is required for the JSON. JSON Consumer Example I have used JQuery to create the example and I simply want to make two requests to the server which as you will know with Agatha are transmitted inside an array to reduce the service calls.  I have also used a tool called json2 which is again over at Google Code simply to convert my JSON expression into its string format for transmission.  You will notice that I specify the type of Request I am using and the relevant Namespace it belongs to.  Also notice that the second request has a parameter so each of these two object are representing an abstract Request and the parameters of the object describe it. <script type="text/javascript"> var bodyContent = $.ajax({ url: "http://localhost:50348/service.svc/json/processjsonrequests", global: false, contentType: "application/json; charset=utf-8", type: "POST", processData: true, data: JSON.stringify([ { __type: "GetProductsRequest:AgathaRestExample.Service.Requests" }, { __type: "GetProductsByCategoryRequest:AgathaRestExample.Service.Requests", CategoryName: "Category1" } ]), dataType: "json", success: function(msg) { alert(msg); } }).responseText; </script>   XML Consumer Example For the XML Consumer example I have chosen to use a simple Console Application and make a WebRequest to the service using the XML as a request.  I have made a crude static method which simply reads from an XML File, replaces some value with a parameter and returns the formatted XML.  I say crude but it simply shows how XML Templates for each type of Request could be made and then have a wrapper utility in whatever language you use to combine the requests which are required.  The following XML is the same Request array as shown above but simply in the XML Format. <?xml version="1.0" encoding="utf-8" ?> <ArrayOfRequest xmlns="http://schemas.datacontract.org/2004/07/Agatha.Common" xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <Request i:type="a:GetProductsRequest" xmlns:a="AgathaRestExample.Service.Requests"/> <Request i:type="a:GetProductsByCategoryRequest" xmlns:a="AgathaRestExample.Service.Requests"> <a:CategoryName>{CategoryName}</a:CategoryName> </Request> </ArrayOfRequest>   It is funny because I remember submitting a question to StackOverflow asking whether there was a REST Client Generation tool similar to what Microsoft used for their RestStarterKit but which could be applied to existing services which have REST endpoints attached.  I could not find any but this is now definitely something which I am going to build, as I think it is extremely useful to have but also it should not be too difficult based on the information I now know about the above.  Finally I thought that the Strategy Pattern would lend itself really well to this type of thing so it can accommodate for different languages. I think that is about it, I have included the code for the example Console app which I made below incase anyone wants to have a mooch at the code.  As I said above I want to reformat these to fit in with the current examples over on the Agatha project, but also now thinking about it, make a Documentation Web method…{brain ticking} :-) Cheers for now and here is the final bit of code: static void Main(string[] args) { var request = WebRequest.Create("http://localhost:50348/service.svc/xml/processxmlrequests"); request.Method = "POST"; request.ContentType = "text/xml"; using(var writer = new StreamWriter(request.GetRequestStream())) { writer.WriteLine(GetExampleRequestsString("Category1")); } var response = request.GetResponse(); using(var reader = new StreamReader(response.GetResponseStream())) { Console.WriteLine(reader.ReadToEnd()); } Console.ReadLine(); } static string GetExampleRequestsString(string categoryName) { var data = File.ReadAllText(Path.Combine(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location), "ExampleRequests.xml")); data = data.Replace("{CategoryName}", categoryName); return data; } }

    Read the article

  • Dependency Injection in ASP.NET Web API using Autofac

    - by shiju
    In this post, I will demonstrate how to use Dependency Injection in ASP.NET Web API using Autofac in an ASP.NET MVC 4 app. The new ASP.NET Web API is a great framework for building HTTP services. The Autofac IoC container provides the better integration with ASP.NET Web API for applying dependency injection. The NuGet package Autofac.WebApi provides the  Dependency Injection support for ASP.NET Web API services. Using Autofac in ASP.NET Web API The following command in the Package Manager console will install Autofac.WebApi package into your ASP.NET Web API application. PM > Install-Package Autofac.WebApi The following code block imports the necessary namespaces for using Autofact.WebApi using Autofac; using Autofac.Integration.WebApi; .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The following code in the Bootstrapper class configures the Autofac. 1: public static class Bootstrapper 2: { 3: public static void Run() 4: { 5: SetAutofacWebAPI(); 6: } 7: private static void SetAutofacWebAPI() 8: { 9: var configuration = GlobalConfiguration.Configuration; 10: var builder = new ContainerBuilder(); 11: // Configure the container 12: builder.ConfigureWebApi(configuration); 13: // Register API controllers using assembly scanning. 14: builder.RegisterApiControllers(Assembly.GetExecutingAssembly()); 15: builder.RegisterType<DefaultCommandBus>().As<ICommandBus>() 16: .InstancePerApiRequest(); 17: builder.RegisterType<UnitOfWork>().As<IUnitOfWork>() 18: .InstancePerApiRequest(); 19: builder.RegisterType<DatabaseFactory>().As<IDatabaseFactory>() 20: .InstancePerApiRequest(); 21: builder.RegisterAssemblyTypes(typeof(CategoryRepository) 22: .Assembly).Where(t => t.Name.EndsWith("Repository")) 23: .AsImplementedInterfaces().InstancePerApiRequest(); 24: var services = Assembly.Load("EFMVC.Domain"); 25: builder.RegisterAssemblyTypes(services) 26: .AsClosedTypesOf(typeof(ICommandHandler<>)) 27: .InstancePerApiRequest(); 28: builder.RegisterAssemblyTypes(services) 29: .AsClosedTypesOf(typeof(IValidationHandler<>)) 30: .InstancePerApiRequest(); 31: var container = builder.Build(); 32: // Set the WebApi dependency resolver. 33: var resolver = new AutofacWebApiDependencyResolver(container); 34: configuration.ServiceResolver.SetResolver(resolver); 35: } 36: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The RegisterApiControllers method will scan the given assembly and register the all ApiController classes. This method will look for types that derive from IHttpController with name convention end with “Controller”. The InstancePerApiRequest method specifies the life time of the component for once per API controller invocation. The GlobalConfiguration.Configuration provides a ServiceResolver class which can be use set dependency resolver for ASP.NET Web API. In our example, we are using AutofacWebApiDependencyResolver class provided by Autofac.WebApi to set the dependency resolver. The Run method of Bootstrapper class is calling from Application_Start method of Global.asax.cs. 1: protected void Application_Start() 2: { 3: AreaRegistration.RegisterAllAreas(); 4: RegisterGlobalFilters(GlobalFilters.Filters); 5: RegisterRoutes(RouteTable.Routes); 6: BundleTable.Bundles.RegisterTemplateBundles(); 7: //Call Autofac DI configurations 8: Bootstrapper.Run(); 9: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Autofac.Mvc4 The Autofac framework’s integration with ASP.NET MVC has updated for ASP.NET MVC 4. The NuGet package Autofac.Mvc4 provides the dependency injection support for ASP.NET MVC 4. There is not any syntax change between Autofac.Mvc3 and Autofac.Mvc4 Source Code I have updated my EFMVC app with Autofac.WebApi for applying dependency injection for it’s ASP.NET Web API services. EFMVC app also updated to Autofac.Mvc4 for it’s ASP.NET MVC 4 web app. The above code sample is taken from the EFMVC app. You can download the source code of EFMVC app from http://efmvc.codeplex.com/

    Read the article

  • Do not use “using” in WCF Client

    - by oazabir
    You know that any IDisposable object must be disposed using using. So, you have been using using to wrap WCF service’s ChannelFactory and Clients like this: using(var client = new SomeClient()) {. ..} Or, if you are doing it the hard and slow way (without really knowing why), then: using(var factory = new ChannelFactory<ISomeService>()) {var channel= factory.CreateChannel();...} That’s what we have all learnt in school right? We have learnt it wrong! When there’s a network related error or the connection is broken, or the call is timed out before Dispose is called by the using keyword, then it results in the following exception when the using keyword tries to dispose the channel: failed: System.ServiceModel.CommunicationObjectFaultedException : The communication object, System.ServiceModel.Channels.ServiceChannel, cannot be used for communication because it is in the Faulted state. Server stack trace: at System.ServiceModel.Channels.CommunicationObject.Close(TimeSpan timeout) Exception rethrown at [0]: at System.Runtime.Remoting.Proxies.RealProxy.HandleReturnMessage(IMessage reqMsg, IMessage retMsg) at System.Runtime.Remoting.Proxies.RealProxy.PrivateInvoke(MessageData& msgData, Int32 type) at System.ServiceModel.ICommunicationObject.Close(TimeSpan timeout) at System.ServiceModel.ClientBase`1.System.ServiceModel.ICommunicationObject.Close(TimeSpan timeout) at System.ServiceModel.ClientBase`1.Close() at System.ServiceModel.ClientBase`1.System.IDisposable.Dispose() There are various reasons for which the underlying connection can be at broken state before the using block is completed and the .Dispose() is called. Common problems like network connection dropping, IIS doing an app pool recycle at that moment, some proxy sitting between you and the service dropping the connection for various reasons and so on. The point is, it might seem like a corner case, but it’s a likely corner case. If you are building a highly available client, you need to treat this properly before you go-live. So, do NOT use using on WCF Channel/Client/ChannelFactory. Instead you need to use an alternative. Here’s what you can do: First create an extension method. public static class WcfExtensions{ public static void Using<T>(this T client, Action<T> work) where T : ICommunicationObject { try { work(client); client.Close(); } catch (CommunicationException e) { client.Abort(); } catch (TimeoutException e) { client.Abort(); } catch (Exception e) { client.Abort(); throw; } }} Then use this instead of the using keyword: new SomeClient().Using(channel => { channel.Login(username, password);}); Or if you are using ChannelFactory then: new ChannelFactory<ISomeService>().Using(channel => { channel.Login(username, password);}); Enjoy!

    Read the article

  • Toorcon14

    - by danx
    Toorcon 2012 Information Security Conference San Diego, CA, http://www.toorcon.org/ Dan Anderson, October 2012 It's almost Halloween, and we all know what that means—yes, of course, it's time for another Toorcon Conference! Toorcon is an annual conference for people interested in computer security. This includes the whole range of hackers, computer hobbyists, professionals, security consultants, press, law enforcement, prosecutors, FBI, etc. We're at Toorcon 14—see earlier blogs for some of the previous Toorcon's I've attended (back to 2003). This year's "con" was held at the Westin on Broadway in downtown San Diego, California. The following are not necessarily my views—I'm just the messenger—although I could have misquoted or misparaphrased the speakers. Also, I only reviewed some of the talks, below, which I attended and interested me. MalAndroid—the Crux of Android Infections, Aditya K. Sood Programming Weird Machines with ELF Metadata, Rebecca "bx" Shapiro Privacy at the Handset: New FCC Rules?, Valkyrie Hacking Measured Boot and UEFI, Dan Griffin You Can't Buy Security: Building the Open Source InfoSec Program, Boris Sverdlik What Journalists Want: The Investigative Reporters' Perspective on Hacking, Dave Maas & Jason Leopold Accessibility and Security, Anna Shubina Stop Patching, for Stronger PCI Compliance, Adam Brand McAfee Secure & Trustmarks — a Hacker's Best Friend, Jay James & Shane MacDougall MalAndroid—the Crux of Android Infections Aditya K. Sood, IOActive, Michigan State PhD candidate Aditya talked about Android smartphone malware. There's a lot of old Android software out there—over 50% Gingerbread (2.3.x)—and most have unpatched vulnerabilities. Of 9 Android vulnerabilities, 8 have known exploits (such as the old Gingerbread Global Object Table exploit). Android protection includes sandboxing, security scanner, app permissions, and screened Android app market. The Android permission checker has fine-grain resource control, policy enforcement. Android static analysis also includes a static analysis app checker (bouncer), and a vulnerablity checker. What security problems does Android have? User-centric security, which depends on the user to grant permission and make smart decisions. But users don't care or think about malware (the're not aware, not paranoid). All they want is functionality, extensibility, mobility Android had no "proper" encryption before Android 3.0 No built-in protection against social engineering and web tricks Alternative Android app markets are unsafe. Simply visiting some markets can infect Android Aditya classified Android Malware types as: Type A—Apps. These interact with the Android app framework. For example, a fake Netflix app. Or Android Gold Dream (game), which uploads user files stealthy manner to a remote location. Type K—Kernel. Exploits underlying Linux libraries or kernel Type H—Hybrid. These use multiple layers (app framework, libraries, kernel). These are most commonly used by Android botnets, which are popular with Chinese botnet authors What are the threats from Android malware? These incude leak info (contacts), banking fraud, corporate network attacks, malware advertising, malware "Hackivism" (the promotion of social causes. For example, promiting specific leaders of the Tunisian or Iranian revolutions. Android malware is frequently "masquerated". That is, repackaged inside a legit app with malware. To avoid detection, the hidden malware is not unwrapped until runtime. The malware payload can be hidden in, for example, PNG files. Less common are Android bootkits—there's not many around. What they do is hijack the Android init framework—alteering system programs and daemons, then deletes itself. For example, the DKF Bootkit (China). Android App Problems: no code signing! all self-signed native code execution permission sandbox — all or none alternate market places no robust Android malware detection at network level delayed patch process Programming Weird Machines with ELF Metadata Rebecca "bx" Shapiro, Dartmouth College, NH https://github.com/bx/elf-bf-tools @bxsays on twitter Definitions. "ELF" is an executable file format used in linking and loading executables (on UNIX/Linux-class machines). "Weird machine" uses undocumented computation sources (I think of them as unintended virtual machines). Some examples of "weird machines" are those that: return to weird location, does SQL injection, corrupts the heap. Bx then talked about using ELF metadata as (an uintended) "weird machine". Some ELF background: A compiler takes source code and generates a ELF object file (hello.o). A static linker makes an ELF executable from the object file. A runtime linker and loader takes ELF executable and loads and relocates it in memory. The ELF file has symbols to relocate functions and variables. ELF has two relocation tables—one at link time and another one at loading time: .rela.dyn (link time) and .dynsym (dynamic table). GOT: Global Offset Table of addresses for dynamically-linked functions. PLT: Procedure Linkage Tables—works with GOT. The memory layout of a process (not the ELF file) is, in order: program (+ heap), dynamic libraries, libc, ld.so, stack (which includes the dynamic table loaded into memory) For ELF, the "weird machine" is found and exploited in the loader. ELF can be crafted for executing viruses, by tricking runtime into executing interpreted "code" in the ELF symbol table. One can inject parasitic "code" without modifying the actual ELF code portions. Think of the ELF symbol table as an "assembly language" interpreter. It has these elements: instructions: Add, move, jump if not 0 (jnz) Think of symbol table entries as "registers" symbol table value is "contents" immediate values are constants direct values are addresses (e.g., 0xdeadbeef) move instruction: is a relocation table entry add instruction: relocation table "addend" entry jnz instruction: takes multiple relocation table entries The ELF weird machine exploits the loader by relocating relocation table entries. The loader will go on forever until told to stop. It stores state on stack at "end" and uses IFUNC table entries (containing function pointer address). The ELF weird machine, called "Brainfu*k" (BF) has: 8 instructions: pointer inc, dec, inc indirect, dec indirect, jump forward, jump backward, print. Three registers - 3 registers Bx showed example BF source code that implemented a Turing machine printing "hello, world". More interesting was the next demo, where bx modified ping. Ping runs suid as root, but quickly drops privilege. BF modified the loader to disable the library function call dropping privilege, so it remained as root. Then BF modified the ping -t argument to execute the -t filename as root. It's best to show what this modified ping does with an example: $ whoami bx $ ping localhost -t backdoor.sh # executes backdoor $ whoami root $ The modified code increased from 285948 bytes to 290209 bytes. A BF tool compiles "executable" by modifying the symbol table in an existing ELF executable. The tool modifies .dynsym and .rela.dyn table, but not code or data. Privacy at the Handset: New FCC Rules? "Valkyrie" (Christie Dudley, Santa Clara Law JD candidate) Valkyrie talked about mobile handset privacy. Some background: Senator Franken (also a comedian) became alarmed about CarrierIQ, where the carriers track their customers. Franken asked the FCC to find out what obligations carriers think they have to protect privacy. The carriers' response was that they are doing just fine with self-regulation—no worries! Carriers need to collect data, such as missed calls, to maintain network quality. But carriers also sell data for marketing. Verizon sells customer data and enables this with a narrow privacy policy (only 1 month to opt out, with difficulties). The data sold is not individually identifiable and is aggregated. But Verizon recommends, as an aggregation workaround to "recollate" data to other databases to identify customers indirectly. The FCC has regulated telephone privacy since 1934 and mobile network privacy since 2007. Also, the carriers say mobile phone privacy is a FTC responsibility (not FCC). FTC is trying to improve mobile app privacy, but FTC has no authority over carrier / customer relationships. As a side note, Apple iPhones are unique as carriers have extra control over iPhones they don't have with other smartphones. As a result iPhones may be more regulated. Who are the consumer advocates? Everyone knows EFF, but EPIC (Electrnic Privacy Info Center), although more obsecure, is more relevant. What to do? Carriers must be accountable. Opt-in and opt-out at any time. Carriers need incentive to grant users control for those who want it, by holding them liable and responsible for breeches on their clock. Location information should be added current CPNI privacy protection, and require "Pen/trap" judicial order to obtain (and would still be a lower standard than 4th Amendment). Politics are on a pro-privacy swing now, with many senators and the Whitehouse. There will probably be new regulation soon, and enforcement will be a problem, but consumers will still have some benefit. Hacking Measured Boot and UEFI Dan Griffin, JWSecure, Inc., Seattle, @JWSdan Dan talked about hacking measured UEFI boot. First some terms: UEFI is a boot technology that is replacing BIOS (has whitelisting and blacklisting). UEFI protects devices against rootkits. TPM - hardware security device to store hashs and hardware-protected keys "secure boot" can control at firmware level what boot images can boot "measured boot" OS feature that tracks hashes (from BIOS, boot loader, krnel, early drivers). "remote attestation" allows remote validation and control based on policy on a remote attestation server. Microsoft pushing TPM (Windows 8 required), but Google is not. Intel TianoCore is the only open source for UEFI. Dan has Measured Boot Tool at http://mbt.codeplex.com/ with a demo where you can also view TPM data. TPM support already on enterprise-class machines. UEFI Weaknesses. UEFI toolkits are evolving rapidly, but UEFI has weaknesses: assume user is an ally trust TPM implicitly, and attached to computer hibernate file is unprotected (disk encryption protects against this) protection migrating from hardware to firmware delays in patching and whitelist updates will UEFI really be adopted by the mainstream (smartphone hardware support, bank support, apathetic consumer support) You Can't Buy Security: Building the Open Source InfoSec Program Boris Sverdlik, ISDPodcast.com co-host Boris talked about problems typical with current security audits. "IT Security" is an oxymoron—IT exists to enable buiness, uptime, utilization, reporting, but don't care about security—IT has conflict of interest. There's no Magic Bullet ("blinky box"), no one-size-fits-all solution (e.g., Intrusion Detection Systems (IDSs)). Regulations don't make you secure. The cloud is not secure (because of shared data and admin access). Defense and pen testing is not sexy. Auditors are not solution (security not a checklist)—what's needed is experience and adaptability—need soft skills. Step 1: First thing is to Google and learn the company end-to-end before you start. Get to know the management team (not IT team), meet as many people as you can. Don't use arbitrary values such as CISSP scores. Quantitive risk assessment is a myth (e.g. AV*EF-SLE). Learn different Business Units, legal/regulatory obligations, learn the business and where the money is made, verify company is protected from script kiddies (easy), learn sensitive information (IP, internal use only), and start with low-hanging fruit (customer service reps and social engineering). Step 2: Policies. Keep policies short and relevant. Generic SANS "security" boilerplate policies don't make sense and are not followed. Focus on acceptable use, data usage, communications, physical security. Step 3: Implementation: keep it simple stupid. Open source, although useful, is not free (implementation cost). Access controls with authentication & authorization for local and remote access. MS Windows has it, otherwise use OpenLDAP, OpenIAM, etc. Application security Everyone tries to reinvent the wheel—use existing static analysis tools. Review high-risk apps and major revisions. Don't run different risk level apps on same system. Assume host/client compromised and use app-level security control. Network security VLAN != segregated because there's too many workarounds. Use explicit firwall rules, active and passive network monitoring (snort is free), disallow end user access to production environment, have a proxy instead of direct Internet access. Also, SSL certificates are not good two-factor auth and SSL does not mean "safe." Operational Controls Have change, patch, asset, & vulnerability management (OSSI is free). For change management, always review code before pushing to production For logging, have centralized security logging for business-critical systems, separate security logging from administrative/IT logging, and lock down log (as it has everything). Monitor with OSSIM (open source). Use intrusion detection, but not just to fulfill a checkbox: build rules from a whitelist perspective (snort). OSSEC has 95% of what you need. Vulnerability management is a QA function when done right: OpenVas and Seccubus are free. Security awareness The reality is users will always click everything. Build real awareness, not compliance driven checkbox, and have it integrated into the culture. Pen test by crowd sourcing—test with logging COSSP http://www.cossp.org/ - Comprehensive Open Source Security Project What Journalists Want: The Investigative Reporters' Perspective on Hacking Dave Maas, San Diego CityBeat Jason Leopold, Truthout.org The difference between hackers and investigative journalists: For hackers, the motivation varies, but method is same, technological specialties. For investigative journalists, it's about one thing—The Story, and they need broad info-gathering skills. J-School in 60 Seconds: Generic formula: Person or issue of pubic interest, new info, or angle. Generic criteria: proximity, prominence, timeliness, human interest, oddity, or consequence. Media awareness of hackers and trends: journalists becoming extremely aware of hackers with congressional debates (privacy, data breaches), demand for data-mining Journalists, use of coding and web development for Journalists, and Journalists busted for hacking (Murdock). Info gathering by investigative journalists include Public records laws. Federal Freedom of Information Act (FOIA) is good, but slow. California Public Records Act is a lot stronger. FOIA takes forever because of foot-dragging—it helps to be specific. Often need to sue (especially FBI). CPRA is faster, and requests can be vague. Dumps and leaks (a la Wikileaks) Journalists want: leads, protecting ourselves, our sources, and adapting tools for news gathering (Google hacking). Anonomity is important to whistleblowers. They want no digital footprint left behind (e.g., email, web log). They don't trust encryption, want to feel safe and secure. Whistleblower laws are very weak—there's no upside for whistleblowers—they have to be very passionate to do it. Accessibility and Security or: How I Learned to Stop Worrying and Love the Halting Problem Anna Shubina, Dartmouth College Anna talked about how accessibility and security are related. Accessibility of digital content (not real world accessibility). mostly refers to blind users and screenreaders, for our purpose. Accessibility is about parsing documents, as are many security issues. "Rich" executable content causes accessibility to fail, and often causes security to fail. For example MS Word has executable format—it's not a document exchange format—more dangerous than PDF or HTML. Accessibility is often the first and maybe only sanity check with parsing. They have no choice because someone may want to read what you write. Google, for example, is very particular about web browser you use and are bad at supporting other browsers. Uses JavaScript instead of links, often requiring mouseover to display content. PDF is a security nightmare. Executible format, embedded flash, JavaScript, etc. 15 million lines of code. Google Chrome doesn't handle PDF correctly, causing several security bugs. PDF has an accessibility checker and PDF tagging, to help with accessibility. But no PDF checker checks for incorrect tags, untagged content, or validates lists or tables. None check executable content at all. The "Halting Problem" is: can one decide whether a program will ever stop? The answer, in general, is no (Rice's theorem). The same holds true for accessibility checkers. Language-theoretic Security says complicated data formats are hard to parse and cannot be solved due to the Halting Problem. W3C Web Accessibility Guidelines: "Perceivable, Operable, Understandable, Robust" Not much help though, except for "Robust", but here's some gems: * all information should be parsable (paraphrasing) * if not parsable, cannot be converted to alternate formats * maximize compatibility in new document formats Executible webpages are bad for security and accessibility. They say it's for a better web experience. But is it necessary to stuff web pages with JavaScript for a better experience? A good example is The Drudge Report—it has hand-written HTML with no JavaScript, yet drives a lot of web traffic due to good content. A bad example is Google News—hidden scrollbars, guessing user input. Solutions: Accessibility and security problems come from same source Expose "better user experience" myth Keep your corner of Internet parsable Remember "Halting Problem"—recognize false solutions (checking and verifying tools) Stop Patching, for Stronger PCI Compliance Adam Brand, protiviti @adamrbrand, http://www.picfun.com/ Adam talked about PCI compliance for retail sales. Take an example: for PCI compliance, 50% of Brian's time (a IT guy), 960 hours/year was spent patching POSs in 850 restaurants. Often applying some patches make no sense (like fixing a browser vulnerability on a server). "Scanner worship" is overuse of vulnerability scanners—it gives a warm and fuzzy and it's simple (red or green results—fix reds). Scanners give a false sense of security. In reality, breeches from missing patches are uncommon—more common problems are: default passwords, cleartext authentication, misconfiguration (firewall ports open). Patching Myths: Myth 1: install within 30 days of patch release (but PCI §6.1 allows a "risk-based approach" instead). Myth 2: vendor decides what's critical (also PCI §6.1). But §6.2 requires user ranking of vulnerabilities instead. Myth 3: scan and rescan until it passes. But PCI §11.2.1b says this applies only to high-risk vulnerabilities. Adam says good recommendations come from NIST 800-40. Instead use sane patching and focus on what's really important. From NIST 800-40: Proactive: Use a proactive vulnerability management process: use change control, configuration management, monitor file integrity. Monitor: start with NVD and other vulnerability alerts, not scanner results. Evaluate: public-facing system? workstation? internal server? (risk rank) Decide:on action and timeline Test: pre-test patches (stability, functionality, rollback) for change control Install: notify, change control, tickets McAfee Secure & Trustmarks — a Hacker's Best Friend Jay James, Shane MacDougall, Tactical Intelligence Inc., Canada "McAfee Secure Trustmark" is a website seal marketed by McAfee. A website gets this badge if they pass their remote scanning. The problem is a removal of trustmarks act as flags that you're vulnerable. Easy to view status change by viewing McAfee list on website or on Google. "Secure TrustGuard" is similar to McAfee. Jay and Shane wrote Perl scripts to gather sites from McAfee and search engines. If their certification image changes to a 1x1 pixel image, then they are longer certified. Their scripts take deltas of scans to see what changed daily. The bottom line is change in TrustGuard status is a flag for hackers to attack your site. Entire idea of seals is silly—you're raising a flag saying if you're vulnerable.

    Read the article

  • How to create item in SharePoint2010 document library using SharePoint Web service

    - by ybbest
    Today, I’d like to show you how to create item in SharePoint2010 document library using SharePoint Web service. Originally, I thought I could use the WebSvcLists(list.asmx) that provides methods for working with lists and list data. However, after a bit Googling , I realize that I need to use the WebSvcCopy (copy.asmx).Here are the code used private const string siteUrl = "http://ybbest"; private static void Main(string[] args) { using (CopyWSProxyWrapper copyWSProxyWrapper = new CopyWSProxyWrapper(siteUrl)) { copyWSProxyWrapper.UploadFile("TestDoc2.pdf", new[] {string.Format("{0}/Shared Documents/TestDoc2.pdf", siteUrl)}, Resource.TestDoc, GetFieldInfos().ToArray()); } } private static List<FieldInformation> GetFieldInfos() { var fieldInfos = new List<FieldInformation>(); //The InternalName , DisplayName and FieldType are both required to make it work fieldInfos.Add(new FieldInformation { InternalName = "Title", Value = "TestDoc2.pdf", DisplayName = "Title", Type = FieldType.Text }); return fieldInfos; } Here is the code for the proxy wrapper. public class CopyWSProxyWrapper : IDisposable { private readonly string siteUrl; public CopyWSProxyWrapper(string siteUrl) { this.siteUrl = siteUrl; } private readonly CopySoapClient proxy = new CopySoapClient(); public void UploadFile(string testdoc2Pdf, string[] destinationUrls, byte[] testDoc, FieldInformation[] fieldInformations) { using (CopySoapClient proxy = new CopySoapClient()) { proxy.Endpoint.Address = new EndpointAddress(String.Format("{0}/_vti_bin/copy.asmx", siteUrl)); proxy.ClientCredentials.Windows.ClientCredential = CredentialCache.DefaultNetworkCredentials; proxy.ClientCredentials.Windows.AllowedImpersonationLevel = TokenImpersonationLevel.Impersonation; CopyResult[] copyResults = null; try { proxy.CopyIntoItems(testdoc2Pdf, destinationUrls, fieldInformations, testDoc, out copyResults); } catch (Exception e) { System.Console.WriteLine(e); } if (copyResults != null) System.Console.WriteLine(copyResults[0].ErrorMessage); System.Console.ReadLine(); } } public void Dispose() { proxy.Close(); } } You can download the source code here . ******Update********** It seems to be a bug that , you can not set the contentType when create a document item using Copy.asmx. In sp2007 the field type was Choice, however, in sp2010 it is actually Computed. I have tried using the Computed field type with no luck. I have also tried sending the ContentTypeId and this does not work.You might have to write your own web services to handle this.You can check my previous blog on how to get started with you own custom WCF in SP2010 here. References: SharePoint 2010 Web Services SharePoint2007 Web Services SharePoint MSDN Forum

    Read the article

  • ESB Toolkit 2.0 EndPointConfig (HTTPS with WCF-BasicHttp and the ESB Toolkit 2.0)

