Search Results

Search found 25570 results on 1023 pages for 'low level api'.

Page 233/1023 | < Previous Page | 229 230 231 232 233 234 235 236 237 238 239 240  | Next Page >

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Azure Mobile Services: lessons learned

    - by svdoever
    When I first started using Azure Mobile Services I thought of it as a nice way to: authenticate my users - login using Twitter, Google, Facebook, Windows Live create tables, and use the client code to create the columns in the table because that is not possible in the Azure Mobile Services UI run some Javascript code on the table crud actions (Insert, Update, Delete, Read) schedule a Javascript to run any 15 or more minutes I had no idea of the magic that was happening inside… where is the data stored? Is it a kind of big table, are relationships between tables possible? those Javascripts on the table crud actions, is that interpreted, what is that exactly? After working for some time with Azure Mobile Services I became a lot wiser: Those tables are just normal tables in an Azure SQL Server 2012 Creating the table columns through client code sucks, at least from my Javascript code, because the columns are deducted from the sent JSON data, and a datetime field is sent as string in JSON, so a string type column is created instead of a datetime column You can connect with SQL Management Studio to the Azure SQL Server, and although you can’t manage your columns through the SQL Management Studio UI, it is possible to just run SQL scripts to drop and create tables and indices When you create a table through SQL script, add the table with the same name in the Azure Mobile Services UI to hook it up and be able to access the table through the provided abstraction layer You can also go to the SQL Database through the Azure Mobile Services UI, and from there get in a web based SQL management studio where you can create columns and manage your data The table crud scripts and the scheduler scripts are full blown node.js scripts, introducing a lot of power with great performance The web based script editor is really powerful, I do most of my editing currently in the editor which has syntax highlighting and code completing. While editing the code JsHint is used for script validation. The documentation on Azure Mobile Services is… suboptimal. It is such a pity that there is no way to comment on it so the community could fill in the missing holes, like which node modules are already loaded, and which modules are available on Azure Mobile Services. Soon I was hacking away on Azure Mobile Services, creating my own database tables through script, and abusing the read script of an empty table named query to implement my own set of “services”. The latest updates to Azure Mobile Services described in the following posts added some great new features like creating web API’s, use shared code from your scripts, command line tools for managing Azure Mobile Services (upload and download scripts for example), support for node modules and git support: http://weblogs.asp.net/scottgu/archive/2013/06/14/windows-azure-major-updates-for-mobile-backend-development.aspx http://blogs.msdn.com/b/carlosfigueira/archive/2013/06/14/custom-apis-in-azure-mobile-services.aspx http://blogs.msdn.com/b/carlosfigueira/archive/2013/06/19/custom-api-in-azure-mobile-services-client-sdks.aspx In the mean time I rewrote all my “service-like” table scripts to API scripts, which works like a breeze. Bad thing with the current state of Azure Mobile Services is that the git support is not working if you are a co-administrator of your Azure subscription, and not and administrator (as in my case). Another bad thing is that Cross Origin Request Sharing (CORS) is not supported for the API yet, so no go yet from the browser client for API’s, which is my case. See http://social.msdn.microsoft.com/Forums/windowsazure/en-US/2b79c5ea-d187-4c2b-823a-3f3e0559829d/known-limitations-for-source-control-and-custom-api-features for more on these and other limitations. In his talk at Build 2013 Josh Twist showed that there is a work-around for accessing shared script code from the table scripts as well (another limitation mentioned in the post above). I could not find that code in the Votabl2 code example from the presentation at https://github.com/joshtwist/votabl2, but we can grab it from the presentation when it comes online on Channel9. By the way: you can always express your needs and ideas at http://mobileservices.uservoice.com, that’s the place they are listening to (I hope!).

    Read the article

  • Using Recursive SQL and XML trick to PIVOT(OK, concat) a "Document Folder Structure Relationship" table, works like MySQL GROUP_CONCAT

    - by Kevin Shyr
    I'm in the process of building out a Data Warehouse and encountered this issue along the way.In the environment, there is a table that stores all the folders with the individual level.  For example, if a document is created here:{App Path}\Level 1\Level 2\Level 3\{document}, then the DocumentFolder table would look like this:IDID_ParentFolderName1NULLLevel 121Level 232Level 3To my understanding, the table was built so that:Each proposal can have multiple documents stored at various locationsDifferent users working on the proposal will have different access level to the folder; if one user is assigned access to a folder level, she/he can see all the sub folders and their content.Now we understand from an application point of view why this table was built this way.  But you can quickly see the pain this causes the report writer to show a document link on the report.  I wasn't surprised to find the report query had 5 self outer joins, which is at the mercy of nobody creating a document that is buried 6 levels deep, and not to mention the degradation in performance.With the help of 2 posts (at the end of this post), I was able to come up with this solution:Use recursive SQL to build out the folder pathUse SQL XML trick to concat the strings.Code (a reminder, I built this code in a stored procedure.  If you copy the syntax into a simple query window and execute, you'll get an incorrect syntax error) Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} -- Get all folders and group them by the original DocumentFolderID in PTSDocument table;WITH DocFoldersByDocFolderID(PTSDocumentFolderID_Original, PTSDocumentFolderID_Parent, sDocumentFolder, nLevel)AS (-- first member      SELECT 'PTSDocumentFolderID_Original' = d1.PTSDocumentFolderID            , PTSDocumentFolderID_Parent            , 'sDocumentFolder' = sName            , 'nLevel' = CONVERT(INT, 1000000)      FROM (SELECT DISTINCT PTSDocumentFolderID                  FROM dbo.PTSDocument_DY WITH(READPAST)            ) AS d1            INNER JOIN dbo.PTSDocumentFolder_DY AS df1 WITH(READPAST)                  ON d1.PTSDocumentFolderID = df1.PTSDocumentFolderID      UNION ALL      -- recursive      SELECT ddf1.PTSDocumentFolderID_Original            , df1.PTSDocumentFolderID_Parent            , 'sDocumentFolder' = df1.sName            , 'nLevel' = ddf1.nLevel - 1      FROM dbo.PTSDocumentFolder_DY AS df1 WITH(READPAST)            INNER JOIN DocFoldersByDocFolderID AS ddf1                  ON df1.PTSDocumentFolderID = ddf1.PTSDocumentFolderID_Parent)-- Flatten out folder path, DocFolderSingleByDocFolderID(PTSDocumentFolderID_Original, sDocumentFolder)AS (SELECT dfbdf.PTSDocumentFolderID_Original            , 'sDocumentFolder' = STUFF((SELECT '\' + sDocumentFolder                                         FROM DocFoldersByDocFolderID                                         WHERE (PTSDocumentFolderID_Original = dfbdf.PTSDocumentFolderID_Original)                                         ORDER BY PTSDocumentFolderID_Original, nLevel                                         FOR XML PATH ('')),1,1,'')      FROM DocFoldersByDocFolderID AS dfbdf      GROUP BY dfbdf.PTSDocumentFolderID_Original) And voila, I use the second CTE to join back to my original query (which is now a CTE for Source as we can now use MERGE to do INSERT and UPDATE at the same time).Each part of this solution would not solve the problem by itself because:If I don't use recursion, I cannot build out the path properly.  If I use the XML trick only, then I don't have the originating folder ID info that I need to link to the document.If I don't use the XML trick, then I don't have one row per document to show in the report.I could conceivably do this in the report function, but I'd rather not deal with the beginning or ending backslash and how to attach the document name.PIVOT doesn't do strings and UNPIVOT runs into the same problem as the above.I'm excited that each version of SQL server provides us new tools to solve old problems and/or enables us to solve problems in a more elegant wayThe 2 posts that helped me along:Recursive Queries Using Common Table ExpressionHow to use GROUP BY to concatenate strings in SQL server?

    Read the article

  • Suds array of arrays not nesting

    - by joshcartme
    Let me preface this by saying that I am still pretty new to SOAP and how things should work. I'm working with the Vertical Response API. I'm having trouble getting suds to construct the xml correctly for a request. Here is some code: from suds.client import Client url = 'https://api.verticalresponse.com/wsdl/1.0/VRAPI.wsdl' client = Client(url) vr = client.service ... test_list = ( ( { 'name' : 'email_address', 'value' : login['username'], }, { 'name' : 'First_Name', 'value' : 'VR_User', } ), ( { 'name' : 'email_address', 'value' : '[email protected]', }, { 'name' : 'First_Name', 'value' : login['username'], }, ), ) # sid and cid are correctly retrieved prior to this point print "Sending test message..." vr.sendEmailCampaignTest({ 'session_id' : sid, 'campaign_id' : cid, 'recipients' : test_list, }) In this context login['username'] is just an email address. That code raises this error: suds.WebFault: Server raised fault: 'Application failed during request deserialization: Too many elements in array. 4 instead of claimed 2 (2) Here is the the definition of sendEmailCampaignTest: http://developers.verticalresponse.com/api/soap/methods/campaigns/sendemailcampaigntest/ Here is the xml that logging outputs (I removed the session_id and list_id for display here): DEBUG:suds.client:headers = {'SOAPAction': u'"VR/API/1_0#sendEmailCampaignTest"', 'Content-Type': 'text/xml; charset=utf-8'} ERROR:suds.client:<?xml version="1.0" encoding="UTF-8"?> <SOAP-ENV:Envelope xmlns:ns3="http://api.verticalresponse.com/1.0/VRAPI.xsd" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns0="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns1="http://www.w3.org/2001/XMLSchema" xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ns4="VR/API/1_0" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <SOAP-ENV:Header/> <ns0:Body> <ns4:sendEmailCampaignTest> <args xsi:type="ns3:sendEmailCampaignTestArgs"> <session_id xsi:type="ns1:string">redacted</session_id> <campaign_id xsi:type="ns1:int">redacted</campaign_id> <recipients xsi:type="ns3:ArrayOfNVDictionary" ns2:arrayType="ns3:NVDictionary[2]"> <item> <name xsi:type="ns1:string">email_address</name> <value xsi:type="ns1:string">[email protected]</value> </item> <item> <name xsi:type="ns1:string">First_Name</name> <value xsi:type="ns1:string">VR_User</value> </item> <item> <name xsi:type="ns1:string">email_address</name> <value xsi:type="ns1:string">[email protected]</value> </item> <item> <name xsi:type="ns1:string">First_Name</name> <value xsi:type="ns1:string">[email protected]</value> </item> </recipients> </args> </ns4:sendEmailCampaignTest> </ns0:Body> </SOAP-ENV:Envelope> DEBUG:suds.client:http failed: <?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-ENV:Body><SOAP-ENV:Fault><faultcode>SOAP-ENV:Client</faultcode><faultstring>Application failed during request deserialization: Too many elements in array. 4 instead of claimed 2 (2) </faultstring></SOAP-ENV:Fault></SOAP-ENV:Body></SOAP-ENV:Envelope> a ruby script (provided by Vertical Response) that does the same things as the script I am working on in python outputs the following xml (I removed the session_id and list_id): <?xml version="1.0" encoding="utf-8" ?> <env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <env:Body> <n1:sendEmailCampaignTest xmlns:n1="VR/API/1_0" env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <args xmlns:n2="http://api.verticalresponse.com/1.0/VRAPI.xsd" xsi:type="n2:sendEmailCampaignTestArgs"> <session_id xsi:type="xsd:string">redacted</session_id> <campaign_id xsi:type="xsd:int">redacted</campaign_id> <recipients xmlns:n3="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="n3:Array" n3:arrayType="n2:NVDictionary[2]"> <item xsi:type="n3:Array" n3:arrayType="n2:NVPair[2]"> <item> <name xsi:type="xsd:string">email_address</name> <value href="#id9496430"></value> </item> <item> <name xsi:type="xsd:string">First_Name</name> <value xsi:type="xsd:string">VR_User</value> </item> </item> <item xsi:type="n3:Array" n3:arrayType="n2:NVPair[2]"> <item> <name xsi:type="xsd:string">email_address</name> <value xsi:type="xsd:string">[email protected]</value> </item> <item> <name xsi:type="xsd:string">First_Name</name> <value href="#id9496430"></value> </item> </item> </recipients> </args> </n1:sendEmailCampaignTest> <value id="id9496430" xsi:type="xsd:string" env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">[email protected]</value> </env:Body> </env:Envelope> I understand that the error is in the construction of recipients. It should contain two items, each that contain two items but my python script using suds is setting it up to contain four unnested items. So my question is how can I get suds to correctly construct the xml?

    Read the article

  • Cassandra API equivalent of "SELECT ... FROM ... WHERE id IN ('...', '...', '...');"

    - by knorv
    Assume the following data set: id age city phone == === ==== ===== alfred 30 london 3281283 jeff 43 sydney 2342734 joe 29 tokyo 1283881 kelly 54 new york 2394929 molly 20 london 1823881 rob 39 sydney 4928381 To get the following result set .. id age phone == === ===== alfred 30 3281283 joe 29 1283881 molly 20 1823881 .. using SQL one would issue .. SELECT id, age, phone FROM dataset WHERE id IN ('alfred', 'joe', 'molly'); What is the corresponding Cassandra API call that would yield the same result set in one command?

    Read the article

  • What is the best free or low-cost Java reporting library (e.g. BIRT, JasperReports, etc.) for making

    - by Max3000
    I want to print, email and write to PDF very simple reports. The reports are basically a list of items, divided in various sections/columns. The sections are not necessarily identical. Think newspaper. I just wasted a solid 2 days of work trying to make this kind of reports using JasperReports. I find that Jasper is great for outputing "normalized" data. The kind that would come out of a database for instance, each row neatly describing an item and each item printed on a line. I'm simplifying a bit but that's the idea. However, given what I want to do I always ended up completely lost. Data not being displayed for no apparent reason, columns of texts never the correct size, column positioning always ending up incorrect, pagination not sanely possible (I was never able to figure it out; the FAQ gives an obscure workaround), etc. I came to the conclusion that Jasper is really not built to make the kind of reports I want. Am I missing something? I'm ready to pay for a tool, as long as the price is reasonable. By reasonable I mean a few $100s. Thanks. EDIT: To answer cetus, here is more information about the report I made in Jasper. What I want is something like this: text text text text ------------------- text | text text |---------- text | text text | text --------| text text |---------- text | text What I made in jasper is this: (detail band) subreport | subreport ------------------------------------ subreport | subreport ------------------------------------ subreport | subreport The subreports are all the same actual report. This report has one field (called "field") and basically just prints this field in a detail band. Hence, running a single subreport simply lists all items from the datasource. The datasource itself is a simple custom JRDatasource containing a collection of strings in the field "field". The datasource iterates over the collection until there are no more strings. Each subreport has its own datasource. I tried many different variations of the above, with all sorts of different properties for the report, subreports, etc. IMO, this is fairly simple stuff. However, the problems I encounter are as follows: Subreports starting from the 3rd don't show up when their position type is 'float'. They do show up when they have 'fix relative to top'. However, I don't want to do this because the first two subreports can be of any length. I can't make each subreport to stretch according to its own length. Instead, they either don't stretch at all (which is not desirable because they have different lenghts) or they stretch according to the longest subreport. This makes a weird layout for sure. Pagination doesn't happen. If some subreports fall outside the page, they simple don't show. One alternative is to increase the 'page height' considerably and the 'detail band height' accordingly. However, in this case it is not really possibly to know the total height in advance. So I'm stuck with calculating/guessing it myself, before the report is even generated. More importantly, long reports end up on one page and this is not acceptable (the printout text is too small, it's ugly/non-professional to have different reports with different PDF page lengths, etc.). BTW, I used iReport so it's possibly limitations of iReport I'm listing here and not of Jasper itself. That's one of the things I'm trying to find out asking this question here. One alternative would be to generate the jrxml myself with just static text but I'm afraid I'll encounter the very same limitations. Anyway, I just generally wasted so much time getting anything done with Jasper that I can't help thinking its not the right tool for the job. (Not to say that Jasper doesn't excel in what it's good at).

    Read the article

  • django crispy-forms inline forms

    - by abolotnov
    I'm trying to adopt crispy-forms and bootstrap and use as much of their functionality as possible instead of inventing something over and over again. Is there a way to have inline forms functionality with crispy-forms/bootstrap like django-admin forms have? Here is an example: class NewProjectForm(forms.Form): name = forms.CharField(required=True, label=_(u'???????? ???????'), widget=forms.TextInput(attrs={'class':'input-block-level'})) group = forms.ModelChoiceField(required=False, queryset=Group.objects.all(), label=_(u'?????? ????????'), widget=forms.Select(attrs={'class':'input-block-level'})) description = forms.CharField(required=False, label=_(u'???????? ???????'), widget=forms.Textarea(attrs={'class':'input-block-level'})) class Meta: model = Project fields = ('name','description','group') def __init__(self, *args, **kwargs): self.helper = FormHelper() self.helper.form_class = 'horizontal-form' self.helper.form_action = 'submit_new_project' self.helper.layout = Layout( Field('name', css_class='input-block-level'), Field('group', css_class='input-block-level'), Field('description',css_class='input-block-level'), ) self.helper.add_input(Submit('submit',_(u'??????? ??????'))) self.helper.add_input(Submit('cancel',_(u'? ?????????'))) super(NewProjectForm, self).__init__(*args, **kwargs) it will display a decent form: How do I go about adding a form that basically represents this model: class Link(models.Model): name = models.CharField(max_length=255, blank=False, null=False, verbose_name=_(u'????????')) url = models.URLField(blank=False, null=False, verbose_name=_(u'??????')) project = models.ForeignKey('Project') So there will be a project and name/url links and way to add many, like same thing is done in django-admin where you are able to add extra 'rows' with data related to your main model. On the sreenshot below you are able to fill out data for 'Question' object and below that you are able to add data for QuestionOption objects -you are able to click the '+' icon to add as many QuestionOptions as you want. I'm not looking for a way to get the forms auto-generated from models (that's nice but not the most important) - is there a way to construct a form that will let you add 'rows' of data like django-admin does?

    Read the article

  • Using Fancybox with Google Static Maps

    - by Levi Hackwith
    Setup I have multiple links on a page with the class location_link Each Links rel attribute is equal to a city state combo (i.e.,Omaha, NE) Once the page is loaded, a JavaScript function loops through all of the location_link items and binds a click event to them using jQuery. This click event fires a call to the Fancybox constructor that is supposed to show a Google Map of the location that link is associated with The Problem: Whenever I click on one of the "location links", I get the following error message: The requested content cannot be loaded. Please try again later. Code I've Already Written: function setUpLocationLinks() { locationLinks = $("a.location_link"); locationLinks.click( function() { var me = $(this); console.log(me.attr("href")); $.fancybox( { "showCloseButton" : true, "hideOnContentClick" : true, "titlePosition" : "inside", "title" : me.attr("rel"), "type" : "image" } ) return false; } ); } Research I've Already Done: The Google Static Map API no longer requires an API Key. The following is from the Google Static Maps API Page Note: The Google Static Maps API no longer requires a Maps API key! (Google Maps API Premier customers should instead sign their URLs using a new cryptographic key which will be sent to you. See the Premier documentation for more information.) The The Image URL I'm using does resolve and pulls back the data I need When I put the above mentioned URL into a standard <img> tag, the map shows up just fine. I'd like to pull this off without having to create some sort of dummy <img> tag that I'm constantly switching the src attribute out of. Hopefully, you'll find this information helpful. Please let me know if you have any other questions.

    Read the article

  • Silverlight 4 Drag and Drop Treeview

    - by Rich
    Does anyone have an example for any of the following scenarios. Given, these are all dynamically populated trees. Not using a Heirarchal data template, but by iterating through object collections manually and appending children at the appropriate level. Treeview1 has 3 levels, but items can only be reordered within their level. So, lets say we have Drives, Folders and Files. Drives can be rearranged in an order, but not put into a Folder. When navigated down one level in a drive, the individual folders can be reordered, but not dragged between drives.. and same with files, only can be reordered, but not moved to a different folder or drive I have 2 treeviews, Treeview1 is the same as #1 above and Treeview2 is like a picklist of available items. A user can drag an item from Treeview2 to Treeview1, but it can only be placed at Treeview1's File Level. The dragged item cannot be a child of a file, or placed at the folder level, nor placed at the drive level. Also, how to handle the Above, On Top, or Below an item. I have yet to come across these examples.

    Read the article

  • iPhone app: How to implement in-app purchased game levels

    - by Wonderflonium
    So, I understand that it's possible to set up in-app purchases for iPhone apps to purchase non-consumables like game levels. I understand the logic behind the purchase part, but what I don't understand is, how can I deliver the new game level. For example: I build an app that contains the first level and they purchase additional levels. Is it better to build all the other levels into the app and whenever they purchase the app, it unlocks it with a plist entry or something? That doesn't seem very update-able to me. Every time I come up with a new level, I'd have to update the app. So, what I don't understand then, is what is how do I package up a level and download it as a separate entity that can accessed by the game? Would the level just be some XML with images in a ZIP folder or something? How does the level get added to the game? What are best practices for this type of thing? I Googled and have found NOTHING about this. I'm a little bit confused by the concept and any help would be appreciated. I'm not looking for someone to write the game for me, I just need pointed in the right direction so I can develop it on my own.

    Read the article

  • Authentication problem with Wufoo

    - by fudgey
    I set up a Wufoo form with admin only portions that will only show up if I am logged in. I read through the Wufoo API documentation and I can get the authenication to work, but when I try to access the form after I authenticate, it says I need to authenticate. This is what I have so far (subdomain, api key & form id changed) <?php error_reporting(E_ALL); ini_set('display_errors', 1); $curl1 = curl_init('http://fishbowl.wufoo.com/api/v3/users.xml'); curl_setopt($curl1, CURLOPT_RETURNTRANSFER, 1); curl_setopt($curl1, CURLOPT_USERPWD, 'AOI6-LFKL-VM1Q-IEX9:footastic'); curl_setopt($curl1, CURLOPT_HTTPAUTH, CURLAUTH_ANY); curl_setopt($curl1, CURLOPT_SSL_VERIFYPEER, false); curl_setopt($curl1, CURLOPT_FOLLOWLOCATION, false); curl_setopt($curl1, CURLOPT_USERAGENT, 'Wufoo Sample Code'); $response = curl_exec($curl1); $resultStatus = curl_getinfo($curl1); if($resultStatus['http_code'] == 200) { echo 'success!<br>'; } else { echo 'Call Failed '.print_r($resultStatus); } $curl2 = curl_init("http://fishbowl.wufoo.com/api/v3/forms/w7x1p5/entries.json"); curl_setopt($curl2, CURLOPT_HEADER, 0); curl_setopt($curl2, CURLOPT_RETURNTRANSFER, 1); $response = curl_exec($curl2); curl_close ($curl2); echo $response; curl_close($curl1); ?> It doesn't matter if I close $curl1 before or after I call $curl2, I get the same message on my screen: success! You must authenticate to get at the goodies. and I know the api, subdomain and form id are all correct. And one last bonus question... can I do all of this using Ajax instead? - the page I will be displaying the form on will already be limited to admin access, so exposing the API shouldn't matter.

    Read the article

  • PocketPC c++ windows message processing recursion problem

    - by user197350
    Hello, I am having a problem in a large scale application that seems related to windows messaging on the Pocket PC. What I have is a PocketPC application written in c++. It has only one standard message loop. while (GetMessage (&msg, NULL, 0, 0)) { { TranslateMessage (&msg); DispatchMessage (&msg); } } We also have standard dlgProc's. In the switch of the dlgProc, we will call a proprietary 3rd party API. This API uses a socket connection to communicate with another process. The problem I am seeing is this: whenever two of the same messages come in quickly (from the user clicking the screen twice too fast and shouldn't be) it seems as though recursion is created. Windows begins processing the first message, gets the api into a thread safe state, and then jumps to process the next (identical ui) message. Well since the second message also makes the API call, the call fails because it is locked. Because of the design of this legacy system, the API will be locked until the recursion comes back out (which also is triggered by the user; so it could be locked the entire working day). I am struggling to figure out exactly why this is happening and what I can do about it. Is this because windows recognizes the socket communication will take time and preempts it? Is there a way I can force this API call to complete before preemption? Is there a way I can slow down the message processing or re-queue the message to ensure the first will execute (capturing it and doing a PostMessage back to itself didnt work). We don't want to lock the ui down while the first call completes. Any insight is greatly appreciated! Thanks!!

    Read the article

  • How to get levels for Fry Graph readability formula?

    - by Vic
    Hi, I'm working in an application (C#) that applies some readability formulas to a text, like Gunning-Fog, Precise SMOG, Flesh-Kincaid. Now, I need to implement the Fry-based Grade formula in my program, I understand the formula's logic, pretty much you take 3 100-words samples and calculate the average on sentences per 100-words and syllables per 100-words, and then, you use a graph to plot the values. Here is a more detailed explanation on how this formula works. I already have the averages, but I have no idea on how can I tell my program to "go check the graph and plot the values and give me a level." I don't have to show the graph to the user, I only have to show him the level. I was thinking that maybe I can have all the values in memory, divided into levels, for example: Level 1: values whose sentence average are between 10.0 and 25+, and whose syllables average are between 108 and 132. Level 2: values whose sentence average are between 7.7 and 10.0, and .... so on But the problem is that so far, the only place in which I have found the values that define a level, are in the graph itself, and they aren't too much accurate, so if I apply the approach commented above, trying to take the values from the graph, my level estimations would be too much imprecise, thus, the Fry-based Grade will not be accurate. So, maybe any of you knows about some place where I can find exact values for the different levels of the Fry-based Grade, or maybe any of you can help me think in a way to workaround this. Thanks

    Read the article

  • (x86) Assembler Optimization

    - by Pindatjuh
    I'm building a compiler/assembler/linker in Java for the x86-32 (IA32) processor targeting Windows. High-level concepts of a "language" (in essential a Java API for creating executables) are translated into opcodes, which then are wrapped and outputted to a file. The translation process has several phases, one is the translation between languages: the highest-level code is translated into the medium-level code which is then translated into the lowest-level code (probably more than 3 levels). My problem is the following; if I have higher-level code (X and Y) translated to lower-level code (x, y, U and V), then an example of such a translation is, in pseudo-code: x + U(f) // generated by X + V(f) + y // generated by Y (An easy example) where V is the opposite of U (compare with a stack push as U and a pop as V). This needs to be 'optimized' into: x + y (essentially removing the "useless" code) My idea was to use regular expressions. For the above case, it'll be a regular expression looking like this: x:(U(x)+V(x)):null, meaning for all x find U(x) followed by V(x) and replace by null. Imagine more complex regular expressions, for more complex optimizations. This should work on all levels. What do you suggest? What would be a good approach to optimize in these situations?

    Read the article

  • java: can't use constructors in abstract class

    - by ufk
    Hi. I created the following abstract class for job scheduler in red5: package com.demogames.jobs; import com.demogames.demofacebook.MysqlDb; import org.red5.server.api.IClient; import org.red5.server.api.IConnection; import org.red5.server.api.IScope; import org.red5.server.api.scheduling.IScheduledJob; import org.red5.server.api.so.ISharedObject; import org.apache.log4j.Logger; import org.red5.server.api.Red5; /** * * @author ufk */ abstract public class DemoJob implements IScheduledJob { protected IConnection conn; protected IClient client; protected ISharedObject so; protected IScope scope; protected MysqlDb mysqldb; protected static org.apache.log4j.Logger log = Logger .getLogger(DemoJob.class); protected DemoJob (ISharedObject so, MysqlDb mysqldb){ this.conn=Red5.getConnectionLocal(); this.client = conn.getClient(); this.so=so; this.mysqldb=mysqldb; this.scope=conn.getScope(); } protected DemoJob(ISharedObject so) { this.conn=Red5.getConnectionLocal(); this.client=this.conn.getClient(); this.so=so; this.scope=conn.getScope(); } protected DemoJob() { this.conn=Red5.getConnectionLocal(); this.client=this.conn.getClient(); this.scope=conn.getScope(); } } Then i created a simple class that extends the previous one: public class StartChallengeJob extends DemoJob { public void execute(ISchedulingService service) { log.error("test"); } } The problem is that my main application can only see the constructor without any parameters. with means i can do new StartChallengeJob() why doesn't the main application sees all the constructors ? thanks!

    Read the article

  • Testing subpackage modules in Python 3

    - by Mitchell Model
    I have been experimenting with various uses of hierarchies like this and the differences between absolute and relative imports, and can't figure out how to do routine things with the package, subpackages, and modules without simply putting everything on sys.path. I have a two-level package hierarchy: MyApp __init__.py Application __init__.py Module1 Module2 ... Domain __init__.py Module1 Module2 ... UI __init__.py Module1 Module2 ... I want to be able to do the following: Run test code in a Module's "if main" when the module imports from other modules in the same directory. Have one or more test code modules in each subpackage that runs unit tests on the modules in the subpackage. Have a set of unit tests that reside in someplace reasonable, but outside the subpackages, either in a sibling package, at the top-level package, or outside the top-level package (though all these might end up doing is running the tests in each subpackage) "Enter" the structure from any of the three subpackage levels, e.g. run code that just uses Domain modules, run code that just uses Application modules, but Application uses code from both Application and Domain modules, and run code from GUI uses code from both GUI and Application; for instance, Application test code would import Application modules but not Domain modules. After developing the bulk of the code without subpackages, continue developing and testing after organizing the modules into this hierarchy. I know how to use relative imports so that external code that puts MyApp on its sys.path can import MyApp, import any subpackages it wants, and import things from their modules, while the modules in each subpackage can import other modules from the same subpackage or from sibling packages. However, the development needs listed above seem incompatible with subpackage structuring -- in other words, I can't have it both ways: a well-structured multi-level package hierarchy used from the outside and also used from within, in particular for testing but also because modules from one design level (in particular the UI) should not import modules from a design level below the next one down. Sorry for the long essay, but I think it fairly represents the struggles a lot of people have been having adopting to the new relative import mechanisms.

    Read the article

  • What should the standard be for ReSTful URLS?

    - by gargantaun
    Since I can't find a chuffing job, I've been reading up on ReST and creating web services. The way I've interpreted it, the future is all about creating a web service for all your data before you build the web app. Which seems like a good idea. However, there seems to be a lot of contradictory thoughts on what the best scheme is for ReSTful URLs. Some people advocate simple pretty urls http://api.myapp.com/resource/1 In addition, some people like to add the API version to the url like so http://api.myapp.com/v1/resource/1 And to make things even more confusing, some people advocate adding the content-type to get requests http://api.myapp.com/v1/resource/1.xml http://api.myapp.com/v1/resource/1.json http://api.myapp.com/v1/resource/1.txt Whereas others think the content-type should be sent in the HTTP header. Soooooooo.... That's a lot of variation, which has left me unsure of what the best URL scheme is. I personally see the merits of the most comprehensive URL that includes a version number, resource locator and content-type, but I'm new to this so I could be wrong. On the other hand, you could argue that you should do "whatever works best for you". But that doesn't really fit with the ReST mentality as far as I can tell since the aim is to have a standard. And since a lot of you people will have more experience than me with ReST, I thought I'd ask for some guidance. So, with all that in mind... What should the standard be for ReSTful URLS?

    Read the article

  • How to correctly load dependent JavaScript files

    - by Vaibhav Garg
    I am trying to extent a website page that displays google maps with the LabeledMarker. Google Maps API defines a class called GMarker which is extended by the LabeledMarker. The problem is, I cant seem to load the LabeledMarker script properly, i.e. after the Google API loads and I get the 'GMarker not defined' error. What is the correct way to specify the scripts in such cases? I am using ASP.NET's ClientScript.RegisterClientScriptInclude() first for the google API url and then immediately after with the LabeledMarker script file. The initial google API loader writes further script links that load the actual GMarker class. Shouldnt all those scripts be executed before the next script block(LabeledMarker script) is processed. I have checked the generated HTML and the script blocks are emitted in the right order. <script src="google api url" type="text/javascript"></script> ... (the above scripts uses document.write() etc to append further script blocks/sources) ... <script src="Scripts/LabeledMarker.js" type="text/javascript"></script> Once again, the LabeledMarker.js seems to get executed before the google API finishes loading.

    Read the article

  • Jquery selectors question

    - by Ben
    Hi all, I am not an expert at jquery but trying to get a menu to work. Basically, I have a menu made of up to 3 levels of nested lists. The first level has a little arrow has a background image that opens or close when opening the first level list. Any other nested lists don't need to have the background image. My script opens the menu when you click on it and is also supposed to switch the first level list from a class "inactive" to a class "active". Here is the script: $(document).ready(function(){ $("#left-navigation-holder ul.level1 li.inactive").toggle(function(){ $(this).addClass("active"); }, function () { $(this).removeClass("active"); }); $("#left-navigation-holder li a").click(function(){ menu = $(this).parent('li').children('ul'); menu.toggle(); }); }); The problem is that the toggle function also happens when clicking on second and third level lists causing the arrows to toggle even if the first level list isn't clicked on. I thought using $("#left-navigation-holder ul.level1 li.inactive").toggle would limit the function to the first level list with a class "inactive". Any help would be really appreciated. Ben

    Read the article

  • Is there a fundamental difference between malloc and HeapAlloc (aside from the portability)?

    - by Lambert
    Hi, I'm having code that, for various reasons, I'm trying to port from the C runtime to one that uses the Windows Heap API. I've encountered a problem: If I redirect the malloc/calloc/realloc/free calls to HeapAlloc/HeapReAlloc/HeapFree (with GetProcessHeap for the handle), the memory seems to be allocated correctly (no bad pointer returned, and no exceptions thrown), but the library I'm porting says "failed to allocate memory" for some reason. I've tried this both with the Microsoft CRT (which uses the Heap API underneath) and with another company's run-time library (which uses the Global Memory API underneath); the malloc for both of those works well with the library, but for some reason, using the Heap API directly doesn't work. I've checked that the allocations aren't too big (= 0x7FFF8 bytes), and they're not. The only problem I can think of is memory alignment; is that the case? Or other than that, is there a fundamental difference between the Heap API and the CRT memory API that I'm not aware of? If so, what is it? And if not, then why does the static Microsoft CRT (included with Visual Studio) take some extra steps in malloc/calloc before calling HeapAlloc? I'm suspecting there's a difference but I can't think of what it might be. Thank you!

    Read the article

  • MS Access: Permission problems with views

    - by Keith Williams
    "I'll use an Access ADP" I said, "it's only a tiny project and I've got better things to do", I said, "I can build an interface really quickly in Access" I said. </sarcasm> Sorry for the rant, but it's Friday, I have a date in just under two hours, and I'm here late because this just isn't working - so, in despair, I turn to SO for help. Access ADP front-end, linked to a SQL Server 2008 database Using a SQL Server account to log into the database (for testing); this account is a member of the role, "Api"; this role has SELECT, EXECUTE, INSERT, UPDATE, DELETE access to the "Api" schema The "Api" schema is owned by "dbo" All tables have a corresponding view in the Api schema: e.g. dbo.Customer -- Api.Customers The rationale is that users don't have direct table access, but can deal with views as if they were tables I can log into SQL using my test login, and it works fine: no access to the tables, but I can select, insert, update and delete from the Api views. In Access, I see the views, I can open them, but whenever I try to insert or update, I get the following error: The SELECT permission was denied on the object '[Table name which the view is using]', database '[database name]', schema 'dbo' Crazy as it sounds, Access seems to be trying to access the underlying table rather than the view. Any ideas?

    Read the article

  • Getting problem in threading in JAVA

    - by chetans
    In this program i want to stop GenerateImage & MovingImage Thread both... And i want to start those threads from begining. Can u send me the solution? Here is the code........ package Game; import java.applet.Applet; import java.awt.Color; import java.awt.Dimension; import java.awt.Graphics; import java.awt.Image; import java.awt.MediaTracker; import java.awt.event.KeyEvent; import java.awt.event.KeyListener; import java.net.MalformedURLException; import java.net.URL; public class ThreadInApplet extends Applet implements KeyListener { private static final long serialVersionUID = 1L; Image[] asteroidImage; Image spaceshipImage; String levelstr="Easy Level"; int[] XPos,YPos; int number=0,XPosOfSpaceship,YPosOfSpaceship,NoOfObstacles=5,speed=1,level=1,spaceBtnPressdCntr=0; boolean gameStart=false,pauseGame=false,collideUp=false,collideDown=false,collideLeft=false,collideRight=false; private Image offScreenImage; private Dimension offScreenSize; private Graphics offScreenGraphics; Thread GenerateImages,MoveImages; public void init() { try { GenerateImages=new Thread () //thread to create obstacles { synchronized public void run () { for(int g=0;g<NoOfObstacles;g++) { try { sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } number++; // Temporary counter to count the no of obstacles created } } } ; MoveImages=new Thread () //thread to move obstacles { @SuppressWarnings("deprecation") synchronized public void run () { while(YPos[NoOfObstacles-1]!=600) { pauseGame=false; if(collide()==true) { GenerateImages.suspend(); repaint(); } else GenerateImages.resume(); for(int l=0;l<number;l++) { if(collide()==false) YPos[l]++; else GenerateImages.suspend(); } repaint(); try { sleep(speed); } catch (InterruptedException e) { e.printStackTrace(); } } if(YPos[NoOfObstacles-1]>=600) //level complete state { level++; try { levelUpdation(level); System.out.println("aahe"); } catch (MalformedURLException e) { e.printStackTrace(); } repaint(); } } }; initialPos(); spaceshipImage=getImage(new URL(getCodeBase(),"images/space.png")); for(int i=0;i<NoOfObstacles;i++) { asteroidImage[i]=getImage(new URL(getCodeBase(),"images/asteroid.png")); XPos[i]=(int) (Math.random()*700); YPos[i]=0; } MediaTracker tracker = new MediaTracker (this); for(int i=0;i<NoOfObstacles;i++) { tracker.addImage (asteroidImage[i], 0); } } catch (MalformedURLException e) { e.printStackTrace(); } setBackground(Color.black); addKeyListener(this); } //Sets initial positions of spaceship & obstacle images------------------------------------------------------ public void initialPos() throws MalformedURLException { asteroidImage=new Image[NoOfObstacles]; XPos=new int[NoOfObstacles]; YPos=new int[NoOfObstacles]; XPosOfSpaceship=getWidth()/2-35; YPosOfSpaceship=getHeight()-100; collideUp = false; collideDown=false; collideLeft=false; collideRight=false; } //level finished updations------------------------------------------------------------------------------ @SuppressWarnings("deprecation") public void levelUpdation(int level) throws MalformedURLException { NoOfObstacles=NoOfObstacles+20; speed=speed-3; System.out.println(NoOfObstacles+" "+speed); pauseGame=true; initialPos(); repaint(); } //paint method of graphics to print the messages--------------------------------------------------------- public void paint(Graphics g) { g.setColor(Color.white); if(gameStart==false) { g.drawString("SPACE to start", (getWidth()/2)-15, getHeight()/2); g.drawString(levelstr, (getWidth()/2), getHeight()/2+20); } if(level>1) { if(level==2) levelstr="Medium Level"; else levelstr="High Level"; g.drawString("Level Complete ", (getWidth()/2)-15, getHeight()/2); g.drawString(levelstr, (getWidth()/2), getHeight()/2+20); //g.drawString("SPACE to start", (getWidth()/2)-15, getHeight()/2+40); } for(int n=0;n<number;n++) { if(n>0) g.drawImage(asteroidImage[n],XPos[n],YPos[n],this); } g.drawImage(spaceshipImage,XPosOfSpaceship,YPosOfSpaceship,this); } //update method of graphics to print the messages--------------------------------------------------------- @SuppressWarnings("deprecation") public void update(Graphics g) { Dimension d = size(); if((offScreenImage == null) || (d.width != offScreenSize.width) || (d.height != offScreenSize.height)) { offScreenImage = createImage(d.width, d.height); offScreenSize = d; offScreenGraphics = offScreenImage.getGraphics(); } offScreenGraphics.clearRect(0, 0, d.width, d.height); paint(offScreenGraphics); g.drawImage(offScreenImage, 0, 0, null); } public void keyReleased(KeyEvent arg0){} public void keyTyped(KeyEvent arg0) {} //---------------------Key pressed event to start game & to move the spaceship-------------------------------------- public void keyPressed(KeyEvent e) { if(e.getKeyCode()==32) { spaceBtnPressdCntr++; if(spaceBtnPressdCntr==1) { gameStart=true; GenerateImages.start(); MoveImages.start(); } } if(gameStart==true) { if(e.getKeyCode()==37) { new Thread () { @SuppressWarnings("deprecation") synchronized public void run () { for(int cnt1=1;cnt1<=10;cnt1++) { if(collide()==true && collideLeft == true) { GenerateImages.suspend(); } else { if(XPosOfSpaceship>0) XPosOfSpaceship--; } } repaint(); } }.start(); } if(e.getKeyCode()==38) { new Thread () { @SuppressWarnings("deprecation") synchronized public void run () { for(int cnt1=1;cnt1<=10;cnt1++) { if(collide()==true && collideUp == true) { GenerateImages.suspend(); } else { if(YPosOfSpaceship>10) YPosOfSpaceship--; } } repaint(); } }.start(); } if(e.getKeyCode()==39) { new Thread () { @SuppressWarnings("deprecation") synchronized public void run () { for(int cnt1=1;cnt1<=10;cnt1++) { if(collide()==true && collideRight == true) { GenerateImages.suspend(); } else { if(XPosOfSpaceship<750) XPosOfSpaceship++; } } repaint(); } }.start(); } if(e.getKeyCode()==40) { new Thread () { @SuppressWarnings("deprecation") synchronized public void run () { for(int cnt1=1;cnt1<=10;cnt1++) { if(collide()==true && collideDown == true) { GenerateImages.suspend(); } else { if(YPosOfSpaceship<550) YPosOfSpaceship++; } } repaint(); } }.start(); } } } //------------------------------Collision checking between Spaceship & obstacles------------------------------ public boolean collide() { int x1,y1,x2,y2,x3,y3,x4,y4; //coordinates of obstacles int a1,b1,a2,b2,a3,b3,a4,b4; //coordinates of spaceship a1 =XPosOfSpaceship; b1=YPosOfSpaceship; a2=a1+spaceshipImage.getWidth(this); b2=b1; a3=a1; b3=b1+spaceshipImage.getHeight(this); a4=a2; b4=b3; for(int a=0;a<number;a++) { x1 =XPos[a]; y1=YPos[a]; x2=x1+asteroidImage[a].getWidth(this); y2=y1; x3=x1; y3=y1+asteroidImage[a].getHeight(this); x4=x2; y4=y3; /********checking asteroid touch spaceship from up direction********/ if(y3==b1 && x4>=a1 && x4<=a2) { collideUp = true; collideDown=false; collideLeft=false; collideRight=false; return(true); } if(y3==b1 && x3>=a1 && x3<=a2) { collideUp = true; collideDown=false; collideLeft=false; collideRight=false; return(true); } /********checking asteroid touch spaceship from left direction******/ if(x2==a1 && y4>=b1 && y4<=b3) { collideLeft=true; collideUp = false; collideDown=false; collideRight=false; return(true); } if(x2==a1 && y2>=b1 && y2<=b3) { collideLeft=true; collideUp = false; collideDown=false; collideRight=false; return(true); } /********checking asteroid touch spaceship from right direction*****/ if(x1==a2 && y3>=b2 && y3<=b4) { collideRight=true; collideLeft=false; collideUp = false; collideDown=false; return(true); } if(x1==a2 && y1>=b2 && y1<=b4) { collideRight=true; collideLeft=false; collideUp = false; collideDown=false; return(true); } /********checking asteroid touch spaceship from down direction*****/ if(y1==b3 && x2>=a3 && x2<=a4) { collideDown=true; collideRight=false; collideLeft=false; collideUp = false; return(true); } if(y1==b3 && x1>=a3 && x1<=a4) { collideDown=true; collideRight=false; collideLeft=false; collideUp = false; return(true); } } return(false); } }

    Read the article

  • AJAX/JSONP Question. Access id denied using IE while requesting corss domain.

    - by Sisir
    Ok, Here we go. I have already searched the Stack for the answer i have found some useful info but i want to clear up some more things. I also search the net for the answer but no real help. I have worked with some api (yelp, ouside.in). In yelp i use to inject the script to head with the url request to the api with a callback funcion. I worked fine in all browsers. But while using outside.in api when i call the url the callback in not working. In yelp they have a url field can be used like that callback=callbackfuncion so the callback will automatically called. But in outside.in there is not such field available. Is there are any standard command for callback function which will work regardless of any server/api? I also tried a standard ajax request using jQuery $.ajax() function. It worked for my local pc for both IE and other browser but did not working in IE showing the error: access denied, other borwser seems ok. Firebug in my FF also don't notice any errors. Outside.in has an javascript example but it is too hard to me to understand github.com/outsidein/api-examples/tree/master/javascript/browser/ site i am working: http://citystir.com yelp: yelp.com outside.in: outside.in Techniqual info: i am using: wampserver in local, wordpress for hosting, Godaddy, apache for remote with linux. Codes: Using Jquery $.ajax url is like: "http://hyperlocal-api.outside.in/v1.1/states/Illinois/cities/chicago/stories?dev_key="+key+"&sig="+signeture+"&limit=3 function makeOutsideRequest(url){ $.ajax({ url: url, dataType: 'json', type: 'GET', success: function (data, status, xhr) { if (data == null) { alert("An error occurred connecting to " + url + ". Please ensure that the server is running and configured to allow cross-origin requests."); }else{ printHomeNews(data); } }, error: function (xhr, status, error) { alert("An error occurred - check the server log for a stack trace."); } }); } Thanks!

    Read the article

  • Yii 'limit' on related model's scope

    - by pethee
    I have a model called Guesses that has_many Comments. I'm making eager queries to this to then pass on as JSON as response to an API call. The relations are obviously set between the two models and they are correct(one2many <= belongs2) I added a scope to Comments called 'api' like this: public function scopes() { return array( 'api' => array( 'select' => 'id, comment, date', 'limit'=>3, 'order'=>'date DESC', 'together'=>true, ), ); } And I'm running the following one-liner query: $data = Guesses::model()->with('comments:api')->findAll(); The issue here is that when calling the 'api' scope using a with('relation'), the limit property simply doesn't apply. I added the 'together'=true there for another type of scope, plus I hear it might help. It doesn't make a difference. I don't need all the comments of all Guesses. I want the top 3 (or 5). I am also trying to keep the one-liner call intact and simple, manage everything through scopes, relations and parameterized functions so that the API call itself is clean and simple. Any advice?

    Read the article

  • Friday Fun: Factory Balls – Christmas Edition

    - by Asian Angel
    Your weekend is almost here, but until the work day is over we have another fun holiday game for you. This week your job is to correctly decorate/paint the ornaments that go on the Christmas tree. Simple you say? Maybe, but maybe not! Factory Balls – Christmas Edition The object of the game is to correctly decorate/paint each Christmas ornament exactly as shown in the “sample image” provided for each level. What starts off as simple will quickly have you working to figure out the correct combination or sequence to complete each ornament. Are you ready? The first level serves as a tutorial to help you become comfortable with how to decorate/paint the ornaments. To move an ornament to a paint bucket or cover part of it with one of the helper items simply drag the ornament towards that area. The ornament will automatically move back to its’ starting position when the action is complete. First, a nice coat of red paint followed by covering the middle area with a horizontal belt. Once the belt is on move the ornament to the bucket of yellow paint. Next, you will need to remove the belt, so move the ornament back to the belt’s original position. One ornament finished! As soon as you complete decorating/painting an ornament, you move on to the next level and will be shown the next “sample Image” in the upper right corner. Starting with a coat of orange paint sounds good… Pop the little serrated edge cap on top… Add some blue paint… Almost have it… Place the large serrated edge cap on top… Another dip in the orange paint… And the second ornament is finished. Level three looks a little bit tougher…just work out your pattern of helper items & colors and you will definitely get it! Have fun decorating/painting those ornaments! Note: Starting with level four you will need to start using a combination of two helper items combined at times to properly complete the ornaments. Play Factory Balls – Christmas Edition Latest Features How-To Geek ETC The Complete List of iPad Tips, Tricks, and Tutorials The 50 Best Registry Hacks that Make Windows Better The How-To Geek Holiday Gift Guide (Geeky Stuff We Like) LCD? LED? Plasma? The How-To Geek Guide to HDTV Technology The How-To Geek Guide to Learning Photoshop, Part 8: Filters Improve Digital Photography by Calibrating Your Monitor Exploring the Jungle Ruins Wallpaper Protect Your Privacy When Browsing with Chrome and Iron Browser Free Shipping Day is Friday, December 17, 2010 – National Free Shipping Day Find an Applicable Quote for Any Programming Situation Winter Theme for Windows 7 from Microsoft Score Free In-Flight Wi-Fi Courtesy of Google Chrome

    Read the article

< Previous Page | 229 230 231 232 233 234 235 236 237 238 239 240  | Next Page >