Search Results

Search found 31882 results on 1276 pages for 'mailing list'.

Page 238/1276 | < Previous Page | 234 235 236 237 238 239 240 241 242 243 244 245  | Next Page >

  • Large transactions causing "System.Data.SqlClient.SqlException: Timeout expired" error?

    - by Michael
    My application requires a user to log in and allows them to edit a list of things. However, it seems that if the same user always logs in and out and edits the list, this user will run into a "System.Data.SqlClient.SqlException: Timeout expired." error. I've read comments about increasing the timeout period but I've also read a comment about it possibly caused by uncommitted transactions. And I do have one going in the application. I'll provide the code I'm working with and there is an IF statement in there that I was a little iffy about but it seemed like a reasonable thing to do. I'll just go over what's going on here, there is a list of objects to update or add into the database. New objects created in the application are given an ID of 0 while existing objects have their own ID's generated from the DB. If the user chooses to delete some objects, their IDs are stored in a separate list of Integers. Once the user is ready to save their changes, the two lists are passed into this method. By use of the IF statement, objects with ID of 0 are added (using the Add stored procedure) and those objects with non-zero IDs are updated (using the Update stored procedure). After all this, a FOR loop goes through all the integers in the "removal" list and uses the Delete stored procedure to remove them. A transaction is used for all this. Public Shared Sub UpdateSomethings(ByVal SomethingList As List(Of Something), ByVal RemovalList As List(Of Integer)) Using DBConnection As New SqlConnection(conn) DBConnection.Open() Dim MyTransaction As SqlTransaction MyTransaction = DBConnection.BeginTransaction() Try For Each SomethingItem As Something In SomethingList Using MyCommand As New SqlCommand() MyCommand.Connection = DBConnection If SomethingItem.ID > 0 Then MyCommand.CommandText = "UpdateSomething" Else MyCommand.CommandText = "AddSomething" End If MyCommand.Transaction = MyTransaction MyCommand.CommandType = CommandType.StoredProcedure With MyCommand.Parameters If MyCommand.CommandText = "UpdateSomething" Then .Add("@id", SqlDbType.Int).Value = SomethingItem.ID End If .Add("@stuff", SqlDbType.Varchar).Value = SomethingItem.Stuff End With MyCommand.ExecuteNonQuery() End Using Next For Each ID As Integer In RemovalList Using MyCommand As New SqlCommand("DeleteSomething", DBConnection) MyCommand.Transaction = MyTransaction MyCommand.CommandType = CommandType.StoredProcedure With MyCommand.Parameters .Add("@id", SqlDbType.Int).Value = ID End With MyCommand.ExecuteNonQuery() End Using Next MyTransaction.Commit() Catch ex As Exception MyTransaction.Rollback() 'Exception handling goes here End Try End Using End Sub There are three stored procedures used here as well as some looping so I can see how something can be holding everything up if the list is large enough. Other users can log in to the system at the same time just fine though. I'm using Visual Studio 2008 to debug and am using SQL Server 2000 for the DB.

    Read the article

  • Fix buttons at the bottom of the screen.

    - by Wilson
    I am a beginner in Android programming. I want to build a simple application with a main list view in the screen and two buttons at the bottom of the screen. When more items are added to the list view, the list view should scroll without increasing the overall length of the list view.

    Read the article

  • Accessing child collection in query

    - by Gokul
    I am populating a list using List<Country> countries = new List<Country> { new Country() { CountryID = "US", City = new List<City> { new City() { CountryID = "US", CityName="dfdsf", sqkm = 2803 } } }; and so on How to access sqkm in the following query? var countryQuery = countries .Select(c => new { Id = c.CountryId, Area = c.City.sqkm???}); c.city.sqkm gives compilation error...how to modify query

    Read the article

  • Dynamic swappable Data Access Layer

    - by Andy
    I'm writing a data driven WPF client. The client will typically pull data from a WCF service, which queries a SQL db, but I'd like the option to pull the data directly from SQL or other arbitrary data sources. I've come up with this design and would like to hear your opinion on whether it is the best design. First, we have some data object we'd like to extract from SQL. // The Data Object with a single property public class Customer { private string m_Name = string.Empty; public string Name { get { return m_Name; } set { m_Name = value;} } } Then I plan on using an interface which all data access layers should implement. Suppose one could also use an abstract class. Thoughts? // The interface with a single method interface ICustomerFacade { List<Customer> GetAll(); } One can create a SQL implementation. // Sql Implementation public class SqlCustomrFacade : ICustomerFacade { public List<Customer> GetAll() { // Query SQL db and return something useful // ... return new List<Customer>(); } } We can also create a WCF implementation. The problem with WCF is is that it doesn't use the same data object. It creates its own local version, so we would have to copy the details over somehow. I suppose one could use reflection to copy the values of similar fields across. Thoughts? // Wcf Implementation public class WcfCustomrFacade : ICustomerFacade { public List<Customer> GetAll() { // Get date from the Wcf Service (not defined here) List<WcfService.Customer> wcfCustomers = wcfService.GetAllCustomers(); // The list we're going to return List<Customer> customers = new List<Customer>(); // This is horrible foreach(WcfService.Customer wcfCustomer in wcfCustomers) { Customer customer = new Customer(); customer.Name = wcfCustomer.Name; customers.Add(customer); } return customers; } } I also plan on using a factory to decide which facade to use. // Factory pattern public class FacadeFactory() { public static ICustomerFacade CreateCustomerFacade() { // Determine the facade to use if (ConfigurationManager.AppSettings["DAL"] == "Sql") return new SqlCustomrFacade(); else return new WcfCustomrFacade(); } } This is how the DAL would typically be used. // Test application public class MyApp { public static void Main() { ICustomerFacade cf = FacadeFactory.CreateCustomerFacade(); cf.GetAll(); } } I appreciate your thoughts and time.

    Read the article

  • What is the difference between Equals and = in LINQ?

    - by sunpech
    What is the difference between Equals and = in LINQ? Dim list As List(Of Foo) = (From a As Foo In FooList _ Join b As Bar In BarList _ On a.Something = b.Something _ Select a).ToList() versus Dim list As List(Of Foo) = (From a As Foo In FooList _ Join b As Bar In BarList _ On a.Something Equals b.Something _ Select a).ToList()

    Read the article

  • How would I implement code in a .h file into the main.cpp file?

    - by Lea
    I have a c++ project I am working on. I am a little stumped at the moment. I need a little help. I need to implement code from the .h file into the main.cpp file and I am not sure how to do that. For example code code from main.cpp: switch (choice){ case 1: // open an account { cout << "Please enter the opening balence: $ "; cin >> openBal; cout << endl; cout << "Please enter the account number: "; cin >> accountNum; cout << endl; break; } case 2:// check an account { cout << "Please enter the account number: "; cin >> accountNum; cout << endl; break; } and code from the .h file: void display(ostream& out) const; // displays every item in this list through out bool retrieve(elemType& item) const; // retrieves item from this list // returns true if item is present in this list and // element in this list is copied to item // false otherwise // transformers void insert(const elemType& item); // inserts item into this list // preconditions: list is not full and // item not present in this list // postcondition: item is in this list In the .h file you would need to use the void insert under transformer in the main.cpp under case 1. How would you do that? Any help is apprecaited. I hope I didn't confuse anyone on what I am needing to know how to do. Thanks

    Read the article

  • Contact picker with search function

    - by tiex
    This question1 describes a way how to show list of phone numbers and select one of them if my app needs a phone number. But image if I have a huge contact list, it is not enough to just show list but possibility for filtering (by contact's name) is also needed. Is there a standard way to show phones list with picking possibility and with filtering possibility? (I wouldn't like to invent my own) Is there a solution for the problem for sdk 2.0 and lower?

    Read the article

  • Instantiating custom PropertySourcesPlaceholderConfigurer from spring context

    - by mmona
    I want to define a custom PropertySourcesPlaceholderConfigurer in spring context xml. I want to use there multiple PropertySources, so that I can load part of the configuration from several property files and provide other part dynamically by my custom PropertySource implementation. The advantage is that it should be then easy to adjust the order of loading these property sources just by making modifications to the xml spring configuration. And here I run into a problem: how to define an arbitrary list of PropertySources and inject it into PropertySourcesPlaceholderConfigurer, so that it uses the sources defined by me? Seems to be a basic thing that should be provided by spring, but since yesterday I cannot find a way to do it. Using namespace would enable me to load several property files, but I also need to define the id of the PropertySourcesPlaceholderConfigurer (as other projects refer to it), and also I want to use my custom implementation. That is why I am defining the bean explicitly and not using the namespace. The most intuitive way would be to inject a list of PropertySources into PropertySourcesPlaceholderConfigurer like this: <bean id="applicationPropertyPlaceholderConfigurer" class="org.springframework.context.support.PropertySourcesPlaceholderConfigurer"> <property name="ignoreUnresolvablePlaceholders" value="true" /> <property name="ignoreResourceNotFound" value="true" /> <property name="order" value="0"/> <property name="propertySources"> <list> <!-- my PropertySource objects --> </list> </property> </bean> but unfortunately propertySources is of type PropertySources and does not accept a list. The PropertySources interface has one and only implementor which is MutablePropertySources, which indeed stores list of PropertySource objects, but has no constructor nor setter through which I can inject this list. It only has add*(PropertySource) methods. The only workaround I see now is to implement my own PropertySources class, extending MutablePropertySources, which would accept list of PropertySource objects on creation and manually add it via using add*(PropertySource) method. But why so much workaround would be needed to provide something that I thought was supposed to be the main reason of introducing the PropertySources (having flexible configuration manageable from spring configuration level). Please clarify what am I getting wrong :)

    Read the article

  • Tapestry5 display grid component using a hashmap

    - by Eldred
    Hi there I am trying to attempt to display a hashmap using a grid component. If I use List list = CollectionFactory.newList(MyHashMap) it returns a list however on my template page I see Empty and false when passing my parameter t:souce="list" to my grid component, therefore my grid component only returns one row. Some code snippets would be a great help. Many thanks

    Read the article

  • limiting a query to a specific item

    - by Dev-Ria
    I have a db with thousands of domains and data. I want to list only 100 rows of each domain. i can't use LIMIT 100 cause that only limits 100 records but I want dom1 to list 100 dom2 to list 100 dom3 to list 100 all in one query. This is what I have so far. SELECT domain COUNT(Key) AS DomCount FROM table_domain GROUP BY user,location ORDER BY domain,DomCount DESC Could I use a CASE?