    - by Andy Morrison
    Earlier this week I had an ESB endpoint (Off-Ramp in ESB parlance) that I was sending to over http using WCF-BasicHttp.  I needed to switch the protocol to https: which I did by changing my UDDI Binding over to https:  No problem from a management perspective; however, when I tried to run the process I saw this exception: Event Type:                     Error Event Source:                BizTalk Server 2009 Event Category:            BizTalk Server 2009 Event ID:   5754 Date:                                    3/10/2010 Time:                                   2:58:23 PM User:                                    N/A Computer:                       XXXXXXXXX Description: A message sent to adapter "WCF-BasicHttp" on send port "SPDynamic.XXX.SR" with URI "https://XXXXXXXXX.com/XXXXXXX/whatever.asmx" is suspended.  Error details: System.ArgumentException: The provided URI scheme 'https' is invalid; expected 'http'. Parameter name: via    at System.ServiceModel.Channels.TransportChannelFactory`1.ValidateScheme(Uri via)    at System.ServiceModel.Channels.HttpChannelFactory.ValidateCreateChannelParameters(EndpointAddress remoteAddress, Uri via)    at System.ServiceModel.Channels.HttpChannelFactory.OnCreateChannel(EndpointAddress remoteAddress, Uri via)    at System.ServiceModel.Channels.ChannelFactoryBase`1.InternalCreateChannel(EndpointAddress address, Uri via)    at System.ServiceModel.Channels.ChannelFactoryBase`1.CreateChannel(EndpointAddress address, Uri via)    at System.ServiceModel.Channels.ServiceChannelFactory.ServiceChannelFactoryOverRequest.CreateInnerChannelBinder(EndpointAddress to, Uri via)    at System.ServiceModel.Channels.ServiceChannelFactory.CreateServiceChannel(EndpointAddress address, Uri via)    at System.ServiceModel.Channels.ServiceChannelFactory.CreateChannel(Type channelType, EndpointAddress address, Uri via)    at System.ServiceModel.ChannelFactory`1.CreateChannel(EndpointAddress address, Uri via)    at System.ServiceModel.ChannelFactory`1.CreateChannel()    at Microsoft.BizTalk.Adapter.Wcf.Runtime.WcfClient`2.GetChannel[TChannel](IBaseMessage bizTalkMessage, ChannelFactory`1& cachedFactory)    at Microsoft.BizTalk.Adapter.Wcf.Runtime.WcfClient`2.SendMessage(IBaseMessage bizTalkMessage)  MessageId:  {1170F4ED-550F-4F7E-B0E0-1EE92A25AB10}  InstanceID: {1640C6C6-CA9C-4746-AEB0-584FDF7BB61E} I knew from a previous experience that I likely needed to set the SecurityMode setting for my Send Port.  But how do you do this for a Dynamic port (which I was using since this is an ESB solution)? Within the UDDI portal you have to add an additional Instance Info to your Binding named: EndPointConfig  Then you have to set its value to:  SecurityMode=Transport Like this:    The EndPointConfig is how the ESB Toolkit 2.0 provides extensibility for the various transports.  To see what the key-value pair options are for a given transport, open up an itinerary and change one of your resolvers to a “static” resolver by setting the “Resolver Implementation” to Static.  Then select a “Transport Name” ”, for instance to WCF-BasicHttp.  At this point you can then click on the “EndPoint Configuration” property for to see an adapter/ramp specific properties dialog (key-value pairs.)    Here’s the dialog that popped up for WCF-BasicHttp:   I simply set the SecurityMode to Transport.  Please note that you will get different properties within the window depending on the Transport Name you select for the resolver. When you are done with your settings, export the itinerary to disk and find that xml; then find that resolver’s xml within that file.  It will look like endpointConfig=SecurityMode=Transport in this case.  Note that if you set additional properties you will have additional key-value pairs after endpointConfig= Copy that string and paste it into the UDDI portal for you Binding’s EndPointConfig Instance Info value.

    Read the article

  • MVC Portable Areas &ndash; Web Application Projects

    - by Steve Michelotti
    This is the first post in a series related to build and deployment considerations as I’ve been exploring MVC Portable Areas: #1 – Using Web Application Project to build portable areas #2 – Conventions for deploying portable area static files #3 – Portable area static files as embedded resources Portable Areas is a relatively new feature available in MvcContrib that builds upon the new feature called Areas that was introduced in MVC 2. In short, portable areas provide a way to distribute MVC binary components as simple .NET assemblies rather than an assembly along with all the physical files for the views. At the heart of portable areas is a custom view engine that delivers the *.aspx pages by pulling them from embedded resources rather than from the physical file system. A portable area can be something as small as a tiny snippet of html that eventually gets rendered on a page, to something as large as an entire MVC web application. You should read this 4-part series to get up to speed on what portable areas are. Web Application Project In most of the posts to date, portable areas are shown being created with a simple C# class library. This is cool and it serves as an effective way to illustrate the simplicity of portable areas. However, the problem with that is that the developer loses out on the normal developer experience with the various tooling/scaffolding options that we’ve come to expect in visual studio like the ability to add controllers, views, etc. easily: I’ve had good results just using a normal web application project (rather than a class library) to develop portable areas and get the normal vs.net benefits. However, one gotcha that comes as a result is that it’s easy to forget to set the file to “Embedded Resource” every time you add a new aspx page. To mitigate this, simply add this MSBuild snippet shown below to your *.csproj file and all *.aspx, *ascx will automatically be set as embedded resources when your project compiles: 1: <Target Name="BeforeBuild"> 2: <ItemGroup> 3: <EmbeddedResource Include="**\*.aspx;**\*.ascx" /> 4: </ItemGroup> 5: </Target> Also, you should remove the Global.asax from this web application as it is not the host. Being able to have the normal tooling experience we’ve come to expect from Visual Studio makes creating portable areas quite simple. This even allows us to do things like creating a project template such as “MVC Portable Area Web Application” that would come pre-configured with routes set up in the PortableAreaRegistration and no Global.asax file.

    Read the article

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Earthquake Locator - Live Demo and Source Code

    - by Bobby Diaz
    Quick Links Live Demo Source Code I finally got a live demo up and running!  I signed up for a shared hosting account over at discountasp.net so I could post a working version of the Earthquake Locator application, but ran into a few minor issues related to RIA Services.  Thankfully, Tim Heuer had already encountered and explained all of the problems I had along with solutions to these and other common pitfalls.  You can find his blog post here.  The ones that got me were the default authentication tag being set to Windows instead of Forms, needed to add the <baseAddressPrefixFilters> tag since I was running on a shared server using host headers, and finally the Multiple Authentication Schemes settings in the IIS7 Manager.   To get the demo application ready, I pulled down local copies of the earthquake data feeds that the application can use instead of pulling from the USGS web site.  I basically added the feed URL as an app setting in the web.config:       <appSettings>         <!-- USGS Data Feeds: http://earthquake.usgs.gov/earthquakes/catalogs/ -->         <!--<add key="FeedUrl"             value="http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml" />-->         <!--<add key="FeedUrl"             value="http://earthquake.usgs.gov/earthquakes/catalogs/7day-M2.5.xml" />-->         <!--<add key="FeedUrl"             value="~/Demo/1day-M2.5.xml" />-->         <add key="FeedUrl"              value="~/Demo/7day-M2.5.xml" />     </appSettings> You will need to do the same if you want to run from local copies of the feed data.  I also made the following minor changes to the EarthquakeService class so that it gets the FeedUrl from the web.config:       private static readonly string FeedUrl = ConfigurationManager.AppSettings["FeedUrl"];       /// <summary>     /// Gets the feed at the specified URL.     /// </summary>     /// <param name="url">The URL.</param>     /// <returns>A <see cref="SyndicationFeed"/> object.</returns>     public static SyndicationFeed GetFeed(String url)     {         SyndicationFeed feed = null;           if ( !String.IsNullOrEmpty(url) && url.StartsWith("~") )         {             // resolve virtual path to physical file system             url = System.Web.HttpContext.Current.Server.MapPath(url);         }           try         {             log.Debug("Loading RSS feed: " + url);               using ( var reader = XmlReader.Create(url) )             {                 feed = SyndicationFeed.Load(reader);             }         }         catch ( Exception ex )         {             log.Error("Error occurred while loading RSS feed: " + url, ex);         }           return feed;     } You can now view the live demo or download the source code here, but be sure you have WCF RIA Services installed before running the application locally and make sure the FeedUrl is pointing to a valid location.  Please let me know if you have any comments or if you run into any issues with the code.   Enjoy!

    Read the article

  • Thinktecture.IdentityModel: WIF Support for WCF REST Services and OData

    - by Your DisplayName here!
    The latest drop of Thinktecture.IdentityModel includes plumbing and support for WIF, claims and tokens for WCF REST services and Data Services (aka OData). Cibrax has an alternative implementation that uses the WCF Rest Starter Kit. His recent post reminded me that I should finally “document” that part of our library. Features include: generic plumbing for all WebServiceHost derived WCF services support for SAML and SWT tokens support for ClaimsAuthenticationManager and ClaimsAuthorizationManager based solely on native WCF extensibility points (and WIF) This post walks you through the setup of an OData / WCF DataServices endpoint with token authentication and claims support. This sample is also included in the codeplex download along a similar sample for plain WCF REST services. Setting up the Data Service To prove the point I have created a simple WCF Data Service that renders the claims of the current client as an OData set. public class ClaimsData {     public IQueryable<ViewClaim> Claims     {         get { return GetClaims().AsQueryable(); }     }       private List<ViewClaim> GetClaims()     {         var claims = new List<ViewClaim>();         var identity = Thread.CurrentPrincipal.Identity as IClaimsIdentity;           int id = 0;         identity.Claims.ToList().ForEach(claim =>             {                 claims.Add(new ViewClaim                 {                    Id = ++id,                    ClaimType = claim.ClaimType,                    Value = claim.Value,                    Issuer = claim.Issuer                 });             });           return claims;     } } …and hooked that up with a read only data service: public class ClaimsDataService : DataService<ClaimsData> {     public static void InitializeService(IDataServiceConfiguration config)     {         config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);     } } Enabling WIF Before you enable WIF, you should generate your client proxies. Afterwards the service will only accept requests with an access token – and svcutil does not support that. All the WIF magic is done in a special service authorization manager called the FederatedWebServiceAuthorizationManager. This code checks incoming calls to see if the Authorization HTTP header (or X-Authorization for environments where you are not allowed to set the authorization header) contains a token. This header must either start with SAML access_token= or WRAP access_token= (for SAML or SWT tokens respectively). For SAML validation, the plumbing uses the normal WIF configuration. For SWT you can either pass in a SimpleWebTokenRequirement or the SwtIssuer, SwtAudience and SwtSigningKey app settings are checked.If the token can be successfully validated, ClaimsAuthenticationManager and ClaimsAuthorizationManager are invoked and the IClaimsPrincipal gets established. The service authorization manager gets wired up by the FederatedWebServiceHostFactory: public class FederatedWebServiceHostFactory : WebServiceHostFactory {     protected override ServiceHost CreateServiceHost(       Type serviceType, Uri[] baseAddresses)     {         var host = base.CreateServiceHost(serviceType, baseAddresses);           host.Authorization.ServiceAuthorizationManager =           new FederatedWebServiceAuthorizationManager();         host.Authorization.PrincipalPermissionMode = PrincipalPermissionMode.Custom;           return host;     } } The last step is to set up the .svc file to use the service host factory (see the sample download). Calling the Service To call the service you need to somehow get a token. This is up to you. You can either use WSTrustChannelFactory (for the full CLR), WSTrustClient (Silverlight) or some other way to obtain a token. The sample also includes code to generate SWT tokens for testing – but the whole WRAP/SWT support will be subject of a separate post. I created some extensions methods for the most common web clients (WebClient, HttpWebRequest, DataServiceContext) that allow easy setting of the token, e.g.: public static void SetAccessToken(this DataServiceContext context,   string token, string type, string headerName) {     context.SendingRequest += (s, e) =>     {         e.RequestHeaders[headerName] = GetHeader(token, type);     }; } Making a query against the Data Service could look like this: static void CallService(string token, string type) {     var data = new ClaimsData(new Uri("https://server/odata.svc/"));     data.SetAccessToken(token, type);       data.Claims.ToList().ForEach(c =>         Console.WriteLine("{0}\n {1}\n ({2})\n", c.ClaimType, c.Value, c.Issuer)); } HTH

    Read the article

  • Using a WCF Message Inspector to extend AppFabric Monitoring

    - by Shawn Cicoria
    I read through Ron Jacobs post on Monitoring WCF Data Services with AppFabric http://blogs.msdn.com/b/endpoint/archive/2010/06/09/tracking-wcf-data-services-with-windows-server-appfabric.aspx What is immediately striking are 2 things – it’s so easy to get monitoring data into a viewer (AppFabric Dashboard) w/ very little work.  And the 2nd thing is, why can’t this be a WCF message inspector on the dispatch side. So, I took the base class WCFUserEventProvider that’s located in the WCF/WF samples [1] in the following path, \WF_WCF_Samples\WCF\Basic\Management\AnalyticTraceExtensibility\CS\WCFAnalyticTracingExtensibility\  and then created a few classes that project the injection as a IEndPointBehavior There are just 3 classes to drive injection of the inspector at runtime via config: IDispatchMessageInspector implementation BehaviorExtensionElement implementation IEndpointBehavior implementation The full source code is below with a link to the solution file here: [Solution File] using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.ServiceModel.Dispatcher; using System.ServiceModel.Channels; using System.ServiceModel; using System.ServiceModel.Configuration; using System.ServiceModel.Description; using Microsoft.Samples.WCFAnalyticTracingExtensibility; namespace Fabrikam.Services { public class AppFabricE2EInspector : IDispatchMessageInspector { static WCFUserEventProvider evntProvider = null; static AppFabricE2EInspector() { evntProvider = new WCFUserEventProvider(); } public object AfterReceiveRequest( ref Message request, IClientChannel channel, InstanceContext instanceContext) { OperationContext ctx = OperationContext.Current; var opName = ctx.IncomingMessageHeaders.Action; evntProvider.WriteInformationEvent("start", string.Format("operation: {0} at address {1}", opName, ctx.EndpointDispatcher.EndpointAddress)); return null; } public void BeforeSendReply(ref System.ServiceModel.Channels.Message reply, object correlationState) { OperationContext ctx = OperationContext.Current; var opName = ctx.IncomingMessageHeaders.Action; evntProvider.WriteInformationEvent("end", string.Format("operation: {0} at address {1}", opName, ctx.EndpointDispatcher.EndpointAddress)); } } public class AppFabricE2EBehaviorElement : BehaviorExtensionElement { #region BehaviorExtensionElement /// <summary> /// Gets the type of behavior. /// </summary> /// <value></value> /// <returns>The type that implements the end point behavior<see cref="T:System.Type"/>.</returns> public override Type BehaviorType { get { return typeof(AppFabricE2EEndpointBehavior); } } /// <summary> /// Creates a behavior extension based on the current configuration settings. /// </summary> /// <returns>The behavior extension.</returns> protected override object CreateBehavior() { return new AppFabricE2EEndpointBehavior(); } #endregion BehaviorExtensionElement } public class AppFabricE2EEndpointBehavior : IEndpointBehavior //, IServiceBehavior { #region IEndpointBehavior public void AddBindingParameters(ServiceEndpoint endpoint, BindingParameterCollection bindingParameters) {} public void ApplyClientBehavior(ServiceEndpoint endpoint, ClientRuntime clientRuntime) { throw new NotImplementedException(); } public void ApplyDispatchBehavior(ServiceEndpoint endpoint, EndpointDispatcher endpointDispatcher) { endpointDispatcher.DispatchRuntime.MessageInspectors.Add(new AppFabricE2EInspector()); } public void Validate(ServiceEndpoint endpoint) { ; } #endregion IEndpointBehavior } }     [1] http://www.microsoft.com/downloads/details.aspx?FamilyID=35ec8682-d5fd-4bc3-a51a-d8ad115a8792&displaylang=en

