Search Results

Search found 8019 results on 321 pages for 'while loop'.

Page 225/321 | < Previous Page | 221 222 223 224 225 226 227 228 229 230 231 232  | Next Page >

  • Sorting and Filtering By Model-Based LOV Display Value

    - by Steven Davelaar
    If you use a model-based LOV and you use display type "choice", then ADF nicely displays the display value, even if the table is read-only. In the screen shot below, you see the RegionName attribute displayed instead of the RegionId. This is accomplished by the model-based LOV, I did not modify the Countries view object to include a join with Regions.  Also note the sort icon, the table is sorted by RegionId. This sorting typically results in a bug reported by your test team. Europe really shouldn't come before America when sorting ascending, right? To fix this, we could of course change the Countries view object query and add a join with the Regions table to include the RegionName attribute. If the table is updateable, we still need the choice list, so we need to move the model-based LOV from the RegionId attribute to the RegionName attribute and hide the RegionId attribute in the table. But that is a lot of work for such a simple requirement, in particular if we have lots of model-based choice lists in our view object. Fortunately, there is an easier way to do this, with some generic code in your view object base class that fixes this at once for all model-based choice lists that we have defined in our application. The trick is to override the method getSortCriteria() in the base view object class. By default, this method returns null because the sorting is done in the database through a SQL Order By clause. However, if the getSortCriteria method does return a sort criteria the framework will perform in memory sorting which is what we need to achieve sorting by region name. So, inside this method we need to evaluate the Order By clause, and if the order by column matches an attribute that has a model-based LOV choicelist defined with a display attribute that is different from the value attribute, we need to return a sort criterria. Here is the complete code of this method: public SortCriteria[] getSortCriteria() {   String orderBy = getOrderByClause();          if (orderBy!=null )   {     boolean descending = false;     if (orderBy.endsWith(" DESC"))      {       descending = true;       orderBy = orderBy.substring(0,orderBy.length()-5);     }     // extract column name, is part after the dot     int dotpos = orderBy.lastIndexOf(".");     String columnName = orderBy.substring(dotpos+1);     // loop over attributes and find matching attribute     AttributeDef orderByAttrDef = null;     for (AttributeDef attrDef : getAttributeDefs())     {       if (columnName.equals(attrDef.getColumnName()))       {         orderByAttrDef = attrDef;         break;       }     }     if (orderByAttrDef!=null && "choice".equals(orderByAttrDef.getProperty("CONTROLTYPE"))          && orderByAttrDef.getListBindingDef()!=null)     {       String orderbyAttr = orderByAttrDef.getName();       String[] displayAttrs = orderByAttrDef.getListBindingDef().getListDisplayAttrNames();       String[] listAttrs = orderByAttrDef.getListBindingDef().getListAttrNames();       // if first list display attributes is not the same as first list attribute, than the value       // displayed is different from the value copied back to the order by attribute, in which case we need to       // use our custom comparator       if (displayAttrs!=null && listAttrs!=null && displayAttrs.length>0 && !displayAttrs[0].equals(listAttrs[0]))       {                  SortCriteriaImpl sc1 = new SortCriteriaImpl(orderbyAttr, descending);         SortCriteria[] sc = new SortCriteriaImpl[]{sc1};         return sc;                           }     }     }   return super.getSortCriteria(); } If this method returns a sort criteria, then the framework will call the sort method on the view object. The sort method uses a Comparator object to determine the sequence in which the rows should be returned. This comparator is retrieved by calling the getRowComparator method on the view object. So, to ensure sorting by our display value, we need to override this method to return our custom comparator: public Comparator getRowComparator() {   return new LovDisplayAttributeRowComparator(getSortCriteria()); } The custom comparator class extends the default RowComparator class and overrides the method compareRows and looks up the choice display value to compare the two rows. The complete code of this class is included in the sample application.  With this code in place, clicking on the Region sort icon nicely sorts the countries by RegionName, as you can see below. When using the Query-By-Example table filter at the top of the table, you typically want to use the same choice list to filter the rows. One way to do that is documented in ADF code corner sample 16 - How To Customize the ADF Faces Table Filter.The solution in this sample is perfectly fine to use. This sample requires you to define a separate iterator binding and associated tree binding to populate the choice list in the table filter area using the af:iterator tag. You might be able to reuse the same LOV view object instance in this iterator binding that is used as view accessor for the model-bassed LOV. However, I have seen quite a few customers who have a generic LOV view object (mapped to one "refcodes" table) with the bind variable values set in the LOV view accessor. In such a scenario, some duplicate work is needed to get a dedicated view object instance with the correct bind variables that can be used in the iterator binding. Looking for ways to maximize reuse, wouldn't it be nice if we could just reuse our model-based LOV to populate this filter choice list? Well we can. Here are the basic steps: 1. Create an attribute list binding in the page definition that we can use to retrieve the list of SelectItems needed to populate the choice list <list StaticList="false" Uses="LOV_RegionId"               IterBinding="CountriesView1Iterator" id="RegionId"/>  We need this "current row" list binding because the implicit list binding used by the item in the table is not accessible outside a table row, we cannot use the expression #{row.bindings.RegionId} in the table filter facet. 2. Create a Map-style managed bean with the get method retrieving the list binding as key, and returning the list of SelectItems. To return this list, we take the list of selectItems contained by the list binding and replace the index number that is normally used as key value with the actual attribute value that is set by the choice list. Here is the code of the get method:  public Object get(Object key) {   if (key instanceof FacesCtrlListBinding)   {     // we need to cast to internal class FacesCtrlListBinding rather than JUCtrlListBinding to     // be able to call getItems method. To prevent this import, we could evaluate an EL expression     // to get the list of items     FacesCtrlListBinding lb = (FacesCtrlListBinding) key;     if (cachedFilterLists.containsKey(lb.getName()))     {       return cachedFilterLists.get(lb.getName());     }     List<SelectItem> items = (List<SelectItem>)lb.getItems();     if (items==null || items.size()==0)     {       return items;     }     List<SelectItem> newItems = new ArrayList<SelectItem>();     JUCtrlValueDef def = ((JUCtrlValueDef)lb.getDef());     String valueAttr = def.getFirstAttrName();     // the items list has an index number as value, we need to replace this with the actual     // value of the attribute that is copied back by the choice list     for (int i = 0; i < items.size(); i++)     {       SelectItem si = (SelectItem) items.get(i);       Object value = lb.getValueFromList(i);       if (value instanceof Row)       {         Row row = (Row) value;         si.setValue(row.getAttribute(valueAttr));                 }       else       {         // this is the "empty" row, set value to empty string so all rows will be returned         // as user no longer wants to filter on this attribute         si.setValue("");       }       newItems.add(si);     }     cachedFilterLists.put(lb.getName(), newItems);     return newItems;   }   return null; } Note that we added caching to speed up performance, and to handle the situation where table filters or search criteria are set such that no rows are retrieved in the table. When there are no rows, there is no current row and the getItems method on the list binding will return no items.  An alternative approach to create the list of SelectItems would be to retrieve the iterator binding from the list binding and loop over the rows in the iterator binding rowset. Then we wouldn't need the import of the ADF internal oracle.adfinternal.view.faces.model.binding.FacesCtrlListBinding class, but then we need to figure out the display attributes from the list binding definition, and possible separate them with a dash if multiple display attributes are defined in the LOV. Doable but less reuse and more work. 3. Inside the filter facet for the column create an af:selectOneChoice with the value property of the f:selectItems tag referencing the get method of the managed bean:  <f:facet name="filter">   <af:selectOneChoice id="soc0" autoSubmit="true"                       value="#{vs.filterCriteria.RegionId}">     <!-- attention: the RegionId list binding must be created manually in the page definition! -->                       <f:selectItems id="si0"                    value="#{viewScope.TableFilterChoiceList[bindings.RegionId]}"/>   </af:selectOneChoice> </f:facet> Note that the managed bean is defined in viewScope for the caching to take effect. Here is a screen shot of the tabe filter in action: You can download the sample application here. 