    Read the article

  • How can I get HTTPD to serve the html/php files and not list/index them when they are in folder for virtual host. Using Centos 6.0

    - by LaserBeak
    My virtual hosts are configured as below, initally I could not even get to the /public_html/ directory when typing example.com and apache would just serve me up the default welcome page, I would also get the error: Directory index forbidden by Options directive: /var/www/html/example.com/public_html/ in the log . After editing the welcome.conf page (- Index) so it does not show again when I now type example.com the/public_html/ contents (Index.php) are indexed in the browser. Where as I want it to actually execute and diplay the index.php page. vhost.conf , located in etc/httpd/vhost.d/ NameVirtualHost *:80 <VirtualHost *:80> ServerAdmin [email protected] ServerName localhost ServerAlias localhost.example.com DocumentRoot /var/www/html/example.com/public_html/ ErrorLog /var/www/html/example.com/logs/error.log CustomLog /var/www/html/example.com/logs/access.log combined </VirtualHost> <VirtualHost *:80> ServerAdmin [email protected] ServerName example.org ServerAlias www.example.org DocumentRoot /var/www/html/example.org/public_html/ ErrorLog /var/www/html/example.org/logs/error.log CustomLog /var/www/html/example.org/logs/access.log combined </VirtualHost> httpd.conf, settings on default, added onto end: Include /etc/httpd/vhosts.d/*.conf Root directories: DocumentRoot "/var/www/html"

    Read the article

  • hp smart array lock up code 0x15, what is that? (or where can I get a list of descriptions of HP smart array controller lock up codes)

    - by user47650
    Hi, I've had a couple of Dl180 6g boxes hung over the last week, each have a P410 smart array controller. upon reboot the server has indicated that a controller failure event occurred and the previous lock up code was 0x15 - the server rebooted without issue. However there was nothing in the IML log, but the ADU report provided the following; Trap Address High Or Post Results Lockup Reason Or Post Error RIS Updates Or Post Error Detail Firmware Version Trap Address Low 0x8087 0x0015 0x0000033e 0x015e 0xd65c any suggestions on what that code is, my google fu failed. And hp support have not responded with any detail as yet.

    Read the article

  • How can I find a list of all SSE instructions? What happens if a CPU doesn't support SSE?

    - by Blastcore
    So I've been reading about how processors work. Now I'm on the instructions (SSE, SSE2, etc) stuff. (Which is pretty interesting). I have lot of questions (I've been reading this stuff on Wikipedia): I've saw the names of some instructions that were added on SSE, however there's no explanation about any of them (Maybe SSE4? They're not even listed on Wikipedia). Where can I read about what they do? How do I know which of these instructions are being used? If we do know which are being used, let's say I'm doing a comparison, (This may be the most stupid question I've ever asked, I don't know about assembly, though) Is it possible to directly use the instruction on an assembly code? (I've been looking at this: http://asm.inightmare.org/opcodelst/index.php?op=CMP) How does the processor interpret the instructions? What would happen if I had a processor without any of the SSE instructions? (I suppose in the case we want to do a comparison, we wouldn't be able to, right?)

    Read the article

  • IIS7 unchecked in windows component list yet when go to http://localhost still directs me to IIS7. How to get to Apache?

    - by Ed Hancock
    IIS7 was turned off on my Windows 7 system, Under control panel services and applications no web publishing appears. Have Apache, et. al. installed with Wampserver. Yet when I try to access the local server astill get directed to IIS7 welcome page. After turning off IIS7 restarted computer, no help, eliminated history, no help, deleted IIS7 folders, no help. It is hiding somewhere and I can not find it. Any suggestions/help would be appreciated. Ed

    Read the article

  • How to install GIT on an offline RHEL?

    - by Stijn Vanpoucke
    I'm using the following commands from the manual to install GIT $ tar -zxf git-1.7.2.2.tar.gz $ cd git-1.7.2.2 $ make prefix=/usr/local all $ sudo make prefix=/usr/local install but I'm receiving the following exceptions ... cache.h: At top level: cache.h:746: error: expected declaration specifiers or â...â before âtime_tâ cache.h:889: warning: âstruct timevalâ declared inside parameter list cache.h:895: warning: âstruct timevalâ declared inside parameter list cache.h:970: error: expected specifier-qualifier-list before âoff_tâ cache.h:979: error: expected specifier-qualifier-list before âoff_tâ cache.h:997: error: expected specifier-qualifier-list before âoff_tâ cache.h:1057: error: expected declaration specifiers or â...â before âoff_tâ cache.h:1063: error: expected declaration specifiers or â...â before âuint32_tâ cache.h:1064: error: expected â=â, â,â, â;â, âasmâ or â__attribute__â before ânt h_packed_object_offsetâ cache.h:1065: error: expected â=â, â,â, â;â, âasmâ or â__attribute__â before âfi nd_pack_entry_oneâ cache.h:1067: error: expected declaration specifiers or â...â before âoff_tâ cache.h:1069: error: expected declaration specifiers or â...â before âoff_tâ cache.h:1070: error: expected declaration specifiers or â...â before âoff_tâ cache.h:1094: error: expected specifier-qualifier-list before âoff_tâ cache.h:1168: error: expected â)â before â*â token cache.h:1177: error: expected â=â, â,â, â;â, âasmâ or â__attribute__â before âre ad_in_fullâ cache.h:1178: error: expected â=â, â,â, â;â, âasmâ or â__attribute__â before âwr ite_in_fullâ cache.h:1179: error: expected â=â, â,â, â;â, âasmâ or â__attribute__â before âwr ite_str_in_fullâ cache.h:1252: error: expected declaration specifiers or â...â before âFILEâ In file included from credential-store.c:2: credential.h:28: error: expected declaration specifiers or â...â before âFILEâ credential.h:29: error: expected declaration specifiers or â...â before âFILEâ In file included from credential-store.c:4: parse-options.h:115: error: expected specifier-qualifier-list before âintptr_tâ credential-store.c: In function âparse_credential_fileâ: credential-store.c:13: error: âFILEâ undeclared (first use in this function) credential-store.c:13: error: âfhâ undeclared (first use in this function) credential-store.c:17: warning: implicit declaration of function âfopenâ credential-store.c:19: error: âerrnoâ undeclared (first use in this function) credential-store.c:19: error: âENOENTâ undeclared (first use in this function) credential-store.c:24: error: too many arguments to function âstrbuf_getlineâ credential-store.c:24: error: âEOFâ undeclared (first use in this function) credential-store.c:39: warning: implicit declaration of function âfcloseâ credential-store.c: In function âprint_entryâ: credential-store.c:44: warning: implicit declaration of function âprintfâ credential-store.c:44: warning: incompatible implicit declaration of built-in fu nction âprintfâ credential-store.c: In function âmainâ: credential-store.c:132: warning: implicit declaration of function âumaskâ credential-store.c:144: error: âstdinâ undeclared (first use in this function) credential-store.c:144: error: too many arguments to function âcredential_readâ credential-store.c:147: warning: implicit declaration of function âstrcmpâ Is this because I didn't install the dependencies? apt-get install libcurl4-gnutls-dev libexpat1-dev gettext libz-dev libssl-dev How do I install them offline?