    Read the article

  • Dynamically creating a Generic Type at Runtime

    - by Rick Strahl
    I learned something new today. Not uncommon, but it's a core .NET runtime feature I simply did not know although I know I've run into this issue a few times and worked around it in other ways. Today there was no working around it and a few folks on Twitter pointed me in the right direction. The question I ran into is: How do I create a type instance of a generic type when I have dynamically acquired the type at runtime? Yup it's not something that you do everyday, but when you're writing code that parses objects dynamically at runtime it comes up from time to time. In my case it's in the bowels of a custom JSON parser. After some thought triggered by a comment today I realized it would be fairly easy to implement two-way Dictionary parsing for most concrete dictionary types. I could use a custom Dictionary serialization format that serializes as an array of key/value objects. Basically I can use a custom type (that matches the JSON signature) to hold my parsed dictionary data and then add it to the actual dictionary when parsing is complete. Generic Types at Runtime One issue that came up in the process was how to figure out what type the Dictionary<K,V> generic parameters take. Reflection actually makes it fairly easy to figure out generic types at runtime with code like this: if (arrayType.GetInterface("IDictionary") != null) { if (arrayType.IsGenericType) { var keyType = arrayType.GetGenericArguments()[0]; var valueType = arrayType.GetGenericArguments()[1]; … } } The GetArrayType method gets passed a type instance that is the array or array-like object that is rendered in JSON as an array (which includes IList, IDictionary, IDataReader and a few others). In my case the type passed would be something like Dictionary<string, CustomerEntity>. So I know what the parent container class type is. Based on the the container type using it's then possible to use GetGenericTypeArguments() to retrieve all the generic types in sequential order of definition (ie. string, CustomerEntity). That's the easy part. Creating a Generic Type and Providing Generic Parameters at RunTime The next problem is how do I get a concrete type instance for the generic type? I know what the type name and I have a type instance is but it's generic, so how do I get a type reference to keyvaluepair<K,V> that is specific to the keyType and valueType above? Here are a couple of things that come to mind but that don't work (and yes I tried that unsuccessfully first): Type elementType = typeof(keyvalue<keyType, valueType>); Type elementType = typeof(keyvalue<typeof(keyType), typeof(valueType)>); The problem is that this explicit syntax expects a type literal not some dynamic runtime value, so both of the above won't even compile. I turns out the way to create a generic type at runtime is using a fancy bit of syntax that until today I was completely unaware of: Type elementType = typeof(keyvalue<,>).MakeGenericType(keyType, valueType); The key is the type(keyvalue<,>) bit which looks weird at best. It works however and produces a non-generic type reference. You can see the difference between the full generic type and the non-typed (?) generic type in the debugger: The nonGenericType doesn't show any type specialization, while the elementType type shows the string, CustomerEntity (truncated above) in the type name. Once the full type reference exists (elementType) it's then easy to create an instance. In my case the parser parses through the JSON and when it completes parsing the value/object it creates a new keyvalue<T,V> instance. Now that I know the element type that's pretty trivial with: // Objects start out null until we find the opening tag resultObject = Activator.CreateInstance(elementType); Here the result object is picked up by the JSON array parser which creates an instance of the child object (keyvalue<K,V>) and then parses and assigns values from the JSON document using the types  key/value property signature. Internally the parser then takes each individually parsed item and adds it to a list of  List<keyvalue<K,V>> items. Parsing through a Generic type when you only have Runtime Type Information When parsing of the JSON array is done, the List needs to be turned into a defacto Dictionary<K,V>. This should be easy since I know that I'm dealing with an IDictionary, and I know the generic types for the key and value. The problem is again though that this needs to happen at runtime which would mean using several Convert.ChangeType() calls in the code to dynamically cast at runtime. Yuk. In the end I decided the easier and probably only slightly slower way to do this is a to use the dynamic type to collect the items and assign them to avoid all the dynamic casting madness: else if (IsIDictionary) { IDictionary dict = Activator.CreateInstance(arrayType) as IDictionary; foreach (dynamic item in items) { dict.Add(item.key, item.value); } return dict; } This code creates an instance of the generic dictionary type first, then loops through all of my custom keyvalue<K,V> items and assigns them to the actual dictionary. By using Dynamic here I can side step all the explicit type conversions that would be required in the three highlighted areas (not to mention that this nested method doesn't have access to the dictionary item generic types here). Static <- -> Dynamic Dynamic casting in a static language like C# is a bitch to say the least. This is one of the few times when I've cursed static typing and the arcane syntax that's required to coax types into the right format. It works but it's pretty nasty code. If it weren't for dynamic that last bit of code would have been a pretty ugly as well with a bunch of Convert.ChangeType() calls to litter the code. Fortunately this type of type convulsion is rather rare and reserved for system level code. It's not every day that you create a string to object parser after all :-)© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • A simple Dynamic Proxy

    - by Abhijeet Patel
    Frameworks such as EF4 and MOQ do what most developers consider "dark magic". For instance in EF4, when you use a POCO for an entity you can opt-in to get behaviors such as "lazy-loading" and "change tracking" at runtime merely by ensuring that your type has the following characteristics: The class must be public and not sealed. The class must have a public or protected parameter-less constructor. The class must have public or protected properties Adhere to this and your type is magically endowed with these behaviors without any additional programming on your part. Behind the scenes the framework subclasses your type at runtime and creates a "dynamic proxy" which has these additional behaviors and when you navigate properties of your POCO, the framework replaces the POCO type with derived type instances. The MOQ framework does simlar magic. Let's say you have a simple interface:   public interface IFoo      {          int GetNum();      }   We can verify that the GetNum() was invoked on a mock like so:   var mock = new Mock<IFoo>(MockBehavior.Default);   mock.Setup(f => f.GetNum());   var num = mock.Object.GetNum();   mock.Verify(f => f.GetNum());   Beind the scenes the MOQ framework is generating a dynamic proxy by implementing IFoo at runtime. the call to moq.Object returns the dynamic proxy on which we then call "GetNum" and then verify that this method was invoked. No dark magic at all, just clever programming is what's going on here, just not visible and hence appears magical! Let's create a simple dynamic proxy generator which accepts an interface type and dynamically creates a proxy implementing the interface type specified at runtime.     public static class DynamicProxyGenerator   {       public static T GetInstanceFor<T>()       {           Type typeOfT = typeof(T);           var methodInfos = typeOfT.GetMethods();           AssemblyName assName = new AssemblyName("testAssembly");           var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);           var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");           var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);              typeBuilder.AddInterfaceImplementation(typeOfT);           var ctorBuilder = typeBuilder.DefineConstructor(                     MethodAttributes.Public,                     CallingConventions.Standard,                     new Type[] { });           var ilGenerator = ctorBuilder.GetILGenerator();           ilGenerator.EmitWriteLine("Creating Proxy instance");           ilGenerator.Emit(OpCodes.Ret);           foreach (var methodInfo in methodInfos)           {               var methodBuilder = typeBuilder.DefineMethod(                   methodInfo.Name,                   MethodAttributes.Public | MethodAttributes.Virtual,                   methodInfo.ReturnType,                   methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                   );               var methodILGen = methodBuilder.GetILGenerator();               methodILGen.EmitWriteLine("I'm a proxy");               if (methodInfo.ReturnType == typeof(void))               {                   methodILGen.Emit(OpCodes.Ret);               }               else               {                   if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)                   {                       MethodInfo getMethod = typeof(Activator).GetMethod(/span>"CreateInstance",new Type[]{typeof((Type)});                                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                       methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);                       methodILGen.Emit(OpCodes.Call, typeofype).GetMethod("GetTypeFromHandle"));  ));                       methodILGen.Emit(OpCodes.Callvirt, getMethod);                       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);                                                              }                 else                   {                       methodILGen.Emit(OpCodes.Ldnull);                   }                   methodILGen.Emit(OpCodes.Ret);               }               typeBuilder.DefineMethodOverride(methodBuilder, methodInfo);           }                     Type constructedType = typeBuilder.CreateType();           var instance = Activator.CreateInstance(constructedType);           return (T)instance;       }   }   Dynamic proxies are created by calling into the following main types: AssemblyBuilder, TypeBuilder, Modulebuilder and ILGenerator. These types enable dynamically creating an assembly and emitting .NET modules and types in that assembly, all using IL instructions. Let's break down the code above a bit and examine it piece by piece                Type typeOfT = typeof(T);              var methodInfos = typeOfT.GetMethods();              AssemblyName assName = new AssemblyName("testAssembly");              var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);              var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");              var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);   We are instructing the runtime to create an assembly caled "test.dll"and in this assembly we then emit a new module called "testModule". We then emit a new type definition of name "typeName"Proxy into this new module. This is the definition for the "dynamic proxy" for type T                 typeBuilder.AddInterfaceImplementation(typeOfT);               var ctorBuilder = typeBuilder.DefineConstructor(                         MethodAttributes.Public,                         CallingConventions.Standard,                         new Type[] { });               var ilGenerator = ctorBuilder.GetILGenerator();               ilGenerator.EmitWriteLine("Creating Proxy instance");               ilGenerator.Emit(OpCodes.Ret);   The newly created type implements type T and defines a default parameterless constructor in which we emit a call to Console.WriteLine. This call is not necessary but we do this so that we can see first hand that when the proxy is constructed, when our default constructor is invoked.   var methodBuilder = typeBuilder.DefineMethod(                      methodInfo.Name,                      MethodAttributes.Public | MethodAttributes.Virtual,                      methodInfo.ReturnType,                      methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                      );   We then iterate over each method declared on type T and add a method definition of the same name into our "dynamic proxy" definition     if (methodInfo.ReturnType == typeof(void))   {       methodILGen.Emit(OpCodes.Ret);   }   If the return type specified in the method declaration of T is void we simply return.     if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)   {                               MethodInfo getMethod = typeof(Activator).GetMethod("CreateInstance",                                                         new Type[]{typeof(Type)});                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                                                     methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);       methodILGen.Emit(OpCodes.Call, typeof(Type).GetMethod("GetTypeFromHandle"));       methodILGen.Emit(OpCodes.Callvirt, getMethod);       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);   }   If the return type in the method declaration of T is either a value type or an enum, then we need to create an instance of the value type and return that instance the caller. In order to accomplish that we need to do the following: 1) Get a handle to the Activator.CreateInstance method 2) Declare a local variable which represents the Type of the return type(i.e the type object of the return type) specified on the method declaration of T(obtained from the MethodInfo) and push this Type object onto the evaluation stack. In reality a RuntimeTypeHandle is what is pushed onto the stack. 3) Invoke the "GetTypeFromHandle" method(a static method in the Type class) passing in the RuntimeTypeHandle pushed onto the stack previously as an argument, the result of this invocation is a Type object (representing the method's return type) which is pushed onto the top of the evaluation stack. 4) Invoke Activator.CreateInstance passing in the Type object from step 3, the result of this invocation is an instance of the value type boxed as a reference type and pushed onto the top of the evaluation stack. 5) Unbox the result and place it into the local variable of the return type defined in step 2   methodILGen.Emit(OpCodes.Ldnull);   If the return type is a reference type then we just load a null onto the evaluation stack   methodILGen.Emit(OpCodes.Ret);   Emit a a return statement to return whatever is on top of the evaluation stack(null or an instance of a value type) back to the caller     Type constructedType = typeBuilder.CreateType();   var instance = Activator.CreateInstance(constructedType);   return (T)instance;   Now that we have a definition of the "dynamic proxy" implementing all the methods declared on T, we can now create an instance of the proxy type and return that out typed as T. The caller can now invoke the generator and request a dynamic proxy for any type T. In our example when the client invokes GetNum() we get back "0". Lets add a new method on the interface called DayOfWeek GetDay()   public interface IFoo      {          int GetNum();          DayOfWeek GetDay();      }   When GetDay() is invoked, the "dynamic proxy" returns "Sunday" since that is the default value for the DayOfWeek enum This is a very trivial example of dynammic proxies, frameworks like MOQ have a way more sophisticated implementation of this paradigm where in you can instruct the framework to create proxies which return specified values for a method implementation.

    Read the article

  • Setting up OpenGL camera with off-center perspective

    - by user5484
    Hi, I'm using OpenGL ES (in iOS) and am struggling with setting up a viewport with an off-center distance point. Consider a game where you have a character in the left hand side of the screen, and some controls alpha'd over the left-hand side. The "main" part of the screen is on the right, but you still want to show whats in the view on the left. However when the character moves "forward" you want the character to appear to be going "straight", or "up" on the device, and not heading on an angle to the point that is geographically at the mid-x position in the screen. Here's the jist of how i set my viewport up where it is centered in the middle: // setup the camera // glMatrixMode(GL_PROJECTION); glLoadIdentity(); const GLfloat zNear = 0.1; const GLfloat zFar = 1000.0; const GLfloat fieldOfView = 90.0; // can definitely adjust this to see more/less of the scene GLfloat size = zNear * tanf(DEGREES_TO_RADIANS(fieldOfView) / 2.0); CGRect rect; rect.origin = CGPointMake(0.0, 0.0); rect.size = CGSizeMake(backingWidth, backingHeight); glFrustumf(-size, size, -size / (rect.size.width / rect.size.height), size / (rect.size.width / rect.size.height), zNear, zFar); glMatrixMode(GL_MODELVIEW); // rotate the whole scene by the tilt to face down on the dude const float tilt = 0.3f; const float yscale = 0.8f; const float zscale = -4.0f; glTranslatef(0.0, yscale, zscale); const int rotationMinDegree = 0; const int rotationMaxDegree = 180; glRotatef(tilt * (rotationMaxDegree - rotationMinDegree) / 2, 1.0f, 0.0f, 0.0f); glTranslatef(0, -yscale, -zscale); static float b = -25; //0; static float c = 0; // rotate by to face in the direction of the dude float a = RADIANS_TO_DEGREES(-atan2f(-gCamera.orientation.x, -gCamera.orientation.z)); glRotatef(a, 0.0, 1.0, 0.0); // and move to where it is glTranslatef(-gCamera.pos.x, -gCamera.pos.y, -gCamera.pos.z); // draw the rest of the scene ... I've tried a variety of things to make it appear as though "the dude" is off to the right: - do a translate after the frustrum to the x direction - do a rotation after the frustrum about the up/y-axis - move the camera with a biased lean to the left of the dude Nothing i do seems to produce good results, the dude will either look like he's stuck on an angle, or the whole scene will appear tilted. I'm no OpenGL expert, so i'm hoping someone can suggest some ideas or tricks on how to "off-center" these model views in OpenGL. Thanks!

    Read the article

  • Survey: How's Your Economy?

    - by andyleonard
    Another quick survey question, slightly off-topic: How's your economy? Have things picked up for you recently? Slowed down? Remained static? :{> Andy Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!...(read more)

    Read the article

  • Problem to match font size to the screen resolution in libgdx

    - by Iñaki Bedoya
    I'm having problems to show text on my game at same size on different screens, and I did a simple test. This test consists to show a text fitting at the screen, I want the text has the same size independently from the screen and from DPI. I've found this and this answer that I think should solve my problem but don't. In desktop the size is ok, but in my phone is too big. This is the result on my Nexus 4: (768x1280, 2.0 density) And this is the result on my MacBook: (480x800, 0.6875 density) I'm using the Open Sans Condensed (link to google fonts) As you can see on desktop looks good, but on the phone is so big. Here the code of my test: public class TextTest extends ApplicationAdapter { private static final String TAG = TextTest.class.getName(); private static final String TEXT = "Tap the screen to start"; private OrthographicCamera camera; private Viewport viewport; private SpriteBatch batch; private BitmapFont font; @Override public void create () { Gdx.app.log(TAG, "Screen size: "+Gdx.graphics.getWidth()+"x"+Gdx.graphics.getHeight()); Gdx.app.log(TAG, "Density: "+Gdx.graphics.getDensity()); camera = new OrthographicCamera(); viewport = new ExtendViewport(Gdx.graphics.getWidth(), Gdx.graphics.getWidth(), camera); batch = new SpriteBatch(); FreeTypeFontGenerator generator = new FreeTypeFontGenerator(Gdx.files.internal("fonts/OpenSans-CondLight.ttf")); font = createFont(generator, 64); generator.dispose(); } private BitmapFont createFont(FreeTypeFontGenerator generator, float dp) { FreeTypeFontGenerator.FreeTypeFontParameter parameter = new FreeTypeFontGenerator.FreeTypeFontParameter(); int fontSize = (int)(dp * Gdx.graphics.getDensity()); parameter.size = fontSize; Gdx.app.log(TAG, "Font size: "+fontSize+"px"); return generator.generateFont(parameter); } @Override public void render () { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); int w = -(int)(font.getBounds(TEXT).width / 2); batch.setProjectionMatrix(camera.combined); batch.begin(); font.setColor(Color.BLACK); font.draw(batch, TEXT, w, 0); batch.end(); } @Override public void resize(int width, int height) { viewport.update(width, height); } @Override public void dispose() { font.dispose(); batch.dispose(); } } I'm trying to find a neat way to fix this. What I'm doing wrong? is the camera? the viewport? UPDATE: What I want is to keep the same margins in proportion, independently of the screen size or resolution. This image illustrates what I mean.

    Read the article

< Previous Page | 220 221 222 223 224 225 226 227 228 229 230 231  | Next Page >