Search Results

Search found 69890 results on 2796 pages for 'ip help'.

Page 23/2796 | < Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >

  • Benefits of sharing one IP, or prefarably assigning a new IP?

    - by Luis Yang
    I think I am lost but not found yet, please as regards this very topic; my issue was that I bought a new VPS using WHM optimised and it's just one domain meaning one IP. All I want to know is the benefit with sharing one IP to many domains I created for the users (remembering the IP is for the root) or is it of a disadvantage? Probably help me too with knowing if it's prefarable to create/assign a new IP to each new domain created for users?

    Read the article

  • CISCO 2911 Router configuration

    - by bala
    Device cisco 2911 router configuration support is required please. I have exchange server 2010 configured and working without any errors the problem is in cisco router configuration when exchange server sends emails out the receives WAN IP not the public ip. I have configured RDNS lookups with our MX record IP addesses that match the FQDN but all our emails are rejected because it does not match with the public ip. Receiving mails problem is not an problem all mails are coming through. i am sure i am missing something on the router configuration that does not sends the public ip, can any one help me to solve this issue. Note; I've got 1 WAN IP & 8 Public IP from ISP . Find below the running configuration. Building configuration... Current configuration : 2734 bytes ! ! Last configuration change at 06:32:13 UTC Tue Apr 3 2012 ! NVRAM config last updated at 06:32:14 UTC Tue Apr 3 2012 ! NVRAM config last updated at 06:32:14 UTC Tue Apr 3 2012 version 15.1 service timestamps debug datetime msec service timestamps log datetime msec service password-encryption ! hostname BSBG-LL ! boot-start-marker boot-end-marker ! ! enable secret 5 $x$xHrxxxxx5ox0 enable password 7 xx23xx5FxxE1xx044 ! no aaa new-model ! no ipv6 cef ip source-route ip cef ! ! ! ! ! ip flow-cache timeout active 1 ip domain name yourdomain.com ip name-server 213.42.20.20 ip name-server 195.229.241.222 multilink bundle-name authenticated ! ! crypto pki token default removal timeout 0 ! ! license udi pid CISCO2911/K9 ! ! username bsbg ! ! ! ! ! ! interface Embedded-Service-Engine0/0 no ip address shutdown ! interface GigabitEthernet0/0 ip address 192.168.0.9 255.255.255.0 ip flow ingress ip nat inside ip virtual-reassembly in duplex auto speed 100 no cdp enable ! interface GigabitEthernet0/1 ip address 213.42.xx.x2 255.255.255.252 ip nat outside ip virtual-reassembly in duplex auto speed auto no cdp enable ! interface GigabitEthernet0/2 no ip address shutdown duplex auto speed auto ! ip forward-protocol nd ! no ip http server no ip http secure-server ! ip nat inside source list 120 interface GigabitEthernet0/1 overload ip nat inside source static tcp 192.168.0.4 25 94.56.89.100 25 extendable ip nat inside source static tcp 192.168.0.4 53 94.56.89.100 53 extendable ip nat inside source static udp 192.168.0.4 53 94.56.89.100 53 extendable ip nat inside source static tcp 192.168.0.4 110 94.56.89.100 110 extendable ip nat inside source static tcp 192.168.0.4 443 94.56.89.100 443 extendable ip nat inside source static tcp 192.168.0.4 587 94.56.89.100 587 extendable ip nat inside source static tcp 192.168.0.4 995 94.56.89.100 995 extendable ip nat inside source static tcp 192.168.0.4 3389 94.56.89.100 3389 extendable ip nat inside source static tcp 192.168.0.4 443 94.56.89.101 443 extendable ip nat inside source static tcp 192.168.0.12 80 94.56.89.102 80 extendable ip nat inside source static tcp 192.168.0.12 443 94.56.89.102 443 extendable ip nat inside source static tcp 192.168.0.12 3389 94.56.89.102 3389 extendable ip route 0.0.0.0 0.0.0.0 213.42.69.41 ! access-list 120 permit ip 192.168.0.0 0.0.0.255 any ! ! ! control-plane ! ! ! line con 0 exec-timeout 5 0 line aux 0 line 2 no activation-character no exec transport preferred none transport input all transport output pad telnet rlogin lapb-ta mop udptn v120 ssh stopbits 1 line vty 0 4 password 7 xx64xxD530D26086Dxx login transport input all ! scheduler allocate 20000 1000 end

    Read the article

  • Computer Networks UNISA - Chap 10 &ndash; In Depth TCP/IP Networking

    - by MarkPearl
    After reading this section you should be able to Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation Explain the differences between public and private TCP/IP networks Describe protocols used between mail clients and mail servers, including SMTP, POP3, and IMAP4 Employ multiple TCP/IP utilities for network discovery and troubleshooting Designing TCP/IP-Based Networks The following sections explain how network and host information in an IPv4 address can be manipulated to subdivide networks into smaller segments. Subnetting Subnetting separates a network into multiple logically defined segments, or subnets. Networks are commonly subnetted according to geographic locations, departmental boundaries, or technology types. A network administrator might separate traffic to accomplish the following… Enhance security Improve performance Simplify troubleshooting The challenges of Classful Addressing in IPv4 (No subnetting) The simplest type of IPv4 is known as classful addressing (which was the Class A, Class B & Class C network addresses). Classful addressing has the following limitations. Restriction in the number of usable IPv4 addresses (class C would be limited to 254 addresses) Difficult to separate traffic from various parts of a network Because of the above reasons, subnetting was introduced. IPv4 Subnet Masks Subnetting depends on the use of subnet masks to identify how a network is subdivided. A subnet mask indicates where network information is located in an IPv4 address. The 1 in a subnet mask indicates that corresponding bits in the IPv4 address contain network information (likewise 0 indicates the opposite) Each network class is associated with a default subnet mask… Class A = 255.0.0.0 Class B = 255.255.0.0 Class C = 255.255.255.0 An example of calculating  the network ID for a particular device with a subnet mask is shown below.. IP Address = 199.34.89.127 Subnet Mask = 255.255.255.0 Resultant Network ID = 199.34.89.0 IPv4 Subnetting Techniques Subnetting breaks the rules of classful IPv4 addressing. Read page 490 for a detailed explanation Calculating IPv4 Subnets Read page 491 – 494 for an explanation Important… Subnetting only applies to the devices internal to your network. Everything external looks at the class of the IP address instead of the subnet network ID. This way, traffic directed to your network externally still knows where to go, and once it has entered your internal network it can then be prioritized and segmented. CIDR (classless Interdomain Routing) CIDR is also known as classless routing or supernetting. In CIDR conventional network class distinctions do not exist, a subnet boundary can move to the left, therefore generating more usable IP addresses on your network. A subnet created by moving the subnet boundary to the left is known as a supernet. With CIDR also came new shorthand for denoting the position of subnet boundaries known as CIDR notation or slash notation. CIDR notation takes the form of the network ID followed by a forward slash (/) followed by the number of bits that are used for the extended network prefix. To take advantage of classless routing, your networks routers must be able to interpret IP addresses that don;t adhere to conventional network class parameters. Routers that rely on older routing protocols (i.e. RIP) are not capable of interpreting classless IP addresses. Internet Gateways Gateways are a combination of software and hardware that enable two different network segments to exchange data. A gateway facilitates communication between different networks or subnets. Because on device cannot send data directly to a device on another subnet, a gateway must intercede and hand off the information. Every device on a TCP/IP based network has a default gateway (a gateway that first interprets its outbound requests to other subnets, and then interprets its inbound requests from other subnets). The internet contains a vast number of routers and gateways. If each gateway had to track addressing information for every other gateway on the Internet, it would be overtaxed. Instead, each handles only a relatively small amount of addressing information, which it uses to forward data to another gateway that knows more about the data’s destination. The gateways that make up the internet backbone are called core gateways. Address Translation An organizations default gateway can also be used to “hide” the organizations internal IP addresses and keep them from being recognized on a public network. A public network is one that any user may access with little or no restrictions. On private networks, hiding IP addresses allows network managers more flexibility in assigning addresses. Clients behind a gateway may use any IP addressing scheme, regardless of whether it is recognized as legitimate by the Internet authorities but as soon as those devices need to go on the internet, they must have legitimate IP addresses to exchange data. When a clients transmission reaches the default gateway, the gateway opens the IP datagram and replaces the client’s private IP address with an Internet recognized IP address. This process is known as NAT (Network Address Translation). TCP/IP Mail Services All Internet mail services rely on the same principles of mail delivery, storage, and pickup, though they may use different types of software to accomplish these functions. Email servers and clients communicate through special TCP/IP application layer protocols. These protocols, all of which operate on a variety of operating systems are discussed below… SMTP (Simple Mail transfer Protocol) The protocol responsible for moving messages from one mail server to another over TCP/IP based networks. SMTP belongs to the application layer of the ODI model and relies on TCP as its transport protocol. Operates from port 25 on the SMTP server Simple sub-protocol, incapable of doing anything more than transporting mail or holding it in a queue MIME (Multipurpose Internet Mail Extensions) The standard message format specified by SMTP allows for lines that contain no more than 1000 ascii characters meaning if you relied solely on SMTP you would have very short messages and nothing like pictures included in an email. MIME us a standard for encoding and interpreting binary files, images, video, and non-ascii character sets within an email message. MIME identifies each element of a mail message according to content type. MIME does not replace SMTP but works in conjunction with it. Most modern email clients and servers support MIME POP (Post Office Protocol) POP is an application layer protocol used to retrieve messages from a mail server POP3 relies on TCP and operates over port 110 With POP3 mail is delivered and stored on a mail server until it is downloaded by a user Disadvantage of POP3 is that it typically does not allow users to save their messages on the server because of this IMAP is sometimes used IMAP (Internet Message Access Protocol) IMAP is a retrieval protocol that was developed as a more sophisticated alternative to POP3 The single biggest advantage IMAP4 has over POP3 is that users can store messages on the mail server, rather than having to continually download them Users can retrieve all or only a portion of any mail message Users can review their messages and delete them while the messages remain on the server Users can create sophisticated methods of organizing messages on the server Users can share a mailbox in a central location Disadvantages of IMAP are typically related to the fact that it requires more storage space on the server. Additional TCP/IP Utilities Nearly all TCP/IP utilities can be accessed from the command prompt on any type of server or client running TCP/IP. The syntaxt may differ depending on the OS of the client. Below is a list of additional TCP/IP utilities – research their use on your own! Ipconfig (Windows) & Ifconfig (Linux) Netstat Nbtstat Hostname, Host & Nslookup Dig (Linux) Whois (Linux) Traceroute (Tracert) Mtr (my traceroute) Route

    Read the article

  • Oracle Coherence?UCOM?IP???????SIP?????????????

    - by Norihito Yachita
    ?????????Oracle Coherence???????????????????????UCOM?IP???????SIP(Session Initiation Protocol)?????????????????????????????????? UCOM?????????????????????????????????????????IP????????????????????????????????????ISP?????????????????????????????????????????????????????????????????????????????????????????SOHO??????????????????????? UCOM??IP???????????????????SIP??????????????????????????????IP???????????????????????????Oracle Coherence??2011?2????????????????????????????????????????????????????????????????????????????????????????·????????2????????? 11?30?(?)??????????·??????·????? 2011?(??:??????)??UCOM??Oracle Coherence?????????????????????:?UCOM ????????????????????????

    Read the article

  • Application freezes when performing help file search

    - by ralphos
    I have a large C# application and a help file in *.chm format. When I press F1 to display this help file and select "Search" tab, type something and click "List Topics" button, both the help window and the entire application freeze. What's interesting when I simply open the *.chm file in the Windows Explorer, the search functionality works brilliantly. In order to display the help file from my application, I am executing: Help.ShowHelp(this, helpFileName); This method is executed from within the main form of the application on the UI thread.

    Read the article

  • How to tell endianness from this output?

    - by Nick Rosencrantz
    I'm running this example program and I'm suppossed to be able to tell from the output what machine type it is. I'm certain it's from inspecting one or two values but how should I perform this inspection? /* pointers.c - Test pointers * Written 2012 by F Lundevall * Copyright abandoned. This file is in the public domain. * * To make this program work on as many systems as possible, * addresses are converted to unsigned long when printed. * The 'l' in formatting-codes %ld and %lx means a long operand. */ #include <stdio.h> #include <stdlib.h> int * ip; /* Declare a pointer to int, a.k.a. int pointer. */ char * cp; /* Pointer to char, a.k.a. char pointer. */ /* Declare fp as a pointer to function, where that function * has one parameter of type int and returns an int. * Use cdecl to get the syntax right, http://cdecl.org/ */ int ( *fp )( int ); int val1 = 111111; int val2 = 222222; int ia[ 17 ]; /* Declare an array of 17 ints, numbered 0 through 16. */ char ca[ 17 ]; /* Declare an array of 17 chars. */ int fun( int parm ) { printf( "Function fun called with parameter %d\n", parm ); return( parm + 1 ); } /* Main function. */ int main() { printf( "Message PT.01 from pointers.c: Hello, pointy World!\n" ); /* Do some assignments. */ ip = &val1; cp = &val2; /* The compiler should warn you about this. */ fp = fun; ia[ 0 ] = 11; /* First element. */ ia[ 1 ] = 17; ia[ 2 ] = 3; ia[ 16 ] = 58; /* Last element. */ ca[ 0 ] = 11; /* First element. */ ca[ 1 ] = 17; ca[ 2 ] = 3; ca[ 16 ] = 58; /* Last element. */ printf( "PT.02: val1: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val1, val1, val1 ); printf( "PT.03: val2: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val2, val2, val2 ); printf( "PT.04: ip: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &ip, (long) ip, (long) ip ); printf( "PT.05: Dereference pointer ip and we find: %d \n", *ip ); printf( "PT.06: cp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &cp, (long) cp, (long) cp ); printf( "PT.07: Dereference pointer cp and we find: %d \n", *cp ); *ip = 1234; printf( "\nPT.08: Executed *ip = 1234; \n" ); printf( "PT.09: val1: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val1, val1, val1 ); printf( "PT.10: ip: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &ip, (long) ip, (long) ip ); printf( "PT.11: Dereference pointer ip and we find: %d \n", *ip ); printf( "PT.12: val1: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val1, val1, val1 ); *cp = 1234; /* The compiler should warn you about this. */ printf( "\nPT.13: Executed *cp = 1234; \n" ); printf( "PT.14: val2: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val2, val2, val2 ); printf( "PT.15: cp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &cp, (long) cp, (long) cp ); printf( "PT.16: Dereference pointer cp and we find: %d \n", *cp ); printf( "PT.17: val2: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val2, val2, val2 ); ip = ia; printf( "\nPT.18: Executed ip = ia; \n" ); printf( "PT.19: ia[0]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ia[0], ia[0], ia[0] ); printf( "PT.20: ia[1]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ia[1], ia[1], ia[1] ); printf( "PT.21: ip: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &ip, (long) ip, (long) ip ); printf( "PT.22: Dereference pointer ip and we find: %d \n", *ip ); ip = ip + 1; /* add 1 to pointer */ printf( "\nPT.23: Executed ip = ip + 1; \n" ); printf( "PT.24: ip: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &ip, (long) ip, (long) ip ); printf( "PT.25: Dereference pointer ip and we find: %d \n", *ip ); cp = ca; printf( "\nPT.26: Executed cp = ca; \n" ); printf( "PT.27: ca[0]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ca[0], ca[0], ca[0] ); printf( "PT.28: ca[1]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ca[1], ca[1], ca[1] ); printf( "PT.29: cp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &cp, (long) cp, (long) cp ); printf( "PT.30: Dereference pointer cp and we find: %d \n", *cp ); cp = cp + 1; /* add 1 to pointer */ printf( "\nPT.31: Executed cp = cp + 1; \n" ); printf( "PT.32: cp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &cp, (long) cp, (long) cp ); printf( "PT.33: Dereference pointer cp and we find: %d \n", *cp ); ip = ca; /* The compiler should warn you about this. */ printf( "\nPT.34: Executed ip = ca; \n" ); printf( "PT.35: ca[0]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ca[0], ca[0], ca[0] ); printf( "PT.36: ca[1]: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &ca[1], ca[1], ca[1] ); printf( "PT.37: ip: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &ip, (long) ip, (long) ip ); printf( "PT.38: Dereference pointer ip and we find: %d \n", *ip ); cp = ia; /* The compiler should warn you about this. */ printf( "\nPT.39: Executed cp = ia; \n" ); printf( "PT.40: cp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &cp, (long) cp, (long) cp ); printf( "PT.41: Dereference pointer cp and we find: %d \n", *cp ); printf( "\nPT.42: fp: stored at %lx (hex); value is %ld (dec), %lx (hex)\n", (long) &fp, (long) fp, (long) fp ); printf( "PT.43: Dereference fp and see what happens.\n" ); val1 = (*fp)(42); printf( "PT.44: Executed val1 = (*fp)(42); \n" ); printf( "PT.45: val1: stored at %lx (hex); value is %d (dec), %x (hex)\n", (long) &val1, val1, val1 ); return( 0 ); } Output Message PT.01 from pointers.c: Hello, pointy World! PT.02: val1: stored at 21e50 (hex); value is 111111 (dec), 1b207 (hex) PT.03: val2: stored at 21e54 (hex); value is 222222 (dec), 3640e (hex) PT.04: ip: stored at 21eb8 (hex); value is 138832 (dec), 21e50 (hex) PT.05: Dereference pointer ip and we find: 111111 PT.06: cp: stored at 21e6c (hex); value is 138836 (dec), 21e54 (hex) PT.07: Dereference pointer cp and we find: 0 PT.08: Executed *ip = 1234; PT.09: val1: stored at 21e50 (hex); value is 1234 (dec), 4d2 (hex) PT.10: ip: stored at 21eb8 (hex); value is 138832 (dec), 21e50 (hex) PT.11: Dereference pointer ip and we find: 1234 PT.12: val1: stored at 21e50 (hex); value is 1234 (dec), 4d2 (hex) PT.13: Executed *cp = 1234; PT.14: val2: stored at 21e54 (hex); value is -771529714 (dec), d203640e (hex) PT.15: cp: stored at 21e6c (hex); value is 138836 (dec), 21e54 (hex) PT.16: Dereference pointer cp and we find: -46 PT.17: val2: stored at 21e54 (hex); value is -771529714 (dec), d203640e (hex) PT.18: Executed ip = ia; PT.19: ia[0]: stored at 21e74 (hex); value is 11 (dec), b (hex) PT.20: ia[1]: stored at 21e78 (hex); value is 17 (dec), 11 (hex) PT.21: ip: stored at 21eb8 (hex); value is 138868 (dec), 21e74 (hex) PT.22: Dereference pointer ip and we find: 11 PT.23: Executed ip = ip + 1; PT.24: ip: stored at 21eb8 (hex); value is 138872 (dec), 21e78 (hex) PT.25: Dereference pointer ip and we find: 17 PT.26: Executed cp = ca; PT.27: ca[0]: stored at 21e58 (hex); value is 11 (dec), b (hex) PT.28: ca[1]: stored at 21e59 (hex); value is 17 (dec), 11 (hex) PT.29: cp: stored at 21e6c (hex); value is 138840 (dec), 21e58 (hex) PT.30: Dereference pointer cp and we find: 11 PT.31: Executed cp = cp + 1; PT.32: cp: stored at 21e6c (hex); value is 138841 (dec), 21e59 (hex) PT.33: Dereference pointer cp and we find: 17 PT.34: Executed ip = ca; PT.35: ca[0]: stored at 21e58 (hex); value is 11 (dec), b (hex) PT.36: ca[1]: stored at 21e59 (hex); value is 17 (dec), 11 (hex) PT.37: ip: stored at 21eb8 (hex); value is 138840 (dec), 21e58 (hex) PT.38: Dereference pointer ip and we find: 185664256 PT.39: Executed cp = ia; PT.40: cp: stored at 21e6c (hex); value is 138868 (dec), 21e74 (hex) PT.41: Dereference pointer cp and we find: 0 PT.42: fp: stored at 21e70 (hex); value is 69288 (dec), 10ea8 (hex) PT.43: Dereference fp and see what happens. Function fun called with parameter 42 PT.44: Executed val1 = (*fp)(42); PT.45: val1: stored at 21e50 (hex); value is 43 (dec), 2b (hex)

    Read the article

  • How do I use ffmpeg with live streaming from an IP camera

    - by Murali Hariharan
    My question is very basic because I am a newbie to all these technologies. I have an IP camera connected to my internal network. - "http://192.168.1.20/videostream.cgi?user=admin&pwd=" gives a live streaming view in Firefox or Internet Explorer. Now I want to record the live stream into a video. The parameters to be supplied are begin_time, end_time, format of video etc. How do I accomplish this? I appreciate any guidance. Thanks Murali

    Read the article

  • Determine if IP Address is Cellular IP Address

    - by CJCraft.com
    In .NET Compact Framework a device can have several IP Addresses I want to find one that is NOT coming from the Cellular connection. Goal is for WiFi or Ethernet connection. Is there a way to do this? Seems like State and Notification Broker would have a way to do this but didn't see a way.

    Read the article

  • cPanel/WHM IP Ban - How to Unban IP

    - by Loren
    We are using htaccess basic authentication on one of our sites. One of our clients tried accessing the site and failed logging in multiple times. Now when visiting our site they simply get a "Can't Display Webpage" error. I believe I've had this before and I believe there IP's got banned after so many failures. I'm not sure where to go in WHM/cPanel to unban them - appreciate any assistance!! Thanks Loren

    Read the article

  • One google IP address is failing. Is there a way to force a switch to different one?

    - by vaccano
    The google ip address 74.125.53.100 is failing. I know no one would believe this so I did an online ping: As this image shows one of the IP addresses for Google is failing. But there are others. If I type them in then I can get to Google just fine. But when I try to search, Google reverts back to the broken IP. Is there any way for me to say "I want to do a search with one of the working IP addresses"?

    Read the article

  • Saving an IP adddress to DB

    - by Mark
    I want to save a user's IP address to my database just in case any legal issues come up and we need to track down who performed what action. Since I highly doubt I will ever actually need to use this data (well, maybe for counting unique hits or something) do you think I can just dump the REMOTE_ADDR into a field? If so, what should the length of that field be? 39 chars should fit an IPv6 address, no? I don't know if I'll ever get any of those, but just in case...

    Read the article

  • Problem getting real IP in php

    - by leda
    I am using this to get real IP but i take empty from $_SERVER['HTTP_CLIENT_IP'],i take not empty only from $_SERVER['REMOTE_ADDR'].But i dont need the IP of proxy,i need the real ip of computers using some intranet.Can i get it?when $_SERVER['HTTP_CLIENT_IP'] does not return empty? function getRealIpAddr() { if (!empty($_SERVER['HTTP_CLIENT_IP'])) //check ip from share internet { $ip=$_SERVER['HTTP_CLIENT_IP']; } elseif (!empty($_SERVER['HTTP_X_FORWARDED_FOR'])) //to check ip is pass from proxy { $ip=$_SERVER['HTTP_X_FORWARDED_FOR']; } else { $ip=$_SERVER['REMOTE_ADDR']; } return $ip; }

    Read the article

  • Change IP where domain is pointing

    - by Christian Sciberras
    This is probably a very strange request. I need to programmaticaly (via code) change the IP where a domain name is pointing to. IE: xyz.com points to 100.100.100.100 setIP('xyz.com','100.100.100.100'); I know this [code] is practically impossible, however, what I need is to do this via domain host API etc or other possible ways you might think of. I'd be happy even if it weren't anything more then sending an email to the DNS owner/host. Do you know of anything the like or which might help? (nb: considered throwing this at ServerFault, but felt it more at home here ;) ) Cheers!

    Read the article

  • Cannot access Application configured on local IIS 7 using IP/machine name

    - by SilverHorse
    I have a windows 7 machine 64 bit and IIS 7 I have a default website on the IIS.Its binding is {IP: All Unassigned , Port:80 , Host Name : blank} I have added a new asp.net application to that website,mapped physical path, have set the virtual path as "MyWebApp". Application pool for "MyWebApp" is "DefaultAppPool" {.Net Framework: 4.0 ; Managed Pipeline Mode: Classic} The problem I am facing is I can access the website using http://localhost, http://IP.IP.IP.IP and http://MyMachineName But I can not access the Application other than using http://localhost/MyWebApp What should I do if I want to access the webapp using http://MyMachineName/MyWebApp OR http://IP.IP.IP.IP/MyWebApp Please note : I have already created an inbound rule to allow all HTTP traffic for port 80 in firewall settings.

    Read the article

  • DNS PTR record when domain on shared IP address

    - by Marco Demaio
    Hello, I own a typical shared IP hosting plan and domain. I can modify the DNS of the domain from the control panel. The mailserver shares the same IP address, so my typical DNS config is: www.mydomain.com A -> IP mydomain.com A -> IP ftp.mydomain.com A -> IP mail.mydomain.com A -> IP mydomain.com MX(10) -> IP I read some Q&A on this site where they suggest to add PTR record mainly for mailserver. I would like to add PTR record to my domain, I have got two questions: 1) can PTR record be added even if the hosting/mailserver are on a shared IP address? Or do I need a dedicated IP. 2) How do I setup PTR record, I mean does it look like A record: mydomain.com (PTR) -> myip

    Read the article

  • Configuring NAT and static IP on Cisco 877W

    - by David M Williams
    Hi all, I'm having trouble setting up a static IP reservation on a network. What I want to do is assign IP 192.168.1.105 to MAC address 00:21:5d:2f:58:04 and then port forward 35394 to it. If it helps, output from show ver says Cisco IOS software, C870 software (C870-ADVSECURITYK9-M), version 12.4(4)T7, release software (fc1) ROM: System bootstrap, version 12.3(8r)YI4, release software I have done this - service dhcp ip routing ip dhcp excluded-address 192.168.1.1 192.168.1.99 ip dhcp excluded-address 192.168.1.200 192.168.1.255 ip dhcp pool ClientDHCP network 192.168.1.0 255.255.255.0 default-router 192.168.1.1 dns-server 192.168.1.1 lease 7 ip dhcp pool NEO host 192.168.1.105 255.255.255.0 hardware-address 0021.5D2F.5804 ip nat inside source static tcp 192.168.1.105 35394 <PUBLIC_IP> 35394 extendable However, the machine is getting assigned IP address 192.168.1.101 not .105 ... any suggestions? Thanks !

    Read the article

  • Linux router: ping doesn't route back

    - by El Barto
    I have a Debian box which I'm trying to set up as a router and an Ubuntu box which I'm using as a client. My problem is that when the Ubuntu client tries to ping a server on the Internet, all the packets are lost (though, as you can see below, they seem to go to the server and back without problem). I'm doing this in the Ubuntu Box: # ping -I eth1 my.remote-server.com PING my.remote-server.com (X.X.X.X) from 10.1.1.12 eth1: 56(84) bytes of data. ^C --- my.remote-server.com ping statistics --- 13 packets transmitted, 0 received, 100% packet loss, time 12094ms (I changed the name and IP of the remote server for privacy). From the Debian Router I see this: # tcpdump -i eth1 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 7, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 8, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 8, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 9, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 9, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 10, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 10, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 11, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 11, length 64 ^C 9 packets captured 9 packets received by filter 0 packets dropped by kernel # tcpdump -i eth2 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth2, link-type EN10MB (Ethernet), capture size 65535 bytes IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 213, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 213, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 214, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 214, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 215, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 215, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 216, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 216, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 217, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 217, length 64 ^C 10 packets captured 10 packets received by filter 0 packets dropped by kernel And at the remote server I see this: # tcpdump -i eth0 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 1, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 1, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 2, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 2, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 3, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 3, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 4, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 4, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 5, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 5, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 6, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 6, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 7, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 7, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 8, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 8, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 9, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 9, length 64 18 packets captured 228 packets received by filter 92 packets dropped by kernel Here "X.X.X.X" is my remote server's IP and "Y.Y.Y.Y" is my local network's public IP. So, what I understand is that the ping packets are coming out of the Ubuntu box (10.1.1.12), to the router (10.1.1.1), from there to the next router (192.168.1.1) and reaching the remote server (X.X.X.X). Then they come back all the way to the Debian router, but they never reach the Ubuntu box back. What am I missing? Here's the Debian router setup: # ifconfig eth1 Link encap:Ethernet HWaddr 94:0c:6d:82:0d:98 inet addr:10.1.1.1 Bcast:10.1.1.255 Mask:255.255.255.0 inet6 addr: fe80::960c:6dff:fe82:d98/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:105761 errors:0 dropped:0 overruns:0 frame:0 TX packets:48944 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:40298768 (38.4 MiB) TX bytes:44831595 (42.7 MiB) Interrupt:19 Base address:0x6000 eth2 Link encap:Ethernet HWaddr 6c:f0:49:a4:47:38 inet addr:192.168.1.10 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::6ef0:49ff:fea4:4738/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:38335992 errors:0 dropped:0 overruns:0 frame:0 TX packets:37097705 errors:0 dropped:0 overruns:0 carrier:1 collisions:0 txqueuelen:1000 RX bytes:4260680226 (3.9 GiB) TX bytes:3759806551 (3.5 GiB) Interrupt:27 eth3 Link encap:Ethernet HWaddr 94:0c:6d:82:c8:72 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:20 Base address:0x2000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:3408 errors:0 dropped:0 overruns:0 frame:0 TX packets:3408 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:358445 (350.0 KiB) TX bytes:358445 (350.0 KiB) tun0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet addr:10.8.0.1 P-t-P:10.8.0.2 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1 RX packets:2767779 errors:0 dropped:0 overruns:0 frame:0 TX packets:1569477 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:100 RX bytes:3609469393 (3.3 GiB) TX bytes:96113978 (91.6 MiB) # route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 10.8.0.2 0.0.0.0 255.255.255.255 UH 0 0 0 tun0 127.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 lo 10.8.0.0 10.8.0.2 255.255.255.0 UG 0 0 0 tun0 192.168.1.0 0.0.0.0 255.255.255.0 U 1 0 0 eth2 10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth2 # arp -n # Note: Here I have changed all the different MACs except the ones corresponding to the Ubuntu box (on 10.1.1.12 and 192.168.1.12) Address HWtype HWaddress Flags Mask Iface 192.168.1.118 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.72 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.94 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.102 ether NN:NN:NN:NN:NN:NN C eth2 10.1.1.12 ether 00:1e:67:15:2b:f0 C eth1 192.168.1.86 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.2 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.61 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.64 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.116 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.91 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.52 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.93 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.87 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.92 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.100 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.40 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.53 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.83 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.89 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.12 ether 00:1e:67:15:2b:f1 C eth2 192.168.1.77 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.66 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.90 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.65 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.41 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.78 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.123 ether NN:NN:NN:NN:NN:NN C eth2 # iptables -L -n Chain INPUT (policy ACCEPT) target prot opt source destination Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination # iptables -L -n -t nat Chain PREROUTING (policy ACCEPT) target prot opt source destination Chain POSTROUTING (policy ACCEPT) target prot opt source destination MASQUERADE all -- 10.1.1.0/24 !10.1.1.0/24 MASQUERADE all -- !10.1.1.0/24 10.1.1.0/24 Chain OUTPUT (policy ACCEPT) target prot opt source destination And here's the Ubuntu box: # ifconfig eth0 Link encap:Ethernet HWaddr 00:1e:67:15:2b:f1 inet addr:192.168.1.12 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::21e:67ff:fe15:2bf1/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:28785139 errors:0 dropped:0 overruns:0 frame:0 TX packets:19050735 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:32068182803 (32.0 GB) TX bytes:6061333280 (6.0 GB) Interrupt:16 Memory:b1a00000-b1a20000 eth1 Link encap:Ethernet HWaddr 00:1e:67:15:2b:f0 inet addr:10.1.1.12 Bcast:10.1.1.255 Mask:255.255.255.0 inet6 addr: fe80::21e:67ff:fe15:2bf0/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:285086 errors:0 dropped:0 overruns:0 frame:0 TX packets:12719 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:30817249 (30.8 MB) TX bytes:2153228 (2.1 MB) Interrupt:16 Memory:b1900000-b1920000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:86048 errors:0 dropped:0 overruns:0 frame:0 TX packets:86048 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:11426538 (11.4 MB) TX bytes:11426538 (11.4 MB) # route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0 0.0.0.0 10.1.1.1 0.0.0.0 UG 100 0 0 eth1 10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 10.8.0.0 192.168.1.10 255.255.255.0 UG 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0 192.168.1.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0 # arp -n # Note: Here I have changed all the different MACs except the ones corresponding to the Debian box (on 10.1.1.1 and 192.168.1.10) Address HWtype HWaddress Flags Mask Iface 192.168.1.70 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.90 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.97 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.103 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.13 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.120 (incomplete) eth0 192.168.1.111 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.118 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.51 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.102 (incomplete) eth0 192.168.1.64 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.52 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.74 (incomplete) eth0 192.168.1.94 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.121 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.72 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.87 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.91 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.71 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.78 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.83 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.88 (incomplete) eth0 192.168.1.82 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.98 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.100 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.93 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.73 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.11 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.85 (incomplete) eth0 192.168.1.112 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.89 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.65 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.81 ether NN:NN:NN:NN:NN:NN C eth0 10.1.1.1 ether 94:0c:6d:82:0d:98 C eth1 192.168.1.53 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.116 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.61 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.10 ether 6c:f0:49:a4:47:38 C eth0 192.168.1.86 (incomplete) eth0 192.168.1.119 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.66 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth1 192.168.1.92 ether NN:NN:NN:NN:NN:NN C eth0 # iptables -L -n Chain INPUT (policy ACCEPT) target prot opt source destination Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination # iptables -L -n -t nat Chain PREROUTING (policy ACCEPT) target prot opt source destination Chain INPUT (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination Chain POSTROUTING (policy ACCEPT) target prot opt source destination Edit: Following Patrick's suggestion, I did a tcpdump con the Ubuntu box and I see this: # tcpdump -i eth1 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 1, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 1, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 2, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 2, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 3, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 3, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 4, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 4, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 5, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 5, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 6, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 6, length 64 ^C 12 packets captured 12 packets received by filter 0 packets dropped by kernel So the question is: if all packets seem to be coming and going, why does ping report 100% packet loss?

    Read the article

  • How to Find Your Computer’s Private & Public IP Addresses

    - by Chris Hoffman
    An IP address (or Internet Protocol address) identifies each networked computer and device on a network. When computers communicate with each other on the Internet or a local network, they send information to each other’s IP addresses. Your computer likely has public and private IP addresses. You’ll need the IP address if you’re hosting server software – the client computers will need your computer’s IP address to connect to it. How to Make Your Laptop Choose a Wired Connection Instead of Wireless HTG Explains: What Is Two-Factor Authentication and Should I Be Using It? HTG Explains: What Is Windows RT and What Does It Mean To Me?

    Read the article

  • Gateway IP Returns to Zero

    - by Robert Smith
    When you set a static IP under Ubuntu 12.04.1, you must supply the desired machine IP and the gateway IP, all using the Network Manager. When I first entered them and rebooted, everything worked great. On the second boot, however, Firefox could find no Web page. Upon checking, I discovered that the gateway IP had returned to zero. Now, no matter how often I resupply it, it returns to zero immediately after NM "saves" it: that is, appears as zero when redisplayed. The only way I can get to the Internet is to restore DHCP operation. I need to use static IP for access to my home network. Would appreciate any suggestion. --Robert Smith

    Read the article

  • Port forward based on external IP (for VPS hosting)

    - by Ben Alter
    What I want to do is to host a VPS. First, I'd like to set up a static IP address that forwards to my home IP address (so I can have more than one IP coming into my house). How can I do this without contacting my ISP (and is it even possible?; I don't care about paying for something that does this). Once I have the extra external IP address, how can I forward it to my VPS? How is my router supposed to differentiate between two separate external IP addresses?

    Read the article

  • What good alternatives to CHM are there for context sensitive help documents in desktop applications

    - by ninesided
    We currently have a number of desktop applications (PowerBuilder, Winforms, WPF) that make use of a single CHM for context sensitive help. We'd like to move away from CHM as it's difficult to maintain but we've not found a suitable alternative. Ideally we'd like our developers to keep the help files up to date (perhaps in a wiki) as they add funtionality and simply export this to PDF or something like that, but is it possible to use a PDF for context sensitve help, or are there any other promising alternative to CHM?

    Read the article

  • Table of content from MSDN help

    - by Oksana
    Hi All! I whant convert msdn help to chm file. Usually table of content already exists in single html page. But in msdn help, table of content building by ajax and not presents completely. How get table of content file from msdn help? For example, I get documentation from http://msdn.microsoft.com/en-us/library/bb418439%28SQL.10%29.aspx

    Read the article

  • Local help not working in Visual Studio 2005

    The local help in Visual Studio 2005 never comes back with anything. Also, if I'm not connected to the Internet, of course I get nothing. When I run dexplore eventually it takes 100% of cpu. Also, the F1 help doesn't work (of course). I've repaired both VS 2005, MSDN in other orders. Any help will be appreciated! THanks -tim

    Read the article

  • Help with google maps api, user allowed marker map

    - by Exilekiller
    Without telling everyone too much about my new idea for a website, Pretty much I need help, maybe someone can help write it up, with a site that has a simple map that allows any user to double click the map and make a marker. When the marker comes up I just want Title and Description available for edit(only once, so others cant change it). I have been trying to figure this out myself but computer science isnt my major so its killing me. Thanks for the help

    Read the article

< Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >