Search Results

Search found 54503 results on 2181 pages for 'net mvc'.

Page 23/2181 | < Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >

  • ASP.NET MVC Catch All

    - by rkrauter
    The ignore route is defined like this: routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); Why not routes.IgnoreRoute("{resource}.axd/{*}"); What is the significance of pathInfo? Thanks.

    Read the article

  • Proper way to build a data Repository in ASP.NET MVC

    - by rockinthesixstring
    I'm working on using the Repository methodology in my App and I have a very fundamental question. When I build my Model, I have a Data.dbml file and then I'm putting my Repositories in the same folder with it.... IE: Data.dbml IUserRepository.cs UserRepository.cs My question is simple. Is it better to build the folder structure like that above, or is it ok to simply put my Interface in with the UserRepository.cs? Data.dbml UserRepository.cs              which contains both the interface and the class Just looking for "best practices" here. Thanks in advance.

    Read the article

  • How do I do multipled level routes best in MVC

    - by Lilja
    I have a site where I would like an URL like: /Some maincategory name/{id}/Some subcategory name/{id}/Some item name/{id} I include the IDs of each level since the name is not unique. This is doable but I have to create a new routing for each level. My Html.ActionLink also looks nasty. Each level has it's own controller since the levels are completely different. The URLs could be something like this: _/Birds/2/Waders/4/Flamingos/23_ _/Mammals/5/Dogs/23/Longeared/25/Somedog/76_ _/Insects/7/Spiders_ This is just an example and not what I'm going to use. My applications has nothing to do with animals. Is there a good way of doing this or should I use the standard routing instead?

    Read the article

  • C# mvc 3 using selectlist with selected value in view

    - by Rob
    I'm working on a MVC3 web application. I want a list of categories shown when editing a blo from whe applications managements system. In my viewmodel i've got the following property defined for a list of selectlistitems for categories. /// <summary> /// The List of categories /// </summary> [Display(Name = "Categorie")] public IEnumerable<SelectListItem> Categories { get; set; } The next step, my controller contains the following edit action where the list of selectlistitems is filled from the database. public ActionResult Edit(Guid id) { var blogToEdit = _blogService.First(x => x.Id.Equals(id)); var listOfCategories = _categorieService.GetAll(); var selectList = listOfCategories.Select(x =>new SelectListItem{Text = x.Name, Value = x.Id.ToString(), Selected = x.Id.Equals(blogToEdit.Category.Id)}).ToList(); selectList.Insert(0, new SelectListItem{Text = Messages.SelectAnItem, Value = Messages.SelectAnItem}); var viewModel = new BlogModel { BlogId = blogToEdit.Id, Active = blogToEdit.Actief, Content = blogToEdit.Text, Title = blogToEdit.Titel, Categories = selectList //at this point i see the expected item being selected //Categories = new IEnumerable<SelectListItem>(listOfCategories, "Id", "Naam", blogToEdit.CategorieId) }; return View(viewModel); } When i set a breakpoint just before the view is being returned, i see that the selectlist is filled as i expected. So at this point everything seems to be okay. The viewmodel is filled entirely correct. Then in my view (i'm using Razor) i've got the following two rules which are supposed to render the selectlist for me. @Html.LabelFor(m => m.Categories) @Html.DropDownListFor(model=>model.Categories, Model.Categories, Model.CategoryId) @Html.ValidationMessageFor(m => m.Categories) When I run the code and open the view to edit my blog, I can see all the correct data. Also the selectlist is rendered correctly, but the item i want to be selected lost it's selection. How can this be? Until the point the viewmodel is being returned with the view everything is okay. But when i view the webpage in the browser, the selectlist is there only with out the correct selection. What am I missing here? Or doing wrong?

    Read the article

  • Making id'less url in asp.net mvc razor

    - by Sushant
    I am working with URL routing , and have some issues. I want my url to be like this: www.domain.com/p/myproduct But I also want to be able to retrieve the ID of the product, without accessing the database. I thought about having a URL like: www.domain.com/p/myproduct/1 But if I could hide the ID it would be better. So, how do I do it the simplest way? Currently my Global.asax has the following route: routes.MapLocalizedRoute("Product", "p/{productId}/{SeName}", new { controller = "Catalog", action = "Product", SeName = UrlParameter.Optional }, new { productId = @"\d+" }, new[] { "Nop.Web.Controllers" });

    Read the article

  • Saving contents of ApplicationState in ASP.Net (MVC)

    - by Saqib
    I have an internal app used to edit XML files on disk. The XML files are loaded into an object model which is stored in ApplicationState. I need to save this data. The one option is to do this every time the user changes some data. However, this seems a bit inefficient - writing the data out to disk each time a change is made. Instead, is it possible to be notified whenever the user closes their browser, plus just before the web server exits? Thus, the data would be saved each time a session ends, plus when the computer shuts down, etc. I thought that Application_End(), Application_Error() and Session_End() in Global.asax would provide this, but these methods don't seem to be called.

    Read the article

  • Asp.Net MVC Handle Drop Down Boxes that are not part of the Model

    - by Pino
    I have a small form which the user must fill in and consists of the following fields. Name (Text) Value (Text) Group (Group - Is a list of option pulled from a database table) Now the Model for this View looks like so, public string Name { get; set; } public string Value { get; set; } public int GroupID { get; set; } Now the view is Strongly Typed to the above model. What method would one use to populate the drop down list? Since the data is not contained within the Model (It could be contained in the Model) should we be using Temp/View data? A HTML Helper? What would be the ideal way to achieve this.

    Read the article

  • MVC Pass textbox to controller if not in a form tag

    - by user1679820
    I am working on and Microsoft MVC3 project and cannot pass a parameter which has been edited to the controller. It will only pass back the original set parameter For example: @Ajax.ActionLink("share file", InviteController.Actions.Result, InviteController.Name, new { message = Model.Message }, new AjaxOptions { HttpMethod = "GET", UpdateTargetId = "popup", OnSuccess = "$('#popup').dialog('open')" }, new { id = "popup-button" }) <label>Personal Message <span class="optional-message">(optional)</span></label> @Html.TextAreaFor(x => x.Message) </div> This will pass the to the following controller but the 'message' parameter has the original message and not the updated message: public ActionResult Result(FormCollection coll, string message) { I'd love if someone could give me some advice. Many Thanks

    Read the article

  • .NET licenses and project worths millions

    - by Ivan Tanasijevic
    I have a question about. NET licenses. I heard that in the case when project becomes worth millions, Microsoft have rights on great percent of this amount. If this is true, then how are things with social network which is built with ASP.NET MVC. Is this the same situation as in the case of the profit coming from selling software, because in this situation profit comes from marketing not from direct selling software.

    Read the article

  • ASP.NET MVC 3 Hosting :: New Features in ASP.NET MVC 3

    - by mbridge
    Razor View Engine The Razor view engine is a new view engine option for ASP.NET MVC that supports the Razor templating syntax. The Razor syntax is a streamlined approach to HTML templating designed with the goal of being a code driven minimalist templating approach that builds on existing C#, VB.NET and HTML knowledge. The result of this approach is that Razor views are very lean and do not contain unnecessary constructs that get in the way of you and your code. ASP.NET MVC 3 Preview 1 only supports C# Razor views which use the .cshtml file extension. VB.NET support will be enabled in later releases of ASP.NET MVC 3. For more information and examples, see Introducing “Razor” – a new view engine for ASP.NET on Scott Guthrie’s blog. Dynamic View and ViewModel Properties A new dynamic View property is available in views, which provides access to the ViewData object using a simpler syntax. For example, imagine two items are added to the ViewData dictionary in the Index controller action using code like the following: public ActionResult Index() {          ViewData["Title"] = "The Title";          ViewData["Message"] = "Hello World!"; } Those properties can be accessed in the Index view using code like this: <h2>View.Title</h2> <p>View.Message</p> There is also a new dynamic ViewModel property in the Controller class that lets you add items to the ViewData dictionary using a simpler syntax. Using the previous controller example, the two values added to the ViewData dictionary can be rewritten using the following code: public ActionResult Index() {     ViewModel.Title = "The Title";     ViewModel.Message = "Hello World!"; } “Add View” Dialog Box Supports Multiple View Engines The Add View dialog box in Visual Studio includes extensibility hooks that allow it to support multiple view engines, as shown in the following figure: Service Location and Dependency Injection Support ASP.NET MVC 3 introduces improved support for applying Dependency Injection (DI) via Inversion of Control (IoC) containers. ASP.NET MVC 3 Preview 1 provides the following hooks for locating services and injecting dependencies: - Creating controller factories. - Creating controllers and setting dependencies. - Setting dependencies on view pages for both the Web Form view engine and the Razor view engine (for types that derive from ViewPage, ViewUserControl, ViewMasterPage, WebViewPage). - Setting dependencies on action filters. Using a Dependency Injection container is not required in order for ASP.NET MVC 3 to function properly. Global Filters ASP.NET MVC 3 allows you to register filters that apply globally to all controller action methods. Adding a filter to the global filters collection ensures that the filter runs for all controller requests. To register an action filter globally, you can make the following call in the Application_Start method in the Global.asax file: GlobalFilters.Filters.Add(new MyActionFilter()); The source of global action filters is abstracted by the new IFilterProvider interface, which can be registered manually or by using Dependency Injection. This allows you to provide your own source of action filters and choose at run time whether to apply a filter to an action in a particular request. New JsonValueProviderFactory Class The new JsonValueProviderFactory class allows action methods to receive JSON-encoded data and model-bind it to an action-method parameter. This is useful in scenarios such as client templating. Client templates enable you to format and display a single data item or set of data items by using a fragment of HTML. ASP.NET MVC 3 lets you connect client templates easily with an action method that both returns and receives JSON data. Support for .NET Framework 4 Validation Attributes and IvalidatableObject The ValidationAttribute class was improved in the .NET Framework 4 to enable richer support for validation. When you write a custom validation attribute, you can use a new IsValid overload that provides a ValidationContext instance. This instance provides information about the current validation context, such as what object is being validated. This change enables scenarios such as validating the current value based on another property of the model. The following example shows a sample custom attribute that ensures that the value of PropertyOne is always larger than the value of PropertyTwo: public class CompareValidationAttribute : ValidationAttribute {     protected override ValidationResult IsValid(object value,              ValidationContext validationContext) {         var model = validationContext.ObjectInstance as SomeModel;         if (model.PropertyOne > model.PropertyTwo) {            return ValidationResult.Success;         }         return new ValidationResult("PropertyOne must be larger than PropertyTwo");     } } Validation in ASP.NET MVC also supports the .NET Framework 4 IValidatableObject interface. This interface allows your model to perform model-level validation, as in the following example: public class SomeModel : IValidatableObject {     public int PropertyOne { get; set; }     public int PropertyTwo { get; set; }     public IEnumerable<ValidationResult> Validate(ValidationContext validationContext) {         if (PropertyOne <= PropertyTwo) {            yield return new ValidationResult(                "PropertyOne must be larger than PropertyTwo");         }     } } New IClientValidatable Interface The new IClientValidatable interface allows the validation framework to discover at run time whether a validator has support for client validation. This interface is designed to be independent of the underlying implementation; therefore, where you implement the interface depends on the validation framework in use. For example, for the default data annotations-based validator, the interface would be applied on the validation attribute. Support for .NET Framework 4 Metadata Attributes ASP.NET MVC 3 now supports .NET Framework 4 metadata attributes such as DisplayAttribute. New IMetadataAware Interface The new IMetadataAware interface allows you to write attributes that simplify how you can contribute to the ModelMetadata creation process. Before this interface was available, you needed to write a custom metadata provider in order to have an attribute provide extra metadata. This interface is consumed by the AssociatedMetadataProvider class, so support for the IMetadataAware interface is automatically inherited by all classes that derive from that class (notably, the DataAnnotationsModelMetadataProvider class). New Action Result Types In ASP.NET MVC 3, the Controller class includes two new action result types and corresponding helper methods. HttpNotFoundResult Action The new HttpNotFoundResult action result is used to indicate that a resource requested by the current URL was not found. The status code is 404. This class derives from HttpStatusCodeResult. The Controller class includes an HttpNotFound method that returns an instance of this action result type, as shown in the following example: public ActionResult List(int id) {     if (id < 0) {                 return HttpNotFound();     }     return View(); } HttpStatusCodeResult Action The new HttpStatusCodeResult action result is used to set the response status code and description. Permanent Redirect The HttpRedirectResult class has a new Boolean Permanent property that is used to indicate whether a permanent redirect should occur. A permanent redirect uses the HTTP 301 status code. Corresponding to this change, the Controller class now has several methods for performing permanent redirects: - RedirectPermanent - RedirectToRoutePermanent - RedirectToActionPermanent These methods return an instance of HttpRedirectResult with the Permanent property set to true. Breaking Changes The order of execution for exception filters has changed for exception filters that have the same Order value. In ASP.NET MVC 2 and earlier, exception filters on the controller with the same Order as those on an action method were executed before the exception filters on the action method. This would typically be the case when exception filters were applied without a specified order Order value. In MVC 3, this order has been reversed in order to allow the most specific exception handler to execute first. As in earlier versions, if the Order property is explicitly specified, the filters are run in the specified order. Known Issues When you are editing a Razor view (CSHTML file), the Go To Controller menu item in Visual Studio will not be available, and there are no code snippets.

    Read the article

  • Would a programmer knowing C# and VB.Net ever choose VB.Net?

    - by Earlz
    Now before someone tells me VB.Net isn't bad like VB was, I know it isn't. But, I've yet to speak to a programmer who is completely content that some project they work on is written in VB.Net. Basically, my question is would a programmer knowing both C# and VB.Net (and all of their team knowing both), would they ever choose VB.Net? And why? All of the VB.Net projects I've seen were written that way only because the programmer that started it(that usually isn't working there anymore) knew VB6(or earlier) and wrote it in VB.Net because of the similar syntax. Is there any advantage to writing a program in VB.Net compared to C#? (hopefully this is appropriate here, SO rejected it within a few minutes)

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • What is New in ASP.NET 4 Web Development Overview

    - by Aamir Hasan
     Microsoft Recently Microsoft introduce Visual  studio 2010 which have new feature's Name of some new Features are given below. In ASP.NET 4.O has focus on performance and Search Engine Optimization. I'll be taking a look at what I think are the most important new features in ASP.NET 4.Output cache extensibility Session state compression View state mode for individual control Page.MetaKeyword and Page.MetaDescription properties Response.RedirectPermanent method Routing in ASP.NET Increase the URL character length New syntax for Html Encode Predictable Client IDs Web.config file refactoring Auto-Start ASP.NET applications Improvements on Microsoft Ajax LibraryReference:ASP.NET 4 and Visual Studio 2010 Web Development Overview 

    Read the article

  • ASP.NET 4 Unleashed in Bookstores!

    - by Stephen Walther
    I’m happy to announce that ASP.NET 4 Unleashed is now in bookstores! The book is over 1,800 pages and it is packed with code samples and tutorials on all the features of ASP.NET 4. Given the size of the book – did I mention that it is over 1,800 pages? -- I can safely say that it is the most comprehensive book on ASP.NET  This edition of the book has several new chapters written by Kevin Hoffman and Nate Dudek. Kevin and Nate did a fantastic job of covering the new features of ASP.NET 4 including: The new ASP.NET Chart Control The new ASP.NET QueryExtender Control The new ASP.NET routing framework jQuery You can buy the book from your local bookstore or buy the book from Amazon:

    Read the article

  • The ugly evolution of running a background operation in the context of an ASP.NET app

    - by Jeff
    If you’re one of the two people who has followed my blog for many years, you know that I’ve been going at POP Forums now for over almost 15 years. Publishing it as an open source app has been a big help because it helps me understand how people want to use it, and having it translated to six languages is pretty sweet. Despite this warm and fuzzy group hug, there has been an ugly hack hiding in there for years. One of the things we find ourselves wanting to do is hide some kind of regular process inside of an ASP.NET application that runs periodically. The motivation for this has always been that a lot of people simply don’t have a choice, because they’re running the app on shared hosting, or don’t otherwise have access to a box that can run some kind of regular background service. In POP Forums, I “solved” this problem years ago by hiding some static timers in an HttpModule. Truthfully, this works well as long as you don’t run multiple instances of the app, which in the cloud world, is always a possibility. With the arrival of WebJobs in Azure, I’m going to solve this problem. This post isn’t about that. The other little hacky problem that I “solved” was spawning a background thread to queue emails to subscribed users of the forum. This evolved quite a bit over the years, starting with a long running page to mail users in real-time, when I had only a few hundred. By the time it got into the thousands, or tens of thousands, I needed a better way. What I did is launched a new thread that read all of the user data in, then wrote a queued email to the database (as in, the entire body of the email, every time), with the properly formatted opt-out link. It was super inefficient, but it worked. Then I moved my biggest site using it, CoasterBuzz, to an Azure Website, and it stopped working. So let’s start with the first stupid thing I was doing. The new thread was simply created with delegate code inline. As best I can tell, Azure Websites are more aggressive about garbage collection, because that thread didn’t queue even one message. When the calling server response went out of scope, so went the magic background thread. Duh, all I had to do was move the thread to a private static variable in the class. That’s the way I was able to keep stuff running from the HttpModule. (And yes, I know this is still prone to failure, particularly if the app recycles. For as infrequently as it’s used, I have not, however, experienced this.) It was still failing, but this time I wasn’t sure why. It would queue a few dozen messages, then die. Running in Azure, I had to turn on the application logging and FTP in to see what was going on. That led me to a helper method I was using as delegate to build the unsubscribe links. The idea here is that I didn’t want yet another config entry to describe the base URL, appended with the right path that would match the routing table. No, I wanted the app to figure it out for you, so I came up with this little thing: public static string FullUrlHelper(this Controller controller, string actionName, string controllerName, object routeValues = null) { var helper = new UrlHelper(controller.Request.RequestContext); var requestUrl = controller.Request.Url; if (requestUrl == null) return String.Empty; var url = requestUrl.Scheme + "://"; url += requestUrl.Host; url += (requestUrl.Port != 80 ? ":" + requestUrl.Port : ""); url += helper.Action(actionName, controllerName, routeValues); return url; } And yes, that should have been done with a string builder. This is useful for sending out the email verification messages, too. As clever as I thought I was with this, I was using a delegate in the admin controller to format these unsubscribe links for tens of thousands of users. I passed that delegate into a service class that did the email work: Func<User, string> unsubscribeLinkGenerator = user => this.FullUrlHelper("Unsubscribe", AccountController.Name, new { id = user.UserID, key = _profileService.GetUnsubscribeHash(user) }); _mailingListService.MailUsers(subject, body, htmlBody, unsubscribeLinkGenerator); Cool, right? Actually, not so much. If you look back at the helper, this delegate then will depend on the controller context to learn the routing and format for the URL. As you might have guessed, those things were turning null after a few dozen formatted links, when the original request to the admin controller went away. That this wasn’t already happening on my dedicated server is surprising, but again, I understand why the Azure environment might be eager to reclaim a thread after servicing the request. It’s already inefficient that I’m building the entire email for every user, but going back to check the routing table for the right link every time isn’t a win either. I put together a little hack to look up one generic URL, and use that as the basis for a string format. If you’re wondering why I didn’t just use the curly braces up front, it’s because they get URL formatted: var baseString = this.FullUrlHelper("Unsubscribe", AccountController.Name, new { id = "--id--", key = "--key--" }); baseString = baseString.Replace("--id--", "{0}").Replace("--key--", "{1}"); Func unsubscribeLinkGenerator = user => String.Format(baseString, user.UserID, _profileService.GetUnsubscribeHash(user)); _mailingListService.MailUsers(subject, body, htmlBody, unsubscribeLinkGenerator); And wouldn’t you know it, the new solution works just fine. It’s still kind of hacky and inefficient, but it will work until this somehow breaks too.

    Read the article

  • Visual Studio 2010 Released

    - by Latest Microsoft Blogs
    It's a big day at Microsoft today as Visual Studio 2010 officially releases. There's a lot going on with this release and I thought I'd do a big rollup post with lots of details and context to help you find your way to the information and Read More......(read more)

    Read the article

  • Encrypted Hidden Redux : Let's Get Salty

    - by HeartattacK
    In this article, Ashic Mahtab shows an elegant, reusable and unobtrusive way in which to persist sensitive data to the browser in hidden inputs and restoring them on postback without needing to change any code in controllers or actions. The approach is an improvement of his previous article and incorporates a per session salt during encryption. Note: Cross posted from Heartysoft.com. Permalink

    Read the article

  • Web Site Performance and Assembly Versioning

    - by capgpilk
    I originally wanted to write this post in one, but there is quite a large amount of information which can be broken down into different areas, so I am going to publish it in three posts. Minification and Concatination of JavaScript and CSS Files – this post Versioning Combined Files Using Subversion – published shortly Versioning Combined Files Using Mercurial – published shortly Website Performance There are many ways to improve web site performance, two areas are reducing the amount of data that is served up from the web server and reducing the number of files that are requested. Here I will outline the process of minimizing and concatenating your javascript and css files automatically at build time of your visual studio web site/ application. To edit the project file in Visual Studio, you need to first unload it by right clicking the project in Solution Explorer. I prefer to do this in a third party tool such as Notepad++ and save it there forcing VS to reload it each time I make a change as the whole process in Visual Studio can be a bit tedious. Now you have the project file, you will notice that it is an MSBuild project file. I am going to use a fantastic utility from Microsoft called Ajax Minifier. This tool minifies both javascript and css. 1. Import the tasks for AjaxMin choosing the location you installed to. I keep all third party utilities in a Tools directory within my solution structure and source control. This way I know I can get the entire solution from source control without worrying about what other tools I need to get the project to build locally. 1: <Import Project="..\Tools\MicrosoftAjaxMinifier\AjaxMin.tasks" /> 2. Now create ItemGroups for all your js and css files like this. Separating out your non minified files and minified files. This can go in the AfterBuild container. 1: <Target Name="AfterBuild"> 2:  3: <!-- Javascript files that need minimizing --> 4: <ItemGroup> 5: <JSMin Include="Scripts\jqModal.js" /> 6: <JSMin Include="Scripts\jquery.jcarousel.js" /> 7: <JSMin Include="Scripts\shadowbox.js" /> 8: </ItemGroup> 9: <!-- CSS files that need minimizing --> 10: <ItemGroup> 11: <CSSMin Include="Content\Site.css" /> 12: <CSSMin Include="Content\themes\base\jquery-ui.css" /> 13: <CSSMin Include="Content\shadowbox.css" /> 14: </ItemGroup>   1: <!-- Javascript files to combine --> 2: <ItemGroup> 3: <JSCat Include="Scripts\jqModal.min.js" /> 4: <JSCat Include="Scripts\jquery.jcarousel.min.js" /> 5: <JSCat Include="Scripts\shadowbox.min.js" /> 6: </ItemGroup> 7: <!-- CSS files to combine --> 8: <ItemGroup> 9: <CSSCat Include="Content\Site.min.css" /> 10: <CSSCat Include="Content\themes\base\jquery-ui.min.css" /> 11: <CSSCat Include="Content\shadowbox.min.css" /> 12: </ItemGroup>   3. Call AjaxMin to do the crunching. 1: <Message Text="Minimizing JS and CSS Files..." Importance="High" /> 2: <AjaxMin JsSourceFiles="@(JSMin)" JsSourceExtensionPattern="\.js$" 3: JsTargetExtension=".min.js" JsEvalTreatment="MakeImmediateSafe" 4: CssSourceFiles="@(CSSMin)" CssSourceExtensionPattern="\.css$" 5: CssTargetExtension=".min.css" /> This will create the *.min.css and *.min.js files in the same directory the original files were. 4. Now concatenate the minified files into one for javascript and another for css. Here we write out the files with a default file name. In later posts I will cover versioning these files the same as your project assembly again to help performance. 1: <Message Text="Concat JS Files..." Importance="High" /> 2: <ReadLinesFromFile File="%(JSCat.Identity)"> 3: <Output TaskParameter="Lines" ItemName="JSLinesSite" /> 4: </ReadLinesFromFile> 5: <WriteLinestoFile File="Scripts\site-script.combined.min.js" Lines="@(JSLinesSite)" 6: Overwrite="true" /> 7: <Message Text="Concat CSS Files..." Importance="High" /> 8: <ReadLinesFromFile File="%(CSSCat.Identity)"> 9: <Output TaskParameter="Lines" ItemName="CSSLinesSite" /> 10: </ReadLinesFromFile> 11: <WriteLinestoFile File="Content\site-style.combined.min.css" Lines="@(CSSLinesSite)" 12: Overwrite="true" /> 5. Save the project file, if you have Visual Studio open it will ask you to reload the project. You can now run a build and these minified and combined files will be created automatically. 6. Finally reference these minified combined files in your web page. In the next two posts I will cover versioning these files to match your assembly.

    Read the article

  • ASP.NET MVC tries to load older version of Owin assembly

    - by d_mcg
    As a bit of context, I'm developing an ASP.NET MVC 5 application that uses OAuth-based authentication via Microsoft's OWIN implementation, for Facebook and Google only at this stage. Currently (as of v3.0.0, git-commit 4932c2f), the FacebookAuthenticationOptions and GoogleOAuth2AuthenticationOptions don't provide any property to force Facebook nor Google respectively to reauthenticate users (via appending the appropriate query string parameters) when signing in. Initially, I set out to override the following classes: FacebookAuthenticationOptions GoogleOAuth2AuthenticationOptions FacebookAuthenticationHandler (specifically AuthenticateCoreAsync()) GoogleOAuth2AuthenticationHandler (specifically AuthenticateCoreAsync()) yet discovered that the ~AuthenticationHandler classes are marked as internal. So I pulled a copy of the source for the Katana project (http://katanaproject.codeplex.com/) and modified the source accordingly. After compiling, I found that there are several dependencies that needed updating in order to use these updated assemblies (Microsoft.Owin.Security.Facebook and Microsoft.Owin.Security.Google) in the MVC project: Microsoft.Owin Microsoft.Owin.Security Microsoft.Owin.Security.Cookies Microsoft.Owin.Security.OAuth Microsoft.Owin.Host.SystemWeb This was done by replacing the existing project references to the 3.0.0 versions and updating those in web.config. Good news: the project compiles successfully. In debugging, I received an exception on startup: An exception of type 'System.IO.FileLoadException' occurred in [MVC web assembly].dll but was not handled in user code Additional information: Could not load file or assembly 'Microsoft.Owin.Security, Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' or one of its dependencies. The located assembly's manifest definition does not match the assembly reference. (Exception from HRESULT: 0x80131040) The underlying exception indicated that Microsoft.AspNet.Identity.Owin was trying to load v2.1.0 of Microsoft.Owin.Security when calling app.UseExternalSignInCookie() from Startup.ConfigureAuth(IAppBuilder app) in Startup.Auth.cs. Unfortunately that assembly (and its other dependency, Microsoft.AspNet.Identity.Owin) aren't part of the Project Katana solution, and I can't find any accessible repository for these assemblies online. Are the Microsoft.AspNet.Identity assemblies open source, like the Katana project? Is there a way to fool those assemblies to use the referenced v3.0.0 assemblies instead of v2.1.0? The /bin folder contains the 3.0.0 versions of the Owin assemblies. I've upgraded the NuGet packages for Microsoft.AspNet.Identity.Owin, and this is still an issue. Any ideas on how to resolve this issue?

    Read the article

  • Implementing a normal website inside ASP.NET MVC 2

    - by cc0
    I have a website consisting of an index.html, a number of style sheet files as well as some javascript files. Then I needed a way for this site to communicate efficiently with a Microsoft SQL Server, so I was recommended to use the MVC framework to facilitate that kind of communication. I created the C#.net controller code needed to output the necessary information from the database using URL parameters, so now I am trying to put the whole web-site together inside the MVC framework. I started an empty project-template in MVC 2 framework. I'm sure there must be a good way to implement the current code into this framework, but I am very uncertain as to what the best approach to this would be. Could anyone point me in the right direction here? I'm not sure whether I need to change any of the current HTML, or exactly what to add to it. I'd love to see some kind of guide or tutorial, or just any advice I can get as I try to learn this. Any help is very much appreciated!

    Read the article

  • Spark-View-Engine with ASP.NET MVC2

    - by Ben
    How do you modify a ASP.NET MVC 2.0 project to work with the Spark View Engine? I tried like described here: http://dotnetslackers.com/articles/aspnet/installing-the-spark-view-engine-into-asp-net-mvc-2-preview-2.aspx But somehow it still tries to route to .aspx files. Here the code of my global.asax: public class MvcApplication : System.Web.HttpApplication { public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = "" } // Parameter defaults ); } protected void Application_Start() { SparkViewFactory svf = new SparkViewFactory(); PrecompileViews(svf); AreaRegistration.RegisterAllAreas(); RegisterRoutes(RouteTable.Routes); } public static void PrecompileViews(SparkViewFactory svf) { var controllerFactory = svf; var viewFactory = new SparkViewFactory(controllerFactory.Settings); var batch = new SparkBatchDescriptor(); batch .For<HomeController>() .For<AccountController>(); viewFactory.Precompile(batch); } } }

    Read the article

  • Asp.net ADO.NET Entity Framework or ADO.NET

    - by sharru
    I'm starting a new project based on ASP.NET and Windows server. The application is planned to be pretty big and serve large amount of clients pulling and updating high freq. changing data. I have previously created projects with Linq-To-Sql or with Ado.Net. My plan for this project is to use VS2010 and the new EF4 framework. It would be great to hear other programmers options about development with Entity Framework Pros and cons from previous experience? Do you think EF4 is ready for production? Should i take the risk or just stick with plain old good ADO.NET?

    Read the article

< Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >