Search Results

Search found 3423 results on 137 pages for 'dan james palmer'.

Page 23/137 | < Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >

  • A Trio of Presentations: Little Wonders, StyleCop, and LINQ/Lambdas

    - by James Michael Hare
    This week is a busy week for me.  First of all I’m giving another presentation on a LINQ/Lambda primer for the rest of the developers in my company.  Of Lambdas and LINQ View more presentations from BlackRabbitCoder Then this Saturday the 25th of June I’ll be reprising my Little Wonders presentation for the Kansas City Developers Camp.  If you are in the area I highly recommend attending and seeing the other great presentations as well.  Their link is here. Little Wonders View more presentations from BlackRabbitCoder Finally, this Monday the 27th I’ll be speaking at the Saint Louis .NET Users group, giving my Automating Code Standards Using StyleCop and FxCop presentation.  If you are in the Saint Louis area stop by!  There’s two other simultaneous presentations as well if they’re more suited to your interests.  The link for the SLDNUG is here. Automating C# Coding Standards using StyleCop and FxCop View more presentations from BlackRabbitCoder Tweet Technorati Tags: C#,.NET,LINQ,Lambda,StyleCop,FxCop,Little Wonders

    Read the article

  • Package linux-headers-3.7.0-999 is not installed

    - by James Ward
    When trying to install the three amd64 debs for the 3.7.0 kernel from: http://kernel.ubuntu.com/~kernel-ppa/mainline/daily/2012-10-22-quantal/ I get this error: dpkg: dependency problems prevent configuration of linux-headers-3.7.0-999-generic: linux-headers-3.7.0-999-generic depends on linux-headers-3.7.0-999; however: Package linux-headers-3.7.0-999 is not installed. It installs and works correctly but leaves me with broken packages in Synaptic. Is this just a bug with how Ubuntu is packaging these latest debs? Or am I doing something wrong?

    Read the article

  • Need help fixing DPKG errors after update from 12.04 to 12.10

    - by James Wulfe
    So I was doing fine then i upgraded my system to 12.10 and now i cant get my system to update all of its packages properly. no matter what i do, what is happening here and how do i fix this. if i would have thought 12.10 would be this much of a hassle i would have never upgraded..... here is a sampling of the code that returns from "apt-get -f install" It should also be noted that it is just these 6 packages only. no other packages have given me this kind of trouble. well i should say as of now. It was just 5, but them i got an update for unity, and now unity-common is added to the trouble makers. which prevents me from further upgrading the actual unity package as this package is a dependancy. Preparing to replace usb-modeswitch-data 20120120-0ubuntu1 (using .../usb-modeswitch-data_20120815-1_all.deb) ... /var/lib/dpkg/info/usb-modeswitch-data.prerm: 4: /var/lib/dpkg/info/usb-modeswitch-data.prerm: dpkg-maintscript-helper: Input/output error dpkg: warning: subprocess old pre-removal script returned error exit status 2 dpkg: trying script from the new package instead ... /var/lib/dpkg/tmp.ci/prerm: 4: /var/lib/dpkg/tmp.ci/prerm: dpkg-maintscript-helper: Input/output error dpkg: error processing /var/cache/apt/archives/usb-modeswitch-data_20120815-1_all.deb (--unpack): subprocess new pre-removal script returned error exit status 2 /var/lib/dpkg/info/usb-modeswitch-data.postinst: 7: /var/lib/dpkg/info/usb-modeswitch-data.postinst: dpkg-maintscript-helper: Input/output error dpkg: error while cleaning up: subprocess installed post-installation script returned error exit status 2 Errors were encountered while processing: /var/cache/apt/archives/network-manager_0.9.6.0-0ubuntu7_i386.deb /var/cache/apt/archives/pcmciautils_018-8_i386.deb /var/cache/apt/archives/unity-common_6.10.0-0ubuntu2_all.deb /var/cache/apt/archives/whoopsie_0.2.7_i386.deb /var/cache/apt/archives/usb-modeswitch_1.2.3+repack0-1ubuntu3_i386.deb /var/cache/apt/archives/usb-modeswitch-data_20120815-1_all.deb E: Sub-process /usr/bin/dpkg returned an error code (1) I would also like to note i have cleaned apt cashe both through the terminal and manualy, i have tried installing them manually through dpkg from both the /var/cache/apt/archives/ location and from my own manually downloaded .deb files. i have tried using dpkg-reconfigure and i have used bleachbit to clean my system. I have also tested both my HDD and memory and found no significant errors to lead to the input/output errors. Quite frankly i am just out of options and have grown tired of trying to google a solution to this mess but still do not wish to pursue backing up settings and reinstalling the system. Any help would be appreciated. I am only interested in answers, please leave your feeling towards grammar, punctuation, and bias towards how a "post should look" at the door. If you dont have something to contribute towards solving my problem then you are just doing nothing but contributing to it. Thank you.