    Read the article

  • How can I solve this SAT edge case?

    - by ssb
    I have an SAT implementation that basically works, and the fact that it works is what's giving me a few headaches. Basically there are some situations where using the SAT doesn't quite give me my intended result. One of these involves movement across multiple collision objects. Or to put it another way, if I have several collision boxes lined up next to each other such as to create something like a wall or a floor, movement along that surface while constantly applying force into that surface sometimes causes hangups, i.e. the player stops moving. This illustration shows what I mean: The 2 boxes on the bottom represent a floor, and the box on top/in the middle represents what my player is doing. There are several squares lined up as world obstacles to create some kind of wall, and if I move to the left across this surface while holding the down key then the issue arises. It only happens at the exact dividing point between two blocks. It only happens when moving to the left. At any rate I think I know why it happens, but I don't know how to solve it. Basically when I update my player movement I consider which directions are pressed, naturally, so if down is pressed I will add the speed to the Y component, and so on. But due to the way my SAT is implemented, when the penetration into the shape is the same from both sides it just goes with the smallest axis that it finds first, and it checks collisions against objects in the order that they were created because it goes through a foreach loop on the list of collidable objects. So this all adds up to the effect of if I'm moving to the left over a series of boxes while holding down, it will resolve me back to the right out of the first box and then up out of the box to the right of it, and this continues as long as the penetration is the same. The odd part is that this doesn't happen every time, which I am going to attribute to some oddity regarding multiplying velocity by the game time and causing some minor discrepancies between the lengths. Ultimately what this boils down to is that it will keep resolving me to the right and up, but this is technically expected behavior. All the solutions I can think of only address the symptoms of this problem and not the actual cause, such as not using many blocks to create walls or shapes, which is an option I'd like to keep open. I could also change which axis my algorithm defaults to, but that would just cause problems when going up/down along the walls. What can I do to fix this?

    Read the article

  • How to join two collections with LINQ

    - by JustinGreenwood
    Here is a simple and complete example of how to perform joins on two collections with LINQ. I wrote it for a friend to show him, in one simple file, the power of LINQ queries and anonymous objects. In the file below, there are two simple data classes defined: Person and Item. In the beginning of the main method, two collections are created. Note that the Item's OwnerId field reference the PersonId of a Person object. The effect of the LINQ query below is equivalent to a SQL statement looking like this: select Person.PersonName as OwnerName, Item.ItemName as OwnedItem from Person inner join Item on Item.OwnerId = Person.PersonId order by Item.ItemName desc; using System; using System.Collections.Generic; using System.Linq; namespace LinqJoinAnonymousObjects { class Program { class Person { public int PersonId { get; set; } public string PersonName { get; set; } } class Item { public string ItemName { get; set; } public int OwnerId { get; set; } } static void Main(string[] args) { // Create two collections: one of people, and another with their possessions. var people = new List<Person> { new Person { PersonId=1, PersonName="Justin" }, new Person { PersonId=2, PersonName="Arthur" }, new Person { PersonId=3, PersonName="Bob" } }; var items = new List<Item> { new Item { OwnerId=1, ItemName="Armor" }, new Item { OwnerId=1, ItemName="Book" }, new Item { OwnerId=2, ItemName="Chain Mail" }, new Item { OwnerId=2, ItemName="Excalibur" }, new Item { OwnerId=3, ItemName="Bubbles" }, new Item { OwnerId=3, ItemName="Gold" } }; // Create a new, anonymous composite result for person id=2. var compositeResult = from p in people join i in items on p.PersonId equals i.OwnerId where p.PersonId == 2 orderby i.ItemName descending select new { OwnerName = p.PersonName, OwnedItem = i.ItemName }; // The query doesn't evaluate until you iterate through the query or convert it to a list Console.WriteLine("[" + compositeResult.GetType().Name + "]"); // Convert to a list and loop through it. var compositeList = compositeResult.ToList(); Console.WriteLine("[" + compositeList.GetType().Name + "]"); foreach (var o in compositeList) { Console.WriteLine("\t[" + o.GetType().Name + "] " + o.OwnerName + " - " + o.OwnedItem); } Console.ReadKey(); } } } The output of the program is below: [WhereSelectEnumerableIterator`2] [List`1] [<>f__AnonymousType1`2] Arthur - Excalibur [<>f__AnonymousType1`2] Arthur - Chain Mail

    Read the article

  • Applying Quotas Across all My Sites

    - by Bil Simser
    Just a quick snippet this morning. If you need to apply a new quota template to all users My Sites here's a quick script to do it. Changing an existing quota is fine but if you're migrating users from another system or you just want to up everyone's storage a bit here's what you do. Create a new quota template. This is found in Central Admin under Application Management | Site Collections | Specify quota templates. There's already a default "Individual Quota" created you might want to create your own or have a special one for your users Open up the PowerShell Management Console and enter "Get-SPWebApplication". This will list all your web applications on the farm.  To apply it to all My Sites (each site is a site collection of its own) run this script below. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: $webapps = Get-SPWebApplication; 2:   3: $webapp = $webapps[4]; 4:   5: foreach ($site in $webapp.Sites) { 6: Set-SPSite -Identity $site.url -QuotaTemplate "Your Quota Template" 7: } The first line gets all the web applications on the server. In our case, the forth one is the mysite web app (yours will probably be a different number). Just run Get-SPWebApplication from the console to figure out which one to use. You could get fancy and pipe the name to find it but I'm too lazy for that.Then we loop through all the sites on the list using the $site.url property and pass it to the Set-SPSite cmdlet and specify the name of the our custom QuotaTemplate.Easy. Now all users are updated with the new quota template.

    Read the article

  • Smooth animation when using fixed time step

    - by sythical
    I'm trying to implement the game loop where the physics is independent from rendering but my animation isn't as smooth as I would like it to be and it seems to periodically jump. Here is my code: // alpha is used for interpolation double alpha = 0, counter_old_time = 0; double accumulator = 0, delta_time = 0, current_time = 0, previous_time = 0; unsigned frame_counter = 0, current_fps = 0; const unsigned physics_rate = 40, max_step_count = 5; const double step_duration = 1.0 / 40.0, accumulator_max = step_duration * 5; // information about the circ;e (position and velocity) int old_pos_x = 100, new_pos_x = 100, render_pos_x = 100, velocity_x = 60; previous_time = al_get_time(); while(true) { current_time = al_get_time(); delta_time = current_time - previous_time; previous_time = current_time; accumulator += delta_time; if(accumulator > accumulator_max) { accumulator = accumulator_max; } while(accumulator >= step_duration) { if(new_pos_x > 1330) velocity_x = -15; else if(new_pos_x < 70) velocity_x = 15; old_pos_x = new_pos_x; new_pos_x += velocity_x; accumulator -= step_duration; } alpha = accumulator / static_cast<double>(step_duration); render_pos_x = old_pos_x + (new_pos_x - old_pos_x) * alpha; al_clear_to_color(al_map_rgb(20, 20, 40)); // clears the screen al_draw_textf(font, al_map_rgb(255, 255, 255), 20, 20, 0, "current_fps: %i", current_fps); // print fps al_draw_filled_circle(render_pos_x, 400, 15, al_map_rgb(255, 255, 255)); // draw circle // I've added this to test how the program will behave when rendering takes // considerably longer than updating the game. al_rest(0.008); al_flip_display(); // swaps the buffers frame_counter++; if(al_get_time() - counter_old_time >= 1) { current_fps = frame_counter; frame_counter = 0; counter_old_time = al_get_time(); } } I have added a pause during the rendering part because I wanted to see how the code would behave when a lot of rendering is involved. Removing it makes the animation smooth but then I'll have to make sure that I don't let the frame rate drop too much and that doesn't seem like a good solution. I've been trying to fix this for a week and have had no luck so I'd be very grateful if someone can read through my code. Thank you! Edit: I added the following code to work out the actual velocity (pixels per second) of the ball each time the ball is rendered and surprisingly it's not constant so I'm guessing that's the issue. I'm not sure why it's not constant. alpha = accumulator / static_cast<double>(step_duration); render_pos_x = old_pos_x + (new_pos_x - old_pos_x) * alpha; cout << (render_pos_x - old_render_pos) / delta_time << endl; old_render_pos = render_pos_x;

    Read the article

  • Games at Work Part 2: Gamification and Enterprise Applications

    - by ultan o'broin
    Gamification and Enterprise Applications In part 1 of this article, we explored why people are motivated to play games so much. Now, let's think about what that means for Oracle applications user experience. (Even the coffee is gamified. Acknowledgement @noelruane. Check out the Guardian article Dublin's Frothing with Tech Fever. Game development is big business in Ireland too.) Applying game dynamics (gamification) effectively in the enterprise applications space to reflect business objectives is now a hot user experience topic. Consider, for example, how such dynamics could solve applications users’ problems such as: Becoming familiar or expert with an application or process Building loyalty, customer satisfaction, and branding relationships Collaborating effectively and populating content in the community Completing tasks or solving problems on time Encouraging teamwork to achieve goals Improving data accuracy and completeness of entry Locating and managing the correct resources or information Managing changes and exceptions Setting and reaching targets, quotas, or objectives Games’ Incentives, Motivation, and Behavior I asked Julian Orr, Senior Usability Engineer, in the Oracle Fusion Applications CRM User Experience (UX) team for his thoughts on what potential gamification might offer Oracle Fusion Applications. Julian pointed to the powerful incentives offered by games as the starting place: “The biggest potential for gamification in enterprise apps is as an intrinsic motivator. Mechanisms include fun, social interaction, teamwork, primal wiring, adrenaline, financial, closed-loop feedback, locus of control, flow state, and so on. But we need to know what works best for a given work situation.” For example, in CRM service applications, we might look at the motivations of typical service applications users (see figure 1) and then determine how we can 'gamify' these motivations with techniques to optimize the desired work behavior for the role (see figure 2). Description of Figure 1 Description of Figure 2 Involving Our Users Online game players are skilled collaborators as well as problem solvers. Erika Webb (@erikanollwebb), Oracle Fusion Applications UX Manager, has run gamification events for Oracle, including one on collaboration and gamification in Oracle online communities that involved Oracle customers and partners. Read more... However, let’s be clear: gamifying a user interface that’s poorly designed is merely putting the lipstick of gamification on the pig of work. Gamification cannot replace good design and killer content based on understanding how applications users really work and what motivates them. So, Let the Games Begin! Gamification has tremendous potential for the enterprise application user experience. The Oracle Fusion Applications UX team is innovating fast and hard in this area, researching with our users how gamification can make work more satisfying and enterprises more productive. If you’re interested in knowing more about our gamification research, sign up for more information or check out how your company can get involved through the Oracle Usability Advisory Board. Your thoughts? Find those comments.

    Read the article

  • Basis of definitions

    - by Yttrill
    Let us suppose we have a set of functions which characterise something: in the OO world methods characterising a type. In mathematics these are propositions and we have two kinds: axioms and lemmas. Axioms are assumptions, lemmas are easily derived from them. In C++ axioms are pure virtual functions. Here's the problem: there's more than one way to axiomatise a system. Given a set of propositions or methods, a subset of the propositions which is necessary and sufficient to derive all the others is called a basis. So too, for methods or functions, we have a desired set which must be defined, and typically every one has one or more definitions in terms of the others, and we require the programmer to provide instance definitions which are sufficient to allow all the others to be defined, and, if there is an overspecification, then it is consistent. Let me give an example (in Felix, Haskell code would be similar): class Eq[t] { virtual fun ==(x:t,y:t):bool => eq(x,y); virtual fun eq(x:t, y:t)=> x == y; virtual fun != (x:t,y:t):bool => not (x == y); axiom reflex(x:t): x == x; axiom sym(x:t, y:t): (x == y) == (y == x); axiom trans(x:t, y:t, z:t): implies(x == y and y == z, x == z); } Here it is clear: the programmer must define either == or eq or both. If both are defined, the definitions must be equivalent. Failing to define one doesn't cause a compiler error, it causes an infinite loop at run time. Defining both inequivalently doesn't cause an error either, it is just inconsistent. Note the axioms specified constrain the semantics of any definition. Given a definition of == either directly or via a definition of eq, then != is defined automatically, although the programmer might replace the default with something more efficient, clearly such an overspecification has to be consistent. Please note, == could also be defined in terms of !=, but we didn't do that. A characterisation of a partial or total order is more complex. It is much more demanding since there is a combinatorial explosion of possible bases. There is an reason to desire overspecification: performance. There also another reason: choice and convenience. So here, there are several questions: one is how to check semantics are obeyed and I am not looking for an answer here (way too hard!). The other question is: How can we specify, and check, that an instance provides at least a basis? And a much harder question: how can we provide several default definitions which depend on the basis chosen?

    Read the article

  • 2D SAT Collision Detection not working when using certain polygons

    - by sFuller
    My SAT algorithm falsely reports that collision is occurring when using certain polygons. I believe this happens when using a polygon that does not contain a right angle. Here is a simple diagram of what is going wrong: Here is the problematic code: std::vector<vec2> axesB = polygonB->GetAxes(); //loop over axes B for(int i = 0; i < axesB.size(); i++) { float minA,minB,maxA,maxB; polygonA->Project(axesB[i],&minA,&maxA); polygonB->Project(axesB[i],&minB,&maxB); float intervalDistance = polygonA->GetIntervalDistance(minA, maxA, minB, maxB); if(intervalDistance >= 0) return false; //Collision not occurring } This function retrieves axes from the polygon: std::vector<vec2> Polygon::GetAxes() { std::vector<vec2> axes; for(int i = 0; i < verts.size(); i++) { vec2 a = verts[i]; vec2 b = verts[(i+1)%verts.size()]; vec2 edge = b-a; axes.push_back(vec2(-edge.y,edge.x).GetNormailzed()); } return axes; } This function returns the normalized vector: vec2 vec2::GetNormailzed() { float mag = sqrt( x*x + y*y ); return *this/mag; } This function projects a polygon onto an axis: void Polygon::Project(vec2* axis, float* min, float* max) { float d = axis->DotProduct(&verts[0]); float _min = d; float _max = d; for(int i = 1; i < verts.size(); i++) { d = axis->DotProduct(&verts[i]); _min = std::min(_min,d); _max = std::max(_max,d); } *min = _min; *max = _max; } This function returns the dot product of the vector with another vector. float vec2::DotProduct(vec2* other) { return (x*other->x + y*other->y); } Could anyone give me a pointer in the right direction to what could be causing this bug?

    Read the article

  • 3D Model not translating correctly (visually)

    - by ChocoMan
    In my first image, my model displays correctly: But when I move the model's position along the Z-axis (forward) I get this, yet the Y-axis doesnt change. An if I keep going, the model disappears into the ground: Any suggestions as to how I can get the model to translate properly visually? Here is how Im calling the model and the terrain in draw(): cameraPosition = new Vector3(camX, camY, camZ); // Copy any parent transforms. Matrix[] transforms = new Matrix[mShockwave.Bones.Count]; mShockwave.CopyAbsoluteBoneTransformsTo(transforms); Matrix[] ttransforms = new Matrix[terrain.Bones.Count]; terrain.CopyAbsoluteBoneTransformsTo(ttransforms); // Draw the model. A model can have multiple meshes, so loop. foreach (ModelMesh mesh in mShockwave.Meshes) { // This is where the mesh orientation is set, as well // as our camera and projection. foreach (BasicEffect effect in mesh.Effects) { effect.EnableDefaultLighting(); effect.PreferPerPixelLighting = true; effect.World = transforms[mesh.ParentBone.Index] * Matrix.CreateRotationY(modelRotation) * Matrix.CreateTranslation(modelPosition); // Looking at the model (picture shouldnt change other than rotation) effect.View = Matrix.CreateLookAt(cameraPosition, modelPosition, Vector3.Up); effect.Projection = Matrix.CreatePerspectiveFieldOfView( MathHelper.ToRadians(45.0f), aspectRatio, 1.0f, 10000.0f); effect.TextureEnabled = true; } // Draw the mesh, using the effects set above. prepare3d(); mesh.Draw(); } //Terrain test foreach (ModelMesh meshT in terrain.Meshes) { foreach (BasicEffect effect in meshT.Effects) { effect.EnableDefaultLighting(); effect.PreferPerPixelLighting = true; effect.World = ttransforms[meshT.ParentBone.Index] * Matrix.CreateRotationY(0) * Matrix.CreateTranslation(terrainPosition); // Looking at the model (picture shouldnt change other than rotation) effect.View = Matrix.CreateLookAt(cameraPosition, terrainPosition, Vector3.Up); effect.Projection = Matrix.CreatePerspectiveFieldOfView( MathHelper.ToRadians(45.0f), aspectRatio, 1.0f, 10000.0f); effect.TextureEnabled = true; } // Draw the mesh, using the effects set above. prepare3d(); meshT.Draw(); DrawText(); } base.Draw(gameTime); } Im suspecting that there may be something wrong with how I'm handling my camera. The model rotates fine on its Y-axis.

    Read the article

  • Obtaining positional information in the IEnumerable Select extension method

    - by Kyle Burns
    This blog entry is intended to provide a narrow and brief look into a way to use the Select extension method that I had until recently overlooked. Every developer who is using IEnumerable extension methods to work with data has been exposed to the Select extension method, because it is a pretty critical piece of almost every query over a collection of objects.  The method is defined on type IEnumerable and takes as its argument a function that accepts an item from the collection and returns an object which will be an item within the returned collection.  This allows you to perform transformations on the source collection.  A somewhat contrived example would be the following code that transforms a collection of strings into a collection of anonymous objects: 1: var media = new[] {"book", "cd", "tape"}; 2: var transformed = media.Select( item => 3: { 4: Media = item 5: } ); This code transforms the array of strings into a collection of objects which each have a string property called Media. If every developer using the LINQ extension methods already knows this, why am I blogging about it?  I’m blogging about it because the method has another overload that I hadn’t seen before I needed it a few weeks back and I thought I would share a little about it with whoever happens upon my blog.  In the other overload, the function defined in the first overload as: 1: Func<TSource, TResult> is instead defined as: 1: Func<TSource, int, TResult>   The additional parameter is an integer representing the current element’s position in the enumerable sequence.  I used this information in what I thought was a pretty cool way to compare collections and I’ll probably blog about that sometime in the near future, but for now we’ll continue with the contrived example I’ve already started to keep things simple and show how this works.  The following code sample shows how the positional information could be used in an alternating color scenario.  I’m using a foreach loop because IEnumerable doesn’t have a ForEach extension, but many libraries do add the ForEach extension to IEnumerable so you can update the code if you’re using one of these libraries or have created your own. 1: var media = new[] {"book", "cd", "tape"}; 2: foreach (var result in media.Select( 3: (item, index) => 4: new { Item = item, Index = index })) 5: { 6: Console.ForegroundColor = result.Index % 2 == 0 7: ? ConsoleColor.Blue : ConsoleColor.Yellow; 8: Console.WriteLine(result.Item); 9: }

    Read the article

  • How to detect which edges of a rectange touch when they collide in iOS

    - by Mike King
    I'm creating a basic "game" in iOS 4.1. The premise is simple, there is a green rectangle ("disk") that moves/bounces around the screen, and red rectangle ("bump") that is stationary. The user can move the red "bump" by touching another coordinate on the screen, but that's irrelevant to this question. Each rectangle is a UIImageView (I will replace them with some kind of image/icon once I get the mechanics down). I've gotten as far as detecting when the rectangles collide, and I'm able to reverse the direction of the green "disk" on the Y axis if they do. This works well when the green "disk" approaches the red "bump" from top or bottom, it bounces off in the other direction. But when it approaches from the side, the bounce is incorrect; I need to reverse the X direction instead. Here's the timer I setup: - (void)viewDidLoad { xSpeed = 3; ySpeed = -3; gameTimer = [NSTimer scheduledTimerWithTimeInterval:0.05 target:self selector:@selector(mainGameLoop:) userInfo:nil repeats:YES]; [super viewDidLoad]; } Here's the main game loop: - (void) mainGameLoop:(NSTimer *)theTimer { disk.center = CGPointMake(disk.center.x + xSpeed, disk.center.y + ySpeed); // make sure the disk does not travel off the edges of the screen // magic number values based on size of disk's frame // startAnimating causes the image to "pulse" if (disk.center.x < 55 || disk.center.x > 265) { xSpeed = xSpeed * -1; [disk startAnimating]; } if (disk.center.y < 55 || disk.center.y > 360) { ySpeed = ySpeed * -1; [disk startAnimating]; } // check to see if the disk collides with the bump if (CGRectIntersectsRect(disk.frame, bump.frame)) { NSLog(@"Collision detected..."); if (! [disk isAnimating]) { ySpeed = ySpeed * -1; [disk startAnimating]; } } } So my question is: how can I detect whether I need to flip the X speed or the Y speed? ie: how can I calculate which edge of the bump was collided with?

    Read the article

  • Efficient inline templates and C++

    - by Darryl Gove
    I've talked before about calling inline templates from C++, I've also talked about calling inline templates efficiently. This time I want to talk about efficiently calling inline templates from C++. The obvious starting point is that I need to declare the inline templates as being extern "C": extern "C" { int mytemplate(int); } This enables us to call it, but the call may not be very efficient because the compiler will treat it as a function call, and may produce suboptimal code based on that premise. So we need to add the no_side_effect pragma: extern "C" { int mytemplate(int); #pragma no_side_effect(mytemplate) } However, this may still not produce optimal code. We've discussed how the no_side_effect pragma cannot be combined with exceptions, well we know that the code cannot produce exceptions, but the compiler doesn't know that. If we tell the compiler that information it may be able to produce even better code. We can do this by adding the "throw()" keyword to the template declaration: extern "C" { int mytemplate(int) throw(); #pragma no_side_effect(mytemplate) } The following is an example of how these changes might improve performance. We can take our previous example code and migrate it to C++, adding the use of a try...catch construct: #include <iostream extern "C" { int lzd(int); #pragma no_side_effect(lzd) } int a; int c=0; class myclass { int routine(); }; int myclass::routine() { try { for(a=0; a<1000; a++) { c=lzd(c); } } catch(...) { std::cout << "Something happened" << std::endl; } return 0; } Compiling this produces a slightly suboptimal code sequence in the hot loop: $ CC -O -xtarget=T4 -S t.cpp t.il ... /* 0x0014 23 */ lzd %o0,%o0 /* 0x0018 21 */ add %l6,1,%l6 /* 0x001c */ cmp %l6,1000 /* 0x0020 */ bl,pt %icc,.L77000033 /* 0x0024 23 */ st %o0,[%l7] There's a store in the delay slot of the branch, so we're repeatedly storing data back to memory. If we change the function declaration to include "throw()", we get better code: $ CC -O -xtarget=T4 -S t.cpp t.il ... /* 0x0014 21 */ add %i1,1,%i1 /* 0x0018 23 */ lzd %o0,%o0 /* 0x001c 21 */ cmp %i1,999 /* 0x0020 */ ble,pt %icc,.L77000019 /* 0x0024 */ nop The store has gone, but the code is still suboptimal - there's a nop in the delay slot rather than useful work. However, it's good enough for this example. The point I'm making is that the compiler produces the better code with both the "throw()" and the no side effect pragma.

    Read the article

  • Power Distribution amongst connected nodes

    - by Perky
    In my game the map is represented by connected nodes, each node has a number of connected nodes. The nodes represent a system in which players can build structures and move units about. If you're familiar with Sins of a Solar Empire the game map is very similar. I want each node to be able to produce power and share it with all connected nodes. For example if A, B, C & D are all connected and produce 100 power units, then each system should have 400 power units available. If node B builds a structure that consumes 100 power units then A, B, C & D should then have 300 power units available. I've been working on this system all day and haven't been able to get it working quite the way I want. My current implementation is to first recurse through each nodes's connected node adding up the power, I keep a list of closed nodes so it doesn't loop, it's quite similar to A* actually. Pseudo code: All nodes start with the properties node.power = 0 node.basePower = 100 // could be different for each node. node.initialPower = node.basePower - function propagatePower( node, initialPower, closedNodes ) node.power += initialPower add( closedNodes, node ) connectedNodes = connected_nodes_except_from( closedNodes ) foreach node in connectedNodes do propagatePower( node, initialPower, closedNodes ) end end After this I iterate through all power consumers. foreach consumer in consumers do node = consumer.parentNode if node.power >= consumer.powerConsumption then consumer.powerConsumed += consumer.powerConsumption node.producedPower -= consumer.powerConsumption end end Then I adjust the initial power for the next propagation cycle. foreach node in nodes do node.initialPower = node.basePower - node.producedPower node.displayPower = node.power // for rendering the power. node.power = 0 end This seemed to work at first but then I came into a problem. Say two nodes A & B produce 100Pu each, it's shared so both A & B have 200Pu. I then make two structures that consume 80Pu each on A (160Pu). Then the nodes power is adjusted to basePower - producedPower (100-160 = -60). Nodes are propagated, both nodes now have 40Pu (A: -60 + B: 100 = 40). Which is correct because they started with 200Pu - 160Pu = 40Pu. However now node.power >= consumer.powerConsumption is false. Whats worse is it's false for any structure that uses more that 40Pu, so the whole system goes down. I could deduct from consumer.powerConsumption but what do I do if power is reduced elsewhere? I don't have the correct data to perform the necessary checks. It's late so I'm probably not thinking straight but I thought to ask on here to see if anyone has any other implementations, better or worse I'd be interested to know.

    Read the article

  • Why does my 3D model not translate the way I expect? [closed]

    - by ChocoMan
    In my first image, my model displays correctly: But when I move the model's position along the Z-axis (forward) I get this, yet the Y-axis doesnt change. An if I keep going, the model disappears into the ground: Any suggestions as to how I can get the model to translate properly visually? Here is how Im calling the model and the terrain in draw(): cameraPosition = new Vector3(camX, camY, camZ); // Copy any parent transforms. Matrix[] transforms = new Matrix[mShockwave.Bones.Count]; mShockwave.CopyAbsoluteBoneTransformsTo(transforms); Matrix[] ttransforms = new Matrix[terrain.Bones.Count]; terrain.CopyAbsoluteBoneTransformsTo(ttransforms); // Draw the model. A model can have multiple meshes, so loop. foreach (ModelMesh mesh in mShockwave.Meshes) { // This is where the mesh orientation is set, as well // as our camera and projection. foreach (BasicEffect effect in mesh.Effects) { effect.EnableDefaultLighting(); effect.PreferPerPixelLighting = true; effect.World = transforms[mesh.ParentBone.Index] * Matrix.CreateRotationY(modelRotation) * Matrix.CreateTranslation(modelPosition); // Looking at the model (picture shouldnt change other than rotation) effect.View = Matrix.CreateLookAt(cameraPosition, modelPosition, Vector3.Up); effect.Projection = Matrix.CreatePerspectiveFieldOfView( MathHelper.ToRadians(45.0f), aspectRatio, 1.0f, 10000.0f); effect.TextureEnabled = true; } // Draw the mesh, using the effects set above. prepare3d(); mesh.Draw(); } //Terrain test foreach (ModelMesh meshT in terrain.Meshes) { foreach (BasicEffect effect in meshT.Effects) { effect.EnableDefaultLighting(); effect.PreferPerPixelLighting = true; effect.World = ttransforms[meshT.ParentBone.Index] * Matrix.CreateRotationY(0) * Matrix.CreateTranslation(terrainPosition); // Looking at the model (picture shouldnt change other than rotation) effect.View = Matrix.CreateLookAt(cameraPosition, terrainPosition, Vector3.Up); effect.Projection = Matrix.CreatePerspectiveFieldOfView( MathHelper.ToRadians(45.0f), aspectRatio, 1.0f, 10000.0f); effect.TextureEnabled = true; } // Draw the mesh, using the effects set above. prepare3d(); meshT.Draw(); DrawText(); } base.Draw(gameTime); } I'm suspecting that there may be something wrong with how I'm handling my camera. The model rotates fine on its Y-axis.

    Read the article

  • Another question about handling game states

    - by Eva
    I'm making a game designed with the entity-component paradigm that uses systems to communicate between components as explained here. I've reached the point in my development that I need to add game states (such as paused, playing, level start, round start, game over, etc.), but I'm not sure how to do it with my framework. I've looked at this code example on game states which everyone seems to reference, but I don't think it fits with my framework. It seems to have each state handling its own drawing and updating. My framework has a SystemManager that handles all the updating using systems. For example, here's my RenderingSystem class: public class RenderingSystem extends GameSystem { private GameView gameView_; /** * Constructor * Creates a new RenderingSystem. * @param gameManager The game manager. Used to get the game components. */ public RenderingSystem(GameManager gameManager) { super(gameManager); } /** * Method: registerGameView * Registers gameView into the RenderingSystem. * @param gameView The game view registered. */ public void registerGameView(GameView gameView) { gameView_ = gameView; } /** * Method: triggerRender * Adds a repaint call to the event queue for the dirty rectangle. */ public void triggerRender() { Rectangle dirtyRect = new Rectangle(); for (GameObject object : getRenderableObjects()) { GraphicsComponent graphicsComponent = object.getComponent(GraphicsComponent.class); dirtyRect.add(graphicsComponent.getDirtyRect()); } gameView_.repaint(dirtyRect); } /** * Method: renderGameView * Renders the game objects onto the game view. * @param g The graphics object that draws the game objects. */ public void renderGameView(Graphics g) { for (GameObject object : getRenderableObjects()) { GraphicsComponent graphicsComponent = object.getComponent(GraphicsComponent.class); if (!graphicsComponent.isVisible()) continue; GraphicsComponent.Shape shape = graphicsComponent.getShape(); BoundsComponent boundsComponent = object.getComponent(BoundsComponent.class); Rectangle bounds = boundsComponent.getBounds(); g.setColor(graphicsComponent.getColor()); if (shape == GraphicsComponent.Shape.RECTANGULAR) { g.fill3DRect(bounds.x, bounds.y, bounds.width, bounds.height, true); } else if (shape == GraphicsComponent.Shape.CIRCULAR) { g.fillOval(bounds.x, bounds.y, bounds.width, bounds.height); } } } /** * Method: getRenderableObjects * @return The renderable game objects. */ private HashSet<GameObject> getRenderableObjects() { return gameManager.getGameObjectManager().getRelevantObjects( getClass()); } } Also all the updating in my game is event-driven. I don't have a loop like theirs that simply updates everything at the same time. I like my framework because it makes it easy to add new GameObjects, but doesn't have the problems some component-based designs encounter when communicating between components. I would hate to chuck it just to get pause to work. Is there a way I can add game states to my game without removing the entity-component design? Does the game state example actually fit my framework, and I'm just missing something?

    Read the article

  • How to update off screen bitmap in a surfaceview thread

    - by DKDiveDude
    I have a Surfaceview thread and an off canvas texture bitmap that is being generated (changed), first row (line), every frame and then copied one position (line) down on regular surfaceview bitmap to make a scrolling effect, and I then continue to draw other things on top of that. Well that is what I really want, however I can't get it to work even though I am creating a separate canvas for off screen bitmap. It is just not scrolling at all. I other words I have a memory bitmap, same size as Surfaceview canvas, which I need to scroll (shift) down one line every frame, and then replace top line with new random texture, and then draw that on regular Surfaceview canvas. Here is what I thought would work; My surfaceChanged where I specify bitmap and canvasses and start thread: @Override public void surfaceCreated(SurfaceHolder holder) { intSurfaceWidth = mSurfaceView.getWidth(); intSurfaceHeight = mSurfaceView.getHeight(); memBitmap = Bitmap.createBitmap(intSurfaceWidth, intSurfaceHeight, Bitmap.Config.ARGB_8888); memCanvas = new Canvas(memCanvas); myThread = new MyThread(holder, this); myThread.setRunning(true); blnPause = false; myThread.start(); } My thread, only showing essential middle running part: @Override public void run() { while (running) { c = null; try { // Lock canvas for drawing c = myHolder.lockCanvas(null); synchronized (mSurfaceHolder) { // First draw off screen bitmap to off screen canvas one line down memCanvas.drawBitmap(memBitmap, 0, 1, null); // Create random one line(row) texture bitmap memTexture = Bitmap.createBitmap(imgTexture, 0, rnd.nextInt(intTextureImageHeight), intSurfaceWidth, 1); // Now add this texture bitmap to top of off screen canvas and hopefully bitmap memCanvas.drawBitmap(textureBitmap, intSurfaceWidth, 0, null); // Draw above updated off screen bitmap to regular canvas, at least I thought it would update (save changes) shifting down and add the texture line to off screen bitmap the off screen canvas was pointing to. c.drawBitmap(memBitmap, 0, 0, null); // Other drawing to canvas comes here } finally { // do this in a finally so that if an exception is thrown // during the above, we don't leave the Surface in an // inconsistent state if (c != null) { myHolder.unlockCanvasAndPost(c); } } } } For my game Tunnel Run. Right now I have a working solution where I instead have an array of bitmaps, size of surface height, that I populate with my random texture and then shift down in a loop for each frame. I get 50 frames per second, but I think I can do better by instead scrolling bitmap.

    Read the article

  • Pragmas and exceptions

    - by Darryl Gove
    The compiler pragmas: #pragma no_side_effect(routinename) #pragma does_not_write_global_data(routinename) #pragma does_not_read_global_data(routinename) are used to tell the compiler more about the routine being called, and enable it to do a better job of optimising around the routine. If a routine does not read global data, then global data does not need to be stored to memory before the call to the routine. If the routine does not write global data, then global data does not need to be reloaded after the call. The no side effect directive indicates that the routine does no I/O, does not read or write global data, and the result only depends on the input. However, these pragmas should not be used on routines that throw exceptions. The following example indicates the problem: #include <iostream extern "C" { int exceptional(int); #pragma no_side_effect(exceptional) } int exceptional(int a) { if (a==7) { throw 7; } else { return a+1; } } int a; int c=0; class myclass { public: int routine(); }; int myclass::routine() { for(a=0; a<1000; a++) { c=exceptional(c); } return 0; } int main() { myclass f; try { f.routine(); } catch(...) { std::cout << "Something happened" << a << c << std::endl; } } The routine "exceptional" is declared as having no side effects, however it can throw an exception. The no side effects directive enables the compiler to avoid storing global data back to memory, and retrieving it after the function call, so the loop containing the call to exceptional is quite tight: $ CC -O -S test.cpp ... .L77000061: /* 0x0014 38 */ call exceptional ! params = %o0 ! Result = %o0 /* 0x0018 36 */ add %i1,1,%i1 /* 0x001c */ cmp %i1,999 /* 0x0020 */ ble,pt %icc,.L77000061 /* 0x0024 */ nop However, when the program is run the result is incorrect: $ CC -O t.cpp $ ./a.out Something happend00 If the code had worked correctly, the output would have been "Something happened77" - the exception occurs on the seventh iteration. Yet, the current code produces a message that uses the original values for the variables 'a' and 'c'. The problem is that the exception handler reads global data, and due to the no side effects directive the compiler has not updated the global data before the function call. So these pragmas should not be used on routines that have the potential to throw exceptions.

    Read the article

  • Deferred Shading - Toolkit

    - by AliveDevil
    I recently managed to get some lights rendered in a scene by using a buffer and a for-loop. The problem with this method is the performance drop if more lights are used. I tried to convert Deferred Rendering in XNA4.0 | ROY-T.NL but it is not working, because I am not using any models. I know I have to render color, normals and lights seperate but I don't know how I could get it working. For understanding my structure better I'm using a world-class which holds some chunks. These chunks are loading all vertices from their items. These items have a property which returns the vertices. The item is returning VertexPositionNormalTexture[]. The chunk loads these Vertices and combines them to one large array of VertexPositionNormalTexture via someList.AsParallel().SelectMany(m => m).ToArray()). m is a VertexPositionNormalTexture. someList is List<VertexPositionNormalTexture>. I got my own shader to draw these vertices how I want them to be drawn. The first thing I would try is setting up two RenderTarget2D for rendering the color and normal part. With two different shaders. Than I would have to render the lights and there's the problem: I don't know how. I set up a structure to simplify working with lights but it didn't really help. public struct Light { public Vector3 Position; public Color4 Color; public float Range; public float Intensity; public Light( Vector3 position, Color color, float range, float intensity ) : this() { this.Position = position; this.Color = color; this.Range = range; this.Intensity = intensity; } public float[] Definition { get { return new[] { Position.X, Position.Y, Position.Z, Color.Red, Color.Green, Color.Blue, Intensity, Range }; } } } The next part is equally different because I don't know how to combine the colorMap, normalMap and textureMap to one finalMap. Some information to the system: I'm using SharpDX (Nightly from some months ago) and the SharpDX.Toolkit (I don't want to mess up with Direct3DDevice and similar things). Can someone help me with this problem? If things are missing or I provided insufficient information tell me, I need to get deferred shading working. Things I'm not able to do: create a rendertarget which holds all lights, merge colorMap, normalMap and lightMap to one finalMap and presenting this to the user.

    Read the article

  • What is this algorithm for converting strings into numbers called?

    - by CodexArcanum
    I've been doing some work in Parsec recently, and for my toy language I wanted multi-based fractional numbers to be expressible. After digging around in Parsec's source a bit, I found their implementation of a floating-point number parser, and copied it to make the needed modifications. So I understand what this code does, and vaguely why (I haven't worked out the math fully yet, but I think I get the gist). But where did it come from? This seems like a pretty clever way to turn strings into floats and ints, is there a name for this algorithm? Or is it just something basic that's a hole in my knowledge? Did the folks behind Parsec devise it? Here's the code, first for integers: number' :: Integer -> Parser Integer number' base = do { digits <- many1 ( oneOf ( sigilRange base )) ; let n = foldl (\x d -> base * x + toInteger (convertDigit base d)) 0 digits ; seq n (return n) } So the basic idea here is that digits contains the string representing the whole number part, ie "192". The foldl converts each digit individually into a number, then adds that to the running total multiplied by the base, which means that by the end each digit has been multiplied by the correct factor (in aggregate) to position it. The fractional part is even more interesting: fraction' :: Integer -> Parser Double fraction' base = do { digits <- many1 ( oneOf ( sigilRange base )) ; let base' = fromIntegral base ; let f = foldr (\d x -> (x + fromIntegral (convertDigit base d))/base') 0.0 digits ; seq f (return f) Same general idea, but now a foldr and using repeated division. I don't quite understand why you add first and then divide for the fraction, but multiply first then add for the whole. I know it works, just haven't sorted out why. Anyway, I feel dumb not working it out myself, it's very simple and clever looking at it. Is there a name for this algorithm? Maybe the imperative version using a loop would be more familiar?

    Read the article

  • Why does my int, booleans, doubles does not work?

    - by SystemNetworks
    As you see, my code does not work. When armor1 is true, it would add my life. goldA is another class. public void goldenArmor(GameContainer gc, StateBasedGame sbg, Graphics g) { if(armor1==true) { goldA.life = life; goldA.intelligence = intelligence; goldA.power = power; goldA.lifeLeft = lifeLeft; goldA.head(); goldA.body(); goldA.legs(); } } My other class: package javagame; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.Image; import org.newdawn.slick.Input; import org.newdawn.slick.SlickException; /* Note: Copyright(C)2012 System Networks | Square NET | Julius Bryan Gambe. You cannot copy the style, story of the game and gameplay! To programmers: The int,doubles,strings,booleans are properly sorted out. Please don't mess it up. */ /* NOTE: We have loops but not for programming. The loop is: 1.show the world to user 2.Obtain input from the user 3.Shows the update, repeat step 1 */ import org.newdawn.slick.*; import org.newdawn.slick.state.*; import org.lwjgl.input.Mouse; //contents: // public class GoldenArmor{ //get it from play public int life; public double intelligence; public int lifeLeft; public double power; public GoldenArmor() { // TODO Auto-generated constructor stub } //start here public void head() { life += 10; intelligence +=0.5; } public void body() { lifeLeft += 100; } public void legs() { power += 100; } } /* SYSTEM NETWORKS(C) 2012 NET FRONT */ The life, intelligence, power, lifeLeft are nothing but to use it as just reference to prevent stack overflow. And at my main class, it becomes my real booleans, int, doubles. How do I fix this? It does not add it to my normal int.

    Read the article

  • How to resolve concurrent ramp collisions in 2d platformer?

    - by Shaun Inman
    A bit about the physics engine: Bodies are all rectangles. Bodies are sorted at the beginning of every update loop based on the body-in-motion's horizontal and vertical velocity (to avoid sticky walls/floors). Solid bodies are resolved by testing the body-in-motion's new X with the old Y and adjusting if necessary before testing the new X with the new Y, again adjusting if necessary. Works great. Ramps (rectangles with a flag set indicating bottom-left, bottom-right, etc) are resolved by calculating the ratio of penetration along the x-axis and setting a new Y accordingly (with some checks to make sure the body-in-motion isn't attacking from the tall or flat side, in which case the ramp is treated as a normal rectangle). This also works great. Side-by-side ramps, eg. \/ and /\, work fine but things get jittery and unpredictable when a top-down ramp is directly above a bottom-up ramp, eg. < or > or when a bottom-up ramp runs right up to the ceiling/top-down ramp runs right down to the floor. I've been able to lock it down somewhat by detecting whether the body-in-motion hadFloor when also colliding with a top-down ramp or hadCeiling when also colliding with a bottom-up ramp then resolving by calculating the ratio of penetration along the y-axis and setting the new X accordingly (the opposite of the normal behavior). But as soon as the body-in-motion jumps the hasFloor flag becomes false, the first ramp resolution pushes the body into collision with the second ramp and collision resolution becomes jittery again for a few frames. I'm sure I'm making this more complicated than it needs to be. Can anyone recommend a good resource that outlines the best way to address this problem? (Please don't recommend I use something like Box2d or Chipmunk. Also, "redesign your levels" isn't an answer; the body-in-motion may at times be riding another body-in-motion, eg. a platform, that pushes it into a ramp so I'd like to be able to resolve this properly.) Thanks!

    Read the article

  • Finding furthermost point in game world

    - by user13414
    I am attempting to find the furthermost point in my game world given the player's current location and a normalized direction vector in screen space. My current algorithm is: convert player world location to screen space multiply the direction vector by a large number (2000) and add it to the player's screen location to get the distant screen location convert the distant screen location to world space create a line running from the player's world location to the distant world location loop over the bounding "walls" (of which there are always 4) of my game world check whether the wall and the line intersect if so, where they intersect is the furthermost point of my game world in the direction of the vector Here it is, more or less, in code: public Vector2 GetFurthermostWorldPoint(Vector2 directionVector) { var screenLocation = entity.WorldPointToScreen(entity.Location); var distantScreenLocation = screenLocation + (directionVector * 2000); var distantWorldLocation = entity.ScreenPointToWorld(distantScreenLocation); var line = new Line(entity.Center, distantWorldLocation); float intersectionDistance; Vector2 intersectionPoint; foreach (var boundingWall in entity.Level.BoundingWalls) { if (boundingWall.Intersects(line, out intersectionDistance, out intersectionPoint)) { return intersectionPoint; } } Debug.Assert(false, "No intersection found!"); return Vector2.Zero; } Now this works, for some definition of "works". I've found that the further out my distant screen location is, the less chance it has of working. When digging into the reasons why, I noticed that calls to Viewport.Unproject could result in wildly varying return values for points that are "far away". I wrote this stupid little "test" to try and understand what was going on: [Fact] public void wtf() { var screenPositions = new Vector2[] { new Vector2(400, 240), new Vector2(400, -2000), }; var viewport = new Viewport(0, 0, 800, 480); var projectionMatrix = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, viewport.Width / viewport.Height, 1, 200000); var viewMatrix = Matrix.CreateLookAt(new Vector3(400, 630, 600), new Vector3(400, 345, 0), new Vector3(0, 0, 1)); var worldMatrix = Matrix.Identity; foreach (var screenPosition in screenPositions) { var nearPoint = viewport.Unproject(new Vector3(screenPosition, 0), projectionMatrix, viewMatrix, worldMatrix); var farPoint = viewport.Unproject(new Vector3(screenPosition, 1), projectionMatrix, viewMatrix, worldMatrix); Console.WriteLine("For screen position {0}:", screenPosition); Console.WriteLine(" Projected Near Point = {0}", nearPoint.TruncateZ()); Console.WriteLine(" Projected Far Point = {0}", farPoint.TruncateZ()); Console.WriteLine(); } } The output I get on the console is: For screen position {X:400 Y:240}: Projected Near Point = {X:400 Y:629.571 Z:599.0967} Projected Far Point = {X:392.9302 Y:-83074.98 Z:-175627.9} For screen position {X:400 Y:-2000}: Projected Near Point = {X:400 Y:626.079 Z:600.7554} Projected Far Point = {X:390.2068 Y:-767438.6 Z:148564.2} My question is really twofold: what am I doing wrong with the unprojection such that it varies so wildly and, thus, does not allow me to determine the corresponding world point for my distant screen point? is there a better way altogether to determine the furthermost point in world space given a current world space location, and a directional vector in screen space?

    Read the article

  • Indefinite loops where the first time is different

    - by George T
    This isn't a serious problem or anything someone has asked me to do, just a seemingly simple thing that I came up with as a mental exercise but has stumped me and which I feel that I should know the answer to already. There may be a duplicate but I didn't manage to find one. Suppose that someone asked you to write a piece of code that asks the user to enter a number and, every time the number they entered is not zero, says "Error" and asks again. When they enter zero it stops. In other words, the code keeps asking for a number and repeats until zero is entered. In each iteration except the first one it also prints "Error". The simplest way I can think of to do that would be something like the folloing pseudocode: int number = 0; do { if(number != 0) { print("Error"); } print("Enter number"); number = getInput(); }while(number != 0); While that does what it's supposed to, I personally don't like that there's repeating code (you test number != 0 twice) -something that should generally be avoided. One way to avoid this would be something like this: int number = 0; while(true) { print("Enter number"); number = getInput(); if(number == 0) { break; } else { print("Error"); } } But what I don't like in this one is "while(true)", another thing to avoid. The only other way I can think of includes one more thing to avoid: labels and gotos: int number = 0; goto question; error: print("Error"); question: print("Enter number"); number = getInput(); if(number != 0) { goto error; } Another solution would be to have an extra variable to test whether you should say "Error" or not but this is wasted memory. Is there a way to do this without doing something that's generally thought of as a bad practice (repeating code, a theoretically endless loop or the use of goto)? I understand that something like this would never be complex enough that the first way would be a problem (you'd generally call a function to validate input) but I'm curious to know if there's a way I haven't thought of.

    Read the article

  • Why is my dual-boot Ubuntu partition showing up as a peripheral "root.disk"?

    - by Don
    I recently installed Ubuntu 12.04, which I had been booting from a usb key, as a dual-boot on my machine running Windows 7. From what I had read online while researching, I was prepared to have to shrink the Windows partition and all that. But I never had to - it really was just a few clicks here and there and it was installed. I'm still pretty confused about it, but whatever, it worked, and the two peacefully coexist on my machine, and I have broken things to fix before I worry about fixing unbroken things. So yesterday I got it in my head to look at my partitions (I was considering making an all new partition to install the Windows 8 Release Preview). What I saw confused me. Here's a screenshot of the disk utility. At this moment, there is nothing connected to my computer, and nothing in any of the optical drives/ports/card readers/etc. Can you help me figure out what's going on here? Don's Machine is, I believe, my Windows partition - that's the name I assigned my machine from Windows Explorer. PQSERVICE is from what I can find online also Windows, but having to do with backup. And SYSTEM REQUIRED, if I browse it in Ubuntu, is definitely something to do with booting, and I believe it is also Windows'. According to the sizes shown, those three together should use up my 500 GB HD. Then further down, as a "peripheral device", it lists that 31 GB disk. This is obviously my Ubuntu (Model:Linux Loop:root.disk), but why is it showing up as a peripheral? So, to sum up those questions and to add some more random ones I had: Why is Ubuntu showing up as a peripheral device? If the Windows sections take up all 500 GB, where does Ubuntu live? If I renamed the disk partitions, would my life become a nightmare (seriously - can I safely rename them)? Why didn't I have to resize the Windows partition in the first place? Would giving Ubuntu more space improve its performance (it hangs alot)? Is it possible to have a partition for each OS (Windows 7 & 8, Ubuntu), a partition for files, and a separate partition for backups? Is this towards the good or bad idea end of the spectrum? @Elfy, would that explain why it keeps hanging? I guess I'll backup my files, rip it out, and reinstall it correctly later on today.

    Read the article

  • Inline template efficiency

    - by Darryl Gove
    I like inline templates, and use them quite extensively. Whenever I write code with them I'm always careful to check the disassembly to see that the resulting output is efficient. Here's a potential cause of inefficiency. Suppose we want to use the mis-named Leading Zero Detect (LZD) instruction on T4 (this instruction does a count of the number of leading zero bits in an integer register - so it should really be called leading zero count). So we put together an inline template called lzd.il looking like: .inline lzd lzd %o0,%o0 .end And we throw together some code that uses it: int lzd(int); int a; int c=0; int main() { for(a=0; a<1000; a++) { c=lzd(c); } return 0; } We compile the code with some amount of optimisation, and look at the resulting code: $ cc -O -xtarget=T4 -S lzd.c lzd.il $ more lzd.s .L77000018: /* 0x001c 11 */ lzd %o0,%o0 /* 0x0020 9 */ ld [%i1],%i3 /* 0x0024 11 */ st %o0,[%i2] /* 0x0028 9 */ add %i3,1,%i0 /* 0x002c */ cmp %i0,999 /* 0x0030 */ ble,pt %icc,.L77000018 /* 0x0034 */ st %i0,[%i1] What is surprising is that we're seeing a number of loads and stores in the code. Everything could be held in registers, so why is this happening? The problem is that the code is only inlined at the code generation stage - when the actual instructions are generated. Earlier compiler phases see a function call. The called functions can do all kinds of nastiness to global variables (like 'a' in this code) so we need to load them from memory after the function call, and store them to memory before the function call. Fortunately we can use a #pragma directive to tell the compiler that the routine lzd() has no side effects - meaning that it does not read or write to memory. The directive to do that is #pragma no_side_effect(<routine name), and it needs to be placed after the declaration of the function. The new code looks like: int lzd(int); #pragma no_side_effect(lzd) int a; int c=0; int main() { for(a=0; a<1000; a++) { c=lzd(c); } return 0; } Now the loop looks much neater: /* 0x0014 10 */ add %i1,1,%i1 ! 11 ! { ! 12 ! c=lzd(c); /* 0x0018 12 */ lzd %o0,%o0 /* 0x001c 10 */ cmp %i1,999 /* 0x0020 */ ble,pt %icc,.L77000018 /* 0x0024 */ nop

    Read the article

< Previous Page | 221 222 223 224 225 226 227 228 229 230 231 232  | Next Page >