Search Results

Search found 5842 results on 234 pages for 'break'.

Page 231/234 | < Previous Page | 227 228 229 230 231 232 233 234  | Next Page >

  • An Introduction to Meteor

    - by Stephen.Walther
    The goal of this blog post is to give you a brief introduction to Meteor which is a framework for building Single Page Apps. In this blog entry, I provide a walkthrough of building a simple Movie database app. What is special about Meteor? Meteor has two jaw-dropping features: Live HTML – If you make any changes to the HTML, CSS, JavaScript, or data on the server then every client shows the changes automatically without a browser refresh. For example, if you change the background color of a page to yellow then every open browser will show the new yellow background color without a refresh. Or, if you add a new movie to a collection of movies, then every open browser will display the new movie automatically. With Live HTML, users no longer need a refresh button. Changes to an application happen everywhere automatically without any effort. The Meteor framework handles all of the messy details of keeping all of the clients in sync with the server for you. Latency Compensation – When you modify data on the client, these modifications appear as if they happened on the server without any delay. For example, if you create a new movie then the movie appears instantly. However, that is all an illusion. In the background, Meteor updates the database with the new movie. If, for whatever reason, the movie cannot be added to the database then Meteor removes the movie from the client automatically. Latency compensation is extremely important for creating a responsive web application. You want the user to be able to make instant modifications in the browser and the framework to handle the details of updating the database without slowing down the user. Installing Meteor Meteor is licensed under the open-source MIT license and you can start building production apps with the framework right now. Be warned that Meteor is still in the “early preview” stage. It has not reached a 1.0 release. According to the Meteor FAQ, Meteor will reach version 1.0 in “More than a month, less than a year.” Don’t be scared away by that. You should be aware that, unlike most open source projects, Meteor has financial backing. The Meteor project received an $11.2 million round of financing from Andreessen Horowitz. So, it would be a good bet that this project will reach the 1.0 mark. And, if it doesn’t, the framework as it exists right now is still very powerful. Meteor runs on top of Node.js. You write Meteor apps by writing JavaScript which runs both on the client and on the server. You can build Meteor apps on Windows, Mac, or Linux (Although the support for Windows is still officially unofficial). If you want to install Meteor on Windows then download the MSI from the following URL: http://win.meteor.com/ If you want to install Meteor on Mac/Linux then run the following CURL command from your terminal: curl https://install.meteor.com | /bin/sh Meteor will install all of its dependencies automatically including Node.js. However, I recommend that you install Node.js before installing Meteor by installing Node.js from the following address: http://nodejs.org/ If you let Meteor install Node.js then Meteor won’t install NPM which is the standard package manager for Node.js. If you install Node.js and then you install Meteor then you get NPM automatically. Creating a New Meteor App To get a sense of how Meteor works, I am going to walk through the steps required to create a simple Movie database app. Our app will display a list of movies and contain a form for creating a new movie. The first thing that we need to do is create our new Meteor app. Open a command prompt/terminal window and execute the following command: Meteor create MovieApp After you execute this command, you should see something like the following: Follow the instructions: execute cd MovieApp to change to your MovieApp directory, and run the meteor command. Executing the meteor command starts Meteor on port 3000. Open up your favorite web browser and navigate to http://localhost:3000 and you should see the default Meteor Hello World page: Open up your favorite development environment to see what the Meteor app looks like. Open the MovieApp folder which we just created. Here’s what the MovieApp looks like in Visual Studio 2012: Notice that our MovieApp contains three files named MovieApp.css, MovieApp.html, and MovieApp.js. In other words, it contains a Cascading Style Sheet file, an HTML file, and a JavaScript file. Just for fun, let’s see how the Live HTML feature works. Open up multiple browsers and point each browser at http://localhost:3000. Now, open the MovieApp.html page and modify the text “Hello World!” to “Hello Cruel World!” and save the change. The text in all of the browsers should update automatically without a browser refresh. Pretty amazing, right? Controlling Where JavaScript Executes You write a Meteor app using JavaScript. Some of the JavaScript executes on the client (the browser) and some of the JavaScript executes on the server and some of the JavaScript executes in both places. For a super simple app, you can use the Meteor.isServer and Meteor.isClient properties to control where your JavaScript code executes. For example, the following JavaScript contains a section of code which executes on the server and a section of code which executes in the browser: if (Meteor.isClient) { console.log("Hello Browser!"); } if (Meteor.isServer) { console.log("Hello Server!"); } console.log("Hello Browser and Server!"); When you run the app, the message “Hello Browser!” is written to the browser JavaScript console. The message “Hello Server!” is written to the command/terminal window where you ran Meteor. Finally, the message “Hello Browser and Server!” is execute on both the browser and server and the message appears in both places. For simple apps, using Meteor.isClient and Meteor.isServer to control where JavaScript executes is fine. For more complex apps, you should create separate folders for your server and client code. Here are the folders which you can use in a Meteor app: · client – This folder contains any JavaScript which executes only on the client. · server – This folder contains any JavaScript which executes only on the server. · common – This folder contains any JavaScript code which executes on both the client and server. · lib – This folder contains any JavaScript files which you want to execute before any other JavaScript files. · public – This folder contains static application assets such as images. For the Movie App, we need the client, server, and common folders. Delete the existing MovieApp.js, MovieApp.html, and MovieApp.css files. We will create new files in the right locations later in this walkthrough. Combining HTML, CSS, and JavaScript Files Meteor combines all of your JavaScript files, and all of your Cascading Style Sheet files, and all of your HTML files automatically. If you want to create one humongous JavaScript file which contains all of the code for your app then that is your business. However, if you want to build a more maintainable application, then you should break your JavaScript files into many separate JavaScript files and let Meteor combine them for you. Meteor also combines all of your HTML files into a single file. HTML files are allowed to have the following top-level elements: <head> — All <head> files are combined into a single <head> and served with the initial page load. <body> — All <body> files are combined into a single <body> and served with the initial page load. <template> — All <template> files are compiled into JavaScript templates. Because you are creating a single page app, a Meteor app typically will contain a single HTML file for the <head> and <body> content. However, a Meteor app typically will contain several template files. In other words, all of the interesting stuff happens within the <template> files. Displaying a List of Movies Let me start building the Movie App by displaying a list of movies. In order to display a list of movies, we need to create the following four files: · client\movies.html – Contains the HTML for the <head> and <body> of the page for the Movie app. · client\moviesTemplate.html – Contains the HTML template for displaying the list of movies. · client\movies.js – Contains the JavaScript for supplying data to the moviesTemplate. · server\movies.js – Contains the JavaScript for seeding the database with movies. After you create these files, your folder structure should looks like this: Here’s what the client\movies.html file looks like: <head> <title>My Movie App</title> </head> <body> <h1>Movies</h1> {{> moviesTemplate }} </body>   Notice that it contains <head> and <body> top-level elements. The <body> element includes the moviesTemplate with the syntax {{> moviesTemplate }}. The moviesTemplate is defined in the client/moviesTemplate.html file: <template name="moviesTemplate"> <ul> {{#each movies}} <li> {{title}} </li> {{/each}} </ul> </template> By default, Meteor uses the Handlebars templating library. In the moviesTemplate above, Handlebars is used to loop through each of the movies using {{#each}}…{{/each}} and display the title for each movie using {{title}}. The client\movies.js JavaScript file is used to bind the moviesTemplate to the Movies collection on the client. Here’s what this JavaScript file looks like: // Declare client Movies collection Movies = new Meteor.Collection("movies"); // Bind moviesTemplate to Movies collection Template.moviesTemplate.movies = function () { return Movies.find(); }; The Movies collection is a client-side proxy for the server-side Movies database collection. Whenever you want to interact with the collection of Movies stored in the database, you use the Movies collection instead of communicating back to the server. The moviesTemplate is bound to the Movies collection by assigning a function to the Template.moviesTemplate.movies property. The function simply returns all of the movies from the Movies collection. The final file which we need is the server-side server\movies.js file: // Declare server Movies collection Movies = new Meteor.Collection("movies"); // Seed the movie database with a few movies Meteor.startup(function () { if (Movies.find().count() == 0) { Movies.insert({ title: "Star Wars", director: "Lucas" }); Movies.insert({ title: "Memento", director: "Nolan" }); Movies.insert({ title: "King Kong", director: "Jackson" }); } }); The server\movies.js file does two things. First, it declares the server-side Meteor Movies collection. When you declare a server-side Meteor collection, a collection is created in the MongoDB database associated with your Meteor app automatically (Meteor uses MongoDB as its database automatically). Second, the server\movies.js file seeds the Movies collection (MongoDB collection) with three movies. Seeding the database gives us some movies to look at when we open the Movies app in a browser. Creating New Movies Let me modify the Movies Database App so that we can add new movies to the database of movies. First, I need to create a new template file – named client\movieForm.html – which contains an HTML form for creating a new movie: <template name="movieForm"> <fieldset> <legend>Add New Movie</legend> <form> <div> <label> Title: <input id="title" /> </label> </div> <div> <label> Director: <input id="director" /> </label> </div> <div> <input type="submit" value="Add Movie" /> </div> </form> </fieldset> </template> In order for the new form to show up, I need to modify the client\movies.html file to include the movieForm.html template. Notice that I added {{> movieForm }} to the client\movies.html file: <head> <title>My Movie App</title> </head> <body> <h1>Movies</h1> {{> moviesTemplate }} {{> movieForm }} </body> After I make these modifications, our Movie app will display the form: The next step is to handle the submit event for the movie form. Below, I’ve modified the client\movies.js file so that it contains a handler for the submit event raised when you submit the form contained in the movieForm.html template: // Declare client Movies collection Movies = new Meteor.Collection("movies"); // Bind moviesTemplate to Movies collection Template.moviesTemplate.movies = function () { return Movies.find(); }; // Handle movieForm events Template.movieForm.events = { 'submit': function (e, tmpl) { // Don't postback e.preventDefault(); // create the new movie var newMovie = { title: tmpl.find("#title").value, director: tmpl.find("#director").value }; // add the movie to the db Movies.insert(newMovie); } }; The Template.movieForm.events property contains an event map which maps event names to handlers. In this case, I am mapping the form submit event to an anonymous function which handles the event. In the event handler, I am first preventing a postback by calling e.preventDefault(). This is a single page app, no postbacks are allowed! Next, I am grabbing the new movie from the HTML form. I’m taking advantage of the template find() method to retrieve the form field values. Finally, I am calling Movies.insert() to insert the new movie into the Movies collection. Here, I am explicitly inserting the new movie into the client-side Movies collection. Meteor inserts the new movie into the server-side Movies collection behind the scenes. When Meteor inserts the movie into the server-side collection, the new movie is added to the MongoDB database associated with the Movies app automatically. If server-side insertion fails for whatever reasons – for example, your internet connection is lost – then Meteor will remove the movie from the client-side Movies collection automatically. In other words, Meteor takes care of keeping the client Movies collection and the server Movies collection in sync. If you open multiple browsers, and add movies, then you should notice that all of the movies appear on all of the open browser automatically. You don’t need to refresh individual browsers to update the client-side Movies collection. Meteor keeps everything synchronized between the browsers and server for you. Removing the Insecure Module To make it easier to develop and debug a new Meteor app, by default, you can modify the database directly from the client. For example, you can delete all of the data in the database by opening up your browser console window and executing multiple Movies.remove() commands. Obviously, enabling anyone to modify your database from the browser is not a good idea in a production application. Before you make a Meteor app public, you should first run the meteor remove insecure command from a command/terminal window: Running meteor remove insecure removes the insecure package from the Movie app. Unfortunately, it also breaks our Movie app. We’ll get an “Access denied” error in our browser console whenever we try to insert a new movie. No worries. I’ll fix this issue in the next section. Creating Meteor Methods By taking advantage of Meteor Methods, you can create methods which can be invoked on both the client and the server. By taking advantage of Meteor Methods you can: 1. Perform form validation on both the client and the server. For example, even if an evil hacker bypasses your client code, you can still prevent the hacker from submitting an invalid value for a form field by enforcing validation on the server. 2. Simulate database operations on the client but actually perform the operations on the server. Let me show you how we can modify our Movie app so it uses Meteor Methods to insert a new movie. First, we need to create a new file named common\methods.js which contains the definition of our Meteor Methods: Meteor.methods({ addMovie: function (newMovie) { // Perform form validation if (newMovie.title == "") { throw new Meteor.Error(413, "Missing title!"); } if (newMovie.director == "") { throw new Meteor.Error(413, "Missing director!"); } // Insert movie (simulate on client, do it on server) return Movies.insert(newMovie); } }); The addMovie() method is called from both the client and the server. This method does two things. First, it performs some basic validation. If you don’t enter a title or you don’t enter a director then an error is thrown. Second, the addMovie() method inserts the new movie into the Movies collection. When called on the client, inserting the new movie into the Movies collection just updates the collection. When called on the server, inserting the new movie into the Movies collection causes the database (MongoDB) to be updated with the new movie. You must add the common\methods.js file to the common folder so it will get executed on both the client and the server. Our folder structure now looks like this: We actually call the addMovie() method within our client code in the client\movies.js file. Here’s what the updated file looks like: // Declare client Movies collection Movies = new Meteor.Collection("movies"); // Bind moviesTemplate to Movies collection Template.moviesTemplate.movies = function () { return Movies.find(); }; // Handle movieForm events Template.movieForm.events = { 'submit': function (e, tmpl) { // Don't postback e.preventDefault(); // create the new movie var newMovie = { title: tmpl.find("#title").value, director: tmpl.find("#director").value }; // add the movie to the db Meteor.call( "addMovie", newMovie, function (err, result) { if (err) { alert("Could not add movie " + err.reason); } } ); } }; The addMovie() method is called – on both the client and the server – by calling the Meteor.call() method. This method accepts the following parameters: · The string name of the method to call. · The data to pass to the method (You can actually pass multiple params for the data if you like). · A callback function to invoke after the method completes. In the JavaScript code above, the addMovie() method is called with the new movie retrieved from the HTML form. The callback checks for an error. If there is an error then the error reason is displayed in an alert (please don’t use alerts for validation errors in a production app because they are ugly!). Summary The goal of this blog post was to provide you with a brief walk through of a simple Meteor app. I showed you how you can create a simple Movie Database app which enables you to display a list of movies and create new movies. I also explained why it is important to remove the Meteor insecure package from a production app. I showed you how to use Meteor Methods to insert data into the database instead of doing it directly from the client. I’m very impressed with the Meteor framework. The support for Live HTML and Latency Compensation are required features for many real world Single Page Apps but implementing these features by hand is not easy. Meteor makes it easy.

    Read the article

  • Red Gate Coder interviews: Robin Hellen

    - by Michael Williamson
    Robin Hellen is a test engineer here at Red Gate, and is also the latest coder I’ve interviewed. We chatted about debugging code, the roles of software engineers and testers, and why Vala is currently his favourite programming language. How did you get started with programming?It started when I was about six. My dad’s a professional programmer, and he gave me and my sister one of his old computers and taught us a bit about programming. It was an old Amiga 500 with a variant of BASIC. I don’t think I ever successfully completed anything! It was just faffing around. I didn’t really get anywhere with it.But then presumably you did get somewhere with it at some point.At some point. The PC emerged as the dominant platform, and I learnt a bit of Visual Basic. I didn’t really do much, just a couple of quick hacky things. A bit of demo animation. Took me a long time to get anywhere with programming, really.When did you feel like you did start to get somewhere?I think it was when I started doing things for someone else, which was my sister’s final year of university project. She called up my dad two days before she was due to submit, saying “We need something to display a graph!”. Dad says, “I’m too busy, go talk to your brother”. So I hacked up this ugly piece of code, sent it off and they won a prize for that project. Apparently, the graph, the bit that I wrote, was the reason they won a prize! That was when I first felt that I’d actually done something that was worthwhile. That was my first real bit of code, and the ugliest code I’ve ever written. It’s basically an array of pre-drawn line elements that I shifted round the screen to draw a very spikey graph.When did you decide that programming might actually be something that you wanted to do as a career?It’s not really a decision I took, I always wanted to do something with computers. And I had to take a gap year for uni, so I was looking for twelve month internships. I applied to Red Gate, and they gave me a job as a tester. And that’s where I really started having to write code well. To a better standard that I had been up to that point.How did you find coming to Red Gate and working with other coders?I thought it was really nice. I learnt so much just from other people around. I think one of the things that’s really great is that people are just willing to help you learn. Instead of “Don’t you know that, you’re so stupid”, it’s “You can just do it this way”.If you could go back to the very start of that internship, is there something that you would tell yourself?Write shorter code. I have a tendency to write massive, many-thousand line files that I break out of right at the end. And then half-way through a project I’m doing something, I think “Where did I write that bit that does that thing?”, and it’s almost impossible to find. I wrote some horrendous code when I started. Just that principle, just keep things short. Even if looks a bit crazy to be jumping around all over the place all of the time, it’s actually a lot more understandable.And how do you hold yourself to that?Generally, if a function’s going off my screen, it’s probably too long. That’s what I tell myself, and within the team here we have code reviews, so the guys I’m with at the moment are pretty good at pulling me up on, “Doesn’t that look like it’s getting a bit long?”. It’s more just the subjective standard of readability than anything.So you’re an advocate of code review?Yes, definitely. Both to spot errors that you might have made, and to improve your knowledge. The person you’re reviewing will say “Oh, you could have done it that way”. That’s how we learn, by talking to others, and also just sharing knowledge of how your project works around the team, or even outside the team. Definitely a very firm advocate of code reviews.Do you think there’s more we could do with them?I don’t know. We’re struggling with how to add them as part of the process without it becoming too cumbersome. We’ve experimented with a few different ways, and we’ve not found anything that just works.To get more into the nitty gritty: how do you like to debug code?The first thing is to do it in my head. I’ll actually think what piece of code is likely to have caused that error, and take a quick look at it, just to see if there’s anything glaringly obvious there. The next thing I’ll probably do is throw in print statements, or throw some exceptions from various points, just to check: is it going through the code path I expect it to? A last resort is to actually debug code using a debugger.Why is the debugger the last resort?Probably because of the environments I learnt programming in. VB and early BASIC didn’t have much of a debugger, the only way to find out what your program was doing was to add print statements. Also, because a lot of the stuff I tend to work with is non-interactive, if it’s something that takes a long time to run, I can throw in the print statements, set a run off, go and do something else, and look at it again later, rather than trying to remember what happened at that point when I was debugging through it. So it also gives me the record of what happens. I hate just sitting there pressing F5, F5, continually. If you’re having to find out what your code is doing at each line, you’ve probably got a very wrong mental model of what your code’s doing, and you can find that out just as easily by inspecting a couple of values through the print statements.If I were on some codebase that you were also working on, what should I do to make it as easy as possible to understand?I’d say short and well-named methods. The one thing I like to do when I’m looking at code is to find out where a value comes from, and the more layers of indirection there are, particularly DI [dependency injection] frameworks, the harder it is to find out where something’s come from. I really hate that. I want to know if the value come from the user here or is a constant here, and if I can’t find that out, that makes code very hard to understand for me.As a tester, where do you think the split should lie between software engineers and testers?I think the split is less on areas of the code you write and more what you’re designing and creating. The developers put a structure on the code, while my major role is to say which tests we should have, whether we should test that, or it’s not worth testing that because it’s a tiny function in code that nobody’s ever actually going to see. So it’s not a split in the code, it’s a split in what you’re thinking about. Saying what code we should write, but alternatively what code we should take out.In your experience, do the software engineers tend to do much testing themselves?They tend to control the lowest layer of tests. And, depending on how the balance of people is in the team, they might write some of the higher levels of test. Or that might go to the testers. I’m the only tester on my team with three other developers, so they’ll be writing quite a lot of the actual test code, with input from me as to whether we should test that functionality, whereas on other teams, where it’s been more equal numbers, the testers have written pretty much all of the high level tests, just because that’s the best use of resource.If you could shuffle resources around however you liked, do you think that the developers should be writing those high-level tests?I think they should be writing them occasionally. It helps when they have an understanding of how testing code works and possibly what assumptions we’ve made in tests, and they can say “actually, it doesn’t work like that under the hood so you’ve missed this whole area”. It’s one of those agile things that everyone on the team should be at least comfortable doing the various jobs. So if the developers can write test code then I think that’s a very good thing.So you think testers should be able to write production code?Yes, although given most testers skills at coding, I wouldn’t advise it too much! I have written a few things, and I did make a few changes that have actually gone into our production code base. They’re not necessarily running every time but they are there. I think having that mix of skill sets is really useful. In some ways we’re using our own product to test itself, so being able to make those changes where it’s not working saves me a round-trip through the developers. It can be really annoying if the developers have no time to make a change, and I can’t touch the code.If the software engineers are consistently writing tests at all levels, what role do you think the role of a tester is?I think on a team like that, those distinctions aren’t quite so useful. There’ll be two cases. There’s either the case where the developers think they’ve written good tests, but you still need someone with a test engineer mind-set to go through the tests and validate that it’s a useful set, or the correct set for that code. Or they won’t actually be pure developers, they’ll have that mix of test ability in there.I think having slightly more distinct roles is useful. When it starts to blur, then you lose that view of the tests as a whole. The tester job is not to create tests, it’s to validate the quality of the product, and you don’t do that just by writing tests. There’s more things you’ve got to keep in your mind. And I think when you blur the roles, you start to lose that end of the tester.So because you’re working on those features, you lose that holistic view of the whole system?Yeah, and anyone who’s worked on the feature shouldn’t be testing it. You always need to have it tested it by someone who didn’t write it. Otherwise you’re a bit too close and you assume “yes, people will only use it that way”, but the tester will come along and go “how do people use this? How would our most idiotic user use this?”. I might not test that because it might be completely irrelevant. But it’s coming in and trying to have a different set of assumptions.Are you a believer that it should all be automated if possible?Not entirely. So an automated test is always better than a manual test for the long-term, but there’s still nothing that beats a human sitting in front of the application and thinking “What could I do at this point?”. The automated test is very good but they follow that strict path, and they never check anything off the path. The human tester will look at things that they weren’t expecting, whereas the automated test can only ever go “Is that value correct?” in many respects, and it won’t notice that on the other side of the screen you’re showing something completely wrong. And that value might have been checked independently, but you always find a few odd interactions when you’re going through something manually, and you always need to go through something manually to start with anyway, otherwise you won’t know where the important bits to write your automation are.When you’re doing that manual testing, do you think it’s important to do that across the entire product, or just the bits that you’ve touched recently?I think it’s important to do it mostly on the bits you’ve touched, but you can’t ignore the rest of the product. Unless you’re dealing with a very, very self-contained bit, you’re almost always encounter other bits of the product along the way. Most testers I know, even if they are looking at just one path, they’ll keep open and move around a bit anyway, just because they want to find something that’s broken. If we find that your path is right, we’ll go out and hunt something else.How do you think this fits into the idea of continuously deploying, so long as the tests pass?With deploying a website it’s a bit different because you can always pull it back. If you’re deploying an application to customers, when you’ve released it, it’s out there, you can’t pull it back. Someone’s going to keep it, no matter how hard you try there will be a few installations that stay around. So I’d always have at least a human element on that path. With websites, you could probably automate straight out, or at least straight out to an internal environment or a single server in a cloud of fifty that will serve some people. But I don’t think you should release to everyone just on automated tests passing.You’ve already mentioned using BASIC and C# — are there any other languages that you’ve used?I’ve used a few. That’s something that has changed more recently, I’ve become familiar with more languages. Before I started at Red Gate I learnt a bit of C. Then last year, I taught myself Python which I actually really enjoyed using. I’ve also come across another language called Vala, which is sort of a C#-like language. It’s basically a pre-processor for C, but it has very nice syntax. I think that’s currently my favourite language.Any particular reason for trying Vala?I have a completely Linux environment at home, and I’ve been looking for a nice language, and C# just doesn’t cut it because I won’t touch Mono. So, I was looking for something like C# but that was useable in an open source environment, and Vala’s what I found. C#’s got a few features that Vala doesn’t, and Vala’s got a few features where I think “It would be awesome if C# had that”.What are some of the features that it’s missing?Extension methods. And I think that’s the only one that really bugs me. I like to use them when I’m writing C# because it makes some things really easy, especially with libraries that you can’t touch the internals of. It doesn’t have method overloading, which is sometimes annoying.Where it does win over C#?Everything is non-nullable by default, you never have to check that something’s unexpectedly null.Also, Vala has code contracts. This is starting to come in C# 4, but the way it works in Vala is that you specify requirements in short phrases as part of your function signature and they stick to the signature, so that when you inherit it, it has exactly the same code contract as the base one, or when you inherit from an interface, you have to match the signature exactly. Just using those makes you think a bit more about how you’re writing your method, it’s not an afterthought when you’ve got contracts from base classes given to you, you can’t change it. Which I think is a lot nicer than the way C# handles it. When are those actually checked?They’re checked both at compile and run-time. The compile-time checking isn’t very strong yet, it’s quite a new feature in the compiler, and because it compiles down to C, you can write C code and interface with your methods, so you can bypass that compile-time check anyway. So there’s an extra runtime check, and if you violate one of the contracts at runtime, it’s game over for your program, there’s no exception to catch, it’s just goodbye!One thing I dislike about C# is the exceptions. You write a bit of code and fifty exceptions could come from any point in your ten lines, and you can’t mentally model how those exceptions are going to come out, and you can’t even predict them based on the functions you’re calling, because if you’ve accidentally got a derived class there instead of a base class, that can throw a completely different set of exceptions. So I’ve got no way of mentally modelling those, whereas in Vala they’re checked like Java, so you know only these exceptions can come out. You know in advance the error conditions.I think Raymond Chen on Old New Thing says “the only thing you know when you throw an exception is that you’re in an invalid state somewhere in your program, so just kill it and be done with it!”You said you’ve also learnt bits of Python. How did you find that compared to Vala and C#?Very different because of the dynamic typing. I’ve been writing a website for my own use. I’m quite into photography, so I take photos off my camera, post-process them, dump them in a file, and I get a webpage with all my thumbnails. So sort of like Picassa, but written by myself because I wanted something to learn Python with. There are some things that are really nice, I just found it really difficult to cope with the fact that I’m not quite sure what this object type that I’m passed is, I might not ever be sure, so it can randomly blow up on me. But once I train myself to ignore that and just say “well, I’m fairly sure it’s going to be something that looks like this, so I’ll use it like this”, then it’s quite nice.Any particular features that you’ve appreciated?I don’t like any particular feature, it’s just very straightforward to work with. It’s very quick to write something in, particularly as you don’t have to worry that you’ve changed something that affects a different part of the program. If you have, then that part blows up, but I can get this part working right now.If you were doing a big project, would you be willing to do it in Python rather than C# or Vala?I think I might be willing to try something bigger or long term with Python. We’re currently doing an ASP.NET MVC project on C#, and I don’t like the amount of reflection. There’s a lot of magic that pulls values out, and it’s all done under the scenes. It’s almost managed to put a dynamic type system on top of C#, which in many ways destroys the language to me, whereas if you’re already in a dynamic language, having things done dynamically is much more natural. In many ways, you get the worst of both worlds. I think for web projects, I would go with Python again, whereas for anything desktop, command-line or GUI-based, I’d probably go for C# or Vala, depending on what environment I’m in.It’s the fact that you can gain from the strong typing in ways that you can’t so much on the web app. Or, in a web app, you have to use dynamic typing at some point, or you have to write a hell of a lot of boilerplate, and I’d rather use the dynamic typing than write the boilerplate.What do you think separates great programmers from everyone else?Probably design choices. Choosing to write it a piece of code one way or another. For any given program you ask me to write, I could probably do it five thousand ways. A programmer who is capable will see four or five of them, and choose one of the better ones. The excellent programmer will see the largest proportion and manage to pick the best one very quickly without having to think too much about it. I think that’s probably what separates, is the speed at which they can see what’s the best path to write the program in. More Red Gater Coder interviews

    Read the article

  • ANTS CLR and Memory Profiler In Depth Review (Part 1 of 2 &ndash; CLR Profiler)

    - by ToStringTheory
    One of the things that people might not know about me, is my obsession to make my code as efficient as possible.  Many people might not realize how much of a task or undertaking that this might be, but it is surely a task as monumental as climbing Mount Everest, except this time it is a challenge for the mind…  In trying to make code efficient, there are many different factors that play a part – size of project or solution, tiers, language used, experience and training of the programmer, technologies used, maintainability of the code – the list can go on for quite some time. I spend quite a bit of time when developing trying to determine what is the best way to implement a feature to accomplish the efficiency that I look to achieve.  One program that I have recently come to learn about – Red Gate ANTS Performance (CLR) and Memory profiler gives me tools to accomplish that job more efficiently as well.  In this review, I am going to cover some of the features of the ANTS profiler set by compiling some hideous example code to test against. Notice As a member of the Geeks With Blogs Influencers program, one of the perks is the ability to review products, in exchange for a free license to the program.  I have not let this affect my opinions of the product in any way, and Red Gate nor Geeks With Blogs has tried to influence my opinion regarding this product in any way. Introduction The ANTS Profiler pack provided by Red Gate was something that I had not heard of before receiving an email regarding an offer to review it for a license.  Since I look to make my code efficient, it was a no brainer for me to try it out!  One thing that I have to say took me by surprise is that upon downloading the program and installing it you fill out a form for your usual contact information.  Sure enough within 2 hours, I received an email from a sales representative at Red Gate asking if she could help me to achieve the most out of my trial time so it wouldn’t go to waste.  After replying to her and explaining that I was looking to review its feature set, she put me in contact with someone that setup a demo session to give me a quick rundown of its features via an online meeting.  After having dealt with a massive ordeal with one of my utility companies and their complete lack of customer service, Red Gates friendly and helpful representatives were a breath of fresh air, and something I was thankful for. ANTS CLR Profiler The ANTS CLR profiler is the thing I want to focus on the most in this post, so I am going to dive right in now. Install was simple and took no time at all.  It installed both the profiler for the CLR and Memory, but also visual studio extensions to facilitate the usage of the profilers (click any images for full size images): The Visual Studio menu options (under ANTS menu) Starting the CLR Performance Profiler from the start menu yields this window If you follow the instructions after launching the program from the start menu (Click File > New Profiling Session to start a new project), you are given a dialog with plenty of options for profiling: The New Session dialog.  Lots of options.  One thing I noticed is that the buttons in the lower right were half-covered by the panel of the application.  If I had to guess, I would imagine that this is caused by my DPI settings being set to 125%.  This is a problem I have seen in other applications as well that don’t scale well to different dpi scales. The profiler options give you the ability to profile: .NET Executable ASP.NET web application (hosted in IIS) ASP.NET web application (hosted in IIS express) ASP.NET web application (hosted in Cassini Web Development Server) SharePoint web application (hosted in IIS) Silverlight 4+ application Windows Service COM+ server XBAP (local XAML browser application) Attach to an already running .NET 4 process Choosing each option provides a varying set of other variables/options that one can set including options such as application arguments, operating path, record I/O performance performance counters to record (43 counters in all!), etc…  All in all, they give you the ability to profile many different .Net project types, and make it simple to do so.  In most cases of my using this application, I would be using the built in Visual Studio extensions, as they automatically start a new profiling project in ANTS with the options setup, and start your program, however RedGate has made it easy enough to profile outside of Visual Studio as well. On the flip side of this, as someone who lives most of their work life in Visual Studio, one thing I do wish is that instead of opening an entirely separate application/gui to perform profiling after launching, that instead they would provide a Visual Studio panel with the information, and integrate more of the profiling project information into Visual Studio.  So, now that we have an idea of what options that the profiler gives us, its time to test its abilities and features. Horrendous Example Code – Prime Number Generator One of my interests besides development, is Physics and Math – what I went to college for.  I have especially always been interested in prime numbers, as they are something of a mystery…  So, I decided that I would go ahead and to test the abilities of the profiler, I would write a small program, website, and library to generate prime numbers in the quantity that you ask for.  I am going to start off with some terrible code, and show how I would see the profiler being used as a development tool. First off, the IPrimes interface (all code is downloadable at the end of the post): interface IPrimes { IEnumerable<int> GetPrimes(int retrieve); } Simple enough, right?  Anything that implements the interface will (hopefully) provide an IEnumerable of int, with the quantity specified in the parameter argument.  Next, I am going to implement this interface in the most basic way: public class DumbPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _analyzing = 4; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; //start dividing at 2 //divide until number is reached, or determined not prime for (int i = 2; i < _analyzing && isPrime; i++) { //if (i) goes into _analyzing without a remainder, //_analyzing is NOT prime if (_analyzing % i == 0) isPrime = false; } //if it is prime, add to found list if (isPrime) _foundPrimes.Add(_analyzing); //increment number to analyze next _analyzing++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } This is the simplest way to get primes in my opinion.  Checking each number by the straight definition of a prime – is it divisible by anything besides 1 and itself. I have included this code in a base class library for my solution, as I am going to use it to demonstrate a couple of features of ANTS.  This class library is consumed by a simple non-MVVM WPF application, and a simple MVC4 website.  I will not post the WPF code here inline, as it is simply an ObservableCollection<int>, a label, two textbox’s, and a button. Starting a new Profiling Session So, in Visual Studio, I have just completed my first stint developing the GUI and DumbPrimes IPrimes class, so now I want to check my codes efficiency by profiling it.  All I have to do is build the solution (surprised initiating a profiling session doesn’t do this, but I suppose I can understand it), and then click the ANTS menu, followed by Profile Performance.  I am then greeted by the profiler starting up and already monitoring my program live: You are provided with a realtime graph at the top, and a pane at the bottom giving you information on how to proceed.  I am going to start by asking my program to show me the first 15000 primes: After the program finally began responding again (I did all the work on the main UI thread – how bad!), I stopped the profiler, which did kill the process of my program too.  One important thing to note, is that the profiler by default wants to give you a lot of detail about the operation – line hit counts, time per line, percent time per line, etc…  The important thing to remember is that this itself takes a lot of time.  When running my program without the profiler attached, it can generate the 15000 primes in 5.18 seconds, compared to 74.5 seconds – almost a 1500 percent increase.  While this may seem like a lot, remember that there is a trade off.  It may be WAY more inefficient, however, I am able to drill down and make improvements to specific problem areas, and then decrease execution time all around. Analyzing the Profiling Session After clicking ‘Stop Profiling’, the process running my application stopped, and the entire execution time was automatically selected by ANTS, and the results shown below: Now there are a number of interesting things going on here, I am going to cover each in a section of its own: Real Time Performance Counter Bar (top of screen) At the top of the screen, is the real time performance bar.  As your application is running, this will constantly update with the currently selected performance counters status.  A couple of cool things to note are the fact that you can drag a selection around specific time periods to drill down the detail views in the lower 2 panels to information pertaining to only that period. After selecting a time period, you can bookmark a section and name it, so that it is easy to find later, or after reloaded at a later time.  You can also zoom in, out, or fit the graph to the space provided – useful for drilling down. It may be hard to see, but at the top of the processor time graph below the time ticks, but above the red usage graph, there is a green bar. This bar shows at what times a method that is selected in the ‘Call tree’ panel is called. Very cool to be able to click on a method and see at what times it made an impact. As I said before, ANTS provides 43 different performance counters you can hook into.  Click the arrow next to the Performance tab at the top will allow you to change between different counters if you have them selected: Method Call Tree, ADO.Net Database Calls, File IO – Detail Panel Red Gate really hit the mark here I think. When you select a section of the run with the graph, the call tree populates to fill a hierarchical tree of method calls, with information regarding each of the methods.   By default, methods are hidden where the source is not provided (framework type code), however, Red Gate has integrated Reflector into ANTS, so even if you don’t have source for something, you can select a method and get the source if you want.  Methods are also hidden where the impact is seen as insignificant – methods that are only executed for 1% of the time of the overall calling methods time; in other words, working on making them better is not where your efforts should be focused. – Smart! Source Panel – Detail Panel The source panel is where you can see line level information on your code, showing the code for the currently selected method from the Method Call Tree.  If the code is not available, Reflector takes care of it and shows the code anyways! As you can notice, there does seem to be a problem with how ANTS determines what line is the actual line that a call is completed on.  I have suspicions that this may be due to some of the inline code optimizations that the CLR applies upon compilation of the assembly.  In a method with comments, the problem is much more severe: As you can see here, apparently the most offending code in my base library was a comment – *gasp*!  Removing the comments does help quite a bit, however I hope that Red Gate works on their counter algorithm soon to improve the logic on positioning for statistics: I did a small test just to demonstrate the lines are correct without comments. For me, it isn’t a deal breaker, as I can usually determine the correct placements by looking at the application code in the region and determining what makes sense, but it is something that would probably build up some irritation with time. Feature – Suggest Method for Optimization A neat feature to really help those in need of a pointer, is the menu option under tools to automatically suggest methods to optimize/improve: Nice feature – clicking it filters the call tree and stars methods that it thinks are good candidates for optimization.  I do wish that they would have made it more visible for those of use who aren’t great on sight: Process Integration I do think that this could have a place in my process.  After experimenting with the profiler, I do think it would be a great benefit to do some development, testing, and then after all the bugs are worked out, use the profiler to check on things to make sure nothing seems like it is hogging more than its fair share.  For example, with this program, I would have developed it, ran it, tested it – it works, but slowly. After looking at the profiler, and seeing the massive amount of time spent in 1 method, I might go ahead and try to re-implement IPrimes (I actually would probably rewrite the offending code, but so that I can distribute both sets of code easily, I’m just going to make another implementation of IPrimes).  Using two pieces of knowledge about prime numbers can make this method MUCH more efficient – prime numbers fall into two buckets 6k+/-1 , and a number is prime if it is not divisible by any other primes before it: public class SmartPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _k = 1; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; int potentialPrime; //analyze 6k-1 //assign the value to potential potentialPrime = 6 * _k - 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); if (_foundPrimes.Count() == retrieve) break; //analyze 6k+1 //assign the value to potential potentialPrime = 6 * _k + 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); //increment k to analyze next _k++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } Now there are definitely more things I can do to help make this more efficient, but for the scope of this example, I think this is fine (but still hideous)! Profiling this now yields a happy surprise 27 seconds to generate the 15000 primes with the profiler attached, and only 1.43 seconds without.  One important thing I wanted to call out though was the performance graph now: Notice anything odd?  The %Processor time is above 100%.  This is because there is now more than 1 core in the operation.  A better label for the chart in my mind would have been %Core time, but to each their own. Another odd thing I noticed was that the profiler seemed to be spot on this time in my DumbPrimes class with line details in source, even with comments..  Odd. Profiling Web Applications The last thing that I wanted to cover, that means a lot to me as a web developer, is the great amount of work that Red Gate put into the profiler when profiling web applications.  In my solution, I have a simple MVC4 application setup with 1 page, a single input form, that will output prime values as my WPF app did.  Launching the profiler from Visual Studio as before, nothing is really different in the profiler window, however I did receive a UAC prompt for a Red Gate helper app to integrate with the web server without notification. After requesting 500, 1000, 2000, and 5000 primes, and looking at the profiler session, things are slightly different from before: As you can see, there are 4 spikes of activity in the processor time graph, but there is also something new in the call tree: That’s right – ANTS will actually group method calls by get/post operations, so it is easier to find out what action/page is giving the largest problems…  Pretty cool in my mind! Overview Overall, I think that Red Gate ANTS CLR Profiler has a lot to offer, however I think it also has a long ways to go.  3 Biggest Pros: Ability to easily drill down from time graph, to method calls, to source code Wide variety of counters to choose from when profiling your application Excellent integration/grouping of methods being called from web applications by request – BRILLIANT! 3 Biggest Cons: Issue regarding line details in source view Nit pick – Processor time vs. Core time Nit pick – Lack of full integration with Visual Studio Ratings Ease of Use (7/10) – I marked down here because of the problems with the line level details and the extra work that that entails, and the lack of better integration with Visual Studio. Effectiveness (10/10) – I believe that the profiler does EXACTLY what it purports to do.  Especially with its large variety of performance counters, a definite plus! Features (9/10) – Besides the real time performance monitoring, and the drill downs that I’ve shown here, ANTS also has great integration with ADO.Net, with the ability to show database queries run by your application in the profiler.  This, with the line level details, the web request grouping, reflector integration, and various options to customize your profiling session I think create a great set of features! Customer Service (10/10) – My entire experience with Red Gate personnel has been nothing but good.  their people are friendly, helpful, and happy! UI / UX (8/10) – The interface is very easy to get around, and all of the options are easy to find.  With a little bit of poking around, you’ll be optimizing Hello World in no time flat! Overall (8/10) – Overall, I am happy with the Performance Profiler and its features, as well as with the service I received when working with the Red Gate personnel.  I WOULD recommend you trying the application and seeing if it would fit into your process, BUT, remember there are still some kinks in it to hopefully be worked out. My next post will definitely be shorter (hopefully), but thank you for reading up to here, or skipping ahead!  Please, if you do try the product, drop me a message and let me know what you think!  I would love to hear any opinions you may have on the product. Code Feel free to download the code I used above – download via DropBox

    Read the article

  • ASP.NET MVC 2 Model Binding for a Collection

    - by nmarun
    Yes, my yet another post on Model Binding (previous one is here), but this one uses features presented in MVC 2. How I got to writing this blog? Well, I’m on a project where we’re doing some MVC things for a shopping cart. Let me show you what I was working with. Below are my model classes: 1: public class Product 2: { 3: public int Id { get; set; } 4: public string Name { get; set; } 5: public int Quantity { get; set; } 6: public decimal UnitPrice { get; set; } 7: } 8:   9: public class Totals 10: { 11: public decimal SubTotal { get; set; } 12: public decimal Tax { get; set; } 13: public decimal Total { get; set; } 14: } 15:   16: public class Basket 17: { 18: public List<Product> Products { get; set; } 19: public Totals Totals { get; set;} 20: } The view looks as below:  1: <h2>Shopping Cart</h2> 2:   3: <% using(Html.BeginForm()) { %> 4: 5: <h3>Products</h3> 6: <% for (int i = 0; i < Model.Products.Count; i++) 7: { %> 8: <div style="width: 100px;float:left;">Id</div> 9: <div style="width: 100px;float:left;"> 10: <%= Html.TextBox("ID", Model.Products[i].Id) %> 11: </div> 12: <div style="clear:both;"></div> 13: <div style="width: 100px;float:left;">Name</div> 14: <div style="width: 100px;float:left;"> 15: <%= Html.TextBox("Name", Model.Products[i].Name) %> 16: </div> 17: <div style="clear:both;"></div> 18: <div style="width: 100px;float:left;">Quantity</div> 19: <div style="width: 100px;float:left;"> 20: <%= Html.TextBox("Quantity", Model.Products[i].Quantity)%> 21: </div> 22: <div style="clear:both;"></div> 23: <div style="width: 100px;float:left;">Unit Price</div> 24: <div style="width: 100px;float:left;"> 25: <%= Html.TextBox("UnitPrice", Model.Products[i].UnitPrice)%> 26: </div> 27: <div style="clear:both;"><hr /></div> 28: <% } %> 29: 30: <h3>Totals</h3> 31: <div style="width: 100px;float:left;">Sub Total</div> 32: <div style="width: 100px;float:left;"> 33: <%= Html.TextBox("SubTotal", Model.Totals.SubTotal)%> 34: </div> 35: <div style="clear:both;"></div> 36: <div style="width: 100px;float:left;">Tax</div> 37: <div style="width: 100px;float:left;"> 38: <%= Html.TextBox("Tax", Model.Totals.Tax)%> 39: </div> 40: <div style="clear:both;"></div> 41: <div style="width: 100px;float:left;">Total</div> 42: <div style="width: 100px;float:left;"> 43: <%= Html.TextBox("Total", Model.Totals.Total)%> 44: </div> 45: <div style="clear:both;"></div> 46: <p /> 47: <input type="submit" name="Submit" value="Submit" /> 48: <% } %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Nothing fancy, just a bunch of div’s containing textboxes and a submit button. Just make note that the textboxes have the same name as the property they are going to display. Yea, yea, I know. I’m displaying unit price as a textbox instead of a label, but that’s beside the point (and trust me, this will not be how it’ll look on the production site!!). The way my controller works is that initially two dummy products are added to the basked object and the Totals are calculated based on what products were added in what quantities and their respective unit price. So when the page loads in edit mode, where the user can change the quantity and hit the submit button. In the ‘post’ version of the action method, the Totals get recalculated and the new total will be displayed on the screen. Here’s the code: 1: public ActionResult Index() 2: { 3: Product product1 = new Product 4: { 5: Id = 1, 6: Name = "Product 1", 7: Quantity = 2, 8: UnitPrice = 200m 9: }; 10:   11: Product product2 = new Product 12: { 13: Id = 2, 14: Name = "Product 2", 15: Quantity = 1, 16: UnitPrice = 150m 17: }; 18:   19: List<Product> products = new List<Product> { product1, product2 }; 20:   21: Basket basket = new Basket 22: { 23: Products = products, 24: Totals = ComputeTotals(products) 25: }; 26: return View(basket); 27: } 28:   29: [HttpPost] 30: public ActionResult Index(Basket basket) 31: { 32: basket.Totals = ComputeTotals(basket.Products); 33: return View(basket); 34: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } That’s that. Now I run the app, I see two products with the totals section below them. I look at the view source and I see that the input controls have the right ID, the right name and the right value as well. 1: <input id="ID" name="ID" type="text" value="1" /> 2: <input id="Name" name="Name" type="text" value="Product 1" /> 3: ... 4: <input id="ID" name="ID" type="text" value="2" /> 5: <input id="Name" name="Name" type="text" value="Product 2" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } So just as a regular user would do, I change the quantity value of one of the products and hit the submit button. The ‘post’ version of the Index method gets called and I had put a break-point on line 32 in the above snippet. When I hovered my mouse on the ‘basked’ object, happily assuming that the object would be all bound and ready for use, I was surprised to see both basket.Products and basket.Totals were null. Huh? A little research and I found out that the reason the DefaultModelBinder could not do its job is because of a naming mismatch on the input controls. What I mean is that when you have to bind to a custom .net type, you need more than just the property name. You need to pass a qualified name to the name property of the input control. I modified my view and the emitted code looked as below: 1: <input id="Product_Name" name="Product.Name" type="text" value="Product 1" /> 2: ... 3: <input id="Product_Name" name="Product.Name" type="text" value="Product 2" /> 4: ... 5: <input id="Totals_SubTotal" name="Totals.SubTotal" type="text" value="550" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, I update the quantity and hit the submit button and I see that the Totals object is populated, but the Products list is still null. Once again I went: ‘Hmm.. time for more research’. I found out that the way to do this is to provide the name as: 1: <%= Html.TextBox(string.Format("Products[{0}].ID", i), Model.Products[i].Id) %> 2: <!-- this will be rendered as --> 3: <input id="Products_0__ID" name="Products[0].ID" type="text" value="1" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } It was only now that I was able to see both the products and the totals being properly bound in the ‘post’ action method. Somehow, I feel this is kinda ‘clunky’ way of doing things. Seems like people at MS felt in a similar way and offered us a much cleaner way to solve this issue. The simple solution is that instead of using a Textbox, we can either use a TextboxFor or an EditorFor helper method. This one directly spits out the name of the input property as ‘Products[0].ID and so on. Cool right? I totally fell for this and changed my UI to contain EditorFor helper method. At this point, I ran the application, changed the quantity field and pressed the submit button. Of course my basket object parameter in my action method was correctly bound after these changes. I let the app complete the rest of the lines in the action method. When the page finally rendered, I did see that the quantity was changed to what I entered before the post. But, wait a minute, the totals section did not reflect the changes and showed the old values. My status: COMPLETELY PUZZLED! Just to recap, this is what my ‘post’ Index method looked like: 1: [HttpPost] 2: public ActionResult Index(Basket basket) 3: { 4: basket.Totals = ComputeTotals(basket.Products); 5: return View(basket); 6: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } A careful debug confirmed that the basked.Products[0].Quantity showed the updated value and the ComputeTotals() method also returns the correct totals. But still when I passed this basket object, it ended up showing the old totals values only. I began playing a bit with the code and my first guess was that the input controls got their values from the ModelState object. For those who don’t know, the ModelState is a temporary storage area that ASP.NET MVC uses to retain incoming attempted values plus binding and validation errors. Also, the fact that input controls populate the values using data taken from: Previously attempted values recorded in the ModelState["name"].Value.AttemptedValue Explicitly provided value (<%= Html.TextBox("name", "Some value") %>) ViewData, by calling ViewData.Eval("name") FYI: ViewData dictionary takes precedence over ViewData's Model properties – read more here. These two indicators led to my guess. It took me quite some time, but finally I hit this post where Brad brilliantly explains why this is the preferred behavior. My guess was right and I, accordingly modified my code to reflect the following way: 1: [HttpPost] 2: public ActionResult Index(Basket basket) 3: { 4: // read the following posts to see why the ModelState 5: // needs to be cleared before passing it the view 6: // http://forums.asp.net/t/1535846.aspx 7: // http://forums.asp.net/p/1527149/3687407.aspx 8: if (ModelState.IsValid) 9: { 10: ModelState.Clear(); 11: } 12:   13: basket.Totals = ComputeTotals(basket.Products); 14: return View(basket); 15: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } What this does is that in the case where your ModelState IS valid, it clears the dictionary. This enables the values to be read from the model directly and not from the ModelState. So the verdict is this: If you need to pass other parameters (like html attributes and the like) to your input control, use 1: <%= Html.TextBox(string.Format("Products[{0}].ID", i), Model.Products[i].Id) %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Since, in EditorFor, there is no direct and simple way of passing this information to the input control. If you don’t have to pass any such ‘extra’ piece of information to the control, then go the EditorFor way. The code used in the post can be found here.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Sorting and Filtering By Model-Based LOV Display Value

    - by Steven Davelaar
    If you use a model-based LOV and you use display type "choice", then ADF nicely displays the display value, even if the table is read-only. In the screen shot below, you see the RegionName attribute displayed instead of the RegionId. This is accomplished by the model-based LOV, I did not modify the Countries view object to include a join with Regions.  Also note the sort icon, the table is sorted by RegionId. This sorting typically results in a bug reported by your test team. Europe really shouldn't come before America when sorting ascending, right? To fix this, we could of course change the Countries view object query and add a join with the Regions table to include the RegionName attribute. If the table is updateable, we still need the choice list, so we need to move the model-based LOV from the RegionId attribute to the RegionName attribute and hide the RegionId attribute in the table. But that is a lot of work for such a simple requirement, in particular if we have lots of model-based choice lists in our view object. Fortunately, there is an easier way to do this, with some generic code in your view object base class that fixes this at once for all model-based choice lists that we have defined in our application. The trick is to override the method getSortCriteria() in the base view object class. By default, this method returns null because the sorting is done in the database through a SQL Order By clause. However, if the getSortCriteria method does return a sort criteria the framework will perform in memory sorting which is what we need to achieve sorting by region name. So, inside this method we need to evaluate the Order By clause, and if the order by column matches an attribute that has a model-based LOV choicelist defined with a display attribute that is different from the value attribute, we need to return a sort criterria. Here is the complete code of this method: public SortCriteria[] getSortCriteria() {   String orderBy = getOrderByClause();          if (orderBy!=null )   {     boolean descending = false;     if (orderBy.endsWith(" DESC"))      {       descending = true;       orderBy = orderBy.substring(0,orderBy.length()-5);     }     // extract column name, is part after the dot     int dotpos = orderBy.lastIndexOf(".");     String columnName = orderBy.substring(dotpos+1);     // loop over attributes and find matching attribute     AttributeDef orderByAttrDef = null;     for (AttributeDef attrDef : getAttributeDefs())     {       if (columnName.equals(attrDef.getColumnName()))       {         orderByAttrDef = attrDef;         break;       }     }     if (orderByAttrDef!=null && "choice".equals(orderByAttrDef.getProperty("CONTROLTYPE"))          && orderByAttrDef.getListBindingDef()!=null)     {       String orderbyAttr = orderByAttrDef.getName();       String[] displayAttrs = orderByAttrDef.getListBindingDef().getListDisplayAttrNames();       String[] listAttrs = orderByAttrDef.getListBindingDef().getListAttrNames();       // if first list display attributes is not the same as first list attribute, than the value       // displayed is different from the value copied back to the order by attribute, in which case we need to       // use our custom comparator       if (displayAttrs!=null && listAttrs!=null && displayAttrs.length>0 && !displayAttrs[0].equals(listAttrs[0]))       {                  SortCriteriaImpl sc1 = new SortCriteriaImpl(orderbyAttr, descending);         SortCriteria[] sc = new SortCriteriaImpl[]{sc1};         return sc;                           }     }     }   return super.getSortCriteria(); } If this method returns a sort criteria, then the framework will call the sort method on the view object. The sort method uses a Comparator object to determine the sequence in which the rows should be returned. This comparator is retrieved by calling the getRowComparator method on the view object. So, to ensure sorting by our display value, we need to override this method to return our custom comparator: public Comparator getRowComparator() {   return new LovDisplayAttributeRowComparator(getSortCriteria()); } The custom comparator class extends the default RowComparator class and overrides the method compareRows and looks up the choice display value to compare the two rows. The complete code of this class is included in the sample application.  With this code in place, clicking on the Region sort icon nicely sorts the countries by RegionName, as you can see below. When using the Query-By-Example table filter at the top of the table, you typically want to use the same choice list to filter the rows. One way to do that is documented in ADF code corner sample 16 - How To Customize the ADF Faces Table Filter.The solution in this sample is perfectly fine to use. This sample requires you to define a separate iterator binding and associated tree binding to populate the choice list in the table filter area using the af:iterator tag. You might be able to reuse the same LOV view object instance in this iterator binding that is used as view accessor for the model-bassed LOV. However, I have seen quite a few customers who have a generic LOV view object (mapped to one "refcodes" table) with the bind variable values set in the LOV view accessor. In such a scenario, some duplicate work is needed to get a dedicated view object instance with the correct bind variables that can be used in the iterator binding. Looking for ways to maximize reuse, wouldn't it be nice if we could just reuse our model-based LOV to populate this filter choice list? Well we can. Here are the basic steps: 1. Create an attribute list binding in the page definition that we can use to retrieve the list of SelectItems needed to populate the choice list <list StaticList="false" Uses="LOV_RegionId"               IterBinding="CountriesView1Iterator" id="RegionId"/>  We need this "current row" list binding because the implicit list binding used by the item in the table is not accessible outside a table row, we cannot use the expression #{row.bindings.RegionId} in the table filter facet. 2. Create a Map-style managed bean with the get method retrieving the list binding as key, and returning the list of SelectItems. To return this list, we take the list of selectItems contained by the list binding and replace the index number that is normally used as key value with the actual attribute value that is set by the choice list. Here is the code of the get method:  public Object get(Object key) {   if (key instanceof FacesCtrlListBinding)   {     // we need to cast to internal class FacesCtrlListBinding rather than JUCtrlListBinding to     // be able to call getItems method. To prevent this import, we could evaluate an EL expression     // to get the list of items     FacesCtrlListBinding lb = (FacesCtrlListBinding) key;     if (cachedFilterLists.containsKey(lb.getName()))     {       return cachedFilterLists.get(lb.getName());     }     List<SelectItem> items = (List<SelectItem>)lb.getItems();     if (items==null || items.size()==0)     {       return items;     }     List<SelectItem> newItems = new ArrayList<SelectItem>();     JUCtrlValueDef def = ((JUCtrlValueDef)lb.getDef());     String valueAttr = def.getFirstAttrName();     // the items list has an index number as value, we need to replace this with the actual     // value of the attribute that is copied back by the choice list     for (int i = 0; i < items.size(); i++)     {       SelectItem si = (SelectItem) items.get(i);       Object value = lb.getValueFromList(i);       if (value instanceof Row)       {         Row row = (Row) value;         si.setValue(row.getAttribute(valueAttr));                 }       else       {         // this is the "empty" row, set value to empty string so all rows will be returned         // as user no longer wants to filter on this attribute         si.setValue("");       }       newItems.add(si);     }     cachedFilterLists.put(lb.getName(), newItems);     return newItems;   }   return null; } Note that we added caching to speed up performance, and to handle the situation where table filters or search criteria are set such that no rows are retrieved in the table. When there are no rows, there is no current row and the getItems method on the list binding will return no items.  An alternative approach to create the list of SelectItems would be to retrieve the iterator binding from the list binding and loop over the rows in the iterator binding rowset. Then we wouldn't need the import of the ADF internal oracle.adfinternal.view.faces.model.binding.FacesCtrlListBinding class, but then we need to figure out the display attributes from the list binding definition, and possible separate them with a dash if multiple display attributes are defined in the LOV. Doable but less reuse and more work. 3. Inside the filter facet for the column create an af:selectOneChoice with the value property of the f:selectItems tag referencing the get method of the managed bean:  <f:facet name="filter">   <af:selectOneChoice id="soc0" autoSubmit="true"                       value="#{vs.filterCriteria.RegionId}">     <!-- attention: the RegionId list binding must be created manually in the page definition! -->                       <f:selectItems id="si0"                    value="#{viewScope.TableFilterChoiceList[bindings.RegionId]}"/>   </af:selectOneChoice> </f:facet> Note that the managed bean is defined in viewScope for the caching to take effect. Here is a screen shot of the tabe filter in action: You can download the sample application here. 

    Read the article

  • Mouse Clicks, Reactive Extensions and StreamInsight Mashup

    I had an hour spare this afternoon so I wanted to have another play with Reactive Extensions in .Net and StreamInsight.  I also didn’t want to simply use a console window as a way of gathering events so I decided to use a windows form instead. The task I set myself was this. Whenever I click on my form I want to subscribe to the event and output its location to the console window and also the timestamp of the event.  In addition to this I want to know for every mouse click I do, how many mouse clicks have happened in the last 5 seconds. The second point here is really interesting.  I have often found this when working with people on problems.  It is how you ask the question that determines how you tackle the problem.  I will show 2 ways of possibly answering the second question depending on how the question was interpreted. As a side effect of this example I will show how time in StreamInsight can stand still.  This is an important concept and we can see it in the output later. Now to the code.  I will break it all down in this blogpost but you can download the solution and see it all together. I created a Console application and then instantiate a windows form.   frm = new Form(); Thread g = new Thread(CallUI); g.SetApartmentState(ApartmentState.STA); g.Start();   Call UI looks like this   static void CallUI() { System.Windows.Forms.Application.Run(frm); frm.Activate(); frm.BringToFront(); }   Now what we need to do is create an observable from the MouseClick event on the form.  For this we use the Reactive Extensions.   var lblevt = Observable.FromEvent<MouseEventArgs>(frm, "MouseClick").Timestamp();   As mentioned earlier I have two objectives in this example and to solve the first I am going to again use the Reactive extensions.  Let’s subscribe to the MouseClick event and output the location and timestamp to the console. lblevt.Subscribe(evt => { Console.WriteLine("Clicked: {0}, {1} ", evt.Value.EventArgs.Location,evt.Timestamp); }); That should take care of obective #1 but what about the second objective.  For that we need some temporal windowing and this means StreamInsight.  First we need to turn our Observable collection of MouseClick events into a PointStream Server s = Server.Create("Default"); Microsoft.ComplexEventProcessing.Application a = s.CreateApplication("MouseClicks"); var input = lblevt.ToPointStream( a, evt => PointEvent.CreateInsert( evt.Timestamp, new { loc = evt.Value.EventArgs.Location.ToString(), ts = evt.Timestamp.ToLocalTime().ToString() }), AdvanceTimeSettings.IncreasingStartTime);   Now that we have created out PointStream we need to do something with it and this is where we get to our second objective.  It is pretty clear that we want some kind of windowing but what? Here is one way of doing it.  It might not be what you wanted but again it is how the second objective is interpreted   var q = from i in input.TumblingWindow(TimeSpan.FromSeconds(5), HoppingWindowOutputPolicy.ClipToWindowEnd) select new { CountOfClicks = i.Count() };   The above code creates tumbling windows of 5 seconds and counts the number of events in the windows.  If there are no events in the window then no result is output.  Likewise until an event (MouseClick) is issued then we do not see anything in the output (that is not strictly true because it is the CTI strapped to our MouseClick events that flush the events through the StreamInsight engine not the events themselves).  This approach is centred around the windows and not the events.  Until the windows complete and a CTI is issued then no events are pushed through. An alternate way of answering our second question is below   var q = from i in input.AlterEventDuration(evt => TimeSpan.FromSeconds(5)).SnapshotWindow(SnapshotWindowOutputPolicy.Clip) select new { CountOfClicks = i.Count() };   In this code we extend the duration of each MouseClick to five seconds.  We then create  Snapshot Windows over those events.  Snapshot windows are discussed in detail here.  With this solution we are centred around the events.  It is the events that are driving the output.  Let’s have a look at the output from this solution as it may be a little confusing. First though let me show how we get the output from StreamInsight into the Console window. foreach (var x in q.ToPointEnumerable().Where(e => e.EventKind != EventKind.Cti)) { Console.WriteLine(x.Payload.CountOfClicks); }   Ok so now to the output.   The table at the top shows the output from our routine and the table at the bottom helps to explain the output.  One of the things that will help as well is, you will note that for our PointStream we set the issuing of CTIs to be IncreasingStartTime.  What this means is that the CTI is placed right at the start of the event so will not flush the event with which it was issued but will flush those prior to it.  In the bottom table the Blue fill is where we issued a click.  Yellow fill is the duration and boundaries of our events.  The numbers at the bottom indicate the count of events   Clicked 22:40:16                                 Clicked 23:40:18                                 1                                   Clicked 23:40:20                                 2                                   Clicked 23:40:22                                 3                                   2                                   Clicked 23:40:24                                 3                                   2                                   Clicked 23:40:32                                 3                                   2                                   1                                                                                                         secs 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32                                                                                                                                                                                                                         counts   1   2 3 2 3 2 3   2   1           What we can see here in the output is that the counts include all the end edges that have occurred between the mouse clicks.  If we look specifically at the mouse click at 22:40:32. then we see that 3 events are returned to us. These include the following End Edge count at 22:40:25 End Edge count at 22:40:27 End Edge count at 22:40:29 Another thing we notice is that until we actually issue a CTI at 22:40:32 then those last 3 snapshot window counts will never be reported. Hopefully this has helped to explain  a few concepts around StreamInsight and the IObservable() pattern.   You can download this solution from here and play.  You will need the Reactive Framework from here and StreamInsight 1.1

    Read the article

  • datagrid binding

    - by abcdd007
    using System; using System.Data; using System.Configuration; using System.Collections; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; using System.Data.SqlClient; public partial class OrderMaster : System.Web.UI.Page { BLLOrderMaster objMaster = new BLLOrderMaster(); protected void Page_Load(object sender, EventArgs e) { if (!Page.IsPostBack) { SetInitialRow(); string OrderNumber = objMaster.SelectDetails().ToString(); if (OrderNumber != "") { txtOrderNo.Text = OrderNumber.ToString(); txtOrderDate.Focus(); } } } private void InsertEmptyRow() { DataTable dt = new DataTable(); DataRow dr = null; dt.Columns.Add(new DataColumn("ItemCode", typeof(string))); dt.Columns.Add(new DataColumn("Description", typeof(string))); dt.Columns.Add(new DataColumn("Unit", typeof(string))); dt.Columns.Add(new DataColumn("Qty", typeof(string))); dt.Columns.Add(new DataColumn("Rate", typeof(string))); dt.Columns.Add(new DataColumn("Disc", typeof(string))); dt.Columns.Add(new DataColumn("Amount", typeof(string))); for (int i = 0; i < 5; i++) { dr = dt.NewRow(); dr["ItemCode"] = string.Empty; dr["Description"] = string.Empty; dr["Unit"] = string.Empty; dr["Qty"] = string.Empty; dr["Rate"] = string.Empty; dr["Disc"] = string.Empty; dr["Amount"] = string.Empty; dt.Rows.Add(dr); } //GridView1.DataSource = dt; //GridView1.DataBind(); } private void SetInitialRow() { DataTable dt = new DataTable(); DataRow dr = null; dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); dt.Columns.Add(new DataColumn("ItemCode", typeof(string))); dt.Columns.Add(new DataColumn("Description", typeof(string))); dt.Columns.Add(new DataColumn("Unit", typeof(string))); dt.Columns.Add(new DataColumn("Qty", typeof(string))); dt.Columns.Add(new DataColumn("Rate", typeof(string))); dt.Columns.Add(new DataColumn("Disc", typeof(string))); dt.Columns.Add(new DataColumn("Amount", typeof(string))); dr = dt.NewRow(); dr["RowNumber"] = 1; dr["ItemCode"] = string.Empty; dr["Description"] = string.Empty; dr["Unit"] = string.Empty; dr["Qty"] = string.Empty; dr["Rate"] = string.Empty; dr["Disc"] = string.Empty; dr["Amount"] = string.Empty; dt.Rows.Add(dr); //Store DataTable ViewState["OrderDetails"] = dt; Gridview1.DataSource = dt; Gridview1.DataBind(); } protected void AddNewRowToGrid() { int rowIndex = 0; if (ViewState["OrderDetails"] != null) { DataTable dtCurrentTable = (DataTable)ViewState["OrderDetails"]; DataRow drCurrentRow = null; if (dtCurrentTable.Rows.Count > 0) { for (int i = 1; i <= dtCurrentTable.Rows.Count; i++) { //extract the TextBox values TextBox box1 = (TextBox)Gridview1.Rows[rowIndex].Cells[1].FindControl("txtItemCode"); TextBox box2 = (TextBox)Gridview1.Rows[rowIndex].Cells[2].FindControl("txtdescription"); TextBox box3 = (TextBox)Gridview1.Rows[rowIndex].Cells[3].FindControl("txtunit"); TextBox box4 = (TextBox)Gridview1.Rows[rowIndex].Cells[4].FindControl("txtqty"); TextBox box5 = (TextBox)Gridview1.Rows[rowIndex].Cells[5].FindControl("txtRate"); TextBox box6 = (TextBox)Gridview1.Rows[rowIndex].Cells[6].FindControl("txtdisc"); TextBox box7 = (TextBox)Gridview1.Rows[rowIndex].Cells[7].FindControl("txtamount"); drCurrentRow = dtCurrentTable.NewRow(); drCurrentRow["RowNumber"] = i + 1; drCurrentRow["ItemCode"] = box1.Text; drCurrentRow["Description"] = box2.Text; drCurrentRow["Unit"] = box3.Text; drCurrentRow["Qty"] = box4.Text; drCurrentRow["Rate"] = box5.Text; drCurrentRow["Disc"] = box6.Text; drCurrentRow["Amount"] = box7.Text; rowIndex++; } //add new row to DataTable dtCurrentTable.Rows.Add(drCurrentRow); //Store the current data to ViewState ViewState["OrderDetails"] = dtCurrentTable; //Rebind the Grid with the current data Gridview1.DataSource = dtCurrentTable; Gridview1.DataBind(); } } else { // } //Set Previous Data on Postbacks SetPreviousData(); } private void SetPreviousData() { int rowIndex = 0; if (ViewState["OrderDetails"] != null) { DataTable dt = (DataTable)ViewState["OrderDetails"]; if (dt.Rows.Count > 0) { for (int i = 1; i < dt.Rows.Count; i++) { TextBox box1 = (TextBox)Gridview1.Rows[rowIndex].Cells[1].FindControl("txtItemCode"); TextBox box2 = (TextBox)Gridview1.Rows[rowIndex].Cells[2].FindControl("txtdescription"); TextBox box3 = (TextBox)Gridview1.Rows[rowIndex].Cells[3].FindControl("txtunit"); TextBox box4 = (TextBox)Gridview1.Rows[rowIndex].Cells[4].FindControl("txtqty"); TextBox box5 = (TextBox)Gridview1.Rows[rowIndex].Cells[5].FindControl("txtRate"); TextBox box6 = (TextBox)Gridview1.Rows[rowIndex].Cells[6].FindControl("txtdisc"); TextBox box7 = (TextBox)Gridview1.Rows[rowIndex].Cells[7].FindControl("txtamount"); box1.Text = dt.Rows[i]["ItemCode"].ToString(); box2.Text = dt.Rows[i]["Description"].ToString(); box3.Text = dt.Rows[i]["Unit"].ToString(); box4.Text = dt.Rows[i]["Qty"].ToString(); box5.Text = dt.Rows[i]["Rate"].ToString(); box6.Text = dt.Rows[i]["Disc"].ToString(); box7.Text = dt.Rows[i]["Amount"].ToString(); rowIndex++; } dt.AcceptChanges(); } ViewState["OrderDetails"] = dt; } } protected void BindOrderDetails() { DataTable dtOrderDetails = new DataTable(); if (ViewState["OrderDetails"] != null) { dtOrderDetails = (DataTable)ViewState["OrderDetails"]; } else { dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.AcceptChanges(); DataRow dr = dtOrderDetails.NewRow(); dtOrderDetails.Rows.Add(dr); ViewState["OrderDetails"] = dtOrderDetails; } if (dtOrderDetails != null) { Gridview1.DataSource = dtOrderDetails; Gridview1.DataBind(); if (Gridview1.Rows.Count > 0) { ((LinkButton)Gridview1.Rows[Gridview1.Rows.Count - 1].FindControl("btnDelete")).Visible = false; } } } protected void btnSave_Click(object sender, EventArgs e) { if (txtOrderDate.Text != "" && txtOrderNo.Text != "" && txtPartyName.Text != "" && txttotalAmount.Text !="") { BLLOrderMaster bllobj = new BLLOrderMaster(); DataTable dtdetails = new DataTable(); UpdateItemDetailRow(); dtdetails = (DataTable)ViewState["OrderDetails"]; SetValues(bllobj); int k = 0; k = bllobj.Insert_Update_Delete(1, bllobj, dtdetails); if (k > 0) { ScriptManager.RegisterStartupScript(this, this.GetType(), "Login Denied", "<Script>alert('Order Code Alraddy Exist');</Script>", false); } else { ScriptManager.RegisterStartupScript(this, this.GetType(), "Login Denied", "<Script>alert('Record Saved Successfully');</Script>", false); } dtdetails.Clear(); SetInitialRow(); txttotalAmount.Text = ""; txtOrderNo.Text = ""; txtPartyName.Text = ""; txtOrderDate.Text = ""; txttotalQty.Text = ""; string OrderNumber = objMaster.SelectDetails().ToString(); if (OrderNumber != "") { txtOrderNo.Text = OrderNumber.ToString(); txtOrderDate.Focus(); } } else { txtOrderNo.Text = ""; } } public void SetValues(BLLOrderMaster bllobj) { if (txtOrderNo.Text != null && txtOrderNo.Text.ToString() != "") { bllobj.OrNumber = Convert.ToInt16(txtOrderNo.Text); } if (txtOrderDate.Text != null && txtOrderDate.Text.ToString() != "") { bllobj.Date = DateTime.Parse(txtOrderDate.Text.ToString()).ToString("dd/MM/yyyy"); } if (txtPartyName.Text != null && txtPartyName.Text.ToString() != "") { bllobj.PartyName = txtPartyName.Text; } bllobj.TotalBillAmount = txttotalAmount.Text == "" ? 0 : int.Parse(txttotalAmount.Text); bllobj.TotalQty = txttotalQty.Text == "" ? 0 : int.Parse(txttotalQty.Text); } protected void txtdisc_TextChanged(object sender, EventArgs e) { double total = 0; double totalqty = 0; foreach (GridViewRow dgvr in Gridview1.Rows) { TextBox tb = (TextBox)dgvr.Cells[7].FindControl("txtamount"); double sum; if (double.TryParse(tb.Text.Trim(), out sum)) { total += sum; } TextBox tb1 = (TextBox)dgvr.Cells[4].FindControl("txtqty"); double qtysum; if (double.TryParse(tb1.Text.Trim(), out qtysum)) { totalqty += qtysum; } } txttotalAmount.Text = total.ToString(); txttotalQty.Text = totalqty.ToString(); AddNewRowToGrid(); Gridview1.TabIndex = 1; } public void UpdateItemDetailRow() { DataTable dt = new DataTable(); if (ViewState["OrderDetails"] != null) { dt = (DataTable)ViewState["OrderDetails"]; } if (dt.Rows.Count > 0) { for (int i = 0; i < Gridview1.Rows.Count; i++) { dt.Rows[i]["ItemCode"] = (Gridview1.Rows[i].FindControl("txtItemCode") as TextBox).Text.ToString(); if (dt.Rows[i]["ItemCode"].ToString() == "") { dt.Rows[i].Delete(); break; } else { dt.Rows[i]["Description"] = (Gridview1.Rows[i].FindControl("txtdescription") as TextBox).Text.ToString(); dt.Rows[i]["Unit"] = (Gridview1.Rows[i].FindControl("txtunit") as TextBox).Text.ToString(); dt.Rows[i]["Qty"] = (Gridview1.Rows[i].FindControl("txtqty") as TextBox).Text.ToString(); dt.Rows[i]["Rate"] = (Gridview1.Rows[i].FindControl("txtRate") as TextBox).Text.ToString(); dt.Rows[i]["Disc"] = (Gridview1.Rows[i].FindControl("txtdisc") as TextBox).Text.ToString(); dt.Rows[i]["Amount"] = (Gridview1.Rows[i].FindControl("txtamount") as TextBox).Text.ToString(); } } dt.AcceptChanges(); } ViewState["OrderDetails"] = dt; } }

    Read the article

  • Wireless access point -> Powerline -> Router -> Internet, should this work?

    - by Anthony
    My network at home used to be a laptop and desktop connected wirelessly to a single Wireless ADSL router, a Cisco 877W. Wireless reception around the house with this setup was quite unreliable, so I've gone about looking to improve it. I purchased some Belkin Gigabit powerline adapters and I've got these working fine. I can hook a computer up to one of the powerline adapters, and with the other one plugged into the ADSL router the computer has internet access. Additionally I can hook a Netgear DG834G Wireless ADSL router into it with the adsl not plugged in, and after turning off DHCP can RJ45 a computer up to the network. Everything works fine. However, if I setup a wireless network on the Netgear then any computer that connects wirelessly to it cannot access the internet. It gets an IP address very slowly via DHCP which is a good one, but it cannot access the internet. It can however communicate with the RJ45'd computer also connected to the Netgear. I wondered whether this could be a problem with the Netgear so I've borrowed a Cisco Aironet 1200 and got this working fine when it's attached directly to the primary ADSL router. I can connect to it wireless and get onto the internet. However, if I then plug it into the Netgear I can communicate with other devices attached to the Netgear, but can't get any further than the Netgear. All the while though the other devices RJ45'd to the Netgear are communicating with the internet just fine. I'm starting to suspect it's one of two things causing the problem: 1) For some reason the belkin powerline adapters don't like carrying wireless-originating signals. Could this be possible? 2) The primary Cisco ADSL router doesn't want to communicate with other devices on my network more than one hop away from it. I'm making an assumption here that within the Netgear box the wireless and wired sides are handled differently. Could this be true? Has anyone successfully setup something similar to what I'm trying, with a wireless device on the otherside of a pair of powerline connectors? Update 06/07/2010 - Response to irrational John 28 June Thanks for the answer John - and for clearing up some of my questions. The model number of the belkin powerline adapters are F5D4076. Security was apparently enabled by default on them, and I didn't change them from their default setting. The network diagram in your answer shows exactly what I'm trying to setup: I've followed that guide and I'm still not able to get things working properly. The thing that perplexes me is that wired network traffic works just fine - it's only the wireless traffic that doesn't. This is with the same laptop, and the same DHCP or static IPs. "1. What IP addresses did you assign to each router? What subnet masks are you using?" - subnet is 255.255.255.0, the router connected to the adsl is 192.168.153.1 and that has the DHCP server. The access point on the other side of the powerline adapters I've tried both a static IP of 192.168.153.110, same subnet, and a DHCP-assigned IP. The other devices are DHCP, although I also tried manually entering IP settings. "2. Have you correctly enabled DHCP on only one of the routers and disabled it on all the others?" Yes I have - only the internet-connected router has DHCP enabled. The IP range for the DHCP is from 192.168.153.11 - 192.168.153.200. The strange thing is that wired connections work fine on the LAN, plugged into any router, work fine - it's only the wireless connections that aren't working when they're plugged into the non-primary AP. "Since the routers you are using appear to integrate an ADSL modem I'm assuming there is no WAN port on them." There's no NAT within the LAN, and all wired connections are connected to LAN ports. It's something wrong with the wireless - wired works fine throughout the whole LAN. Update 06/07/2010 - Response to irrational John 29 June The diagram you've drawn in your answer shows pretty much exactly what I'm trying to do. I've spent another evening trying different things and made some progress but I'm still scratching my head. I've borrowed a Netgear access point and been trying with this, and the strange thing is that my PC is working now - this is a Windows 7 PC connected to the access point in the position of where the DG834G is in the diagram. Meanwhile, however, I have an old Powerbook G4 12" I use for music, and while that has a DHCP-assigned IP address, it's not getting any network throughput to either LAN or internet addresses. To make matters more strange, my phone appears to be intermittently working when it's on the wifi. The access point is a Netgear WPN802v1, DHCP, NAT both switched off, running firmware 2.0.9.0. Last night I set it up with exactly the same settings, and similar to tonight I could get a couple of devices to work, and a couple not to. By the morning, however, everything had stopped working - nothing could get a DHCP IP address. I rebooted the 877W earlier this evening and I'm wondering whether this is why a few things are working now. "Could it be possible that the issue could be with the 877W?" I didn't configure this - is it possible that the DHCP server only likes assigning devices that are immediately attached to it? Or similar, could a firewall be stopping too many addresses that are coming through one device? (ie. the Access Point) This could explain why devices are working at the start but then not by the end. In reply to your questions, "1. I looked at the Netgear DG834G support page. There are five versions of this router. Which version do you have? Netgear usually lists this on the label on the bottom of the router. What version of the firmware does it have?" It's a DG834Gv3, and the firmware is the last on the netgear site version 4.01.40. "3. Not knowing which version you have, I glanced at the reference manual for the DG834G v3. In the section for Wireless Settings under the subsection Wireless Access Point there is a check box for a Wireless Isolation setting. If you have this setting it should be off/unchecked. If it is checked then any device connected via wireless would not be able to talk to any other device on the LAN. This sounds like your problem so maybe this is the cause?" I've checked this and it's switched off. I've made a change to the IP of the access point to something outside the DHCP range - it's now 192.158.153.5, with DHCP starting at 11 and going up to 254. Thanks for the tip about this - I only have a few devices so wouldn't anticipate the DHCP server assigning up to 110, but better safe than sorry. Finally one more thing I thought I should add, is with the Powerbook G4 that's not working - it's getting a DHCP IP address and it can communicate with the WPN802 as I can visit the administration page. Anything further than this, however, it can't reach; I can't administrate the 192.168.153.1 (877W router). Strangely, however, when I open Finder on the same powerbook it's detecting my NAS which is attached directly via wire to the 877W. If I try to browse it, it says connection failed. RE: "Perhaps the problem with your Powerbook is with DNS?.." The IP settings on the powerbook are identical to that of the PC with the exception of the IP address; the PC is 192.168.153.17 and the powerbook is 192.168.153.12. Subnets are the same, 255.255.255.0 and default gateway is the same, .1, and the DNS servers are the same. I administrate the 877W by going to 192.168.153.1 in the browser. This is what isn't working from the Powerbook, despite the PC working fine when I do the same. Meanwhile, however, I can administrate the AP on 192.168.153.5 from both PC and Powerbook Update 06/07/2010 - FINAL RESOLUTION of sorts: First off, sorry for the length of this question. I need start to practice a more concise writing style, so I'm going to try to keep this bit brief. After much fiddling, and with the hugely-appreciated help of irrational John, I have come to the conclusion that it's something wrong with the powerbook. I believe that this was perhaps the reason I doubted things worked at the very beginning. I now have the original DG834Gv3 running both wirelessly and wired, and both wired devices and wireless devices get internet connectivity. The only anomaly is the powerbook which I've had to keep wired, as no matter what I do it refuses to work wirelessly. I still have suspicions that the 877W isn't quite right; I'm fairly sure that if I RJ45 the powerline adapter into a different LAN port on it then everything will break. I've just about run out of patience to test this further, and I think I need to go into the 877W's config to match the 877w's lan port's settings. I'm accepting irrational John's answer as he's been enormously helpful, way above the call of duty, and for this line he wrote: Beats the heck out of me. which in the midst of great frustration made me chuckle, and for a sentence in one of his comments to the same answer: If it is specific to the Powerbook I would put that issue aside until after you feel you have the rest of your LAN and the additional WAP all working together correctlyt It was this second sentence that made me put the powerbook aside and concentrate on the other devices that ultimately led me to getting things working.

    Read the article

  • FreeBSD 8.1 unstable network connection

    - by frankcheong
    I have three FreeBSD 8.1 running on three different hardware and therefore consist of different network adapter as well (bce, bge and igb). I found that the network connection is kind of unstable which I have tried to scp some 10MB file and found that I cannot always get the files completed successfully. I have further checked with my network admin and he claim that the problem is being caused by the network driver which cannot support the load whereby he tried to ping using huge packet size (around 15k) and my server will drop packet consistently at a regular interval. I found that this statement may not be valid since the three server is using three different network drive and it would be quite impossible that the same problem is being caused by three different network adapter and thus different network driver. Since then I have tried to tune up the performance by playing around with the /etc/sysctl.conf figures with no luck. kern.ipc.somaxconn=1024 kern.ipc.shmall=3276800 kern.ipc.shmmax=1638400000 # Security net.inet.ip.redirect=0 net.inet.ip.sourceroute=0 net.inet.ip.accept_sourceroute=0 net.inet.icmp.maskrepl=0 net.inet.icmp.log_redirect=0 net.inet.icmp.drop_redirect=1 net.inet.tcp.drop_synfin=1 # Security net.inet.udp.blackhole=1 net.inet.tcp.blackhole=2 # Required by pf net.inet.ip.forwarding=1 #Network Performance Tuning kern.ipc.maxsockbuf=16777216 net.inet.tcp.rfc1323=1 net.inet.tcp.sendbuf_max=16777216 net.inet.tcp.recvbuf_max=16777216 # Setting specifically for 1 or even 10Gbps network net.local.stream.sendspace=262144 net.local.stream.recvspace=262144 net.inet.tcp.local_slowstart_flightsize=10 net.inet.tcp.nolocaltimewait=1 net.inet.tcp.mssdflt=1460 net.inet.tcp.sendbuf_auto=1 net.inet.tcp.sendbuf_inc=16384 net.inet.tcp.recvbuf_auto=1 net.inet.tcp.recvbuf_inc=524288 net.inet.tcp.sendspace=262144 net.inet.tcp.recvspace=262144 net.inet.udp.recvspace=262144 kern.ipc.maxsockbuf=16777216 kern.ipc.nmbclusters=32768 net.inet.tcp.delayed_ack=1 net.inet.tcp.delacktime=100 net.inet.tcp.slowstart_flightsize=179 net.inet.tcp.inflight.enable=1 net.inet.tcp.inflight.min=6144 # Reduce the cache size of slow start connection net.inet.tcp.hostcache.expire=1 Our network admin also claim that they see quite a lot of network up and down from their cisco switch log while I cannot find any up down message inside the dmesg. Have further checked the netstat -s but dont have concrete idea. tcp: 133695291 packets sent 39408539 data packets (3358837321 bytes) 61868 data packets (89472844 bytes) retransmitted 24 data packets unnecessarily retransmitted 0 resends initiated by MTU discovery 50756141 ack-only packets (2148 delayed) 0 URG only packets 0 window probe packets 4372385 window update packets 39781869 control packets 134898031 packets received 72339403 acks (for 3357601899 bytes) 190712 duplicate acks 0 acks for unsent data 59339201 packets (3647021974 bytes) received in-sequence 114 completely duplicate packets (135202 bytes) 27 old duplicate packets 0 packets with some dup. data (0 bytes duped) 42090 out-of-order packets (60817889 bytes) 0 packets (0 bytes) of data after window 0 window probes 3953896 window update packets 64181 packets received after close 0 discarded for bad checksums 0 discarded for bad header offset fields 0 discarded because packet too short 45192 discarded due to memory problems 19945391 connection requests 1323420 connection accepts 0 bad connection attempts 0 listen queue overflows 0 ignored RSTs in the windows 21133581 connections established (including accepts) 21268724 connections closed (including 32737 drops) 207874 connections updated cached RTT on close 207874 connections updated cached RTT variance on close 132439 connections updated cached ssthresh on close 42392 embryonic connections dropped 72339338 segments updated rtt (of 69477829 attempts) 390871 retransmit timeouts 0 connections dropped by rexmit timeout 0 persist timeouts 0 connections dropped by persist timeout 0 Connections (fin_wait_2) dropped because of timeout 13990 keepalive timeouts 2 keepalive probes sent 13988 connections dropped by keepalive 173044 correct ACK header predictions 36947371 correct data packet header predictions 1323420 syncache entries added 0 retransmitted 0 dupsyn 0 dropped 1323420 completed 0 bucket overflow 0 cache overflow 0 reset 0 stale 0 aborted 0 badack 0 unreach 0 zone failures 1323420 cookies sent 0 cookies received 1864 SACK recovery episodes 18005 segment rexmits in SACK recovery episodes 26066896 byte rexmits in SACK recovery episodes 147327 SACK options (SACK blocks) received 87473 SACK options (SACK blocks) sent 0 SACK scoreboard overflow 0 packets with ECN CE bit set 0 packets with ECN ECT(0) bit set 0 packets with ECN ECT(1) bit set 0 successful ECN handshakes 0 times ECN reduced the congestion window udp: 5141258 datagrams received 0 with incomplete header 0 with bad data length field 0 with bad checksum 1 with no checksum 0 dropped due to no socket 129616 broadcast/multicast datagrams undelivered 0 dropped due to full socket buffers 0 not for hashed pcb 5011642 delivered 5016050 datagrams output 0 times multicast source filter matched sctp: 0 input packets 0 datagrams 0 packets that had data 0 input SACK chunks 0 input DATA chunks 0 duplicate DATA chunks 0 input HB chunks 0 HB-ACK chunks 0 input ECNE chunks 0 input AUTH chunks 0 chunks missing AUTH 0 invalid HMAC ids received 0 invalid secret ids received 0 auth failed 0 fast path receives all one chunk 0 fast path multi-part data 0 output packets 0 output SACKs 0 output DATA chunks 0 retransmitted DATA chunks 0 fast retransmitted DATA chunks 0 FR's that happened more than once to same chunk 0 intput HB chunks 0 output ECNE chunks 0 output AUTH chunks 0 ip_output error counter Packet drop statistics: 0 from middle box 0 from end host 0 with data 0 non-data, non-endhost 0 non-endhost, bandwidth rep only 0 not enough for chunk header 0 not enough data to confirm 0 where process_chunk_drop said break 0 failed to find TSN 0 attempt reverse TSN lookup 0 e-host confirms zero-rwnd 0 midbox confirms no space 0 data did not match TSN 0 TSN's marked for Fast Retran Timeouts: 0 iterator timers fired 0 T3 data time outs 0 window probe (T3) timers fired 0 INIT timers fired 0 sack timers fired 0 shutdown timers fired 0 heartbeat timers fired 0 a cookie timeout fired 0 an endpoint changed its cookiesecret 0 PMTU timers fired 0 shutdown ack timers fired 0 shutdown guard timers fired 0 stream reset timers fired 0 early FR timers fired 0 an asconf timer fired 0 auto close timer fired 0 asoc free timers expired 0 inp free timers expired 0 packet shorter than header 0 checksum error 0 no endpoint for port 0 bad v-tag 0 bad SID 0 no memory 0 number of multiple FR in a RTT window 0 RFC813 allowed sending 0 RFC813 does not allow sending 0 times max burst prohibited sending 0 look ahead tells us no memory in interface 0 numbers of window probes sent 0 times an output error to clamp down on next user send 0 times sctp_senderrors were caused from a user 0 number of in data drops due to chunk limit reached 0 number of in data drops due to rwnd limit reached 0 times a ECN reduced the cwnd 0 used express lookup via vtag 0 collision in express lookup 0 times the sender ran dry of user data on primary 0 same for above 0 sacks the slow way 0 window update only sacks sent 0 sends with sinfo_flags !=0 0 unordered sends 0 sends with EOF flag set 0 sends with ABORT flag set 0 times protocol drain called 0 times we did a protocol drain 0 times recv was called with peek 0 cached chunks used 0 cached stream oq's used 0 unread messages abandonded by close 0 send burst avoidance, already max burst inflight to net 0 send cwnd full avoidance, already max burst inflight to net 0 number of map array over-runs via fwd-tsn's ip: 137814085 total packets received 0 bad header checksums 0 with size smaller than minimum 0 with data size < data length 0 with ip length > max ip packet size 0 with header length < data size 0 with data length < header length 0 with bad options 0 with incorrect version number 1200 fragments received 0 fragments dropped (dup or out of space) 0 fragments dropped after timeout 300 packets reassembled ok 137813009 packets for this host 530 packets for unknown/unsupported protocol 0 packets forwarded (0 packets fast forwarded) 61 packets not forwardable 0 packets received for unknown multicast group 0 redirects sent 137234598 packets sent from this host 0 packets sent with fabricated ip header 685307 output packets dropped due to no bufs, etc. 52 output packets discarded due to no route 300 output datagrams fragmented 1200 fragments created 0 datagrams that can't be fragmented 0 tunneling packets that can't find gif 0 datagrams with bad address in header icmp: 0 calls to icmp_error 0 errors not generated in response to an icmp message Output histogram: echo reply: 305 0 messages with bad code fields 0 messages less than the minimum length 0 messages with bad checksum 0 messages with bad length 0 multicast echo requests ignored 0 multicast timestamp requests ignored Input histogram: destination unreachable: 530 echo: 305 305 message responses generated 0 invalid return addresses 0 no return routes ICMP address mask responses are disabled igmp: 0 messages received 0 messages received with too few bytes 0 messages received with wrong TTL 0 messages received with bad checksum 0 V1/V2 membership queries received 0 V3 membership queries received 0 membership queries received with invalid field(s) 0 general queries received 0 group queries received 0 group-source queries received 0 group-source queries dropped 0 membership reports received 0 membership reports received with invalid field(s) 0 membership reports received for groups to which we belong 0 V3 reports received without Router Alert 0 membership reports sent arp: 376748 ARP requests sent 3207 ARP replies sent 245245 ARP requests received 80845 ARP replies received 326090 ARP packets received 267712 total packets dropped due to no ARP entry 108876 ARP entrys timed out 0 Duplicate IPs seen ip6: 2226633 total packets received 0 with size smaller than minimum 0 with data size < data length 0 with bad options 0 with incorrect version number 0 fragments received 0 fragments dropped (dup or out of space) 0 fragments dropped after timeout 0 fragments that exceeded limit 0 packets reassembled ok 2226633 packets for this host 0 packets forwarded 0 packets not forwardable 0 redirects sent 2226633 packets sent from this host 0 packets sent with fabricated ip header 0 output packets dropped due to no bufs, etc. 8 output packets discarded due to no route 0 output datagrams fragmented 0 fragments created 0 datagrams that can't be fragmented 0 packets that violated scope rules 0 multicast packets which we don't join Input histogram: UDP: 2226633 Mbuf statistics: 962679 one mbuf 1263954 one ext mbuf 0 two or more ext mbuf 0 packets whose headers are not continuous 0 tunneling packets that can't find gif 0 packets discarded because of too many headers 0 failures of source address selection Source addresses selection rule applied: icmp6: 0 calls to icmp6_error 0 errors not generated in response to an icmp6 message 0 errors not generated because of rate limitation 0 messages with bad code fields 0 messages < minimum length 0 bad checksums 0 messages with bad length Histogram of error messages to be generated: 0 no route 0 administratively prohibited 0 beyond scope 0 address unreachable 0 port unreachable 0 packet too big 0 time exceed transit 0 time exceed reassembly 0 erroneous header field 0 unrecognized next header 0 unrecognized option 0 redirect 0 unknown 0 message responses generated 0 messages with too many ND options 0 messages with bad ND options 0 bad neighbor solicitation messages 0 bad neighbor advertisement messages 0 bad router solicitation messages 0 bad router advertisement messages 0 bad redirect messages 0 path MTU changes rip6: 0 messages received 0 checksum calculations on inbound 0 messages with bad checksum 0 messages dropped due to no socket 0 multicast messages dropped due to no socket 0 messages dropped due to full socket buffers 0 delivered 0 datagrams output netstat -m 516/5124/5640 mbufs in use (current/cache/total) 512/1634/2146/32768 mbuf clusters in use (current/cache/total/max) 512/1536 mbuf+clusters out of packet secondary zone in use (current/cache) 0/1303/1303/12800 4k (page size) jumbo clusters in use (current/cache/total/max) 0/0/0/6400 9k jumbo clusters in use (current/cache/total/max) 0/0/0/3200 16k jumbo clusters in use (current/cache/total/max) 1153K/9761K/10914K bytes allocated to network (current/cache/total) 0/0/0 requests for mbufs denied (mbufs/clusters/mbuf+clusters) 0/0/0 requests for jumbo clusters denied (4k/9k/16k) 0/8/6656 sfbufs in use (current/peak/max) 0 requests for sfbufs denied 0 requests for sfbufs delayed 0 requests for I/O initiated by sendfile 0 calls to protocol drain routines Anyone got an idea what might be the possible cause?

    Read the article

  • Cannot open root device xvda1 or unknown-block(0,0)

    - by svoop
    I'm putting together a Dom0 and three DomU (all Gentoo) with kernel 3.5.7 and Xen 4.1.1. Each Dom has it's own md (md0 for Dom0, md1 for Dom1 etc). Dom0 works fine so far, however, I'm stuck trying to create DomUs. It appears the xvda1 device on DomU is not created or accessible: Parsing config file dom1 domainbuilder: detail: xc_dom_allocate: cmdline="root=/dev/xvda1 console=hvc0 root=/dev/xvda1 ro 3", features="(null)" domainbuilder: detail: xc_dom_kernel_mem: called domainbuilder: detail: xc_dom_boot_xen_init: ver 4.1, caps xen-3.0-x86_64 xen-3.0-x86_32p hvm-3.0-x86_32 hvm-3.0-x86_32p hvm-3.0-x86_64 domainbuilder: detail: xc_dom_parse_image: called domainbuilder: detail: xc_dom_find_loader: trying multiboot-binary loader ... domainbuilder: detail: loader probe failed domainbuilder: detail: xc_dom_find_loader: trying Linux bzImage loader ... domainbuilder: detail: xc_dom_malloc : 10530 kB domainbuilder: detail: xc_dom_do_gunzip: unzip ok, 0x2f7a4f -> 0xa48888 domainbuilder: detail: loader probe OK xc: detail: elf_parse_binary: phdr: paddr=0x1000000 memsz=0x558000 xc: detail: elf_parse_binary: phdr: paddr=0x1558000 memsz=0x690e8 xc: detail: elf_parse_binary: phdr: paddr=0x15c2000 memsz=0x127c0 xc: detail: elf_parse_binary: phdr: paddr=0x15d5000 memsz=0x533000 xc: detail: elf_parse_binary: memory: 0x1000000 -> 0x1b08000 xc: detail: elf_xen_parse_note: GUEST_OS = "linux" xc: detail: elf_xen_parse_note: GUEST_VERSION = "2.6" xc: detail: elf_xen_parse_note: XEN_VERSION = "xen-3.0" xc: detail: elf_xen_parse_note: VIRT_BASE = 0xffffffff80000000 xc: detail: elf_xen_parse_note: ENTRY = 0xffffffff815d5210 xc: detail: elf_xen_parse_note: HYPERCALL_PAGE = 0xffffffff81001000 xc: detail: elf_xen_parse_note: FEATURES = "!writable_page_tables|pae_pgdir_above_4gb" xc: detail: elf_xen_parse_note: PAE_MODE = "yes" xc: detail: elf_xen_parse_note: LOADER = "generic" xc: detail: elf_xen_parse_note: unknown xen elf note (0xd) xc: detail: elf_xen_parse_note: SUSPEND_CANCEL = 0x1 xc: detail: elf_xen_parse_note: HV_START_LOW = 0xffff800000000000 xc: detail: elf_xen_parse_note: PADDR_OFFSET = 0x0 xc: detail: elf_xen_addr_calc_check: addresses: xc: detail: virt_base = 0xffffffff80000000 xc: detail: elf_paddr_offset = 0x0 xc: detail: virt_offset = 0xffffffff80000000 xc: detail: virt_kstart = 0xffffffff81000000 xc: detail: virt_kend = 0xffffffff81b08000 xc: detail: virt_entry = 0xffffffff815d5210 xc: detail: p2m_base = 0xffffffffffffffff domainbuilder: detail: xc_dom_parse_elf_kernel: xen-3.0-x86_64: 0xffffffff81000000 -> 0xffffffff81b08000 domainbuilder: detail: xc_dom_mem_init: mem 5000 MB, pages 0x138800 pages, 4k each domainbuilder: detail: xc_dom_mem_init: 0x138800 pages domainbuilder: detail: xc_dom_boot_mem_init: called domainbuilder: detail: x86_compat: guest xen-3.0-x86_64, address size 64 domainbuilder: detail: xc_dom_malloc : 10000 kB domainbuilder: detail: xc_dom_build_image: called domainbuilder: detail: xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81b08000 (pfn 0x1000 + 0xb08 pages) domainbuilder: detail: xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xb08 at 0x7fdec9b85000 xc: detail: elf_load_binary: phdr 0 at 0x0x7fdec9b85000 -> 0x0x7fdeca0dd000 xc: detail: elf_load_binary: phdr 1 at 0x0x7fdeca0dd000 -> 0x0x7fdeca1460e8 xc: detail: elf_load_binary: phdr 2 at 0x0x7fdeca147000 -> 0x0x7fdeca1597c0 xc: detail: elf_load_binary: phdr 3 at 0x0x7fdeca15a000 -> 0x0x7fdeca1cd000 domainbuilder: detail: xc_dom_alloc_segment: phys2mach : 0xffffffff81b08000 -> 0xffffffff824cc000 (pfn 0x1b08 + 0x9c4 pages) domainbuilder: detail: xc_dom_pfn_to_ptr: domU mapping: pfn 0x1b08+0x9c4 at 0x7fdec91c1000 domainbuilder: detail: xc_dom_alloc_page : start info : 0xffffffff824cc000 (pfn 0x24cc) domainbuilder: detail: xc_dom_alloc_page : xenstore : 0xffffffff824cd000 (pfn 0x24cd) domainbuilder: detail: xc_dom_alloc_page : console : 0xffffffff824ce000 (pfn 0x24ce) domainbuilder: detail: nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s) domainbuilder: detail: nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s) domainbuilder: detail: nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s) domainbuilder: detail: nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffff827fffff, 20 table(s) domainbuilder: detail: xc_dom_alloc_segment: page tables : 0xffffffff824cf000 -> 0xffffffff824e6000 (pfn 0x24cf + 0x17 pages) domainbuilder: detail: xc_dom_pfn_to_ptr: domU mapping: pfn 0x24cf+0x17 at 0x7fdece676000 domainbuilder: detail: xc_dom_alloc_page : boot stack : 0xffffffff824e6000 (pfn 0x24e6) domainbuilder: detail: xc_dom_build_image : virt_alloc_end : 0xffffffff824e7000 domainbuilder: detail: xc_dom_build_image : virt_pgtab_end : 0xffffffff82800000 domainbuilder: detail: xc_dom_boot_image: called domainbuilder: detail: arch_setup_bootearly: doing nothing domainbuilder: detail: xc_dom_compat_check: supported guest type: xen-3.0-x86_64 <= matches domainbuilder: detail: xc_dom_compat_check: supported guest type: xen-3.0-x86_32p domainbuilder: detail: xc_dom_compat_check: supported guest type: hvm-3.0-x86_32 domainbuilder: detail: xc_dom_compat_check: supported guest type: hvm-3.0-x86_32p domainbuilder: detail: xc_dom_compat_check: supported guest type: hvm-3.0-x86_64 domainbuilder: detail: xc_dom_update_guest_p2m: dst 64bit, pages 0x138800 domainbuilder: detail: clear_page: pfn 0x24ce, mfn 0x37ddee domainbuilder: detail: clear_page: pfn 0x24cd, mfn 0x37ddef domainbuilder: detail: xc_dom_pfn_to_ptr: domU mapping: pfn 0x24cc+0x1 at 0x7fdece675000 domainbuilder: detail: start_info_x86_64: called domainbuilder: detail: setup_hypercall_page: vaddr=0xffffffff81001000 pfn=0x1001 domainbuilder: detail: domain builder memory footprint domainbuilder: detail: allocated domainbuilder: detail: malloc : 20658 kB domainbuilder: detail: anon mmap : 0 bytes domainbuilder: detail: mapped domainbuilder: detail: file mmap : 0 bytes domainbuilder: detail: domU mmap : 21392 kB domainbuilder: detail: arch_setup_bootlate: shared_info: pfn 0x0, mfn 0xbaa6f domainbuilder: detail: shared_info_x86_64: called domainbuilder: detail: vcpu_x86_64: called domainbuilder: detail: vcpu_x86_64: cr3: pfn 0x24cf mfn 0x37dded domainbuilder: detail: launch_vm: called, ctxt=0x7fff224e4ea0 domainbuilder: detail: xc_dom_release: called Daemon running with PID 4639 [ 0.000000] Initializing cgroup subsys cpuset [ 0.000000] Initializing cgroup subsys cpu [ 0.000000] Linux version 3.5.7-gentoo (root@majordomo) (gcc version 4.5.4 (Gentoo 4.5.4 p1.0, pie-0.4.7) ) #1 SMP Tue Nov 20 10:49:51 CET 2012 [ 0.000000] Command line: root=/dev/xvda1 console=hvc0 root=/dev/xvda1 ro 3 [ 0.000000] ACPI in unprivileged domain disabled [ 0.000000] e820: BIOS-provided physical RAM map: [ 0.000000] Xen: [mem 0x0000000000000000-0x000000000009ffff] usable [ 0.000000] Xen: [mem 0x00000000000a0000-0x00000000000fffff] reserved [ 0.000000] Xen: [mem 0x0000000000100000-0x0000000138ffffff] usable [ 0.000000] NX (Execute Disable) protection: active [ 0.000000] MPS support code is not built-in. [ 0.000000] Using acpi=off or acpi=noirq or pci=noacpi may have problem [ 0.000000] DMI not present or invalid. [ 0.000000] No AGP bridge found [ 0.000000] e820: last_pfn = 0x139000 max_arch_pfn = 0x400000000 [ 0.000000] e820: last_pfn = 0x100000 max_arch_pfn = 0x400000000 [ 0.000000] init_memory_mapping: [mem 0x00000000-0xffffffff] [ 0.000000] init_memory_mapping: [mem 0x100000000-0x138ffffff] [ 0.000000] NUMA turned off [ 0.000000] Faking a node at [mem 0x0000000000000000-0x0000000138ffffff] [ 0.000000] Initmem setup node 0 [mem 0x00000000-0x138ffffff] [ 0.000000] NODE_DATA [mem 0x1387fc000-0x1387fffff] [ 0.000000] Zone ranges: [ 0.000000] DMA [mem 0x00010000-0x00ffffff] [ 0.000000] DMA32 [mem 0x01000000-0xffffffff] [ 0.000000] Normal [mem 0x100000000-0x138ffffff] [ 0.000000] Movable zone start for each node [ 0.000000] Early memory node ranges [ 0.000000] node 0: [mem 0x00010000-0x0009ffff] [ 0.000000] node 0: [mem 0x00100000-0x138ffffff] [ 0.000000] SMP: Allowing 1 CPUs, 0 hotplug CPUs [ 0.000000] No local APIC present [ 0.000000] APIC: disable apic facility [ 0.000000] APIC: switched to apic NOOP [ 0.000000] e820: cannot find a gap in the 32bit address range [ 0.000000] e820: PCI devices with unassigned 32bit BARs may break! [ 0.000000] e820: [mem 0x139100000-0x1394fffff] available for PCI devices [ 0.000000] Booting paravirtualized kernel on Xen [ 0.000000] Xen version: 4.1.1 (preserve-AD) [ 0.000000] setup_percpu: NR_CPUS:64 nr_cpumask_bits:64 nr_cpu_ids:1 nr_node_ids:1 [ 0.000000] PERCPU: Embedded 26 pages/cpu @ffff880138400000 s75712 r8192 d22592 u2097152 [ 0.000000] Built 1 zonelists in Node order, mobility grouping on. Total pages: 1259871 [ 0.000000] Policy zone: Normal [ 0.000000] Kernel command line: root=/dev/xvda1 console=hvc0 root=/dev/xvda1 ro 3 [ 0.000000] PID hash table entries: 4096 (order: 3, 32768 bytes) [ 0.000000] __ex_table already sorted, skipping sort [ 0.000000] Checking aperture... [ 0.000000] No AGP bridge found [ 0.000000] Memory: 4943980k/5128192k available (3937k kernel code, 448k absent, 183764k reserved, 1951k data, 524k init) [ 0.000000] SLUB: Genslabs=15, HWalign=64, Order=0-3, MinObjects=0, CPUs=1, Nodes=1 [ 0.000000] Hierarchical RCU implementation. [ 0.000000] NR_IRQS:4352 nr_irqs:256 16 [ 0.000000] Console: colour dummy device 80x25 [ 0.000000] console [tty0] enabled [ 0.000000] console [hvc0] enabled [ 0.000000] installing Xen timer for CPU 0 [ 0.000000] Detected 3411.602 MHz processor. [ 0.000999] Calibrating delay loop (skipped), value calculated using timer frequency.. 6823.20 BogoMIPS (lpj=3411602) [ 0.000999] pid_max: default: 32768 minimum: 301 [ 0.000999] Security Framework initialized [ 0.001355] Dentry cache hash table entries: 1048576 (order: 11, 8388608 bytes) [ 0.002974] Inode-cache hash table entries: 524288 (order: 10, 4194304 bytes) [ 0.003441] Mount-cache hash table entries: 256 [ 0.003595] Initializing cgroup subsys cpuacct [ 0.003599] Initializing cgroup subsys freezer [ 0.003637] ENERGY_PERF_BIAS: Set to 'normal', was 'performance' [ 0.003637] ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8) [ 0.003643] CPU: Physical Processor ID: 0 [ 0.003645] CPU: Processor Core ID: 0 [ 0.003702] SMP alternatives: switching to UP code [ 0.011791] Freeing SMP alternatives: 12k freed [ 0.011835] Performance Events: unsupported p6 CPU model 42 no PMU driver, software events only. [ 0.011886] Brought up 1 CPUs [ 0.011998] Grant tables using version 2 layout. [ 0.012009] Grant table initialized [ 0.012034] NET: Registered protocol family 16 [ 0.012328] PCI: setting up Xen PCI frontend stub [ 0.015089] bio: create slab <bio-0> at 0 [ 0.015158] ACPI: Interpreter disabled. [ 0.015180] xen/balloon: Initialising balloon driver. [ 0.015180] xen-balloon: Initialising balloon driver. [ 0.015180] vgaarb: loaded [ 0.016126] SCSI subsystem initialized [ 0.016314] PCI: System does not support PCI [ 0.016320] PCI: System does not support PCI [ 0.016435] NetLabel: Initializing [ 0.016438] NetLabel: domain hash size = 128 [ 0.016440] NetLabel: protocols = UNLABELED CIPSOv4 [ 0.016447] NetLabel: unlabeled traffic allowed by default [ 0.016475] Switching to clocksource xen [ 0.017434] pnp: PnP ACPI: disabled [ 0.017501] NET: Registered protocol family 2 [ 0.017864] IP route cache hash table entries: 262144 (order: 9, 2097152 bytes) [ 0.019322] TCP established hash table entries: 524288 (order: 11, 8388608 bytes) [ 0.020376] TCP bind hash table entries: 65536 (order: 8, 1048576 bytes) [ 0.020497] TCP: Hash tables configured (established 524288 bind 65536) [ 0.020500] TCP: reno registered [ 0.020525] UDP hash table entries: 4096 (order: 5, 131072 bytes) [ 0.020564] UDP-Lite hash table entries: 4096 (order: 5, 131072 bytes) [ 0.020624] NET: Registered protocol family 1 [ 0.020658] PCI-DMA: Using software bounce buffering for IO (SWIOTLB) [ 0.020662] software IO TLB [mem 0xfb632000-0xff631fff] (64MB) mapped at [ffff8800fb632000-ffff8800ff631fff] [ 0.020750] platform rtc_cmos: registered platform RTC device (no PNP device found) [ 0.021378] HugeTLB registered 2 MB page size, pre-allocated 0 pages [ 0.023378] msgmni has been set to 9656 [ 0.023544] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 253) [ 0.023549] io scheduler noop registered [ 0.023551] io scheduler deadline registered [ 0.023580] io scheduler cfq registered (default) [ 0.023650] pci_hotplug: PCI Hot Plug PCI Core version: 0.5 [ 0.023845] Serial: 8250/16550 driver, 4 ports, IRQ sharing enabled [ 0.024082] Non-volatile memory driver v1.3 [ 0.024085] Linux agpgart interface v0.103 [ 0.024207] Event-channel device installed. [ 0.024265] [drm] Initialized drm 1.1.0 20060810 [ 0.024268] [drm:i915_init] *ERROR* drm/i915 can't work without intel_agp module! [ 0.025145] brd: module loaded [ 0.025565] loop: module loaded [ 0.045646] Initialising Xen virtual ethernet driver. [ 0.198264] i8042: PNP: No PS/2 controller found. Probing ports directly. [ 0.199096] i8042: No controller found [ 0.199139] mousedev: PS/2 mouse device common for all mice [ 0.259303] rtc_cmos rtc_cmos: rtc core: registered rtc_cmos as rtc0 [ 0.259353] rtc_cmos: probe of rtc_cmos failed with error -38 [ 0.259440] md: raid1 personality registered for level 1 [ 0.259542] nf_conntrack version 0.5.0 (16384 buckets, 65536 max) [ 0.259732] ip_tables: (C) 2000-2006 Netfilter Core Team [ 0.259747] TCP: cubic registered [ 0.259886] NET: Registered protocol family 10 [ 0.260031] ip6_tables: (C) 2000-2006 Netfilter Core Team [ 0.260070] sit: IPv6 over IPv4 tunneling driver [ 0.260194] NET: Registered protocol family 17 [ 0.260213] Bridge firewalling registered [ 5.360075] XENBUS: Waiting for devices to initialise: 25s...20s...15s...10s...5s...0s...235s...230s...225s...220s...215s...210s...205s...200s...195s...190s...185s...180s...175s...170s...165s...160s...155s...150s...145s...140s...135s...130s...125s...120s...115s...110s...105s...100s...95s...90s...85s...80s...75s...70s...65s...60s...55s...50s...45s...40s...35s...30s...25s...20s...15s...10s...5s...0s... [ 270.360180] XENBUS: Timeout connecting to device: device/vbd/51713 (local state 3, remote state 1) [ 270.360273] md: Waiting for all devices to be available before autodetect [ 270.360277] md: If you don't use raid, use raid=noautodetect [ 270.360388] md: Autodetecting RAID arrays. [ 270.360392] md: Scanned 0 and added 0 devices. [ 270.360394] md: autorun ... [ 270.360395] md: ... autorun DONE. [ 270.360431] VFS: Cannot open root device "xvda1" or unknown-block(0,0): error -6 [ 270.360435] Please append a correct "root=" boot option; here are the available partitions: [ 270.360440] Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0) [ 270.360444] Pid: 1, comm: swapper/0 Not tainted 3.5.7-gentoo #1 [ 270.360446] Call Trace: [ 270.360454] [<ffffffff813d2205>] ? panic+0xbe/0x1c5 [ 270.360459] [<ffffffff813d2358>] ? printk+0x4c/0x51 [ 270.360464] [<ffffffff815d5fb7>] ? mount_block_root+0x24f/0x26d [ 270.360469] [<ffffffff815d62b6>] ? prepare_namespace+0x168/0x192 [ 270.360474] [<ffffffff815d5ca7>] ? kernel_init+0x1b0/0x1c2 [ 270.360477] [<ffffffff815d5500>] ? loglevel+0x34/0x34 [ 270.360482] [<ffffffff813d5a64>] ? kernel_thread_helper+0x4/0x10 [ 270.360486] [<ffffffff813d4038>] ? retint_restore_args+0x5/0x6 [ 270.360490] [<ffffffff813d5a60>] ? gs_change+0x13/0x13 The config: name = "dom1" bootloader = "/usr/bin/pygrub" root = "/dev/xvda1 ro" extra = "3" # runlevel memory = 5000 disk = [ 'phy:/dev/md1,xvda1,w' ] # vif = [ 'ip=..., vifname=veth1' ] # none for now Here are some details on the Dom0 kernel (grepping for "xen"): CONFIG_XEN=y CONFIG_XEN_DOM0=y CONFIG_XEN_PRIVILEGED_GUEST=y CONFIG_XEN_PVHVM=y CONFIG_XEN_MAX_DOMAIN_MEMORY=500 CONFIG_XEN_SAVE_RESTORE=y CONFIG_PCI_XEN=y CONFIG_XEN_PCIDEV_FRONTEND=y # CONFIG_XEN_BLKDEV_FRONTEND is not set CONFIG_XEN_BLKDEV_BACKEND=y # CONFIG_XEN_NETDEV_FRONTEND is not set CONFIG_XEN_NETDEV_BACKEND=y CONFIG_INPUT_XEN_KBDDEV_FRONTEND=y CONFIG_HVC_XEN=y CONFIG_HVC_XEN_FRONTEND=y # CONFIG_XEN_WDT is not set # CONFIG_XEN_FBDEV_FRONTEND is not set # Xen driver support CONFIG_XEN_BALLOON=y # CONFIG_XEN_SELFBALLOONING is not set CONFIG_XEN_SCRUB_PAGES=y CONFIG_XEN_DEV_EVTCHN=y CONFIG_XEN_BACKEND=y CONFIG_XENFS=y CONFIG_XEN_COMPAT_XENFS=y CONFIG_XEN_SYS_HYPERVISOR=y CONFIG_XEN_XENBUS_FRONTEND=y CONFIG_XEN_GNTDEV=m CONFIG_XEN_GRANT_DEV_ALLOC=m CONFIG_SWIOTLB_XEN=y CONFIG_XEN_TMEM=y CONFIG_XEN_PCIDEV_BACKEND=m CONFIG_XEN_PRIVCMD=y CONFIG_XEN_ACPI_PROCESSOR=m And the DomU kernel (grepping for "xen"): CONFIG_XEN=y CONFIG_XEN_DOM0=y CONFIG_XEN_PRIVILEGED_GUEST=y CONFIG_XEN_PVHVM=y CONFIG_XEN_MAX_DOMAIN_MEMORY=500 CONFIG_XEN_SAVE_RESTORE=y CONFIG_PCI_XEN=y CONFIG_XEN_PCIDEV_FRONTEND=y CONFIG_XEN_BLKDEV_FRONTEND=y CONFIG_XEN_NETDEV_FRONTEND=y CONFIG_INPUT_XEN_KBDDEV_FRONTEND=y CONFIG_HVC_XEN=y CONFIG_HVC_XEN_FRONTEND=y # CONFIG_XEN_WDT is not set # CONFIG_XEN_FBDEV_FRONTEND is not set # Xen driver support CONFIG_XEN_BALLOON=y # CONFIG_XEN_SELFBALLOONING is not set CONFIG_XEN_SCRUB_PAGES=y CONFIG_XEN_DEV_EVTCHN=y # CONFIG_XEN_BACKEND is not set CONFIG_XENFS=y CONFIG_XEN_COMPAT_XENFS=y CONFIG_XEN_SYS_HYPERVISOR=y CONFIG_XEN_XENBUS_FRONTEND=y CONFIG_XEN_GNTDEV=m CONFIG_XEN_GRANT_DEV_ALLOC=m CONFIG_SWIOTLB_XEN=y CONFIG_XEN_TMEM=y CONFIG_XEN_PRIVCMD=y CONFIG_XEN_ACPI_PROCESSOR=m Any ideas what I'm doing wrong here? Thanks a lot!

    Read the article

  • Can't seem to get C TCP Server-Client Communications Right

    - by Zeesponge
    Ok i need some serious help here. I have to make a TCP Server Client. When the Client connects to server using a three stage handshake. AFterwards... while the Client is running in the terminal, the user enters linux shell commands like xinput list, ls -1, ect... something that uses standard output. The server accepts the commands and uses system() (in a fork() in an infinite loop) to run the commands and the standard output is redirected to the client, where the client prints out each line. Afterward the server sends a completion signal of "\377\n". In which the client goes back to the command prompt asking for a new command and closes its connection and exit()'s when inputting "quit". I know that you have to dup2() both the STDOUT_FILENO and STDERR_FILENO to the clients file descriptor {dup2(client_FD, STDOUT_FILENO). Everything works accept when it comes for the client to retrieve system()'s stdout and printing it out... all i get is a blank line with a blinking cursor (client waiting on stdin). I tried all kinds of different routes with no avail... If anyone can help out i would greatly appreciate it TCP SERVER CODE include #include <sys/socket.h> #include <stdio.h> #include <string.h> #include <netinet/in.h> #include <signal.h> #include <unistd.h> #include <stdlib.h> #include <errno.h> //Prototype void handle_client(int connect_fd); int main() { int server_sockfd, client_sockfd; socklen_t server_len, client_len; struct sockaddr_in server_address; struct sockaddr_in client_address; server_sockfd = socket(AF_INET, SOCK_STREAM, 0); server_address.sin_family = AF_INET; server_address.sin_addr.s_addr = htonl(INADDR_ANY); server_address.sin_port = htons(9734); server_len = sizeof(server_address); bind(server_sockfd, (struct sockaddr *)&server_address, server_len); /* Create a connection queue, ignore child exit details and wait for clients. */ listen(server_sockfd, 10); signal(SIGCHLD, SIG_IGN); while(1) { printf("server waiting\n"); client_len = sizeof(client_address); client_sockfd = accept(server_sockfd, (struct sockaddr *)&client_address, &client_len); if(fork() == 0) handle_client(client_sockfd); else close(client_sockfd); } } void handle_client(int connect_fd) { const char* remsh = "<remsh>\n"; const char* ready = "<ready>\n"; const char* ok = "<ok>\n"; const char* command = "<command>\n"; const char* complete = "<\377\n"; const char* shared_secret = "<shapoopi>\n"; static char server_msg[201]; static char client_msg[201]; static char commands[201]; int sys_return; //memset client_msg, server_msg, commands memset(&client_msg, 0, sizeof(client_msg)); memset(&server_msg, 0, sizeof(client_msg)); memset(&commands, 0, sizeof(commands)); //read remsh from client read(connect_fd, &client_msg, 200); //check remsh validity from client if(strcmp(client_msg, remsh) != 0) { errno++; perror("Error Establishing Handshake"); close(connect_fd); exit(1); } //memset client_msg memset(&client_msg, 0, sizeof(client_msg)); //write remsh to client write(connect_fd, remsh, strlen(remsh)); //read shared_secret from client read(connect_fd, &client_msg, 200); //check shared_secret validity from client if(strcmp(client_msg, shared_secret) != 0) { errno++; perror("Invalid Security Passphrase"); write(connect_fd, "no", 2); close(connect_fd); exit(1); } //memset client_msg memset(&client_msg, 0, sizeof(client_msg)); //write ok to client write(connect_fd, ok, strlen(ok)); // dup2 STDOUT_FILENO <= client fd, STDERR_FILENO <= client fd dup2(connect_fd, STDOUT_FILENO); dup2(connect_fd, STDERR_FILENO); //begin while... while read (client_msg) from server and >0 while(read(connect_fd, &client_msg, 200) > 0) { //check command validity from client if(strcmp(client_msg, command) != 0) { errno++; perror("Error, unable to retrieve data"); close(connect_fd); exit(1); } //memset client_msg memset(&client_msg, 0, sizeof(client_msg)); //write ready to client write(connect_fd, ready, strlen(ready)); //read commands from client read(connect_fd, &commands, 200); //run commands using system( ) sys_return = system(commands); //check success of system( ) if(sys_return < 0) { perror("Invalid Commands"); errno++; } //memset commands memset(commands, 0, sizeof(commands)); //write complete to client write(connect_fd, complete, sizeof(complete)); } } TCP CLIENT CODE #include <sys/types.h> #include <sys/socket.h> #include <stdio.h> #include <string.h> #include <netinet/in.h> #include <arpa/inet.h> #include <unistd.h> #include <stdlib.h> #include <errno.h> #include "readline.c" int main(int argc, char *argv[]) { int sockfd; int len; struct sockaddr_in address; int result; const char* remsh = "<remsh>\n"; const char* ready = "<ready>\n"; const char* ok = "<ok>\n"; const char* command = "<command>\n"; const char* complete = "<\377\n"; const char* shared_secret = "<shapoopi>\n"; static char server_msg[201]; static char client_msg[201]; memset(&client_msg, 0, sizeof(client_msg)); memset(&server_msg, 0, sizeof(server_msg)); /* Create a socket for the client. */ sockfd = socket(AF_INET, SOCK_STREAM, 0); /* Name the socket, as agreed with the server. */ memset(&address, 0, sizeof(address)); address.sin_family = AF_INET; address.sin_addr.s_addr = inet_addr(argv[1]); address.sin_port = htons(9734); len = sizeof(address); /* Now connect our socket to the server's socket. */ result = connect(sockfd, (struct sockaddr *)&address, len); if(result == -1) { perror("ACCESS DENIED"); exit(1); } //write remsh to server write(sockfd, remsh, strlen(remsh)); //read remsh from server read(sockfd, &server_msg, 200); //check remsh validity from server if(strcmp(server_msg, remsh) != 0) { errno++; perror("Error Establishing Initial Handshake"); close(sockfd); exit(1); } //memset server_msg memset(&server_msg, 0, sizeof(server_msg)); //write shared secret text to server write(sockfd, shared_secret, strlen(shared_secret)); //read ok from server read(sockfd, &server_msg, 200); //check ok velidity from server if(strcmp(server_msg, ok) != 0 ) { errno++; perror("Incorrect security phrase"); close(sockfd); exit(1); } //? dup2 STDIN_FILENO = server socket fd? //dup2(sockfd, STDIN_FILENO); //begin while(1)/////////////////////////////////////// while(1){ //memset both msg arrays memset(&client_msg, 0, sizeof(client_msg)); memset(&server_msg, 0, sizeof(server_msg)); //print Enter Command, scan input, fflush to stdout printf("<<Enter Command>> "); scanf("%s", client_msg); fflush(stdout); //check quit input, if true close and exit successfully if(strcmp(client_msg, "quit") == 0) { printf("Exiting\n"); close(sockfd); exit(EXIT_SUCCESS); } //write command to server write(sockfd, command, strlen(command)); //read ready from server read(sockfd, &server_msg, 200); //check ready validity from server if(strcmp(server_msg, ready) != 0) { errno++; perror("Failed Server Communications"); close(sockfd); exit(1); } //memset server_msg memset(&server_msg, 0, sizeof(server_msg)); //begin looping and retrieving from stdin, //break loop at EOF or complete while((read(sockfd, server_msg, 200) != 0) && (strcmp(server_msg, complete) != 0)) { //while((fgets(server_msg, 4096, stdin) != EOF) || (strcmp(server_msg, complete) == 0)) { printf("%s", server_msg); memset(&server_msg, 0, sizeof(server_msg)); } } }

    Read the article

  • InternalsVisibleTo attribute and security vulnerability

    - by Sergey Litvinov
    I found one issue with InternalsVisibleTo attribute usage. The idea of InternalsVisibleTo attribute to allow some other assemblies to use internal classes\methods of this assembly. To make it work you need sign your assemblies. So, if other assemblies isn't specified in main assembly and if they have incorrect public key, then they can't use Internal members. But the issue in Reflection Emit type generation. For example, we have CorpLibrary1 assembly and it has such class: public class TestApi { internal virtual void DoSomething() { Console.WriteLine("Base DoSomething"); } public void DoApiTest() { // some internal logic // ... // call internal method DoSomething(); } } This assembly is marked with such attribute to allow another CorpLibrary2 to make inheritor for that TestAPI and override behaviour of DoSomething method. [assembly: InternalsVisibleTo("CorpLibrary2, PublicKey=0024000004800000940000000602000000240000525341310004000001000100434D9C5E1F9055BF7970B0C106AAA447271ECE0F8FC56F6AF3A906353F0B848A8346DC13C42A6530B4ED2E6CB8A1E56278E664E61C0D633A6F58643A7B8448CB0B15E31218FB8FE17F63906D3BF7E20B9D1A9F7B1C8CD11877C0AF079D454C21F24D5A85A8765395E5CC5252F0BE85CFEB65896EC69FCC75201E09795AAA07D0")] The issue is that I'm able to override this internal DoSomething method and break class logic. My steps to do it: Generate new assembly in runtime via AssemblyBuilder Get AssemblyName from CorpLibrary1 and copy PublikKey to new assembly Generate new assembly that will inherit TestApi class As PublicKey and name of generated assembly is the same as in InternalsVisibleTo, then we can generate new DoSomething method that will override internal method in TestAPI assembly Then we have another assembly that isn't related to this CorpLibrary1 and can't use internal members. We have such test code in it: class Program { static void Main(string[] args) { var builder = new FakeBuilder(InjectBadCode, "DoSomething", true); TestApi fakeType = builder.CreateFake(); fakeType.DoApiTest(); // it will display: // Inject bad code // Base DoSomething Console.ReadLine(); } public static void InjectBadCode() { Console.WriteLine("Inject bad code"); } } And this FakeBuilder class has such code: /// /// Builder that will generate inheritor for specified assembly and will overload specified internal virtual method /// /// Target type public class FakeBuilder { private readonly Action _callback; private readonly Type _targetType; private readonly string _targetMethodName; private readonly string _slotName; private readonly bool _callBaseMethod; public FakeBuilder(Action callback, string targetMethodName, bool callBaseMethod) { int randomId = new Random((int)DateTime.Now.Ticks).Next(); _slotName = string.Format("FakeSlot_{0}", randomId); _callback = callback; _targetType = typeof(TFakeType); _targetMethodName = targetMethodName; _callBaseMethod = callBaseMethod; } public TFakeType CreateFake() { // as CorpLibrary1 can't use code from unreferences assemblies, we need to store this Action somewhere. // And Thread is not bad place for that. It's not the best place as it won't work in multithread application, but it's just a sample LocalDataStoreSlot slot = Thread.AllocateNamedDataSlot(_slotName); Thread.SetData(slot, _callback); // then we generate new assembly with the same nameand public key as target assembly trusts by InternalsVisibleTo attribute var newTypeName = _targetType.Name + "Fake"; var targetAssembly = Assembly.GetAssembly(_targetType); AssemblyName an = new AssemblyName(); an.Name = GetFakeAssemblyName(targetAssembly); // copying public key to new generated assembly var assemblyName = targetAssembly.GetName(); an.SetPublicKey(assemblyName.GetPublicKey()); an.SetPublicKeyToken(assemblyName.GetPublicKeyToken()); AssemblyBuilder assemblyBuilder = Thread.GetDomain().DefineDynamicAssembly(an, AssemblyBuilderAccess.RunAndSave); ModuleBuilder moduleBuilder = assemblyBuilder.DefineDynamicModule(assemblyBuilder.GetName().Name, true); // create inheritor for specified type TypeBuilder typeBuilder = moduleBuilder.DefineType(newTypeName, TypeAttributes.Public | TypeAttributes.Class, _targetType); // LambdaExpression.CompileToMethod can be used only with static methods, so we need to create another method that will call our Inject method // we can do the same via ILGenerator, but expression trees are more easy to use MethodInfo methodInfo = CreateMethodInfo(moduleBuilder); MethodBuilder methodBuilder = typeBuilder.DefineMethod(_targetMethodName, MethodAttributes.Public | MethodAttributes.Virtual); ILGenerator ilGenerator = methodBuilder.GetILGenerator(); // call our static method that will call inject method ilGenerator.EmitCall(OpCodes.Call, methodInfo, null); // in case if we need, then we put call to base method if (_callBaseMethod) { var baseMethodInfo = _targetType.GetMethod(_targetMethodName, BindingFlags.NonPublic | BindingFlags.Instance); // place this to stack ilGenerator.Emit(OpCodes.Ldarg_0); // call the base method ilGenerator.EmitCall(OpCodes.Call, baseMethodInfo, new Type[0]); // return ilGenerator.Emit(OpCodes.Ret); } // generate type, create it and return to caller Type cheatType = typeBuilder.CreateType(); object type = Activator.CreateInstance(cheatType); return (TFakeType)type; } /// /// Get name of assembly from InternalsVisibleTo AssemblyName /// private static string GetFakeAssemblyName(Assembly assembly) { var internalsVisibleAttr = assembly.GetCustomAttributes(typeof(InternalsVisibleToAttribute), true).FirstOrDefault() as InternalsVisibleToAttribute; if (internalsVisibleAttr == null) { throw new InvalidOperationException("Assembly hasn't InternalVisibleTo attribute"); } var ind = internalsVisibleAttr.AssemblyName.IndexOf(","); var name = internalsVisibleAttr.AssemblyName.Substring(0, ind); return name; } /// /// Generate such code: /// ((Action)Thread.GetData(Thread.GetNamedDataSlot(_slotName))).Invoke(); /// private LambdaExpression MakeStaticExpressionMethod() { var allocateMethod = typeof(Thread).GetMethod("GetNamedDataSlot", BindingFlags.Static | BindingFlags.Public); var getDataMethod = typeof(Thread).GetMethod("GetData", BindingFlags.Static | BindingFlags.Public); var call = Expression.Call(allocateMethod, Expression.Constant(_slotName)); var getCall = Expression.Call(getDataMethod, call); var convCall = Expression.Convert(getCall, typeof(Action)); var invokExpr = Expression.Invoke(convCall); var lambda = Expression.Lambda(invokExpr); return lambda; } /// /// Generate static class with one static function that will execute Action from Thread NamedDataSlot /// private MethodInfo CreateMethodInfo(ModuleBuilder moduleBuilder) { var methodName = "_StaticTestMethod_" + _slotName; var className = "_StaticClass_" + _slotName; TypeBuilder typeBuilder = moduleBuilder.DefineType(className, TypeAttributes.Public | TypeAttributes.Class); MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, MethodAttributes.Static | MethodAttributes.Public); LambdaExpression expression = MakeStaticExpressionMethod(); expression.CompileToMethod(methodBuilder); var type = typeBuilder.CreateType(); return type.GetMethod(methodName, BindingFlags.Static | BindingFlags.Public); } } remarks about sample: as we need to execute code from another assembly, CorpLibrary1 hasn't access to it, so we need to store this delegate somewhere. Just for testing I stored it in Thread NamedDataSlot. It won't work in multithreaded applications, but it's just a sample. I know that we use Reflection to get private\internal members of any class, but within reflection we can't override them. But this issue is allows anyone to override internal class\method if that assembly has InternalsVisibleTo attribute. I tested it on .Net 3.5\4 and it works for both of them. How does it possible to just copy PublicKey without private key and use it in runtime? The whole sample can be found there - https://github.com/sergey-litvinov/Tests_InternalsVisibleTo UPDATE1: That test code in Program and FakeBuilder classes hasn't access to key.sn file and that library isn't signed, so it hasn't public key at all. It just copying it from CorpLibrary1 by using Reflection.Emit

    Read the article

  • Compare images after canny edge detection in OpenCV (C++)

    - by typoknig
    Hi all, I am working on an OpenCV project and I need to compare some images after canny has been applied to both of them. Before the canny was applied I had the gray scale images populating a histogram and then I compared the histograms, but when canny is added to the images the histogram does not populate. I have read that a canny image can populate a histogram, but have not found a way to make it happen. I do not necessairly need to keep using the histograms, I just want to know the best way to compare two canny images. SSCCE below for you to chew on. I have poached and patched about 75% of this code from books and various sites on the internet, so props to those guys... // SLC (Histogram).cpp : Defines the entry point for the console application. #include "stdafx.h" #include <cxcore.h> #include <cv.h> #include <cvaux.h> #include <highgui.h> #include <stdio.h> #include <sstream> #include <iostream> using namespace std; IplImage* image1= 0; IplImage* imgHistogram1 = 0; IplImage* gray1= 0; CvHistogram* hist1; int main(){ CvCapture* capture = cvCaptureFromCAM(0); if(!cvQueryFrame(capture)){ cout<<"Video capture failed, please check the camera."<<endl; } else{ cout<<"Video camera capture successful!"<<endl; }; CvSize sz = cvGetSize(cvQueryFrame(capture)); IplImage* image = cvCreateImage(sz, 8, 3); IplImage* imgHistogram = 0; IplImage* gray = 0; CvHistogram* hist; cvNamedWindow("Image Source",1); cvNamedWindow("gray", 1); cvNamedWindow("Histogram",1); cvNamedWindow("BG", 1); cvNamedWindow("FG", 1); cvNamedWindow("Canny",1); cvNamedWindow("Canny1", 1); image1 = cvLoadImage("image bin/use this image.jpg");// an image has to load here or the program will not run //size of the histogram -1D histogram int bins1 = 256; int hsize1[] = {bins1}; //max and min value of the histogram float max_value1 = 0, min_value1 = 0; //value and normalized value float value1; int normalized1; //ranges - grayscale 0 to 256 float xranges1[] = { 0, 256 }; float* ranges1[] = { xranges1 }; //create an 8 bit single channel image to hold a //grayscale version of the original picture gray1 = cvCreateImage( cvGetSize(image1), 8, 1 ); cvCvtColor( image1, gray1, CV_BGR2GRAY ); IplImage* canny1 = cvCreateImage(cvGetSize(gray1), 8, 1 ); cvCanny( gray1, canny1, 55, 175, 3 ); //Create 3 windows to show the results cvNamedWindow("original1",1); cvNamedWindow("gray1",1); cvNamedWindow("histogram1",1); //planes to obtain the histogram, in this case just one IplImage* planes1[] = { canny1 }; //get the histogram and some info about it hist1 = cvCreateHist( 1, hsize1, CV_HIST_ARRAY, ranges1,1); cvCalcHist( planes1, hist1, 0, NULL); cvGetMinMaxHistValue( hist1, &min_value1, &max_value1); printf("min: %f, max: %f\n", min_value1, max_value1); //create an 8 bits single channel image to hold the histogram //paint it white imgHistogram1 = cvCreateImage(cvSize(bins1, 50),8,1); cvRectangle(imgHistogram1, cvPoint(0,0), cvPoint(256,50), CV_RGB(255,255,255),-1); //draw the histogram :P for(int i=0; i < bins1; i++){ value1 = cvQueryHistValue_1D( hist1, i); normalized1 = cvRound(value1*50/max_value1); cvLine(imgHistogram1,cvPoint(i,50), cvPoint(i,50-normalized1), CV_RGB(0,0,0)); } //show the image results cvShowImage( "original1", image1 ); cvShowImage( "gray1", gray1 ); cvShowImage( "histogram1", imgHistogram1 ); cvShowImage( "Canny1", canny1); CvBGStatModel* bg_model = cvCreateFGDStatModel( image ); for(;;){ image = cvQueryFrame(capture); cvUpdateBGStatModel( image, bg_model ); //Size of the histogram -1D histogram int bins = 256; int hsize[] = {bins}; //Max and min value of the histogram float max_value = 0, min_value = 0; //Value and normalized value float value; int normalized; //Ranges - grayscale 0 to 256 float xranges[] = {0, 256}; float* ranges[] = {xranges}; //Create an 8 bit single channel image to hold a grayscale version of the original picture gray = cvCreateImage(cvGetSize(image), 8, 1); cvCvtColor(image, gray, CV_BGR2GRAY); IplImage* canny = cvCreateImage(cvGetSize(gray), 8, 1 ); cvCanny( gray, canny, 55, 175, 3 );//55, 175, 3 with direct light //Planes to obtain the histogram, in this case just one IplImage* planes[] = {canny}; //Get the histogram and some info about it hist = cvCreateHist(1, hsize, CV_HIST_ARRAY, ranges,1); cvCalcHist(planes, hist, 0, NULL); cvGetMinMaxHistValue(hist, &min_value, &max_value); //printf("Minimum Histogram Value: %f, Maximum Histogram Value: %f\n", min_value, max_value); //Create an 8 bits single channel image to hold the histogram and paint it white imgHistogram = cvCreateImage(cvSize(bins, 50),8,3); cvRectangle(imgHistogram, cvPoint(0,0), cvPoint(256,50), CV_RGB(255,255,255),-1); //Draw the histogram for(int i=0; i < bins; i++){ value = cvQueryHistValue_1D(hist, i); normalized = cvRound(value*50/max_value); cvLine(imgHistogram,cvPoint(i,50), cvPoint(i,50-normalized), CV_RGB(0,0,0)); } double correlation = cvCompareHist (hist1, hist, CV_COMP_CORREL); double chisquare = cvCompareHist (hist1, hist, CV_COMP_CHISQR); double intersection = cvCompareHist (hist1, hist, CV_COMP_INTERSECT); double bhattacharyya = cvCompareHist (hist1, hist, CV_COMP_BHATTACHARYYA); double difference = (1 - correlation) + chisquare + (1 - intersection) + bhattacharyya; printf("correlation: %f\n", correlation); printf("chi-square: %f\n", chisquare); printf("intersection: %f\n", intersection); printf("bhattacharyya: %f\n", bhattacharyya); printf("difference: %f\n", difference); cvShowImage("Image Source", image); cvShowImage("gray", gray); cvShowImage("Histogram", imgHistogram); cvShowImage( "Canny", canny); cvShowImage("BG", bg_model->background); cvShowImage("FG", bg_model->foreground); //Page 19 paragraph 3 of "Learning OpenCV" tells us why we DO NOT use "cvReleaseImage(&image)" in this section cvReleaseImage(&imgHistogram); cvReleaseImage(&gray); cvReleaseHist(&hist); cvReleaseImage(&canny); char c = cvWaitKey(10); //if ASCII key 27 (esc) is pressed then loop breaks if(c==27) break; } cvReleaseBGStatModel( &bg_model ); cvReleaseImage(&image); cvReleaseCapture(&capture); cvDestroyAllWindows(); }

    Read the article

  • Android WebView not loading a JavaScript file, but Android Browser loads it fine.

    - by Justin
    I'm writing an application which connects to a back office site. The backoffice site contains a whole slew of JavaScript functions, at least 100 times the average site. Unfortunately it does not load them, and causes much of the functionality to not work properly. So I am running a test. I put a page out on my server which loads the FireBugLite javascript text. Its a lot of javascript and perfect to test and see if the Android WebView will load it. The WebView loads nothing, but the browser loads the Firebug Icon. What on earth would make the difference, why can it run in the browser and not in my WebView? Any suggestions. More background information, in order to get the stinking backoffice application available on a Droid (or any other platform except windows) I needed to trick the bakcoffice application to believe what's accessing the website is Internet Explorer. I do this by modifying the WebView User Agent. Also for this application I've slimmed my landing page, so I could give you the source to offer me aid. package ksc.myKMB; import android.app.Activity; import android.app.AlertDialog; import android.app.Dialog; import android.app.ProgressDialog; import android.content.DialogInterface; import android.graphics.Bitmap; import android.os.Bundle; import android.view.Menu; import android.view.MenuInflater; import android.view.MenuItem; import android.view.Window; import android.webkit.WebChromeClient; import android.webkit.WebView; import android.webkit.WebSettings; import android.webkit.WebViewClient; import android.widget.Toast; public class myKMB extends Activity { /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); /** Performs base set up */ /** Create a Activity of this Activity, IE myProcess */ myProcess = this; /*** Create global objects and web browsing objects */ HideDialogOnce = true; webview = new WebView(this) { }; webChromeClient = new WebChromeClient() { public void onProgressChanged(WebView view, int progress) { // Activities and WebViews measure progress with different scales. // The progress meter will automatically disappear when we reach 100% myProcess.setProgress((progress * 100)); //CreateMessage("Progress is : " + progress); } }; webViewClient = new WebViewClient() { public void onReceivedError(WebView view, int errorCode, String description, String failingUrl) { Toast.makeText(myProcess, MessageBegText + description + MessageEndText, Toast.LENGTH_SHORT).show(); } public void onPageFinished (WebView view, String url) { /** Hide dialog */ try { // loadingDialog.dismiss(); } finally { } //myProcess.setProgress(1000); /** Fon't show the dialog while I'm performing fixes */ //HideDialogOnce = true; view.loadUrl("javascript:document.getElementById('JTRANS011').style.visibility='visible';"); } public void onPageStarted(WebView view, String url, Bitmap favicon) { if (HideDialogOnce == false) { //loadingDialog = ProgressDialog.show(myProcess, "", // "One moment, the page is laoding...", true); } else { //HideDialogOnce = true; } } }; getWindow().requestFeature(Window.FEATURE_PROGRESS); webview.setWebChromeClient(webChromeClient); webview.setWebViewClient(webViewClient); setContentView(webview); /** Load the Keynote Browser Settings */ LoadSettings(); webview.loadUrl(LandingPage); } /** Get Menu */ @Override public boolean onCreateOptionsMenu(Menu menu) { MenuInflater inflater = getMenuInflater(); inflater.inflate(R.menu.menu, menu); return true; } /** an item gets pushed */ @Override public boolean onOptionsItemSelected(MenuItem item) { switch (item.getItemId()) { // We have only one menu option case R.id.quit: System.exit(0); break; case R.id.back: webview.goBack(); case R.id.refresh: webview.reload(); case R.id.info: //IncludeJavascript(""); } return true; } /** Begin Globals */ public WebView webview; public WebChromeClient webChromeClient; public WebViewClient webViewClient; public ProgressDialog loadingDialog; public Boolean HideDialogOnce; public Activity myProcess; public String OverideUserAgent_IE = "Mozilla/5.0 (Windows; MSIE 6.0; Android 1.6; en-US) AppleWebKit/525.10+ (KHTML, like Gecko) Version/3.0.4 Safari/523.12.2 myKMB/1.0"; public String LandingPage = "http://kscserver.com/main-leap-slim.html"; public String MessageBegText = "Problem making a connection, Details: "; public String MessageEndText = " For Support Call: (xxx) xxx - xxxx."; public void LoadSettings() { webview.getSettings().setUserAgentString(OverideUserAgent_IE); webview.getSettings().setJavaScriptEnabled(true); webview.getSettings().setBuiltInZoomControls(true); webview.getSettings().setSupportZoom(true); } /** Creates a message alert dialog */ public void CreateMessage(String message) { AlertDialog.Builder builder = new AlertDialog.Builder(this); builder.setMessage(message) .setCancelable(true) .setNegativeButton("Close", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { dialog.cancel(); } }); AlertDialog alert = builder.create(); alert.show(); } } My Application is running in the background, and as you can see no Firebug in the lower right hand corner. However the browser (the emulator on top) has the same page but shows the firebug. What am I doing wrong? I'm assuming its either not enough memory allocated to the application, process power allocation, or a physical memory thing. I can't tell, all I know is the results are strange. I get the same thing form my android device, the application shows no firebug but the browser shows the firebug.

    Read the article

  • C# .Net 3.5 Asynchronous Socket Server Performance Problem

    - by iBrAaAa
    I'm developing an Asynchronous Game Server using .Net Socket Asynchronous Model( BeginAccept/EndAccept...etc.) The problem I'm facing is described like that: When I have only one client connected, the server response time is very fast but once a second client connects, the server response time increases too much. I've measured the time from a client sends a message to the server until it gets the reply in both cases. I found that the average time in case of one client is about 17ms and in case of 2 clients about 280ms!!! What I really see is that: When 2 clients are connected and only one of them is moving(i.e. requesting service from the server) it is equivalently equal to the case when only one client is connected(i.e. fast response). However, when the 2 clients move at the same time(i.e. requests service from the server at the same time) their motion becomes very slow (as if the server replies each one of them in order i.e. not simultaneously). Basically, what I am doing is that: When a client requests a permission for motion from the server and the server grants him the request, the server then broadcasts the new position of the client to all the players. So if two clients are moving in the same time, the server is eventually trying to broadcast to both clients the new position of each of them at the same time. EX: Client1 asks to go to position (2,2) Client2 asks to go to position (5,5) Server sends to each of Client1 & Client2 the same two messages: message1: "Client1 at (2,2)" message2: "Client2 at (5,5)" I believe that the problem comes from the fact that Socket class is thread safe according MSDN documentation http://msdn.microsoft.com/en-us/library/system.net.sockets.socket.aspx. (NOT SURE THAT IT IS THE PROBLEM) Below is the code for the server: /// /// This class is responsible for handling packet receiving and sending /// public class NetworkManager { /// /// An integer to hold the server port number to be used for the connections. Its default value is 5000. /// private readonly int port = 5000; /// /// hashtable contain all the clients connected to the server. /// key: player Id /// value: socket /// private readonly Hashtable connectedClients = new Hashtable(); /// /// An event to hold the thread to wait for a new client /// private readonly ManualResetEvent resetEvent = new ManualResetEvent(false); /// /// keeps track of the number of the connected clients /// private int clientCount; /// /// The socket of the server at which the clients connect /// private readonly Socket mainSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); /// /// The socket exception that informs that a client is disconnected /// private const int ClientDisconnectedErrorCode = 10054; /// /// The only instance of this class. /// private static readonly NetworkManager networkManagerInstance = new NetworkManager(); /// /// A delegate for the new client connected event. /// /// the sender object /// the event args public delegate void NewClientConnected(Object sender, SystemEventArgs e); /// /// A delegate for the position update message reception. /// /// the sender object /// the event args public delegate void PositionUpdateMessageRecieved(Object sender, PositionUpdateEventArgs e); /// /// The event which fires when a client sends a position message /// public PositionUpdateMessageRecieved PositionUpdateMessageEvent { get; set; } /// /// keeps track of the number of the connected clients /// public int ClientCount { get { return clientCount; } } /// /// A getter for this class instance. /// /// only instance. public static NetworkManager NetworkManagerInstance { get { return networkManagerInstance; } } private NetworkManager() {} /// Starts the game server and holds this thread alive /// public void StartServer() { //Bind the mainSocket to the server IP address and port mainSocket.Bind(new IPEndPoint(IPAddress.Any, port)); //The server starts to listen on the binded socket with max connection queue //1024 mainSocket.Listen(1024); //Start accepting clients asynchronously mainSocket.BeginAccept(OnClientConnected, null); //Wait until there is a client wants to connect resetEvent.WaitOne(); } /// /// Receives connections of new clients and fire the NewClientConnected event /// private void OnClientConnected(IAsyncResult asyncResult) { Interlocked.Increment(ref clientCount); ClientInfo newClient = new ClientInfo { WorkerSocket = mainSocket.EndAccept(asyncResult), PlayerId = clientCount }; //Add the new client to the hashtable and increment the number of clients connectedClients.Add(newClient.PlayerId, newClient); //fire the new client event informing that a new client is connected to the server if (NewClientEvent != null) { NewClientEvent(this, System.EventArgs.Empty); } newClient.WorkerSocket.BeginReceive(newClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), newClient); //Start accepting clients asynchronously again mainSocket.BeginAccept(OnClientConnected, null); } /// Waits for the upcoming messages from different clients and fires the proper event according to the packet type. /// /// private void WaitForData(IAsyncResult asyncResult) { ClientInfo sendingClient = null; try { //Take the client information from the asynchronous result resulting from the BeginReceive sendingClient = asyncResult.AsyncState as ClientInfo; // If client is disconnected, then throw a socket exception // with the correct error code. if (!IsConnected(sendingClient.WorkerSocket)) { throw new SocketException(ClientDisconnectedErrorCode); } //End the pending receive request sendingClient.WorkerSocket.EndReceive(asyncResult); //Fire the appropriate event FireMessageTypeEvent(sendingClient.ConvertBytesToPacket() as BasePacket); // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } catch (SocketException e) { if (e.ErrorCode == ClientDisconnectedErrorCode) { // Close the socket. if (sendingClient.WorkerSocket != null) { sendingClient.WorkerSocket.Close(); sendingClient.WorkerSocket = null; } // Remove it from the hash table. connectedClients.Remove(sendingClient.PlayerId); if (ClientDisconnectedEvent != null) { ClientDisconnectedEvent(this, new ClientDisconnectedEventArgs(sendingClient.PlayerId)); } } } catch (Exception e) { // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } } /// /// Broadcasts the input message to all the connected clients /// /// public void BroadcastMessage(BasePacket message) { byte[] bytes = message.ConvertToBytes(); foreach (ClientInfo client in connectedClients.Values) { client.WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, client); } } /// /// Sends the input message to the client specified by his ID. /// /// /// The message to be sent. /// The id of the client to receive the message. public void SendToClient(BasePacket message, int id) { byte[] bytes = message.ConvertToBytes(); (connectedClients[id] as ClientInfo).WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, connectedClients[id]); } private void SendAsync(IAsyncResult asyncResult) { ClientInfo currentClient = (ClientInfo)asyncResult.AsyncState; currentClient.WorkerSocket.EndSend(asyncResult); } /// Fires the event depending on the type of received packet /// /// The received packet. void FireMessageTypeEvent(BasePacket packet) { switch (packet.MessageType) { case MessageType.PositionUpdateMessage: if (PositionUpdateMessageEvent != null) { PositionUpdateMessageEvent(this, new PositionUpdateEventArgs(packet as PositionUpdatePacket)); } break; } } } The events fired are handled in a different class, here are the event handling code for the PositionUpdateMessage (Other handlers are irrelevant): private readonly Hashtable onlinePlayers = new Hashtable(); /// /// Constructor that creates a new instance of the GameController class. /// private GameController() { //Start the server server = new Thread(networkManager.StartServer); server.Start(); //Create an event handler for the NewClientEvent of networkManager networkManager.PositionUpdateMessageEvent += OnPositionUpdateMessageReceived; } /// /// this event handler is called when a client asks for movement. /// private void OnPositionUpdateMessageReceived(object sender, PositionUpdateEventArgs e) { Point currentLocation = ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position; Point locationRequested = e.PositionUpdatePacket.Position; ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position = locationRequested; // Broadcast the new position networkManager.BroadcastMessage(new PositionUpdatePacket { Position = locationRequested, PlayerId = e.PositionUpdatePacket.PlayerId }); }

    Read the article

  • Custom filtering in Android using ArrayAdapter

    - by Alxandr
    I'm trying to filter my ListView which is populated with this ArrayAdapter: package me.alxandr.android.mymir.adapters; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.HashMap; import java.util.Iterator; import java.util.Set; import me.alxandr.android.mymir.R; import me.alxandr.android.mymir.model.Manga; import android.content.Context; import android.util.Log; import android.view.LayoutInflater; import android.view.View; import android.view.ViewGroup; import android.widget.ArrayAdapter; import android.widget.Filter; import android.widget.SectionIndexer; import android.widget.TextView; public class MangaListAdapter extends ArrayAdapter<Manga> implements SectionIndexer { public ArrayList<Manga> items; public ArrayList<Manga> filtered; private Context context; private HashMap<String, Integer> alphaIndexer; private String[] sections = new String[0]; private Filter filter; private boolean enableSections; public MangaListAdapter(Context context, int textViewResourceId, ArrayList<Manga> items, boolean enableSections) { super(context, textViewResourceId, items); this.filtered = items; this.items = filtered; this.context = context; this.filter = new MangaNameFilter(); this.enableSections = enableSections; if(enableSections) { alphaIndexer = new HashMap<String, Integer>(); for(int i = items.size() - 1; i >= 0; i--) { Manga element = items.get(i); String firstChar = element.getName().substring(0, 1).toUpperCase(); if(firstChar.charAt(0) > 'Z' || firstChar.charAt(0) < 'A') firstChar = "@"; alphaIndexer.put(firstChar, i); } Set<String> keys = alphaIndexer.keySet(); Iterator<String> it = keys.iterator(); ArrayList<String> keyList = new ArrayList<String>(); while(it.hasNext()) keyList.add(it.next()); Collections.sort(keyList); sections = new String[keyList.size()]; keyList.toArray(sections); } } @Override public View getView(int position, View convertView, ViewGroup parent) { View v = convertView; if(v == null) { LayoutInflater vi = (LayoutInflater)context.getSystemService(Context.LAYOUT_INFLATER_SERVICE); v = vi.inflate(R.layout.mangarow, null); } Manga o = items.get(position); if(o != null) { TextView tt = (TextView) v.findViewById(R.id.MangaRow_MangaName); TextView bt = (TextView) v.findViewById(R.id.MangaRow_MangaExtra); if(tt != null) tt.setText(o.getName()); if(bt != null) bt.setText(o.getLastUpdated() + " - " + o.getLatestChapter()); if(enableSections && getSectionForPosition(position) != getSectionForPosition(position + 1)) { TextView h = (TextView) v.findViewById(R.id.MangaRow_Header); h.setText(sections[getSectionForPosition(position)]); h.setVisibility(View.VISIBLE); } else { TextView h = (TextView) v.findViewById(R.id.MangaRow_Header); h.setVisibility(View.GONE); } } return v; } @Override public void notifyDataSetInvalidated() { if(enableSections) { for (int i = items.size() - 1; i >= 0; i--) { Manga element = items.get(i); String firstChar = element.getName().substring(0, 1).toUpperCase(); if(firstChar.charAt(0) > 'Z' || firstChar.charAt(0) < 'A') firstChar = "@"; alphaIndexer.put(firstChar, i); } Set<String> keys = alphaIndexer.keySet(); Iterator<String> it = keys.iterator(); ArrayList<String> keyList = new ArrayList<String>(); while (it.hasNext()) { keyList.add(it.next()); } Collections.sort(keyList); sections = new String[keyList.size()]; keyList.toArray(sections); super.notifyDataSetInvalidated(); } } public int getPositionForSection(int section) { if(!enableSections) return 0; String letter = sections[section]; return alphaIndexer.get(letter); } public int getSectionForPosition(int position) { if(!enableSections) return 0; int prevIndex = 0; for(int i = 0; i < sections.length; i++) { if(getPositionForSection(i) > position && prevIndex <= position) { prevIndex = i; break; } prevIndex = i; } return prevIndex; } public Object[] getSections() { return sections; } @Override public Filter getFilter() { if(filter == null) filter = new MangaNameFilter(); return filter; } private class MangaNameFilter extends Filter { @Override protected FilterResults performFiltering(CharSequence constraint) { // NOTE: this function is *always* called from a background thread, and // not the UI thread. constraint = constraint.toString().toLowerCase(); FilterResults result = new FilterResults(); if(constraint != null && constraint.toString().length() > 0) { ArrayList<Manga> filt = new ArrayList<Manga>(); ArrayList<Manga> lItems = new ArrayList<Manga>(); synchronized (items) { Collections.copy(lItems, items); } for(int i = 0, l = lItems.size(); i < l; i++) { Manga m = lItems.get(i); if(m.getName().toLowerCase().contains(constraint)) filt.add(m); } result.count = filt.size(); result.values = filt; } else { synchronized(items) { result.values = items; result.count = items.size(); } } return result; } @SuppressWarnings("unchecked") @Override protected void publishResults(CharSequence constraint, FilterResults results) { // NOTE: this function is *always* called from the UI thread. filtered = (ArrayList<Manga>)results.values; notifyDataSetChanged(); } } } However, when I call filter('test') on the filter nothing happens at all (or the background-thread is run, but the list isn't filtered as far as the user conserns). How can I fix this?

    Read the article

  • WPF animation: binding to the "To" attribute of storyboard animation.

    - by bozalina
    Hi, I'm trying to create a button that behaves similarly to the "slide" button on the iPhone. I have an animation that adjusts the position and width of the button, but I want these values to be based on the text used in the control. Currently, they're hardcoded. Here's my working XAML, so far: <CheckBox x:Class="Smt.Controls.SlideCheckBox" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:local="clr-namespace:Smt.Controls" xmlns:System.Windows="clr-namespace:System.Windows;assembly=PresentationCore" Name="SliderCheckBox" mc:Ignorable="d"> <CheckBox.Resources> <System.Windows:Duration x:Key="AnimationTime">0:0:0.2</System.Windows:Duration> <Storyboard x:Key="OnChecking"> <DoubleAnimation Storyboard.TargetName="CheckButton" Storyboard.TargetProperty="(UIElement.RenderTransform).(TransformGroup.Children)[0].(TranslateTransform.X)" Duration="{StaticResource AnimationTime}" To="40" /> <DoubleAnimation Storyboard.TargetName="CheckButton" Storyboard.TargetProperty="(Button.Width)" Duration="{StaticResource AnimationTime}" To="41" /> </Storyboard> <Storyboard x:Key="OnUnchecking"> <DoubleAnimation Storyboard.TargetName="CheckButton" Storyboard.TargetProperty="(UIElement.RenderTransform).(TransformGroup.Children)[0].(TranslateTransform.X)" Duration="{StaticResource AnimationTime}" To="0" /> <DoubleAnimation Storyboard.TargetName="CheckButton" Storyboard.TargetProperty="(Button.Width)" Duration="{StaticResource AnimationTime}" To="40" /> </Storyboard> <Style x:Key="SlideCheckBoxStyle" TargetType="{x:Type local:SlideCheckBox}"> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type local:SlideCheckBox}"> <Canvas> <ContentPresenter SnapsToDevicePixels="{TemplateBinding SnapsToDevicePixels}" Content="{TemplateBinding Content}" ContentTemplate="{TemplateBinding ContentTemplate}" RecognizesAccessKey="True" VerticalAlignment="Center" HorizontalAlignment="Center" /> <Canvas> <!--Background--> <Rectangle Width="{Binding ElementName=ButtonText, Path=ActualWidth}" Height="{Binding ElementName=ButtonText, Path=ActualHeight}" Fill="LightBlue" /> </Canvas> <Canvas> <!--Button--> <Button Width="{Binding ElementName=CheckedText, Path=ActualWidth}" Height="{Binding ElementName=ButtonText, Path=ActualHeight}" Name="CheckButton" Command="{x:Static local:SlideCheckBox.SlideCheckBoxClicked}"> <Button.RenderTransform> <TransformGroup> <TranslateTransform /> </TransformGroup> </Button.RenderTransform> </Button> </Canvas> <Canvas> <!--Text--> <StackPanel Name="ButtonText" Orientation="Horizontal" IsHitTestVisible="False"> <Grid Name="CheckedText"> <Label Margin="7 0" Content="{Binding RelativeSource={RelativeSource AncestorType={x:Type local:SlideCheckBox}}, Path=CheckedText}" /> </Grid> <Grid Name="UncheckedText" HorizontalAlignment="Right"> <Label Margin="7 0" Content="{Binding RelativeSource={RelativeSource AncestorType={x:Type local:SlideCheckBox}}, Path=UncheckedText}" /> </Grid> </StackPanel> </Canvas> </Canvas> <ControlTemplate.Triggers> <Trigger Property="IsChecked" Value="True"> <Trigger.EnterActions> <BeginStoryboard Storyboard="{StaticResource OnChecking}" /> </Trigger.EnterActions> <Trigger.ExitActions> <BeginStoryboard Storyboard="{StaticResource OnUnchecking}" /> </Trigger.ExitActions> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> </Style> </CheckBox.Resources> <CheckBox.CommandBindings> <CommandBinding Command="{x:Static local:SlideCheckBox.SlideCheckBoxClicked}" Executed="OnSlideCheckBoxClicked" /> </CheckBox.CommandBindings> </CheckBox> And the code behind: using System.Windows; using System.Windows.Controls; using System.Windows.Input; namespace Smt.Controls { public partial class SlideCheckBox : CheckBox { public SlideCheckBox() { InitializeComponent(); Loaded += OnLoaded; } public static readonly DependencyProperty CheckedTextProperty = DependencyProperty.Register("CheckedText", typeof(string), typeof(SlideCheckBox), new PropertyMetadata("Checked Text")); public string CheckedText { get { return (string)GetValue(CheckedTextProperty); } set { SetValue(CheckedTextProperty, value); } } public static readonly DependencyProperty UncheckedTextProperty = DependencyProperty.Register("UncheckedText", typeof(string), typeof(SlideCheckBox), new PropertyMetadata("Unchecked Text")); public string UncheckedText { get { return (string)GetValue(UncheckedTextProperty); } set { SetValue(UncheckedTextProperty, value); } } public static readonly RoutedCommand SlideCheckBoxClicked = new RoutedCommand(); void OnLoaded(object sender, RoutedEventArgs e) { Style style = TryFindResource("SlideCheckBoxStyle") as Style; if (!ReferenceEquals(style, null)) { Style = style; } } void OnSlideCheckBoxClicked(object sender, ExecutedRoutedEventArgs e) { IsChecked = !IsChecked; } } } The problem comes when I try to bind the "To" attribute in the DoubleAnimations to the actual width of the text, the same as I'm doing in the ControlTemplate. If I bind the values to an ActualWidth of an element in the ControlTemplate, the control comes up as a blank checkbox (my base class). However, I'm binding to the same ActualWidths in the ControlTemplate itself without any problems. Just seems to be the CheckBox.Resources that have a problem with it. For instance, the following will break it: <DoubleAnimation Storyboard.TargetName="CheckButton" Storyboard.TargetProperty="(Button.Width)" Duration="{StaticResource AnimationTime}" To="{Binding ElementName=CheckedText, Path=ActualWidth}" /> I don't know whether this is because it's trying to bind to a value that doesn't exist until a render pass is done, or if it's something else. Anyone have any experience with this sort of animation binding?

    Read the article

  • Fatal Exception : AsyncTask #1

    - by Nadirah Ibtisam
    help help..huu Im having a problem here..seems there was no error in codes..but when I run it...and click button to view map consist routing the map..It appers to be close all of sudden..why is that? Please help me friends.. Im developing an app to read my current location and creating route to A position.. here are the codes: public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.map); onNewIntent(getIntent()); Drawable marker = getResources().getDrawable(R.drawable.marker); Drawable marked_places = getResources().getDrawable(R.drawable.feringgi_map); mymap = (MapView)findViewById(R.id.mymap); controller = mymap.getController(); // extract MapView from layout mymap.getController().setZoom(15); mymap.setBuiltInZoomControls(true); mymap.setSatellite(false); // create an overlay that shows our current location myLocationOverlay = new MyLocationOverlay(this, mymap); // add this overlay to the MapView and refresh it mymap.getOverlays().add(myLocationOverlay); mymap.postInvalidate(); myLocationOverlay.runOnFirstFix(new Runnable() { @Override public void run() { controller.setZoom(10); controller.animateTo(myLocationOverlay.getMyLocation()); } }); zoomToMyLocation(); switch(selecteditem) { case 0: switch(selectedsubitem){ case 0://Place A locationManager = (LocationManager) this.getSystemService(Context.LOCATION_SERVICE); locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, 0, 0, this); Location location = locationManager.getLastKnownLocation(LocationManager.NETWORK_PROVIDER); if (location !=null) { loc=location; } GeoPoint destination = getPoint(3.144341, 101.69541800000002); new BackgroundTask(this, loc, destination).execute(); break; } } class BackgroundTask extends AsyncTask<Void, Void, Void> { private Location location; private GeoPoint dest; private Route route; private Activity activity; private ProgressDialog dialog; private RouteOverlay routeOverlay; public BackgroundTask(Activity activity, Location loc, GeoPoint dest) { location=loc; this.dest=dest; this.activity=activity; dialog = new ProgressDialog(activity); } @Override protected void onPreExecute() { dialog.setCancelable(false); dialog.setTitle("Loading..."); dialog.setMessage("Calculating Route..."); dialog.setButton("Cancel", new DialogInterface.OnClickListener() { public void onClick(final DialogInterface dialog, final int id) { cancel(true); MyMap.this.finish(); }}); dialog.show(); } protected Void doInBackground(Void... params) { if(isNetworkAvailable()) { if(haveInternet()) { try{ route = directions(new GeoPoint((int)(location.getLatitude()*1.0E6),(int)(location.getLongitude()*1.0E6)), dest); } catch (NullPointerException e){ } } else { return null; } } else { return null; } return null; } And this is the log cat (updated).. : 12-10 12:21:15.527: E/AndroidRuntime(10146): FATAL EXCEPTION: AsyncTask #1 12-10 12:21:15.527: E/AndroidRuntime(10146): java.lang.RuntimeException: An error occured while executing doInBackground() 12-10 12:21:15.527: E/AndroidRuntime(10146): at android.os.AsyncTask$3.done(AsyncTask.java:278) 12-10 12:21:15.527: E/AndroidRuntime(10146): at java.util.concurrent.FutureTask$Sync.innerSetException(FutureTask.java:273) 12-10 12:21:15.527: E/AndroidRuntime(10146): at java.util.concurrent.FutureTask.setException(FutureTask.java:124) 12-10 12:21:15.527: E/AndroidRuntime(10146): at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:307) 12-10 12:21:15.527: E/AndroidRuntime(10146): at java.util.concurrent.FutureTask.run(FutureTask.java:137) 12-10 12:21:15.527: E/AndroidRuntime(10146): at android.os.AsyncTask$SerialExecutor$1.run(AsyncTask.java:208) 12-10 12:21:15.527: E/AndroidRuntime(10146): at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1076) 12-10 12:21:15.527: E/AndroidRuntime(10146): at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:569) 12-10 12:21:15.527: E/AndroidRuntime(10146): at java.lang.Thread.run(Thread.java:856) 12-10 12:21:15.527: E/AndroidRuntime(10146): Caused by: java.lang.SecurityException: ConnectivityService: Neither user 10228 nor current process has android.permission.ACCESS_NETWORK_STATE. 12-10 12:21:15.527: E/AndroidRuntime(10146): at android.os.Parcel.readException(Parcel.java:1327) 12-10 12:21:15.527: E/AndroidRuntime(10146): at android.os.Parcel.readException(Parcel.java:1281) 12-10 12:21:15.527: E/AndroidRuntime(10146): at android.net.IConnectivityManager$Stub$Proxy.getActiveNetworkInfo(IConnectivityManager.java:728) 12-10 12:21:15.527: E/AndroidRuntime(10146): at android.net.ConnectivityManager.getActiveNetworkInfo(ConnectivityManager.java:378) 12-10 12:21:15.527: E/AndroidRuntime(10146): at com.madcatworld.testtesttest.MyMap$BackgroundTask.isNetworkAvailable(MyMap.java:488) 12-10 12:21:15.527: E/AndroidRuntime(10146): at com.madcatworld.testtesttest.MyMap$BackgroundTask.doInBackground(MyMap.java:411) 12-10 12:21:15.527: E/AndroidRuntime(10146): at com.madcatworld.testtesttest.MyMap$BackgroundTask.doInBackground(MyMap.java:1) 12-10 12:21:15.527: E/AndroidRuntime(10146): at android.os.AsyncTask$2.call(AsyncTask.java:264) 12-10 12:21:15.527: E/AndroidRuntime(10146): at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:305) 12-10 12:21:15.527: E/AndroidRuntime(10146): ... 5 more This is my manifest file: <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.madcatworld.testtesttest" android:versionCode="1" android:versionName="1.0" > <uses-sdk android:minSdkVersion="8" android:targetSdkVersion="15" /> <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/> <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/> <uses-permission android:name="android.permission.INTERNET"/> <uses-permission android:name="android.permission.CALL_PHONE"/> <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/> <application android:icon="@drawable/ic_launcher" android:label="@string/app_name" android:theme="@style/AppTheme" > <com.google.android.maps.MapView android:id="@+id/mymap" android:clickable="true" android:layout_width="fill_parent" android:layout_height="fill_parent" android:apiKey="XXXX" /> <activity android:theme="@style/StyledIndicators" android:name=".MainTest" android:label="@string/title_activity_main" android:screenOrientation="portrait"> <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> <uses-library android:name="com.google.android.maps"/> <activity android:name="A" android:screenOrientation="portrait"></activity> <activity android:name="B" android:screenOrientation="portrait"></activity> <activity android:name="C" android:screenOrientation="portrait"></activity> </application> </manifest> For your information, I already put ACCESS_NETWORK_STATE in my manifest.. Can u discover what cause the error? No error in code..but it failed to review my route map..:( Thanks Friends

    Read the article

  • Silverlight 2.0 - Can't get the text wrapping behaviour that I want

    - by Anthony
    I am having trouble getting Silverlight 2.0 to lay out text exactly how I want. I want text with line breaks and embedded links, with wrapping, like HTML text in a web page. Here's the closest that I have come: <UserControl x:Class="FlowPanelTest.Page" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Controls="clr-namespace:Microsoft.Windows.Controls;assembly=Microsoft.Windows.Controls" Width="250" Height="300"> <Border BorderBrush="Black" BorderThickness="2" > <Controls:WrapPanel> <TextBlock x:Name="tb1" TextWrapping="Wrap">Short text. </TextBlock> <TextBlock x:Name="tb2" TextWrapping="Wrap">A bit of text. </TextBlock> <TextBlock x:Name="tb3" TextWrapping="Wrap">About half of a line of text.</TextBlock> <TextBlock x:Name="tb4" TextWrapping="Wrap">More than half a line of longer text.</TextBlock> <TextBlock x:Name="tb5" TextWrapping="Wrap">More than one line of text, so it will wrap onto the following line.</TextBlock> </Controls:WrapPanel> </Border> </UserControl> But the issue is that although the text blocks tb1 and tb2 will go onto the same line because there is room enough for them completely, tb3 onwards will not start on the same line as the previous block, even though it will wrap onto following lines. I want each text block to start where the previous one ends, on the same line. I want to put click event handlers on some of the text. I also want paragraph breaks. Essentially I'm trying to work around the lack of FlowDocument and Hyperlink controls in Silverlight 2.0's subset of XAML. To answer the questions posed in the answers: Why not use runs for the non-clickable text? If I just use individual TextBlocks only on the clickable text, then those bits of text will still suffer from the wrapping problem illustrated above. And the TextBlock just before the link, and the TextBlock just after. Essentially all of it. It doesn't look like I have many opportunities for putting multiple runs in the same TextBlock. Dividing the links from the other text with RegExs and loops is not the issue at all, the issue is display layout. Why not put each word in an individual TextBlock in a WrapPanel Aside from being an ugly hack, this does not play at all well with linebreaks - the layout is incorrect. It would also make the underline style of linked text into a broken line. Here's an example with each word in its own TextBlock. Try running it, note that the linebreak isn't shown in the right place at all. <UserControl x:Class="SilverlightApplication2.Page" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Controls="clr-namespace:Microsoft.Windows.Controls;assembly=Microsoft.Windows.Controls" Width="300" Height="300"> <Controls:WrapPanel> <TextBlock TextWrapping="Wrap">Short1 </TextBlock> <TextBlock TextWrapping="Wrap">Longer1 </TextBlock> <TextBlock TextWrapping="Wrap">Longerest1 </TextBlock> <TextBlock TextWrapping="Wrap"> <Run>Break</Run> <LineBreak></LineBreak> </TextBlock> <TextBlock TextWrapping="Wrap">Short2</TextBlock> <TextBlock TextWrapping="Wrap">Longer2</TextBlock> <TextBlock TextWrapping="Wrap">Longerest2</TextBlock> <TextBlock TextWrapping="Wrap">Short3</TextBlock> <TextBlock TextWrapping="Wrap">Longer3</TextBlock> <TextBlock TextWrapping="Wrap">Longerest3</TextBlock> </Controls:WrapPanel> </UserControl> What about The LinkLabelControl as here and here. It has the same problems as the approach above, since it's much the same. Try running the sample, and make the link text longer and longer until it wraps. Note that the link starts on a new line, which it shouldn't. Make the link text even longer, so that the link text is longer than a line. Note that it doesn't wrap at all, it cuts off. This control doesn't handle line breaks and paragraph breaks either. Why not put the text all in runs, detect clicks on the containing TextBlock and work out which run was clicked Runs do not have mouse events, but the containing TextBlock does. I can't find a way to check if the run is under the mouse (IsMouseOver is not present in SilverLight) or to find the bounding geometry of the run (no clip property). There is VisualTreeHelper.FindElementsInHostCoordinates() The code below uses VisualTreeHelper.FindElementsInHostCoordinates to get the controls under the click. The output lists the TextBlock but not the Run, since a Run is not a UiElement. private void theText_MouseLeftButtonDown(object sender, System.Windows.Input.MouseButtonEventArgs e) { // get the elements under the click UIElement uiElementSender = sender as UIElement; Point clickPos = e.GetPosition(uiElementSender); var UiElementsUnderClick = VisualTreeHelper.FindElementsInHostCoordinates(clickPos, uiElementSender); // show the controls string outputText = ""; foreach (var uiElement in UiElementsUnderClick) { outputText += uiElement.GetType().ToString() + "\n"; } this.outText.Text = outputText; } Use an empty text block with a margin to space following content onto a following line I'm still thinking about this one. How do you calculate the right width for a line-breaking block to force following content onto the following line? Too short and the following content will still be on the same line, at the right. Too long and the "linebreak" will be on the following line, with content after it. You would have to resize the breaks when the control is resized. Some of the code for this is: TextBlock lineBreak = new TextBlock(); lineBreak.TextWrapping = TextWrapping.Wrap; lineBreak.Text = " "; // need adaptive width lineBreak.Margin = new Thickness(0, 0, 200, 0);

    Read the article

  • zk selecting combobox item programatically

    - by Abdul Khaliq
    Hi, I cannot set the value of combobox programatically can some one tell me what missing in the code public class Profile extends Window implements AfterCompose { @Override public void afterCompose() { Session session = Sessions.getCurrent(false); ApplicationContext ctx = WebApplicationContextUtils.getRequiredWebApplicationContext( (ServletContext) getDesktop().getWebApp().getNativeContext()); UsersDao usersDao = (UsersDao) ctx.getBean("daoUsers"); User user = (User) session.getAttribute("user"); user = usersDao.getUser(user.getUsername(),user.getPassword()); Textbox username_t = (Textbox) this.getFellow("username"); Textbox password_t = (Textbox) this.getFellow("password"); Textbox conpassword_t = (Textbox) this.getFellow("con_password"); Textbox firstname_t = (Textbox) this.getFellow("firstName"); Textbox lastname_t = (Textbox) this.getFellow("lastName"); Textbox email_t = (Textbox) this.getFellow("email"); Combobox hintQuestion_t = (Combobox) this.getFellow("hintQuestion"); Textbox hintAnswer_t = (Textbox) this.getFellow("hintAnswer"); Combobox locale_t = (Combobox) this.getFellow("locale"); Combobox authority_t = (Combobox) this.getFellow("authority"); username_t.setText(user.getUsername()); firstname_t.setText(user.getUserDetails().getFirstName()); lastname_t.setText(user.getUserDetails().getLastName()); email_t.setText(user.getUserDetails().getEmail()); Comboitem selectedItem = getSelectedIndexComboboxItem(hintQuestion_t, user.getHintQuestion()); hintQuestion_t.setSelectedItem(selectedItem); hintAnswer_t.setText(user.getHintAnswer()); selectedItem = getSelectedIndexComboboxItem(locale_t, user.getUserDetails().getLocale()); locale_t.setSelectedItem(selectedItem); selectedItem = getSelectedIndexComboboxItem(authority_t, ((Authority)user.getAuthorities().toArray()[0]).getRole()); authority_t.setSelectedItem(selectedItem); } private Comboitem getSelectedIndexComboboxItem(Combobox combobox, String value) { List<Comboitem> items = combobox.getItems(); Comboitem item = items.get(0); for (int i = 0; i < items.size(); i++) { Comboitem comboitem = items.get(i); String label = (String)comboitem.getLabel(); String cval = (String)comboitem.getValue(); if ((label!=null && label.equalsIgnoreCase(value)) || (cval != null && cval.equalsIgnoreCase(value))) { item = comboitem; break; } } return item; } } // zk file <window id="profile" use="com.jf.web.zk.ui.Profile"> <tabbox id="tabbox" width="40%" > <tabs> <tab label="Account Information"/> <tab label="Personal Information"/> <tab label="Contact Details"/> </tabs> <tabpanels> <tabpanel> <grid> <rows> <row> <label value="${i18nUtils.message('user.username')}"/> <hbox> <textbox id="username" />*,a-zA-Z,0-9 </hbox> </row> <row> <label value="${i18nUtils.message('user.password')}"/> <hbox> <textbox id="password" type="password"/>* </hbox> </row> <row> <label value="${i18nUtils.message('registration.user.password.confirm')}"/> <hbox> <textbox id="con_password" type="password"/>* </hbox> </row> <row> <label value="${i18nUtils.message('user.details.first.name')}"/> <hbox> <textbox id="firstName" type="text"/>* </hbox> </row> <row> <label value="${i18nUtils.message('user.details.last.name')}"/> <hbox> <textbox id="lastName" type="text"/>* </hbox> </row> <row> <label value="${i18nUtils.message('user.details.email')}"/> <hbox> <textbox id="email" type="text"/>* </hbox> </row> <row> <label value="${i18nUtils.message('user.hint.question')}"/> <hbox> <combobox id="hintQuestion" onCreate='self.setSelectedIndex(1);'> <comboitem label="${i18nUtils.message('user.hint.question.possible.value1')}" /> <comboitem label="${i18nUtils.message('user.hint.question.possible.value2')}" /> <comboitem label="${i18nUtils.message('user.hint.question.possible.value3')}" /> <comboitem label="${i18nUtils.message('user.hint.question.possible.value4')}" /> <comboitem label="${i18nUtils.message('user.hint.question.possible.value5')}" /> </combobox>* </hbox> </row> <row> <label value="${i18nUtils.message('user.hint.answer')}"/> <hbox> <textbox id="hintAnswer" type="text"/>* </hbox> </row> <row> <label value="${i18nUtils.message('user.details.locale')}"/> <hbox> <combobox id="locale" onCreate='self.setSelectedIndex(1);self.setReadonly(true);'> <comboitem label="${i18nUtils.message('user.details.locale.en')}" value="en_US"/> <comboitem label="${i18nUtils.message('user.details.locale.bg')}" value="bg_BG"/> </combobox>* </hbox> </row> <row> <label value="${i18nUtils.message('authority.account.type')}"/> <hbox> <combobox id="authority" onCreate='self.setSelectedIndex(0);self.setReadonly(true);'> <comboitem label="${i18nUtils.message('authority.job.seeker')}" value="Job Seeker"/> <comboitem label="${i18nUtils.message('authority.employer')}" value="Employer"/> <comboitem label="${i18nUtils.message('authority.hra')}" value="Human Resource Agency"/> <comboitem label="${i18nUtils.message('authority.advertiser')}" value="Advertiser"/> </combobox>* </hbox> </row> </rows> </grid> </tabpanel> </tabpanels> </tabbox> <grid width="40%"> <rows> <row> <button label="${i18nUtils.message('bttn.save')}" onClick="save()"/> <button label="${i18nUtils.message('bttn.cancel')}" onClick="cancel()"/> </row> </rows> </grid> </window> </zk> The "getSelectedIndexComboboxItem()" does return the correct selected item but there seems no effect on the UI. Like for example the locale is set to default Bulgarian language and I need to set it to English. Abdul Khaliq

    Read the article

  • CoreData update problems

    - by kpower
    My app makes updates in background thread then saves context changes. And in main context there is a table view that works with NSFetchedResultsController. For some time updates work correctly, but then exception is thrown. To check this I've added NSLog(@"%@", [self.controller fetchedObjects]); to -controllerDidChangeContent:. Here is what I got: "<PRBattle: 0x6d30530> (entity: PRBattle; id: 0x6d319d0 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p2> ; data: {\n battleId = \"-1\";\n finishedAt = \"2012-11-06 11:37:36 +0000\";\n opponent = \"0x6d2f730 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p1>\";\n opponentScore = nil;\n score = nil;\n status = 4;\n})", "<PRBattle: 0x6d306f0> (entity: PRBattle; id: 0x6d319f0 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p1> ; data: {\n battleId = \"-1\";\n finishedAt = \"2012-11-06 11:37:36 +0000\";\n opponent = \"0x6d2ddb0 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p3>\";\n opponentScore = nil;\n score = nil;\n status = 4;\n})", "<PRBattle: 0x6d30830> (entity: PRBattle; id: 0x6d31650 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p11> ; data: <fault>)", "<PRBattle: 0x6d306b0> (entity: PRBattle; id: 0x6d319e0 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p5> ; data: {\n battleId = 325;\n finishedAt = nil;\n opponent = \"0x6d2f730 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p1>\";\n opponentScore = 91;\n score = 59;\n status = 3;\n})", "<PRBattle: 0x6d30730> (entity: PRBattle; id: 0x6d31a00 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p6> ; data: {\n battleId = 323;\n finishedAt = nil;\n opponent = \"0x6d2ddb0 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p3>\";\n opponentScore = 0;\n score = 0;\n status = 3;\n})", "<PRBattle: 0x6d307b0> (entity: PRBattle; id: 0x6d31630 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p9> ; data: {\n battleId = 370;\n finishedAt = \"2012-11-06 14:24:14 +0000\";\n opponent = \"0x79a8e90 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p2>\";\n opponentScore = 180;\n score = 180;\n status = 4;\n})", "<PRBattle: 0x6d307f0> (entity: PRBattle; id: 0x6d31640 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p10> ; data: {\n battleId = 309;\n finishedAt = \"2012-11-02 01:19:27 +0000\";\n opponent = \"0x79a8e90 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p2>\";\n opponentScore = 120;\n score = 240;\n status = 4;\n})", "<PRBattle: 0x6d30770> (entity: PRBattle; id: 0x6d31620 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p7> ; data: {\n battleId = 315;\n finishedAt = \"2012-11-02 02:26:24 +0000\";\n opponent = \"0x79a8e90 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p2>\";\n opponentScore = 119;\n score = 179;\n status = 4;\n})" ) Faulted object (0xe972610) here causes crash. I've logged data during update & before saving. This object is in updatedObjects only. Why can this method return "bad" object? (Moreover, during updates this object is affected almost each update. And only after some passes becomes "bad" one). P.S.: I use RestKit to manage CoreData. UPDATED: The exception was got, when I did smth. like this: for (PRBattle *battle in [self.controller fetchedObjects) { switch (battle.statusScalar) { case ... default: [battle willAccessValueForKey:nil]; NSAssert1(NO, @"Unexpected battle status found: %@", battle); } } The exception is on line with -willAccessValueForKey:. Scalar status for battle is enum, that is bind to integer values 1..4. I've mentioned all possible values in switch's cases (above default:). And the last one has break;. So this one is possible only when battle.statusScalar returns non-enum value. Status scalar implementation in PRBattle: - (PRBattleStatuses)statusScalar { [self willAccessValueForKey:@"statusScalar"]; PRBattleStatuses result = (PRBattleStatuses)[self.status integerValue]; [self didAccessValueForKey:@"statusScalar"]; return result; } And battle.status has validation rules: - min-value: 1 - max-value: 4 - default: no value And the last thing - debug log: objc[4664]: EXCEPTIONS: throwing 0x7d33f80 (object 0xe67d2a0, a _NSCoreDataException) objc[4664]: EXCEPTIONS: searching through frame [ip=0x97b401 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: catch(id) objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x97b401 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: handling exception 0x7d33f60 at 0x97b79f objc[4664]: EXCEPTIONS: rethrowing current exception objc[4664]: EXCEPTIONS: searching through frame [ip=0x97b911 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x9ac8b7 sp=0xbfffdc20] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x97ee80 sp=0xbfffdc40] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x361d0 sp=0xbfffdc70] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0xa701d8 sp=0xbfffde10] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: catch(id) objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x97b911 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: finishing handler objc[4664]: EXCEPTIONS: searching through frame [ip=0x97b963 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x9ac8b7 sp=0xbfffdc20] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x97ee80 sp=0xbfffdc40] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x361d0 sp=0xbfffdc70] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0xa701d8 sp=0xbfffde10] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: catch(id) objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x97b963 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x9ac8b7 sp=0xbfffdc20] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x97ee80 sp=0xbfffdc40] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x361d0 sp=0xbfffdc70] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x3656f sp=0xbfffdc70] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: unwinding through frame [ip=0xa701d8 sp=0xbfffde10] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: handling exception 0x7d33f60 at 0xa701f5 2012-11-07 13:37:55.463 TestApp[4664:fb03] CoreData: error: Serious application error. An exception was caught from the delegate of NSFetchedResultsController during a call to -controllerDidChangeContent:. CoreData could not fulfill a fault for '0x6d31650 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p10>' with userInfo { NSAffectedObjectsErrorKey = ( "<PRBattle: 0x6d30830> (entity: PRBattle; id: 0x6d31650 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p10> ; data: <fault>)" ); }

    Read the article

< Previous Page | 227 228 229 230 231 232 233 234  | Next Page >