    Read the article

  • An Introduction to jQuery Templates

    - by Stephen Walther
    The goal of this blog entry is to provide you with enough information to start working with jQuery Templates. jQuery Templates enable you to display and manipulate data in the browser. For example, you can use jQuery Templates to format and display a set of database records that you have retrieved with an Ajax call. jQuery Templates supports a number of powerful features such as template tags, template composition, and wrapped templates. I’ll concentrate on the features that I think that you will find most useful. In order to focus on the jQuery Templates feature itself, this blog entry is server technology agnostic. All the samples use HTML pages instead of ASP.NET pages. In a future blog entry, I’ll focus on using jQuery Templates with ASP.NET Web Forms and ASP.NET MVC (You can do some pretty powerful things when jQuery Templates are used on the client and ASP.NET is used on the server). Introduction to jQuery Templates The jQuery Templates plugin was developed by the Microsoft ASP.NET team in collaboration with the open-source jQuery team. While working at Microsoft, I wrote the original proposal for jQuery Templates, Dave Reed wrote the original code, and Boris Moore wrote the final code. The jQuery team – especially John Resig – was very involved in each step of the process. Both the jQuery community and ASP.NET communities were very active in providing feedback. jQuery Templates will be included in the jQuery core library (the jQuery.js library) when jQuery 1.5 is released. Until jQuery 1.5 is released, you can download the jQuery Templates plugin from the jQuery Source Code Repository or you can use jQuery Templates directly from the ASP.NET CDN. The documentation for jQuery Templates is already included with the official jQuery documentation at http://api.jQuery.com. The main entry for jQuery templates is located under the topic plugins/templates. A Basic Sample of jQuery Templates Let’s start with a really simple sample of using jQuery Templates. We’ll use the plugin to display a list of books stored in a JavaScript array. Here’s the complete code: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head> <title>Intro</title> <link href="0_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContent"> <h1>ASP.NET Bookstore</h1> <div id="bookContainer"></div> </div> <script id="bookTemplate" type="text/x-jQuery-tmpl"> <div> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Create an array of books var books = [ { title: "ASP.NET 4 Unleashed", price: 37.79, picture: "AspNet4Unleashed.jpg" }, { title: "ASP.NET MVC Unleashed", price: 44.99, picture: "AspNetMvcUnleashed.jpg" }, { title: "ASP.NET Kick Start", price: 4.00, picture: "AspNetKickStart.jpg" }, { title: "ASP.NET MVC Unleashed iPhone", price: 44.99, picture: "AspNetMvcUnleashedIPhone.jpg" }, ]; // Render the books using the template $("#bookTemplate").tmpl(books).appendTo("#bookContainer"); function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html> When you open this page in a browser, a list of books is displayed: There are several things going on in this page which require explanation. First, notice that the page uses both the jQuery 1.4.4 and jQuery Templates libraries. Both libraries are retrieved from the ASP.NET CDN: <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> You can use the ASP.NET CDN for free (even for production websites). You can learn more about the files included on the ASP.NET CDN by visiting the ASP.NET CDN documentation page. Second, you should notice that the actual template is included in a script tag with a special MIME type: <script id="bookTemplate" type="text/x-jQuery-tmpl"> <div> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> </script> This template is displayed for each of the books rendered by the template. The template displays a book picture, title, and price. Notice that the SCRIPT tag which wraps the template has a MIME type of text/x-jQuery-tmpl. Why is the template wrapped in a SCRIPT tag and why the strange MIME type? When a browser encounters a SCRIPT tag with an unknown MIME type, it ignores the content of the tag. This is the behavior that you want with a template. You don’t want a browser to attempt to parse the contents of a template because this might cause side effects. For example, the template above includes an <img> tag with a src attribute that points at “BookPictures/${picture}”. You don’t want the browser to attempt to load an image at the URL “BookPictures/${picture}”. Instead, you want to prevent the browser from processing the IMG tag until the ${picture} expression is replaced by with the actual name of an image by the jQuery Templates plugin. If you are not worried about browser side-effects then you can wrap a template inside any HTML tag that you please. For example, the following DIV tag would also work with the jQuery Templates plugin: <div id="bookTemplate" style="display:none"> <div> <h2>${title}</h2> price: ${formatPrice(price)} </div> </div> Notice that the DIV tag includes a style=”display:none” attribute to prevent the template from being displayed until the template is parsed by the jQuery Templates plugin. Third, notice that the expression ${…} is used to display the value of a JavaScript expression within a template. For example, the expression ${title} is used to display the value of the book title property. You can use any JavaScript function that you please within the ${…} expression. For example, in the template above, the book price is formatted with the help of the custom JavaScript formatPrice() function which is defined lower in the page. Fourth, and finally, the template is rendered with the help of the tmpl() method. The following statement selects the bookTemplate and renders an array of books using the bookTemplate. The results are appended to a DIV element named bookContainer by using the standard jQuery appendTo() method. $("#bookTemplate").tmpl(books).appendTo("#bookContainer"); Using Template Tags Within a template, you can use any of the following template tags. {{tmpl}} – Used for template composition. See the section below. {{wrap}} – Used for wrapped templates. See the section below. {{each}} – Used to iterate through a collection. {{if}} – Used to conditionally display template content. {{else}} – Used with {{if}} to conditionally display template content. {{html}} – Used to display the value of an HTML expression without encoding the value. Using ${…} or {{= }} performs HTML encoding automatically. {{= }}-- Used in exactly the same way as ${…}. {{! }} – Used for displaying comments. The contents of a {{!...}} tag are ignored. For example, imagine that you want to display a list of blog entries. Each blog entry could, possibly, have an associated list of categories. The following page illustrates how you can use the { if}} and {{each}} template tags to conditionally display categories for each blog entry:   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>each</title> <link href="1_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="blogPostContainer"></div> <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{each categories}} <i>${$value}</i> {{/each}} {{else}} Uncategorized {{/if}} </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> var blogPosts = [ { postTitle: "How to fix a sink plunger in 5 minutes", postEntry: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.", categories: ["HowTo", "Sinks", "Plumbing"] }, { postTitle: "How to remove a broken lightbulb", postEntry: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.", categories: ["HowTo", "Lightbulbs", "Electricity"] }, { postTitle: "New associate website", postEntry: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna." } ]; // Render the blog posts $("#blogPostTemplate").tmpl(blogPosts).appendTo("#blogPostContainer"); </script> </body> </html> When this page is opened in a web browser, the following list of blog posts and categories is displayed: Notice that the first and second blog entries have associated categories but the third blog entry does not. The third blog entry is “Uncategorized”. The template used to render the blog entries and categories looks like this: <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{each categories}} <i>${$value}</i> {{/each}} {{else}} Uncategorized {{/if}} </script> Notice the special expression $value used within the {{each}} template tag. You can use $value to display the value of the current template item. In this case, $value is used to display the value of each category in the collection of categories. Template Composition When building a fancy page, you might want to build a template out of multiple templates. In other words, you might want to take advantage of template composition. For example, imagine that you want to display a list of products. Some of the products are being sold at their normal price and some of the products are on sale. In that case, you might want to use two different templates for displaying a product: a productTemplate and a productOnSaleTemplate. The following page illustrates how you can use the {{tmpl}} tag to build a template from multiple templates:   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Composition</title> <link href="2_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContainer"> <h1>Products</h1> <div id="productListContainer"></div> <!-- Show list of products using composition --> <script id="productListTemplate" type="text/x-jQuery-tmpl"> <div> {{if onSale}} {{tmpl "#productOnSaleTemplate"}} {{else}} {{tmpl "#productTemplate"}} {{/if}} </div> </script> <!-- Show product --> <script id="productTemplate" type="text/x-jQuery-tmpl"> ${name} </script> <!-- Show product on sale --> <script id="productOnSaleTemplate" type="text/x-jQuery-tmpl"> <b>${name}</b> <img src="images/on_sale.png" alt="On Sale" /> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> var products = [ { name: "Laptop", onSale: false }, { name: "Apples", onSale: true }, { name: "Comb", onSale: false } ]; $("#productListTemplate").tmpl(products).appendTo("#productListContainer"); </script> </div> </body> </html>   In the page above, the main template used to display the list of products looks like this: <script id="productListTemplate" type="text/x-jQuery-tmpl"> <div> {{if onSale}} {{tmpl "#productOnSaleTemplate"}} {{else}} {{tmpl "#productTemplate"}} {{/if}} </div> </script>   If a product is on sale then the product is displayed with the productOnSaleTemplate (which includes an on sale image): <script id="productOnSaleTemplate" type="text/x-jQuery-tmpl"> <b>${name}</b> <img src="images/on_sale.png" alt="On Sale" /> </script>   Otherwise, the product is displayed with the normal productTemplate (which does not include the on sale image): <script id="productTemplate" type="text/x-jQuery-tmpl"> ${name} </script>   You can pass a parameter to the {{tmpl}} tag. The parameter becomes the data passed to the template rendered by the {{tmpl}} tag. For example, in the previous section, we used the {{each}} template tag to display a list of categories for each blog entry like this: <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{each categories}} <i>${$value}</i> {{/each}} {{else}} Uncategorized {{/if}} </script>   Another way to create this template is to use template composition like this: <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{tmpl(categories) "#categoryTemplate"}} {{else}} Uncategorized {{/if}} </script> <script id="categoryTemplate" type="text/x-jQuery-tmpl"> <i>${$data}</i> &nbsp; </script>   Using the {{each}} tag or {{tmpl}} tag is largely a matter of personal preference. Wrapped Templates The {{wrap}} template tag enables you to take a chunk of HTML and transform the HTML into another chunk of HTML (think easy XSLT). When you use the {{wrap}} tag, you work with two templates. The first template contains the HTML being transformed and the second template includes the filter expressions for transforming the HTML. For example, you can use the {{wrap}} template tag to transform a chunk of HTML into an interactive tab strip: When you click any of the tabs, you see the corresponding content. This tab strip was created with the following page: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Wrapped Templates</title> <style type="text/css"> body { font-family: Arial; background-color:black; } .tabs div { display:inline-block; border-bottom: 1px solid black; padding:4px; background-color:gray; cursor:pointer; } .tabs div.tabState_true { background-color:white; border-bottom:1px solid white; } .tabBody { border-top:1px solid white; padding:10px; background-color:white; min-height:400px; width:400px; } </style> </head> <body> <div id="tabsView"></div> <script id="tabsContent" type="text/x-jquery-tmpl"> {{wrap "#tabsWrap"}} <h3>Tab 1</h3> <div> Content of tab 1. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 2</h3> <div> Content of tab 2. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 3</h3> <div> Content of tab 3. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> {{/wrap}} </script> <script id="tabsWrap" type="text/x-jquery-tmpl"> <div class="tabs"> {{each $item.html("h3", true)}} <div class="tabState_${$index === selectedTabIndex}"> ${$value} </div> {{/each}} </div> <div class="tabBody"> {{html $item.html("div")[selectedTabIndex]}} </div> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Global for tracking selected tab var selectedTabIndex = 0; // Render the tab strip $("#tabsContent").tmpl().appendTo("#tabsView"); // When a tab is clicked, update the tab strip $("#tabsView") .delegate(".tabState_false", "click", function () { var templateItem = $.tmplItem(this); selectedTabIndex = $(this).index(); templateItem.update(); }); </script> </body> </html>   The “source” for the tab strip is contained in the following template: <script id="tabsContent" type="text/x-jquery-tmpl"> {{wrap "#tabsWrap"}} <h3>Tab 1</h3> <div> Content of tab 1. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 2</h3> <div> Content of tab 2. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 3</h3> <div> Content of tab 3. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> {{/wrap}} </script>   The tab strip is created with a list of H3 elements (which represent each tab) and DIV elements (which represent the body of each tab). Notice that the HTML content is wrapped in the {{wrap}} template tag. This template tag points at the following tabsWrap template: <script id="tabsWrap" type="text/x-jquery-tmpl"> <div class="tabs"> {{each $item.html("h3", true)}} <div class="tabState_${$index === selectedTabIndex}"> ${$value} </div> {{/each}} </div> <div class="tabBody"> {{html $item.html("div")[selectedTabIndex]}} </div> </script> The tabs DIV contains all of the tabs. The {{each}} template tag is used to loop through each of the H3 elements from the source template and render a DIV tag that represents a particular tab. The template item html() method is used to filter content from the “source” HTML template. The html() method accepts a jQuery selector for its first parameter. The tabs are retrieved from the source template by using an h3 filter. The second parameter passed to the html() method – the textOnly parameter -- causes the filter to return the inner text of each h3 element. You can learn more about the html() method at the jQuery website (see the section on $item.html()). The tabBody DIV renders the body of the selected tab. Notice that the {{html}} template tag is used to display the tab body so that HTML content in the body won’t be HTML encoded. The html() method is used, once again, to grab all of the DIV elements from the source HTML template. The selectedTabIndex global variable is used to display the contents of the selected tab. Remote Templates A common feature request for jQuery templates is support for remote templates. Developers want to be able to separate templates into different files. Adding support for remote templates requires only a few lines of extra code (Dave Ward has a nice blog entry on this). For example, the following page uses a remote template from a file named BookTemplate.htm: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Remote Templates</title> <link href="0_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContent"> <h1>ASP.NET Bookstore</h1> <div id="bookContainer"></div> </div> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Create an array of books var books = [ { title: "ASP.NET 4 Unleashed", price: 37.79, picture: "AspNet4Unleashed.jpg" }, { title: "ASP.NET MVC Unleashed", price: 44.99, picture: "AspNetMvcUnleashed.jpg" }, { title: "ASP.NET Kick Start", price: 4.00, picture: "AspNetKickStart.jpg" }, { title: "ASP.NET MVC Unleashed iPhone", price: 44.99, picture: "AspNetMvcUnleashedIPhone.jpg" }, ]; // Get the remote template $.get("BookTemplate.htm", null, function (bookTemplate) { // Render the books using the remote template $.tmpl(bookTemplate, books).appendTo("#bookContainer"); }); function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html>   The remote template is retrieved (and rendered) with the following code: // Get the remote template $.get("BookTemplate.htm", null, function (bookTemplate) { // Render the books using the remote template $.tmpl(bookTemplate, books).appendTo("#bookContainer"); });   This code uses the standard jQuery $.get() method to get the BookTemplate.htm file from the server with an Ajax request. After the BookTemplate.htm file is successfully retrieved, the $.tmpl() method is used to render an array of books with the template. Here’s what the BookTemplate.htm file looks like: <div> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> Notice that the template in the BooksTemplate.htm file is not wrapped by a SCRIPT element. There is no need to wrap the template in this case because there is no possibility that the template will get interpreted before you want it to be interpreted. If you plan to use the bookTemplate multiple times – for example, you are paging or sorting the books -- then you should compile the template into a function and cache the compiled template function. For example, the following page can be used to page through a list of 100 products (using iPhone style More paging). <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Template Caching</title> <link href="6_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <h1>Products</h1> <div id="productContainer"></div> <button id="more">More</button> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Globals var pageIndex = 0; // Create an array of products var products = []; for (var i = 0; i < 100; i++) { products.push({ name: "Product " + (i + 1) }); } // Get the remote template $.get("ProductTemplate.htm", null, function (productTemplate) { // Compile and cache the template $.template("productTemplate", productTemplate); // Render the products renderProducts(0); }); $("#more").click(function () { pageIndex++; renderProducts(); }); function renderProducts() { // Get page of products var pageOfProducts = products.slice(pageIndex * 5, pageIndex * 5 + 5); // Used cached productTemplate to render products $.tmpl("productTemplate", pageOfProducts).appendTo("#productContainer"); } function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html>   The ProductTemplate is retrieved from an external file named ProductTemplate.htm. This template is retrieved only once. Furthermore, it is compiled and cached with the help of the $.template() method: // Get the remote template $.get("ProductTemplate.htm", null, function (productTemplate) { // Compile and cache the template $.template("productTemplate", productTemplate); // Render the products renderProducts(0); });   The $.template() method compiles the HTML representation of the template into a JavaScript function and caches the template function with the name productTemplate. The cached template can be used by calling the $.tmp() method. The productTemplate is used in the renderProducts() method: function renderProducts() { // Get page of products var pageOfProducts = products.slice(pageIndex * 5, pageIndex * 5 + 5); // Used cached productTemplate to render products $.tmpl("productTemplate", pageOfProducts).appendTo("#productContainer"); } In the code above, the first parameter passed to the $.tmpl() method is the name of a cached template. Working with Template Items In this final section, I want to devote some space to discussing Template Items. A new Template Item is created for each rendered instance of a template. For example, if you are displaying a list of 100 products with a template, then 100 Template Items are created. A Template Item has the following properties and methods: data – The data associated with the Template Instance. For example, a product. tmpl – The template associated with the Template Instance. parent – The parent template item if the template is nested. nodes – The HTML content of the template. calls – Used by {{wrap}} template tag. nest – Used by {{tmpl}} template tag. wrap – Used to imperatively enable wrapped templates. html – Used to filter content from a wrapped template. See the above section on wrapped templates. update – Used to re-render a template item. The last method – the update() method -- is especially interesting because it enables you to re-render a template item with new data or even a new template. For example, the following page displays a list of books. When you hover your mouse over any of the books, additional book details are displayed. In the following screenshot, details for ASP.NET Kick Start are displayed. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Template Item</title> <link href="0_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContent"> <h1>ASP.NET Bookstore</h1> <div id="bookContainer"></div> </div> <script id="bookTemplate" type="text/x-jQuery-tmpl"> <div class="bookItem"> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> </script> <script id="bookDetailsTemplate" type="text/x-jQuery-tmpl"> <div class="bookItem"> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} <p> ${description} </p> </div> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Create an array of books var books = [ { title: "ASP.NET 4 Unleashed", price: 37.79, picture: "AspNet4Unleashed.jpg", description: "The most comprehensive book on Microsoft’s new ASP.NET 4.. " }, { title: "ASP.NET MVC Unleashed", price: 44.99, picture: "AspNetMvcUnleashed.jpg", description: "Writing for professional programmers, Walther explains the crucial concepts that make the Model-View-Controller (MVC) development paradigm work…" }, { title: "ASP.NET Kick Start", price: 4.00, picture: "AspNetKickStart.jpg", description: "Visual Studio .NET is the premier development environment for creating .NET applications…." }, { title: "ASP.NET MVC Unleashed iPhone", price: 44.99, picture: "AspNetMvcUnleashedIPhone.jpg", description: "ASP.NET MVC Unleashed for the iPhone…" }, ]; // Render the books using the template $("#bookTemplate").tmpl(books).appendTo("#bookContainer"); // Get compiled details template var bookDetailsTemplate = $("#bookDetailsTemplate").template(); // Add hover handler $(".bookItem").mouseenter(function () { // Get template item associated with DIV var templateItem = $(this).tmplItem(); // Change template to compiled template templateItem.tmpl = bookDetailsTemplate; // Re-render template templateItem.update(); }); function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html>   There are two templates used to display a book: bookTemplate and bookDetailsTemplate. When you hover your mouse over a template item, the standard bookTemplate is swapped out for the bookDetailsTemplate. The bookDetailsTemplate displays a book description. The books are rendered with the bookTemplate with the following line of code: // Render the books using the template $("#bookTemplate").tmpl(books).appendTo("#bookContainer");   The following code is used to swap the bookTemplate and the bookDetailsTemplate to show details for a book: // Get compiled details template var bookDetailsTemplate = $("#bookDetailsTemplate").template(); // Add hover handler $(".bookItem").mouseenter(function () { // Get template item associated with DIV var templateItem = $(this).tmplItem(); // Change template to compiled template templateItem.tmpl = bookDetailsTemplate; // Re-render template templateItem.update(); });   When you hover your mouse over a DIV element rendered by the bookTemplate, the mouseenter handler executes. First, this handler retrieves the Template Item associated with the DIV element by calling the tmplItem() method. The tmplItem() method returns a Template Item. Next, a new template is assigned to the Template Item. Notice that a compiled version of the bookDetailsTemplate is assigned to the Template Item’s tmpl property. The template is compiled earlier in the code by calling the template() method. Finally, the Template Item update() method is called to re-render the Template Item with the bookDetailsTemplate instead of the original bookTemplate. Summary This is a long blog entry and I still have not managed to cover all of the features of jQuery Templates J However, I’ve tried to cover the most important features of jQuery Templates such as template composition, template wrapping, and template items. To learn more about jQuery Templates, I recommend that you look at the documentation for jQuery Templates at the official jQuery website. Another great way to learn more about jQuery Templates is to look at the (unminified) source code.

    Read the article

  • Silverlight for Windows Embedded tutorial (step 4)

    - by Valter Minute
    I’m back with my Silverlight for Windows Embedded tutorial. Sorry for the long delay between step 3 and step 4, the MVP summit and some work related issue prevented me from working on the tutorial during the last weeks. In our first,  second and third tutorial steps we implemented some very simple applications, just to understand the basic structure of a Silverlight for Windows Embedded application, learn how to handle events and how to operate on images. In this third step our sample application will be slightly more complicated, to introduce two new topics: list boxes and custom control. We will also learn how to create controls at runtime. I choose to explain those topics together and provide a sample a bit more complicated than usual just to start to give the feeling of how a “real” Silverlight for Windows Embedded application is organized. As usual we can start using Expression Blend to define our main page. In this case we will have a listbox and a textblock. Here’s the XAML code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="ListDemo.Page" Width="640" Height="480" x:Name="ListPage" xmlns:ListDemo="clr-namespace:ListDemo">   <Grid x:Name="LayoutRoot" Background="White"> <ListBox Margin="19,57,19,66" x:Name="FileList" SelectionChanged="Filelist_SelectionChanged"/> <TextBlock Height="35" Margin="19,8,19,0" VerticalAlignment="Top" TextWrapping="Wrap" x:Name="CurrentDir" Text="TextBlock" FontSize="20"/> </Grid> </UserControl> In our listbox we will load a list of directories, starting from the filesystem root (there are no drives in Windows CE, the filesystem has a single root named “\”). When the user clicks on an item inside the list, the corresponding directory path will be displayed in the TextBlock object and the subdirectories of the selected branch will be shown inside the list. As you can see we declared an event handler for the SelectionChanged event of our listbox. We also used a different font size for the TextBlock, to make it more readable. XAML and Expression Blend allow you to customize your UI pretty heavily, experiment with the tools and discover how you can completely change the aspect of your application without changing a single line of code! Inside our ListBox we want to insert the directory presenting a nice icon and their name, just like you are used to see them inside Windows 7 file explorer, for example. To get this we will define a user control. This is a custom object that will behave like “regular” Silverlight for Windows Embedded objects inside our application. First of all we have to define the look of our custom control, named DirectoryItem, using XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="ListDemo.DirectoryItem" Width="500" Height="80">   <StackPanel x:Name="LayoutRoot" Orientation="Horizontal"> <Canvas Width="31.6667" Height="45.9583" Margin="10,10,10,10" RenderTransformOrigin="0.5,0.5"> <Canvas.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="-31.27"/> <TranslateTransform/> </TransformGroup> </Canvas.RenderTransform> <Rectangle Width="31.6667" Height="45.8414" Canvas.Left="0" Canvas.Top="0.116943" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.569519" Canvas.Top="1.05249" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142632,0.753441" EndPoint="1.01886,0.753441"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142632" CenterY="0.753441" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142632" CenterY="0.753441" Angle="-35.3437"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="2.28036" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="1.34485" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="26.4269" Height="45.8414" Canvas.Left="0.227798" Canvas.Top="0" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="1.25301" Height="45.8414" Canvas.Left="1.70862" Canvas.Top="0.116943" Stretch="Fill" Fill="#FFEBFF07"/> </Canvas> <TextBlock Height="80" x:Name="Name" Width="448" TextWrapping="Wrap" VerticalAlignment="Center" FontSize="24" Text="Directory"/> </StackPanel> </UserControl> As you can see, this XAML contains many graphic elements. Those elements are used to design the folder icon. The original drawing has been designed in Expression Design and then exported as XAML. In Silverlight for Windows Embedded you can use vector images. This means that your images will look good even when scaled or rotated. In our DirectoryItem custom control we have a TextBlock named Name, that will be used to display….(suspense)…. the directory name (I’m too lazy to invent fancy names for controls, and using “boring” intuitive names will make code more readable, I hope!). Now that we have some XAML code, we may execute XAML2CPP to generate part of the aplication code for us. We should then add references to our XAML2CPP generated resource file and include in our code and add a reference to the XAML runtime library to our sources file (you can follow the instruction of the first tutorial step to do that), To generate the code used in this tutorial you need XAML2CPP ver 1.0.1.0, that is downloadable here: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2010/03/08/xaml2cpp-1.0.1.0.aspx We can now create our usual simple Win32 application inside Platform Builder, using the same step described in the first chapter of this tutorial (http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2009/10/01/silverlight-for-embedded-tutorial.aspx). We can declare a class for our main page, deriving it from the template that XAML2CPP generated for us: class ListPage : public TListPage<ListPage> { ... } We will see the ListPage class code in a short time, but before we will see the code of our DirectoryItem user control. This object will be used to populate our list, one item for each directory. To declare a user control things are a bit more complicated (but also in this case XAML2CPP will write most of the “boilerplate” code for use. To interact with a user control you should declare an interface. An interface defines the functions of a user control that can be called inside the application code. Our custom control is currently quite simple and we just need some member functions to store and retrieve a full pathname inside our control. The control will display just the last part of the path inside the control. An interface is declared as a C++ class that has only abstract virtual members. It should also have an UUID associated with it. UUID means Universal Unique IDentifier and it’s a 128 bit number that will identify our interface without the need of specifying its fully qualified name. UUIDs are used to identify COM interfaces and, as we discovered in chapter one, Silverlight for Windows Embedded is based on COM or, at least, provides a COM-like Application Programming Interface (API). Here’s the declaration of the DirectoryItem interface: class __declspec(novtable,uuid("{D38C66E5-2725-4111-B422-D75B32AA8702}")) IDirectoryItem : public IXRCustomUserControl { public:   virtual HRESULT SetFullPath(BSTR fullpath) = 0; virtual HRESULT GetFullPath(BSTR* retval) = 0; }; The interface is derived from IXRCustomControl, this will allow us to add our object to a XAML tree. It declares the two functions needed to set and get the full path, but don’t implement them. Implementation will be done inside the control class. The interface only defines the functions of our control class that are accessible from the outside. It’s a sort of “contract” between our control and the applications that will use it. We must support what’s inside the contract and the application code should know nothing else about our own control. To reference our interface we will use the UUID, to make code more readable we can declare a #define in this way: #define IID_IDirectoryItem __uuidof(IDirectoryItem) Silverlight for Windows Embedded objects (like COM objects) use a reference counting mechanism to handle object destruction. Every time you store a pointer to an object you should call its AddRef function and every time you no longer need that pointer you should call Release. The object keeps an internal counter, incremented for each AddRef and decremented on Release. When the counter reaches 0, the object is destroyed. Managing reference counting in our code can be quite complicated and, since we are lazy (I am, at least!), we will use a great feature of Silverlight for Windows Embedded: smart pointers.A smart pointer can be connected to a Silverlight for Windows Embedded object and manages its reference counting. To declare a smart pointer we must use the XRPtr template: typedef XRPtr<IDirectoryItem> IDirectoryItemPtr; Now that we have defined our interface, it’s time to implement our user control class. XAML2CPP has implemented a class for us, and we have only to derive our class from it, defining the main class and interface of our new custom control: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { ... } XAML2CPP has generated some code for us to support the user control, we don’t have to mind too much about that code, since it will be generated (or written by hand, if you like) always in the same way, for every user control. But knowing how does this works “under the hood” is still useful to understand the architecture of Silverlight for Windows Embedded. Our base class declaration is a bit more complex than the one we used for a simple page in the previous chapters: template <class A,class B> class DirectoryItemUserControlRegister : public XRCustomUserControlImpl<A,B>,public TDirectoryItem<A,XAML2CPPUserControl> { ... } This class derives from the XAML2CPP generated template class, like the ListPage class, but it uses XAML2CPPUserControl for the implementation of some features. This class shares the same ancestor of XAML2CPPPage (base class for “regular” XAML pages), XAML2CPPBase, implements binding of member variables and event handlers but, instead of loading and creating its own XAML tree, it attaches to an existing one. The XAML tree (and UI) of our custom control is created and loaded by the XRCustomUserControlImpl class. This class is part of the Silverlight for Windows Embedded framework and implements most of the functions needed to build-up a custom control in Silverlight (the guys that developed Silverlight for Windows Embedded seem to care about lazy programmers!). We have just to initialize it, providing our class (DirectoryItem) and interface (IDirectoryItem). Our user control class has also a static member: protected:   static HINSTANCE hInstance; This is used to store the HINSTANCE of the modules that contain our user control class. I don’t like this implementation, but I can’t find a better one, so if somebody has good ideas about how to handle the HINSTANCE object, I’ll be happy to hear suggestions! It also implements two static members required by XRCustomUserControlImpl. The first one is used to load the XAML UI of our custom control: static HRESULT GetXamlSource(XRXamlSource* pXamlSource) { pXamlSource->SetResource(hInstance,TEXT("XAML"),IDR_XAML_DirectoryItem); return S_OK; }   It initializes a XRXamlSource object, connecting it to the XAML resource that XAML2CPP has included in our resource script. The other method is used to register our custom control, allowing Silverlight for Windows Embedded to create it when it load some XAML or when an application creates a new control at runtime (more about this later): static HRESULT Register() { return XRCustomUserControlImpl<A,B>::Register(__uuidof(B), L"DirectoryItem", L"clr-namespace:DirectoryItemNamespace"); } To register our control we should provide its interface UUID, the name of the corresponding element in the XAML tree and its current namespace (namespaces compatible with Silverlight must use the “clr-namespace” prefix. We may also register additional properties for our objects, allowing them to be loaded and saved inside XAML. In this case we have no permanent properties and the Register method will just register our control. An additional static method is implemented to allow easy registration of our custom control inside our application WinMain function: static HRESULT RegisterUserControl(HINSTANCE hInstance) { DirectoryItemUserControlRegister::hInstance=hInstance; return DirectoryItemUserControlRegister<A,B>::Register(); } Now our control is registered and we will be able to create it using the Silverlight for Windows Embedded runtime functions. But we need to bind our members and event handlers to have them available like we are used to do for other XAML2CPP generated objects. To bind events and members we need to implement the On_Loaded function: virtual HRESULT OnLoaded(__in IXRDependencyObject* pRoot) { HRESULT retcode; IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; return ((A*)this)->Init(pRoot,hInstance,app); } This function will call the XAML2CPPUserControl::Init member that will connect the “root” member with the XAML sub tree that has been created for our control and then calls BindObjects and BindEvents to bind members and events to our code. Now we can go back to our application code (the code that you’ll have to actually write) to see the contents of our DirectoryItem class: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { protected:   WCHAR fullpath[_MAX_PATH+1];   public:   DirectoryItem() { *fullpath=0; }   virtual HRESULT SetFullPath(BSTR fullpath) { wcscpy_s(this->fullpath,fullpath);   WCHAR* p=fullpath;   for(WCHAR*q=wcsstr(p,L"\\");q;p=q+1,q=wcsstr(p,L"\\")) ;   Name->SetText(p); return S_OK; }   virtual HRESULT GetFullPath(BSTR* retval) { *retval=SysAllocString(fullpath); return S_OK; } }; It’s pretty easy and contains a fullpath member (used to store that path of the directory connected with the user control) and the implementation of the two interface members that can be used to set and retrieve the path. The SetFullPath member parses the full path and displays just the last branch directory name inside the “Name” TextBlock object. As you can see, implementing a user control in Silverlight for Windows Embedded is not too complex and using XAML also for the UI of the control allows us to re-use the same mechanisms that we learnt and used in the previous steps of our tutorial. Now let’s see how the main page is managed by the ListPage class. class ListPage : public TListPage<ListPage> { protected:   // current path TCHAR curpath[_MAX_PATH+1]; It has a member named “curpath” that is used to store the current directory. It’s initialized inside the constructor: ListPage() { *curpath=0; } And it’s value is displayed inside the “CurrentDir” TextBlock inside the initialization function: virtual HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TListPage<ListPage>::Init(hInstance,app))) return retcode;   CurrentDir->SetText(L"\\"); return S_OK; } The FillFileList function is used to enumerate subdirectories of the current dir and add entries for each one inside the list box that fills most of the client area of our main page: HRESULT FillFileList() { HRESULT retcode; IXRItemCollectionPtr items; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; // retrieves the items contained in the listbox if (FAILED(retcode=FileList->GetItems(&items))) return retcode;   // clears the list if (FAILED(retcode=items->Clear())) return retcode;   // enumerates files and directory in the current path WCHAR filemask[_MAX_PATH+1];   wcscpy_s(filemask,curpath); wcscat_s(filemask,L"\\*.*");   WIN32_FIND_DATA finddata; HANDLE findhandle;   findhandle=FindFirstFile(filemask,&finddata);   // the directory is empty? if (findhandle==INVALID_HANDLE_VALUE) return S_OK;   do { if (finddata.dwFileAttributes&=FILE_ATTRIBUTE_DIRECTORY) { IXRListBoxItemPtr listboxitem;   // add a new item to the listbox if (FAILED(retcode=app->CreateObject(IID_IXRListBoxItem,&listboxitem))) { FindClose(findhandle); return retcode; }   if (FAILED(retcode=items->Add(listboxitem,NULL))) { FindClose(findhandle); return retcode; }   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=app->CreateObject(IID_IDirectoryItem,&directoryitem))) { FindClose(findhandle); return retcode; }   WCHAR fullpath[_MAX_PATH+1];   wcscpy_s(fullpath,curpath); wcscat_s(fullpath,L"\\"); wcscat_s(fullpath,finddata.cFileName);   if (FAILED(retcode=directoryitem->SetFullPath(fullpath))) { FindClose(findhandle); return retcode; }   XAML2CPPXRValue value((IXRDependencyObject*)directoryitem);   if (FAILED(retcode=listboxitem->SetContent(&value))) { FindClose(findhandle); return retcode; } } } while (FindNextFile(findhandle,&finddata));   FindClose(findhandle); return S_OK; } This functions retrieve a pointer to the collection of the items contained in the directory listbox. The IXRItemCollection interface is used by listboxes and comboboxes and allow you to clear the list (using Clear(), as our function does at the beginning) and change its contents by adding and removing elements. This function uses the FindFirstFile/FindNextFile functions to enumerate all the objects inside our current directory and for each subdirectory creates a IXRListBoxItem object. You can insert any kind of control inside a list box, you don’t need a IXRListBoxItem, but using it will allow you to handle the selected state of an item, highlighting it inside the list. The function creates a list box item using the CreateObject function of XRApplication. The same function is then used to create an instance of our custom control. The function returns a pointer to the control IDirectoryItem interface and we can use it to store the directory full path inside the object and add it as content of the IXRListBox item object, adding it to the listbox contents. The listbox generates an event (SelectionChanged) each time the user clicks on one of the items contained in the listbox. We implement an event handler for that event and use it to change our current directory and repopulate the listbox. The current directory full path will be displayed in the TextBlock: HRESULT Filelist_SelectionChanged(IXRDependencyObject* source,XRSelectionChangedEventArgs* args) { HRESULT retcode;   IXRListBoxItemPtr listboxitem;   if (!args->pAddedItem) return S_OK;   if (FAILED(retcode=args->pAddedItem->QueryInterface(IID_IXRListBoxItem,(void**)&listboxitem))) return retcode;   XRValue content; if (FAILED(retcode=listboxitem->GetContent(&content))) return retcode;   if (content.vType!=VTYPE_OBJECT) return E_FAIL;   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=content.pObjectVal->QueryInterface(IID_IDirectoryItem,(void**)&directoryitem))) return retcode;   content.pObjectVal->Release(); content.pObjectVal=NULL;   BSTR fullpath=NULL;   if (FAILED(retcode=directoryitem->GetFullPath(&fullpath))) return retcode;   CurrentDir->SetText(fullpath);   wcscpy_s(curpath,fullpath); FillFileList(); SysFreeString(fullpath);     return S_OK; } }; The function uses the pAddedItem member of the XRSelectionChangedEventArgs object to retrieve the currently selected item, converts it to a IXRListBoxItem interface using QueryInterface, and then retrives its contents (IDirectoryItem object). Using the GetFullPath method we can get the full path of our selected directory and assing it to the curdir member. A call to FillFileList will update the listbox contents, displaying the list of subdirectories of the selected folder. To build our sample we just need to add code to our WinMain function: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1;   if (FAILED(retcode=DirectoryItem::RegisterUserControl(hInstance))) return retcode;   ListPage page;   if (FAILED(page.Init(hInstance,app))) return -1;   page.FillFileList();   UINT exitcode;   if (FAILED(page.GetVisualHost()->StartDialog(&exitcode))) return -1;   return 0; } This code is very similar to the one of the WinMains of our previous samples. The main differences are that we register our custom control (you should do that as soon as you have initialized the XAML runtime) and call FillFileList after the initialization of our ListPage object to load the contents of the root folder of our device inside the listbox. As usual you can download the full sample source code from here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/ListBoxTest.zip

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Exchange 2003-Exchange 2010 post migration GAL/OAB problem

    - by user68726
    I am very new to Exchange so forgive my newbie-ness. I've exhausted Google trying to find a way to solve my problem so I'm hoping some of you gurus can shed some light on my next steps. Please forgive my bungling around through this. The problem I cannot download/update the Global Address List (GAL) and Offline Address Book (OAB) on my Outlook 2010 clients. I get: Task 'emailaddress' reported error (0x8004010F) : 'The operation failed. An object cannot be found.' ---- error. I'm using cached exchange mode, which if I turn off Outlook hangs completely from the moment I start it up. (Note I've replaced my actual email address with 'emailaddress') Background information I migrated mailboxes, public store, etc. from a Small Business Server 2003 with Exchange 2003 box to a Server 2008 R2 with Exchange 2010 based primarily on an experts exchange how to article. The exchange server is up and running as an internet facing exchange server with all of the roles necessary to send and receive mail and in that capacity is working fine. I "thought" I had successfully migrated everything from the SBS03 box, and due to huge amounts of errors in everything from AD to the Exchange install itself I removed the reference to the SBS03 server in adsiedit. I've still got access to the old SBS03 box, but as I said the number of errors in everything is preventing even the uninstall of Exchange (or the starting of the Exchange Information Store service), so I'm quite content to leave that box completely out of the picture while trying to solve my problem. After research I discovered this is most likely because I failed to run the “update-globaladdresslist” (or get / update) command from the Exchange shell before I removed the Exchange 2003 server from adsiedit (and the network). If I run the command now it gives me: WARNING: The recipient "domainname.com/Microsoft Exchange System Objects/Offline Address Book - first administrative group" is invalid and couldn't be updated. WARNING: The recipient "domainname.com/Microsoft Exchange System Objects/Schedule+ Free Busy Information – first administrative group" is invalid and couldn't be updated. WARNING: The recipient "domainname.com/Microsoft Exchange System Objects/ContainernameArchive" is invalid and couldn't be updated. WARNING: The recipient "domainname.com/Microsoft Exchange System Objects/ContainernameContacts" is invalid and couldn't be updated. (Note that I’ve replaced my domain with “domainname.com” and my organization name with “containername”) What I’ve tried I don’t want to use the old OAB, or GAL, I don’t care about either, our GAL and distribution lists needed to be organized anyway, so at this point I really just want to get rid of the old reference to the “first administrative group” and move on. I’ve tried to create a new GAL and tell Exchange 2010 to use that GAL instead of the old GAL, but I'm obviously missing some of the commands or something dumb I need to do to start over with a blank slate/GAL/OAB. I'm very tempted to completely delete the entire "first administrative group" tree from adsiedit and see if that gets rid of the ridiculous reference that no longer exists but I dont want to break something else. Commands run to try to create a new GAL and tell exch10 to use that GAL: New-globaladdresslist –name NAMEOFNEWGAL Set-globaladdresslist GUID –name NAMEOFNEWGAL This did nothing for me except now when I run get-globaladdresslist or with the | FL pipe I see two GALs listed, the “default global address list” and the “NAMEOFNEWGAL” that I created. After a little more research this morning it looks like you can't change/delete/remove the default address list, and the only way to do what I'm trying to do would be to maybe remove the default address list via adsiedit and recreate with a command something like new-GlobalAddressList -Name "Default Global Address List" -IncludedRecipients AllRecipients. This would be acceptable but I've searched and searched and can't find instructions or a breakdown of where exactly the default GAL lives in AD, and if I'd have to remove multiple child references/records. Of interest I'm getting an event ID 9337 in my application log OALGen did not find any recipients in address list \Global Address List. This offline address list will not be generated. -\NAMEOFMYOAB --------- on my Exchange 2010 box, which pretty much to me seems to confirm my suspicion that the empty GAL/OAB is what's causing the Outlook client 0x8004010F error. Help please!

    Read the article

  • custom collection in property grid

    - by guyl
    Hi guys. I'm using this article as a reference to use custom collection in propertygrid: LINK When I open the collectioneditor and remove all items then I press OK, I get an exception if null. How can i solve that ? I am using: public T this[int index] { get { if (List.Count == 0) { return default(T); } else { return (T)this.List[index]; } } } as a getter for an item, of course if I have no object how can i restart the whole collection ? this is the whole code /// <summary> /// A generic folder settings collection to use in a property grid. /// </summary> /// <typeparam name="T">can be import or export folder settings.</typeparam> [Serializable] [TypeConverter(typeof(FolderSettingsCollectionConverter)), Editor(typeof(FolderSettingsCollectionEditor), typeof(UITypeEditor))] public class FolderSettingsCollection_New<T> : CollectionBase, ICustomTypeDescriptor { private bool m_bRestrictNumberOfItems; private int m_bNumberOfItems; private Dictionary<string, int> m_UID2Idx = new Dictionary<string, int>(); private T[] arrTmp; /// <summary> /// C'tor, can determine the number of objects to hold. /// </summary> /// <param name="bRestrictNumberOfItems">restrict the number of folders to hold.</param> /// <param name="iNumberOfItems">The number of folders to hold.</param> public FolderSettingsCollection_New(bool bRestrictNumberOfItems = false , int iNumberOfItems = 1) { m_bRestrictNumberOfItems = bRestrictNumberOfItems; m_bNumberOfItems = iNumberOfItems; } /// <summary> /// Add folder to collection. /// </summary> /// <param name="t">Folder to add.</param> public void Add(T t) { if (m_bRestrictNumberOfItems) { if (this.List.Count >= m_bNumberOfItems) { return; } } int index = this.List.Add(t); if (t is WriteDataFolderSettings || t is ReadDataFolderSettings) { FolderSettingsBase tmp = t as FolderSettingsBase; m_UID2Idx.Add(tmp.UID, index); } } /// <summary> /// Remove folder to collection. /// </summary> /// <param name="t">Folder to remove.</param> public void Remove(T t) { this.List.Remove(t); if (t is WriteDataFolderSettings || t is ReadDataFolderSettings) { FolderSettingsBase tmp = t as FolderSettingsBase; m_UID2Idx.Remove(tmp.UID); } } /// <summary> /// Gets ot sets a folder. /// </summary> /// <param name="index">The index of the folder in the collection.</param> /// <returns>A folder object.</returns> public T this[int index] { get { //if (List.Count == 0) //{ // return default(T); //} //else //{ return (T)this.List[index]; //} } } /// <summary> /// Gets or sets a folder. /// </summary> /// <param name="sUID">The UID of the folder.</param> /// <returns>A folder object.</returns> public T this[string sUID] { get { if (this.Count == 0 || !m_UID2Idx.ContainsKey(sUID)) { return default(T); } else { return (T)this.List[m_UID2Idx[sUID]]; } } } /// <summary> /// /// </summary> /// <param name="sUID"></param> /// <returns></returns> public bool ContainsItemByUID(string sUID) { return m_UID2Idx.ContainsKey(sUID); } /// <summary> /// /// </summary> /// <returns></returns> public String GetClassName() { return TypeDescriptor.GetClassName(this, true); } /// <summary> /// /// </summary> /// <returns></returns> public AttributeCollection GetAttributes() { return TypeDescriptor.GetAttributes(this, true); } /// <summary> /// /// </summary> /// <returns></returns> public String GetComponentName() { return TypeDescriptor.GetComponentName(this, true); } /// <summary> /// /// </summary> /// <returns></returns> public TypeConverter GetConverter() { return TypeDescriptor.GetConverter(this, true); } /// <summary> /// /// </summary> /// <returns></returns> public EventDescriptor GetDefaultEvent() { return TypeDescriptor.GetDefaultEvent(this, true); } /// <summary> /// /// </summary> /// <returns></returns> public PropertyDescriptor GetDefaultProperty() { return TypeDescriptor.GetDefaultProperty(this, true); } /// <summary> /// /// </summary> /// <param name="editorBaseType"></param> /// <returns></returns> public object GetEditor(Type editorBaseType) { return TypeDescriptor.GetEditor(this, editorBaseType, true); } /// <summary> /// /// </summary> /// <param name="attributes"></param> /// <returns></returns> public EventDescriptorCollection GetEvents(Attribute[] attributes) { return TypeDescriptor.GetEvents(this, attributes, true); } /// <summary> /// /// </summary> /// <returns></returns> public EventDescriptorCollection GetEvents() { return TypeDescriptor.GetEvents(this, true); } /// <summary> /// /// </summary> /// <param name="pd"></param> /// <returns></returns> public object GetPropertyOwner(PropertyDescriptor pd) { return this; } /// <summary> /// /// </summary> /// <param name="attributes"></param> /// <returns></returns> public PropertyDescriptorCollection GetProperties(Attribute[] attributes) { return GetProperties(); } /// <summary> /// Called to get the properties of this type. /// </summary> /// <returns></returns> public PropertyDescriptorCollection GetProperties() { // Create a collection object to hold property descriptors PropertyDescriptorCollection pds = new PropertyDescriptorCollection(null); // Iterate the list of employees for (int i = 0; i < this.List.Count; i++) { // Create a property descriptor for the employee item and add to the property descriptor collection CollectionPropertyDescriptor_New<T> pd = new CollectionPropertyDescriptor_New<T>(this, i); pds.Add(pd); } // return the property descriptor collection return pds; } public T[] ToArray() { if (arrTmp == null) { arrTmp = new T[List.Count]; for (int i = 0; i < List.Count; i++) { arrTmp[i] = (T)List[i]; } } return arrTmp; } } /// <summary> /// Enable to display data about a collection in a property grid. /// </summary> /// <typeparam name="T">Folder object.</typeparam> public class CollectionPropertyDescriptor_New<T> : PropertyDescriptor { private FolderSettingsCollection_New<T> collection = null; private int index = -1; /// <summary> /// /// </summary> /// <param name="coll"></param> /// <param name="idx"></param> public CollectionPropertyDescriptor_New(FolderSettingsCollection_New<T> coll, int idx) : base("#" + idx.ToString(), null) { this.collection = coll; this.index = idx; } /// <summary> /// /// </summary> public override AttributeCollection Attributes { get { return new AttributeCollection(null); } } /// <summary> /// /// </summary> /// <param name="component"></param> /// <returns></returns> public override bool CanResetValue(object component) { return true; } /// <summary> /// /// </summary> public override Type ComponentType { get { return this.collection.GetType(); } } /// <summary> /// /// </summary> public override string DisplayName { get { if (this.collection[index] != null) { return this.collection[index].ToString(); } else { return null; } } } public override string Description { get { return ""; } } /// <summary> /// /// </summary> /// <param name="component"></param> /// <returns></returns> public override object GetValue(object component) { if (this.collection[index] != null) { return this.collection[index]; } else { return null; } } /// <summary> /// /// </summary> public override bool IsReadOnly { get { return false; } } public override string Name { get { return "#" + index.ToString(); } } /// <summary> /// /// </summary> public override Type PropertyType { get { return this.collection[index].GetType(); } } public override void ResetValue(object component) { } /// <summary> /// /// </summary> /// <param name="component"></param> /// <returns></returns> public override bool ShouldSerializeValue(object component) { return true; } /// <summary> /// /// </summary> /// <param name="component"></param> /// <param name="value"></param> public override void SetValue(object component, object value) { // this.collection[index] = value; } }

    Read the article

  • jQuery Globalization Plugin from Microsoft

    - by ScottGu
    Last month I blogged about how Microsoft is starting to make code contributions to jQuery, and about some of the first code contributions we were working on: jQuery Templates and Data Linking support. Today, we released a prototype of a new jQuery Globalization Plugin that enables you to add globalization support to your JavaScript applications. This plugin includes globalization information for over 350 cultures ranging from Scottish Gaelic, Frisian, Hungarian, Japanese, to Canadian English.  We will be releasing this plugin to the community as open-source. You can download our prototype for the jQuery Globalization plugin from our Github repository: http://github.com/nje/jquery-glob You can also download a set of samples that demonstrate some simple use-cases with it here. Understanding Globalization The jQuery Globalization plugin enables you to easily parse and format numbers, currencies, and dates for different cultures in JavaScript. For example, you can use the Globalization plugin to display the proper currency symbol for a culture: You also can use the Globalization plugin to format dates so that the day and month appear in the right order and the day and month names are correctly translated: Notice above how the Arabic year is displayed as 1431. This is because the year has been converted to use the Arabic calendar. Some cultural differences, such as different currency or different month names, are obvious. Other cultural differences are surprising and subtle. For example, in some cultures, the grouping of numbers is done unevenly. In the "te-IN" culture (Telugu in India), groups have 3 digits and then 2 digits. The number 1000000 (one million) is written as "10,00,000". Some cultures do not group numbers at all. All of these subtle cultural differences are handled by the jQuery Globalization plugin automatically. Getting dates right can be especially tricky. Different cultures have different calendars such as the Gregorian and UmAlQura calendars. A single culture can even have multiple calendars. For example, the Japanese culture uses both the Gregorian calendar and a Japanese calendar that has eras named after Japanese emperors. The Globalization Plugin includes methods for converting dates between all of these different calendars. Using Language Tags The jQuery Globalization plugin uses the language tags defined in the RFC 4646 and RFC 5646 standards to identity cultures (see http://tools.ietf.org/html/rfc5646). A language tag is composed out of one or more subtags separated by hyphens. For example: Language Tag Language Name (in English) en-AU English (Australia) en-BZ English (Belize) en-CA English (Canada) Id Indonesian zh-CHS Chinese (Simplified) Legacy Zu isiZulu Notice that a single language, such as English, can have several language tags. Speakers of English in Canada format numbers, currencies, and dates using different conventions than speakers of English in Australia or the United States. You can find the language tag for a particular culture by using the Language Subtag Lookup tool located here:  http://rishida.net/utils/subtags/ The jQuery Globalization plugin download includes a folder named globinfo that contains the information for each of the 350 cultures. Actually, this folder contains more than 700 files because the folder includes both minified and un-minified versions of each file. For example, the globinfo folder includes JavaScript files named jQuery.glob.en-AU.js for English Australia, jQuery.glob.id.js for Indonesia, and jQuery.glob.zh-CHS for Chinese (Simplified) Legacy. Example: Setting a Particular Culture Imagine that you have been asked to create a German website and want to format all of the dates, currencies, and numbers using German formatting conventions correctly in JavaScript on the client. The HTML for the page might look like this: Notice the span tags above. They mark the areas of the page that we want to format with the Globalization plugin. We want to format the product price, the date the product is available, and the units of the product in stock. To use the jQuery Globalization plugin, we’ll add three JavaScript files to the page: the jQuery library, the jQuery Globalization plugin, and the culture information for a particular language: In this case, I’ve statically added the jQuery.glob.de-DE.js JavaScript file that contains the culture information for German. The language tag “de-DE” is used for German as spoken in Germany. Now that I have all of the necessary scripts, I can use the Globalization plugin to format the product price, date available, and units in stock values using the following client-side JavaScript: The jQuery Globalization plugin extends the jQuery library with new methods - including new methods named preferCulture() and format(). The preferCulture() method enables you to set the default culture used by the jQuery Globalization plugin methods. Notice that the preferCulture() method accepts a language tag. The method will find the closest culture that matches the language tag. The $.format() method is used to actually format the currencies, dates, and numbers. The second parameter passed to the $.format() method is a format specifier. For example, passing “c” causes the value to be formatted as a currency. The ReadMe file at github details the meaning of all of the various format specifiers: http://github.com/nje/jquery-glob When we open the page in a browser, everything is formatted correctly according to German language conventions. A euro symbol is used for the currency symbol. The date is formatted using German day and month names. Finally, a period instead of a comma is used a number separator: You can see a running example of the above approach with the 3_GermanSite.htm file in this samples download. Example: Enabling a User to Dynamically Select a Culture In the previous example we explicitly said that we wanted to globalize in German (by referencing the jQuery.glob.de-DE.js file). Let’s now look at the first of a few examples that demonstrate how to dynamically set the globalization culture to use. Imagine that you want to display a dropdown list of all of the 350 cultures in a page. When someone selects a culture from the dropdown list, you want all of the dates in the page to be formatted using the selected culture. Here’s the HTML for the page: Notice that all of the dates are contained in a <span> tag with a data-date attribute (data-* attributes are a new feature of HTML 5 that conveniently also still work with older browsers). We’ll format the date represented by the data-date attribute when a user selects a culture from the dropdown list. In order to display dates for any possible culture, we’ll include the jQuery.glob.all.js file like this: The jQuery Globalization plugin includes a JavaScript file named jQuery.glob.all.js. This file contains globalization information for all of the more than 350 cultures supported by the Globalization plugin.  At 367KB minified, this file is not small. Because of the size of this file, unless you really need to use all of these cultures at the same time, we recommend that you add the individual JavaScript files for particular cultures that you intend to support instead of the combined jQuery.glob.all.js to a page. In the next sample I’ll show how to dynamically load just the language files you need. Next, we’ll populate the dropdown list with all of the available cultures. We can use the $.cultures property to get all of the loaded cultures: Finally, we’ll write jQuery code that grabs every span element with a data-date attribute and format the date: The jQuery Globalization plugin’s parseDate() method is used to convert a string representation of a date into a JavaScript date. The plugin’s format() method is used to format the date. The “D” format specifier causes the date to be formatted using the long date format. And now the content will be globalized correctly regardless of which of the 350 languages a user visiting the page selects.  You can see a running example of the above approach with the 4_SelectCulture.htm file in this samples download. Example: Loading Globalization Files Dynamically As mentioned in the previous section, you should avoid adding the jQuery.glob.all.js file to a page whenever possible because the file is so large. A better alternative is to load the globalization information that you need dynamically. For example, imagine that you have created a dropdown list that displays a list of languages: The following jQuery code executes whenever a user selects a new language from the dropdown list. The code checks whether the globalization file associated with the selected language has already been loaded. If the globalization file has not been loaded then the globalization file is loaded dynamically by taking advantage of the jQuery $.getScript() method. The globalizePage() method is called after the requested globalization file has been loaded, and contains the client-side code to perform the globalization. The advantage of this approach is that it enables you to avoid loading the entire jQuery.glob.all.js file. Instead you only need to load the files that you need and you don’t need to load the files more than once. The 5_Dynamic.htm file in this samples download demonstrates how to implement this approach. Example: Setting the User Preferred Language Automatically Many websites detect a user’s preferred language from their browser settings and automatically use it when globalizing content. A user can set a preferred language for their browser. Then, whenever the user requests a page, this language preference is included in the request in the Accept-Language header. When using Microsoft Internet Explorer, you can set your preferred language by following these steps: Select the menu option Tools, Internet Options. Select the General tab. Click the Languages button in the Appearance section. Click the Add button to add a new language to the list of languages. Move your preferred language to the top of the list. Notice that you can list multiple languages in the Language Preference dialog. All of these languages are sent in the order that you listed them in the Accept-Language header: Accept-Language: fr-FR,id-ID;q=0.7,en-US;q=0.3 Strangely, you cannot retrieve the value of the Accept-Language header from client JavaScript. Microsoft Internet Explorer and Mozilla Firefox support a bevy of language related properties exposed by the window.navigator object, such as windows.navigator.browserLanguage and window.navigator.language, but these properties represent either the language set for the operating system or the language edition of the browser. These properties don’t enable you to retrieve the language that the user set as his or her preferred language. The only reliable way to get a user’s preferred language (the value of the Accept-Language header) is to write server code. For example, the following ASP.NET page takes advantage of the server Request.UserLanguages property to assign the user’s preferred language to a client JavaScript variable named acceptLanguage (which then allows you to access the value using client-side JavaScript): In order for this code to work, the culture information associated with the value of acceptLanguage must be included in the page. For example, if someone’s preferred culture is fr-FR (French in France) then you need to include either the jQuery.glob.fr-FR.js or the jQuery.glob.all.js JavaScript file in the page or the culture information won’t be available.  The “6_AcceptLanguages.aspx” sample in this samples download demonstrates how to implement this approach. If the culture information for the user’s preferred language is not included in the page then the $.preferCulture() method will fall back to using the neutral culture (for example, using jQuery.glob.fr.js instead of jQuery.glob.fr-FR.js). If the neutral culture information is not available then the $.preferCulture() method falls back to the default culture (English). Example: Using the Globalization Plugin with the jQuery UI DatePicker One of the goals of the Globalization plugin is to make it easier to build jQuery widgets that can be used with different cultures. We wanted to make sure that the jQuery Globalization plugin could work with existing jQuery UI plugins such as the DatePicker plugin. To that end, we created a patched version of the DatePicker plugin that can take advantage of the Globalization plugin when rendering a calendar. For example, the following figure illustrates what happens when you add the jQuery Globalization and the patched jQuery UI DatePicker plugin to a page and select Indonesian as the preferred culture: Notice that the headers for the days of the week are displayed using Indonesian day name abbreviations. Furthermore, the month names are displayed in Indonesian. You can download the patched version of the jQuery UI DatePicker from our github website. Or you can use the version included in this samples download and used by the 7_DatePicker.htm sample file. Summary I’m excited about our continuing participation in the jQuery community. This Globalization plugin is the third jQuery plugin that we’ve released. We’ve really appreciated all of the great feedback and design suggestions on the jQuery templating and data-linking prototypes that we released earlier this year.  We also want to thank the jQuery and jQuery UI teams for working with us to create these plugins. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. You can follow me at: twitter.com/scottgu

    Read the article

< Previous Page | 234 235 236 237 238 239 240 241 242 243 244 245  | Next Page >