    Read the article

  • installed ubuntu 13.04 but no wireless or wired connection available

    - by James
    after having installed ubuntu 13.04 i can not connect to the internet wirelessly or wired? can only connect to internet by using "try ubuntu" via ethernet cable, ive tried seeking help in so many different ways yet getting no positive outcome at all, will someone please explain why i can only connect with ethernet while i have the cd in the tray? ive also tried downloading b43 drivers to connect to the internet but apparently i dont have enough disk space, what is going on here? i have the disk in the tray now at the screen where you can either try or install, if someone could give me a step by step from here it would probably cut out all this hassle of me not knowing whats going on

    Read the article

  • disk space error, cant use internet

    - by James
    after trying to install drivers using sudo apt-get update && sudo apt-get upgrade, im faced with a message saying no space left on device, i ran disk usage analyzer as root and there was three folders namely, main volume, home folder, and my 116gb hard drive (which is practically empty) yet both other folders are full, which is stopping me installing drivers because of space, how do i get ubuntu to use this space on my hard drive? its causing problems because i cant gain access to the internet as i cant download drivers when i havnt got enough space, this happens every time i try it

    Read the article

  • Change Logging Level for SOA 11g

    - by James Taylor
    I’m sure there are many blogs out there that have this solution. But I seem to get asked this question a lot so I thought I would post it here for my convenience. Login to Enterprise Manager, e.g. http://localhost:7001/em Expand the SOA folder and right-click the soa-infra(soa_server1) folder and select Logs – Log Configuration Navigate to the component you want to monitor and change the log level. It is possible to change at a parent level if required It is not recommended that you set the level to FINIEST at a parent level as it will generate a lot of logging. Make sure you apply the change to take affect. Simple as that.

    Read the article

  • C# Toolbox: Debug-able, Self-Installable Windows Service Template Redux

    - by James Michael Hare
    I had written a pair of posts before about creating a debug-able and self-installing windows service template in C#.  This is a template I began creating to ease creating windows services and to take some of the mundane tasks out of the coding effort.  The original posts were here: C# Windows Services (1 of 2) - Debug-able Windows Services C# Windows Services (2 of 2) - Self-Installing Windows Services But at the time, though I gave the code samples I didn't have a downloadable for of the template on the blog.  After getting many requests for the actual source, I zipped it up and am posting it with this blog entry.  Click on the link below to download the archive.  The password on the archive is, imaginatively enough, password.  Hope you enjoy and please feel free to comment and suggest changes! Debug-able, Self-Installing Windows Service Template download Enjoy! Tweet Technorati Tags: C#,Windows Service,Toolbox

    Read the article

  • Hilarious

    - by James Luetkehoelter
    I don't know how many of you know about this site, but it raises my spirits on a daily basis. I found today's entry oddly familiar... http://thedailywtf.com/Articles/sp_getNothing.aspx Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!...(read more)

    Read the article

  • Why use an OO approach instead of a giant "switch" statement?

    - by James P. Wright
    I am working in a .Net, C# shop and I have a coworker that keeps insisting that we should use giant Switch statements in our code with lots of "Cases" rather than more object oriented approaches. His argument consistently goes back to the fact that a Switch statement compiles to a "cpu jump table" and is therefore the fastest option (even though in other things our team is told that we don't care about speed). I honestly don't have an argument against this...because I don't know what the heck he's talking about. Is he right? Is he just talking out his ass? Just trying to learn here.

    Read the article

  • How to create a thread in XNA for pathfinding?

    - by Dan
    I am trying to create a separate thread for my enemy's A* pathfinder which will give me a list of points to get to the player. I have placed the thread in the update method of my enemy. However this seems to cause jittering in the game every-time the thread is called. I have tried calling just the method and this works fine. Is there any way I can sort this out so that I can have the pathfinder on its own thread? Do I need to remove the thread start from the update and start it in the constructor? Is there any way this can work? Here is the code at the moment: bool running = false; bool threadstarted; System.Threading.Thread thread; public void update() { if (running == false && threadstarted == false) { thread = new System.Threading.Thread(PathThread); //thread.Priority = System.Threading.ThreadPriority.Lowest; thread.IsBackground = true; thread.Start(startandendobj); //PathThread(startandendobj); threadstarted = true; } } public void PathThread(object Startandend) { object[] Startandendarray = (object[])Startandend; Point startpoint = (Point)Startandendarray[0]; Point endpoint = (Point)Startandendarray[1]; bool runnable = true; // Path find from 255, 255 to 0,0 on the map foreach(Tile tile in Map) { if(tile.Color == Color.Red) { if (tile.Position.Contains(endpoint)) { runnable = false; } } } if(runnable == true) { running = true; Pathfinder p = new Pathfinder(Map); pathway = p.FindPath(startpoint, endpoint); running = false; threadstarted = false; } }

    Read the article

  • What is the difference between Callback<T> and Java 8's Supplier<T>?

    - by Dan Pantry
    I've been switching over to Java from C# after some recommendations from some over at CodeReview. So, when I was looking into LWJGL, one thing I remembered was that every call to Display must be executed on the same thread that the Display.create() method was invoked on. Remembering this, I whipped up a class that looks a bit like this. public class LwjglDisplayWindow implements DisplayWindow { private final static int TargetFramesPerSecond = 60; private final Scheduler _scheduler; public LwjglDisplayWindow(Scheduler displayScheduler, DisplayMode displayMode) throws LWJGLException { _scheduler = displayScheduler; Display.setDisplayMode(displayMode); Display.create(); } public void dispose() { Display.destroy(); } @Override public int getTargetFramesPerSecond() { return TargetFramesPerSecond; } @Override public Future<Boolean> isClosed() { return _scheduler.schedule(() -> Display.isCloseRequested()); } } While writing this class you'll notice that I created a method called isClosed() that returns a Future<Boolean>. This dispatches a function to my Scheduler interface (which is nothing more than a wrapper around an ScheduledExecutorService. While writing the schedule method on the Scheduler I noticed that I could either use a Supplier<T> argument or a Callable<T> argument to represent the function that is passed in. ScheduledExecutorService didn't contain an override for Supplier<T> but I noticed that the lambda expression () -> Display.isCloseRequested() is actually type compatible with both Callable<bool> and Supplier<bool>. My question is, is there a difference between those two, semantically or otherwise - and if so, what is it, so I can adhere to it?

    Read the article

  • How do you update copyright notices?

    - by James
    So now it's 2011, and as I carry on coding on our active projects it's time to update some copyright notices. eg. Copyright Widgets Ltd 2010 to Copyright Widgets Ltd 2010, 2011 My question is when do you update the copyright notices? Do you change the notice in the head of a file the first time you work on that file? Since a module is one piece of code consisting of many files that work together, do you update all notices in that module when you change a single file in that module? Since a program is one piece of code (maybe consisting of many modules), do you update all notices in that program when you change a single file in that program? Or do you just go through and change en-mass over your morning coffee on the grounds your about to start programming and updateing things?

    Read the article

  • A case for not installing your own software

    - by James Gentsch
    This week I watched some of the Oracle Open World presentations (from the comfort of my Oracle office) and happened on some of Larry Ellison’s comments about cloud computing and engineered systems.  Larry said he sees the move to these as analogous to the moves made by the original adopters of electricity.  The argument goes that the first consumers of electricity had to set up their own power plant.  Then, as the market and infrastructure for electricity matured, power consumers moved from using their own personal power plant to purchasing power from another entity that was focused on power production as their primary product. In the end this was a cheaper and more reliable solution. Now, there are lots of compelling reasons to be looking very seriously at cloud computing and engineered systems for enterprise application deployment.  However, speaking as a software developer of enterprise applications, the part of this that I really love (besides Larry’s early electricity adopter analogy) is that as a mode of application deployment it provides me and my customers a consistent environment in which the applications I am providing will be run.  This cuts way down on the environmental surprises that consistently lead to the hated “well, it works here” situation with the support desk. And just to be clear, I think I hate this situation more than my clients, who I think are happy that at least it is working somewhere.  I hate this because when a problem happens, and let’s face it customers are not wasting their time calling in easy problems, we are seriously disabled when we cannot reproduce the issue which is triggered by something unforeseen in the environment where the application is running.  This situation is incredibly frustrating and an all too often occurrence. I look selfishly forward to cloud computing and engineered systems dramatically reducing the occurrence of problems triggered by unforeseen environmental situations in the software I am responsible for.  I think this is an evolutionary game changer that will be a huge benefit to the reliability and consistent performance of the software for my customers, and may make “well, it works here” a well forgotten phase for future software developers. It may even impact the stress squeeze toy industry.  Well, maybe at least for my group.

    Read the article

  • Detecting collision between ball (circle) and brick(rectangle)?

    - by James Harrison
    Ok so this is for a small uni project. My lecturer provided me with a framework for a simple brickbreaker game. I am currently trying to overcome to problem of detecting a collision between the two game objects. One object is always the ball and the other objects can either be the bricks or the bat. public Collision hitBy( GameObject obj ) { //obj is the bat or the bricks //the current object is the ball // if ball hits top of object if(topX + width >= obj.topX && topX <= obj.topX + obj.width && topY + height >= obj.topY - 2 && topY + height <= obj.topY){ return Collision.HITY; } //if ball hits left hand side else if(topY + height >= obj.topY && topY <= obj.topY + obj.height && topX + width >= obj.topX -2 && topX + width <= obj.topX){ return Collision.HITX; } else return Collision.NO_HIT; } So far I have a method that is used to detect this collision. The the current obj is a ball and the obj passed into the method is the the bricks. At the moment I have only added statement to check for left and top collisions but do not want to continue as I have a few problems. The ball reacts perfectly if it hits the top of the bricks or bat but when it hits the ball often does not change directing. It seems that it is happening toward the top of the left hand edge but I cannot figure out why. I would like to know if there is another way of approaching this or if people know where I'm going wrong. Lastly the collision.HITX calls another method later on the changes the x direction likewise with y.

    Read the article

  • C#/.NET Little Wonders: Interlocked CompareExchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Two posts ago, I discussed the Interlocked Add(), Increment(), and Decrement() methods (here) for adding and subtracting values in a thread-safe, lightweight manner.  Then, last post I talked about the Interlocked Read() and Exchange() methods (here) for safely and efficiently reading and setting 32 or 64 bit values (or references).  This week, we’ll round out the discussion by talking about the Interlocked CompareExchange() method and how it can be put to use to exchange a value if the current value is what you expected it to be. Dirty reads can lead to bad results Many of the uses of Interlocked that we’ve explored so far have centered around either reading, setting, or adding values.  But what happens if you want to do something more complex such as setting a value based on the previous value in some manner? Perhaps you were creating an application that reads a current balance, applies a deposit, and then saves the new modified balance, where of course you’d want that to happen atomically.  If you read the balance, then go to save the new balance and between that time the previous balance has already changed, you’ll have an issue!  Think about it, if we read the current balance as $400, and we are applying a new deposit of $50.75, but meanwhile someone else deposits $200 and sets the total to $600, but then we write a total of $450.75 we’ve lost $200! Now, certainly for int and long values we can use Interlocked.Add() to handles these cases, and it works well for that.  But what if we want to work with doubles, for example?  Let’s say we wanted to add the numbers from 0 to 99,999 in parallel.  We could do this by spawning several parallel tasks to continuously add to a total: 1: double total = 0; 2:  3: Parallel.For(0, 10000, next => 4: { 5: total += next; 6: }); Were this run on one thread using a standard for loop, we’d expect an answer of 4,999,950,000 (the sum of all numbers from 0 to 99,999).  But when we run this in parallel as written above, we’ll likely get something far off.  The result of one of my runs, for example, was 1,281,880,740.  That is way off!  If this were banking software we’d be in big trouble with our clients.  So what happened?  The += operator is not atomic, it will read in the current value, add the result, then store it back into the total.  At any point in all of this another thread could read a “dirty” current total and accidentally “skip” our add.   So, to clean this up, we could use a lock to guarantee concurrency: 1: double total = 0.0; 2: object locker = new object(); 3:  4: Parallel.For(0, count, next => 5: { 6: lock (locker) 7: { 8: total += next; 9: } 10: }); Which will give us the correct result of 4,999,950,000.  One thing to note is that locking can be heavy, especially if the operation being locked over is trivial, or the life of the lock is a high percentage of the work being performed concurrently.  In the case above, the lock consumes pretty much all of the time of each parallel task – and the task being locked on is relatively trivial. Now, let me put in a disclaimer here before we go further: For most uses, lock is more than sufficient for your needs, and is often the simplest solution!    So, if lock is sufficient for most needs, why would we ever consider another solution?  The problem with locking is that it can suspend execution of your thread while it waits for the signal that the lock is free.  Moreover, if the operation being locked over is trivial, the lock can add a very high level of overhead.  This is why things like Interlocked.Increment() perform so well, instead of locking just to perform an increment, we perform the increment with an atomic, lockless method. As with all things performance related, it’s important to profile before jumping to the conclusion that you should optimize everything in your path.  If your profiling shows that locking is causing a high level of waiting in your application, then it’s time to consider lighter alternatives such as Interlocked. CompareExchange() – Exchange existing value if equal some value So let’s look at how we could use CompareExchange() to solve our problem above.  The general syntax of CompareExchange() is: T CompareExchange<T>(ref T location, T newValue, T expectedValue) If the value in location == expectedValue, then newValue is exchanged.  Either way, the value in location (before exchange) is returned. Actually, CompareExchange() is not one method, but a family of overloaded methods that can take int, long, float, double, pointers, or references.  It cannot take other value types (that is, can’t CompareExchange() two DateTime instances directly).  Also keep in mind that the version that takes any reference type (the generic overload) only checks for reference equality, it does not call any overridden Equals(). So how does this help us?  Well, we can grab the current total, and exchange the new value if total hasn’t changed.  This would look like this: 1: // grab the snapshot 2: double current = total; 3:  4: // if the total hasn’t changed since I grabbed the snapshot, then 5: // set it to the new total 6: Interlocked.CompareExchange(ref total, current + next, current); So what the code above says is: if the amount in total (1st arg) is the same as the amount in current (3rd arg), then set total to current + next (2nd arg).  This check and exchange pair is atomic (and thus thread-safe). This works if total is the same as our snapshot in current, but the problem, is what happens if they aren’t the same?  Well, we know that in either case we will get the previous value of total (before the exchange), back as a result.  Thus, we can test this against our snapshot to see if it was the value we expected: 1: // if the value returned is != current, then our snapshot must be out of date 2: // which means we didn't (and shouldn't) apply current + next 3: if (Interlocked.CompareExchange(ref total, current + next, current) != current) 4: { 5: // ooops, total was not equal to our snapshot in current, what should we do??? 6: } So what do we do if we fail?  That’s up to you and the problem you are trying to solve.  It’s possible you would decide to abort the whole transaction, or perhaps do a lightweight spin and try again.  Let’s try that: 1: double current = total; 2:  3: // make first attempt... 4: if (Interlocked.CompareExchange(ref total, current + i, current) != current) 5: { 6: // if we fail, go into a spin wait, spin, and try again until succeed 7: var spinner = new SpinWait(); 8:  9: do 10: { 11: spinner.SpinOnce(); 12: current = total; 13: } 14: while (Interlocked.CompareExchange(ref total, current + i, current) != current); 15: } 16:  This is not trivial code, but it illustrates a possible use of CompareExchange().  What we are doing is first checking to see if we succeed on the first try, and if so great!  If not, we create a SpinWait and then repeat the process of SpinOnce(), grab a fresh snapshot, and repeat until CompareExchnage() succeeds.  You may wonder why not a simple do-while here, and the reason it’s more efficient to only create the SpinWait until we absolutely know we need one, for optimal efficiency. Though not as simple (or maintainable) as a simple lock, this will perform better in many situations.  Comparing an unlocked (and wrong) version, a version using lock, and the Interlocked of the code, we get the following average times for multiple iterations of adding the sum of 100,000 numbers: 1: Unlocked money average time: 2.1 ms 2: Locked money average time: 5.1 ms 3: Interlocked money average time: 3 ms So the Interlocked.CompareExchange(), while heavier to code, came in lighter than the lock, offering a good compromise of safety and performance when we need to reduce contention. CompareExchange() - it’s not just for adding stuff… So that was one simple use of CompareExchange() in the context of adding double values -- which meant we couldn’t have used the simpler Interlocked.Add() -- but it has other uses as well. If you think about it, this really works anytime you want to create something new based on a current value without using a full lock.  For example, you could use it to create a simple lazy instantiation implementation.  In this case, we want to set the lazy instance only if the previous value was null: 1: public static class Lazy<T> where T : class, new() 2: { 3: private static T _instance; 4:  5: public static T Instance 6: { 7: get 8: { 9: // if current is null, we need to create new instance 10: if (_instance == null) 11: { 12: // attempt create, it will only set if previous was null 13: Interlocked.CompareExchange(ref _instance, new T(), (T)null); 14: } 15:  16: return _instance; 17: } 18: } 19: } So, if _instance == null, this will create a new T() and attempt to exchange it with _instance.  If _instance is not null, then it does nothing and we discard the new T() we created. This is a way to create lazy instances of a type where we are more concerned about locking overhead than creating an accidental duplicate which is not used.  In fact, the BCL implementation of Lazy<T> offers a similar thread-safety choice for Publication thread safety, where it will not guarantee only one instance was created, but it will guarantee that all readers get the same instance.  Another possible use would be in concurrent collections.  Let’s say, for example, that you are creating your own brand new super stack that uses a linked list paradigm and is “lock free”.  We could use Interlocked.CompareExchange() to be able to do a lockless Push() which could be more efficient in multi-threaded applications where several threads are pushing and popping on the stack concurrently. Yes, there are already concurrent collections in the BCL (in .NET 4.0 as part of the TPL), but it’s a fun exercise!  So let’s assume we have a node like this: 1: public sealed class Node<T> 2: { 3: // the data for this node 4: public T Data { get; set; } 5:  6: // the link to the next instance 7: internal Node<T> Next { get; set; } 8: } Then, perhaps, our stack’s Push() operation might look something like: 1: public sealed class SuperStack<T> 2: { 3: private volatile T _head; 4:  5: public void Push(T value) 6: { 7: var newNode = new Node<int> { Data = value, Next = _head }; 8:  9: if (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next) 10: { 11: var spinner = new SpinWait(); 12:  13: do 14: { 15: spinner.SpinOnce(); 16: newNode.Next = _head; 17: } 18: while (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next); 19: } 20: } 21:  22: // ... 23: } Notice a similar paradigm here as with adding our doubles before.  What we are doing is creating the new Node with the data to push, and with a Next value being the original node referenced by _head.  This will create our stack behavior (LIFO – Last In, First Out).  Now, we have to set _head to now refer to the newNode, but we must first make sure it hasn’t changed! So we check to see if _head has the same value we saved in our snapshot as newNode.Next, and if so, we set _head to newNode.  This is all done atomically, and the result is _head’s original value, as long as the original value was what we assumed it was with newNode.Next, then we are good and we set it without a lock!  If not, we SpinWait and try again. Once again, this is much lighter than locking in highly parallelized code with lots of contention.  If I compare the method above with a similar class using lock, I get the following results for pushing 100,000 items: 1: Locked SuperStack average time: 6 ms 2: Interlocked SuperStack average time: 4.5 ms So, once again, we can get more efficient than a lock, though there is the cost of added code complexity.  Fortunately for you, most of the concurrent collection you’d ever need are already created for you in the System.Collections.Concurrent (here) namespace – for more information, see my Little Wonders – The Concurent Collections Part 1 (here), Part 2 (here), and Part 3 (here). Summary We’ve seen before how the Interlocked class can be used to safely and efficiently add, increment, decrement, read, and exchange values in a multi-threaded environment.  In addition to these, Interlocked CompareExchange() can be used to perform more complex logic without the need of a lock when lock contention is a concern. The added efficiency, though, comes at the cost of more complex code.  As such, the standard lock is often sufficient for most thread-safety needs.  But if profiling indicates you spend a lot of time waiting for locks, or if you just need a lock for something simple such as an increment, decrement, read, exchange, etc., then consider using the Interlocked class’s methods to reduce wait. Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked,CompareExchange,threading,concurrency

    Read the article

  • Google reverse an analytic

    - by Dan
    I am confused about what code must be executed to reverse a google analytic. I have the following code pasted within a test page: <body onLoad=”function()”> <script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-25305776-3']); _gaq.push(['_trackPageview']); _gaq.push(['_addTrans', '11455', // order ID - required '-42.38', // total - required '-2.38', // tax '-15.00' // shipping ]); _gaq.push(['_addItem', '11455', // order ID - necessary to associate item with transaction 'Evan Turner Turningpoint™ Basketball Pants', // product name '25.00', // unit price - required '-1' // quantity - required ]); _gaq.push(['_trackTrans']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script> Is this correct? Thanks!

    Read the article

  • What is the proper name for this design pattern in Python?

    - by James
    In Python, is the proper name for the PersonXXX class below PersonProxy, PersonInterface, etc? import rest class PersonXXX(object): def __init__(self,db_url): self.resource = rest.Resource(db_url) def create(self,person): self.resource.post(person.data()) def get(self): pass def update(self): pass def delete(self): pass class Person(object): def __init__(self,name, age): self.name = name self.age = age def data(self): return dict(name=self.name,age=self.age)

    Read the article

  • Good architecture for user information on separate databases?

    - by James P. Wright
    I need to write an API to connect to an existing SQL database. The API will be written in ASP.Net MVC3. The slight problem is that with existing users of the system, they may have a username on multiple databases. Each company using the product gets a brand new instance of the database, but over the years (the system has been running for 10 years) there are quite a few users (hundreds) who have multiple usernames across multiple "companies" (things got fragmented obviously and sometimes a single Company has 5 "projects" that each have their own database). Long story short, I need to be able to have a single unified user login that will allow existing users to access their information across all their projects. The only thing I can think is storing a bunch of connection strings, but that feels like a really bad idea. I'll have a new Database that will hold the "unified user" information...can anyone suggest a solid system architecture that can handle a setup like this?

    Read the article

  • DPKG errors after upgrade to 12.10

    - by James Wulfe
    So I was doing fine then i upgraded my system to 12.10 and now i cant get my system to update all of its packages properly. no matter what i do, cleaning apt cache, manual install using dpkg, etc, i just cant get them to install. what is happening here and how do i fix this. if i would have thought 12.10 would be this much of a hassle i would have never upgraded..... here is a sampling of the code that returns from "apt-get -f install" Preparing to replace usb-modeswitch-data 20120120-0ubuntu1 (using .../usb-modeswitch-data_20120815-1_all.deb) ... /var/lib/dpkg/info/usb-modeswitch-data.prerm: 4: /var/lib/dpkg/info/usb-modeswitch-data.prerm: dpkg-maintscript-helper: Input/output error dpkg: warning: subprocess old pre-removal script returned error exit status 2 dpkg: trying script from the new package instead ... /var/lib/dpkg/tmp.ci/prerm: 4: /var/lib/dpkg/tmp.ci/prerm: dpkg-maintscript-helper: Input/output error dpkg: error processing /var/cache/apt/archives/usb-modeswitch-data_20120815-1_all.deb (--unpack): subprocess new pre-removal script returned error exit status 2 /var/lib/dpkg/info/usb-modeswitch-data.postinst: 7: /var/lib/dpkg/info/usb-modeswitch-data.postinst: dpkg-maintscript-helper: Input/output error dpkg: error while cleaning up: subprocess installed post-installation script returned error exit status 2 Errors were encountered while processing: /var/cache/apt/archives/network-manager_0.9.6.0-0ubuntu7_i386.deb /var/cache/apt/archives/pcmciautils_018-8_i386.deb /var/cache/apt/archives/unity-common_6.10.0-0ubuntu2_all.deb /var/cache/apt/archives/whoopsie_0.2.7_i386.deb /var/cache/apt/archives/usb-modeswitch_1.2.3+repack0-1ubuntu3_i386.deb /var/cache/apt/archives/usb-modeswitch-data_20120815-1_all.deb E: Sub-process /usr/bin/dpkg returned an error code (1) It is also just these 6 packages only. no other packages have given me this kind of trouble. well i should say as of now. It was just 5, but them i got an update for unity, and now unity-common is added to the trouble makers. which prevents me from further upgrading the actual unity package as this package is a dependancy.....

    Read the article

  • gnome-open raises this error when run from inside tmux

    - by dan
    The error I get is this: GConf Error: Failed to contact configuration server; the most common cause is a missing or misconfigured D-Bus session bus daemon. See http://projects.gnome.org/gconf/ for information. (Details - 1: Failed to get connection to session: Error connecting: Connection refused) Failed to open bus: Failed to connect to socket /tmp/dbus-BYC0LHrEHk: Connection refused Any suggestions?

    Read the article

  • how do you remember programming related stuff?

    - by dan leadgy
    How do you remember programming related stuff? Did you get the feeling you did encounter the error you have now a few years ago and you could swear you knew the cause but now you forgot it? Did you work with the xsl's string parsing some time ago but now you can't remember exactly which are the string functions altogether from xsl and you have to start from scratch? Or perhaps you forget about some feature from Apache Commons like "filtering a collection by some predicate" that you surely used in the past. So how do you do it? I tried having a blog but when I develop apps, I never find the time to update the blog or write about my experiences. Also, using a wiki is a nice thing but then I found it difficult to keep a clean separation between them since many times I needed to change a blog post to add new information about that topic. This made me think that I actually should have put this topic in the wiki instead of the blog. Do you have any systems that help you remember about your programming experience? What's your setup?

    Read the article

  • stuck on "preparing..." when restoring from deja-dup backup

    - by Dan
    I'm trying to restore my deja-dup backup from a certain date. However during restore after selecting the date to restore from i get a "restoring... "preparing"..." window that just seems stuck there doing nothing forever (past 1/2 hour). There was a point when i was prompted for the "encryption password" but i don't remember it, so i just entered one. I never got any error if the password i entered was not accepted.

    Read the article

  • How would you code an AI engine to allow communication in any programming language?

    - by Tokyo Dan
    I developed a two-player iPhone board game. Computer players (AI) can either be local (in the game code) or remote running on a server. In the 2nd case, both client and server code are coded in Lua. On the server the actual AI code is separate from the TCP socket code and coroutine code (which spawns a separate instance of AI for each connecting client). I want to be able to further isolate the AI code so that that part can be a module coded by anyone in their language of choice. How can I do this? What tecniques/technology would enable communication between the Lua TCP socket/coroutine code and the AI module?

    Read the article

  • Questions about linking libraries in C

    - by james
    I am learning C (still very much a beginner) on Linux using the GCC compiler. I have noticed that some libraries, such as the library used with the math.h header, need to be linked in manually when included. I have been linking in the libraries using various flags of the form -l[library-name], such as -lm for the above-mentioned math library. However, after switching from the command line and/or Geany to Code::Blocks, I noticed that Code::Blocks uses g++ to compile the programs instead of the gcc that I am used to (even though the project is definitely specified as C). Also, Code::Blocks does not require the libraries to be manually linked in when compiling - libraries such as the math library just work. I have two questions: Firstly, is it "bad" to compile C programs with the g++ compiler? So far it seems to work, but after all, C++ is not C and I am quite sure that the g++ compiler is meant for C++. Secondly, is it the g++ compiler that is doing the automatic linking of the libraries in Code::Blocks?

    Read the article

  • C#/.NET Little Wonders: Getting Caller Information

    - by James Michael Hare
    Originally posted on: http://geekswithblogs.net/BlackRabbitCoder/archive/2013/07/25/c.net-little-wonders-getting-caller-information.aspx Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. There are times when it is desirable to know who called the method or property you are currently executing.  Some applications of this could include logging libraries, or possibly even something more advanced that may server up different objects depending on who called the method. In the past, we mostly relied on the System.Diagnostics namespace and its classes such as StackTrace and StackFrame to see who our caller was, but now in C# 5, we can also get much of this data at compile-time. Determining the caller using the stack One of the ways of doing this is to examine the call stack.  The classes that allow you to examine the call stack have been around for a long time and can give you a very deep view of the calling chain all the way back to the beginning for the thread that has called you. You can get caller information by either instantiating the StackTrace class (which will give you the complete stack trace, much like you see when an exception is generated), or by using StackFrame which gets a single frame of the stack trace.  Both involve examining the call stack, which is a non-trivial task, so care should be done not to do this in a performance-intensive situation. For our simple example let's say we are going to recreate the wheel and construct our own logging framework.  Perhaps we wish to create a simple method Log which will log the string-ified form of an object and some information about the caller.  We could easily do this as follows: 1: static void Log(object message) 2: { 3: // frame 1, true for source info 4: StackFrame frame = new StackFrame(1, true); 5: var method = frame.GetMethod(); 6: var fileName = frame.GetFileName(); 7: var lineNumber = frame.GetFileLineNumber(); 8: 9: // we'll just use a simple Console write for now 10: Console.WriteLine("{0}({1}):{2} - {3}", 11: fileName, lineNumber, method.Name, message); 12: } So, what we are doing here is grabbing the 2nd stack frame (the 1st is our current method) using a 2nd argument of true to specify we want source information (if available) and then taking the information from the frame.  This works fine, and if we tested it out by calling from a file such as this: 1: // File c:\projects\test\CallerInfo\CallerInfo.cs 2:  3: public class CallerInfo 4: { 5: Log("Hello Logger!"); 6: } We'd see this: 1: c:\projects\test\CallerInfo\CallerInfo.cs(5):Main - Hello Logger! This works well, and in fact CallStack and StackFrame are still the best ways to examine deeper into the call stack.  But if you only want to get information on the caller of your method, there is another option… Determining the caller at compile-time In C# 5 (.NET 4.5) they added some attributes that can be supplied to optional parameters on a method to receive caller information.  These attributes can only be applied to methods with optional parameters with explicit defaults.  Then, as the compiler determines who is calling your method with these attributes, it will fill in the values at compile-time. These are the currently supported attributes available in the  System.Runtime.CompilerServices namespace": CallerFilePathAttribute – The path and name of the file that is calling your method. CallerLineNumberAttribute – The line number in the file where your method is being called. CallerMemberName – The member that is calling your method. So let’s take a look at how our Log method would look using these attributes instead: 1: static int Log(object message, 2: [CallerMemberName] string memberName = "", 3: [CallerFilePath] string fileName = "", 4: [CallerLineNumber] int lineNumber = 0) 5: { 6: // we'll just use a simple Console write for now 7: Console.WriteLine("{0}({1}):{2} - {3}", 8: fileName, lineNumber, memberName, message); 9: } Again, calling this from our sample Main would give us the same result: 1: c:\projects\test\CallerInfo\CallerInfo.cs(5):Main - Hello Logger! However, though this seems the same, there are a few key differences. First of all, there are only 3 supported attributes (at this time) that give you the file path, line number, and calling member.  Thus, it does not give you as rich of detail as a StackFrame (which can give you the calling type as well and deeper frames, for example).  Also, these are supported through optional parameters, which means we could call our new Log method like this: 1: // They're defaults, why not fill 'em in 2: Log("My message.", "Some member", "Some file", -13); In addition, since these attributes require optional parameters, they cannot be used in properties, only in methods. These caveats aside, they do let you get similar information inside of methods at a much greater speed!  How much greater?  Well lets crank through 1,000,000 iterations of each.  instead of logging to console, I’ll return the formatted string length of each.  Doing this, we get: 1: Time for 1,000,000 iterations with StackTrace: 5096 ms 2: Time for 1,000,000 iterations with Attributes: 196 ms So you see, using the attributes is much, much faster!  Nearly 25x faster in fact.  Summary There are a few ways to get caller information for a method.  The StackFrame allows you to get a comprehensive set of information spanning the whole call stack, but at a heavier cost.  On the other hand, the attributes allow you to quickly get at caller information baked in at compile-time, but to do so you need to create optional parameters in your methods to support it. Technorati Tags: Little Wonders,CSharp,C#,.NET,StackFrame,CallStack,CallerFilePathAttribute,CallerLineNumberAttribute,CallerMemberName

    Read the article

< Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >