I am trying to apply a texture onto my 3d cube but it is not showing up correctly. I believe that it might some what be working because the cube is all brown which is almost the same complexion as the texture. And I did not originally make the cube brown. These are the steps I've done to add the texture
I first declared 2 new varibles
ID3D10EffectShaderResourceVariable* pTextureSR;
ID3D10ShaderResourceView* textureSRV;
I also added a variable and a struct to my shader .fx file
Texture2D tex2D;
SamplerState linearSampler
{
Filter = MIN_MAG_MIP_LINEAR;
AddressU = Wrap;
AddressV = Wrap;
};
I then grabbed the image from my local hard drive from within the .cpp file. I believe this was successful, I checked all varibles for errors, everything has a memory address. Plus I pulled resources before and never had a problem.
D3DX10CreateShaderResourceViewFromFile(mpD3DDevice,L"crate.jpg",NULL,NULL,&textureSRV,NULL);
I grabbed the tex2d varible from my fx file and placed into my resource varible
pTextureSR = modelObject.pEffect->GetVariableByName("tex2D")->AsShaderResource();
And added the resource to the varible
pTextureSR->SetResource(textureSRV);
I also added the extra property to my vertex layout
D3D10_INPUT_ELEMENT_DESC layout[] = {
{"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0},
{"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0},
{"NORMAL",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 24, D3D10_INPUT_PER_VERTEX_DATA, 0},
{"TEXCOORD",0, DXGI_FORMAT_R32G32_FLOAT, 0 , 36, D3D10_INPUT_PER_VERTEX_DATA, 0}
};
as well as my struct
struct VertexPos
{
D3DXVECTOR3 pos;
D3DXVECTOR4 color;
D3DXVECTOR3 normal;
D3DXVECTOR2 texCoord;
};
Then I created a new pixel shader that adds the texture to it. Below is the code in its entirety
matrix Projection;
matrix WorldMatrix;
Texture2D tex2D;
float3 lightSource;
float4 lightColor = {0.5, 0.5, 0.5, 0.5};
// PS_INPUT - input variables to the pixel shader
// This struct is created and fill in by the
// vertex shader
struct PS_INPUT
{
float4 Pos : SV_POSITION;
float4 Color : COLOR0;
float4 Normal : NORMAL;
float2 Tex : TEXCOORD;
};
SamplerState linearSampler
{
Filter = MIN_MAG_MIP_LINEAR;
AddressU = Wrap;
AddressV = Wrap;
};
////////////////////////////////////////////////
// Vertex Shader - Main Function
///////////////////////////////////////////////
PS_INPUT VS(float4 Pos : POSITION, float4 Color : COLOR, float4 Normal : NORMAL, float2 Tex : TEXCOORD)
{
PS_INPUT psInput;
// Pass through both the position and the color
psInput.Pos = mul( Pos, Projection );
psInput.Normal = Normal;
psInput.Tex = Tex;
return psInput;
}
///////////////////////////////////////////////
// Pixel Shader
///////////////////////////////////////////////
float4 PS(PS_INPUT psInput) : SV_Target
{
float4 finalColor = 0;
finalColor = saturate(dot(lightSource, psInput.Normal) * lightColor);
return finalColor;
}
float4 textured( PS_INPUT psInput ) : SV_Target
{
return tex2D.Sample( linearSampler, psInput.Tex );
}
// Define the technique
technique10 Render
{
pass P0
{
SetVertexShader( CompileShader( vs_4_0, VS() ) );
SetGeometryShader( NULL );
SetPixelShader( CompileShader( ps_4_0, textured() ) );
}
}
Below is my CPU code. It maybe a little sloppy. But I am just adding code anywhere cause I am just experimenting and playing around. You should find most of the texture code at the bottom createObject
#include "MyGame.h"
#include "OneColorCube.h"
/* This code sets a projection and shows a turning cube. What has been added is the project, rotation and
a rasterizer to change the rasterization of the cube. The issue that was going on was something with the effect file
which was causing the vertices not to be rendered correctly.*/
typedef struct
{
ID3D10Effect* pEffect;
ID3D10EffectTechnique* pTechnique;
//vertex information
ID3D10Buffer* pVertexBuffer;
ID3D10Buffer* pIndicesBuffer;
ID3D10InputLayout* pVertexLayout;
UINT numVertices;
UINT numIndices;
}ModelObject;
ModelObject modelObject;
// World Matrix
D3DXMATRIX WorldMatrix;
// View Matrix
D3DXMATRIX ViewMatrix;
// Projection Matrix
D3DXMATRIX ProjectionMatrix;
ID3D10EffectMatrixVariable* pProjectionMatrixVariable = NULL;
ID3D10EffectMatrixVariable* pWorldMatrixVarible = NULL;
ID3D10EffectVectorVariable* pLightVarible = NULL;
ID3D10EffectShaderResourceVariable* pTextureSR;
bool MyGame::InitDirect3D()
{
if(!DX3dApp::InitDirect3D())
{
return false;
}
D3D10_RASTERIZER_DESC rastDesc;
rastDesc.FillMode = D3D10_FILL_WIREFRAME;
rastDesc.CullMode = D3D10_CULL_FRONT;
rastDesc.FrontCounterClockwise = true;
rastDesc.DepthBias = false;
rastDesc.DepthBiasClamp = 0;
rastDesc.SlopeScaledDepthBias = 0;
rastDesc.DepthClipEnable = false;
rastDesc.ScissorEnable = false;
rastDesc.MultisampleEnable = false;
rastDesc.AntialiasedLineEnable = false;
ID3D10RasterizerState *g_pRasterizerState;
mpD3DDevice->CreateRasterizerState(&rastDesc, &g_pRasterizerState);
//mpD3DDevice->RSSetState(g_pRasterizerState);
// Set up the World Matrix
D3DXMatrixIdentity(&WorldMatrix);
D3DXMatrixLookAtLH(&ViewMatrix, new D3DXVECTOR3(0.0f, 10.0f, -20.0f), new D3DXVECTOR3(0.0f, 0.0f, 0.0f), new D3DXVECTOR3(0.0f, 1.0f, 0.0f));
// Set up the projection matrix
D3DXMatrixPerspectiveFovLH(&ProjectionMatrix, (float)D3DX_PI * 0.5f, (float)mWidth/(float)mHeight, 0.1f, 100.0f);
if(!CreateObject())
{
return false;
}
return true;
}
//These are actions that take place after the clearing of the buffer and before the present
void MyGame::GameDraw()
{
static float rotationAngleY = 15.0f;
static float rotationAngleX = 0.0f;
static D3DXMATRIX rotationXMatrix;
static D3DXMATRIX rotationYMatrix;
D3DXMatrixIdentity(&rotationXMatrix);
D3DXMatrixIdentity(&rotationYMatrix);
// create the rotation matrix using the rotation angle
D3DXMatrixRotationY(&rotationYMatrix, rotationAngleY);
D3DXMatrixRotationX(&rotationXMatrix, rotationAngleX);
rotationAngleY += (float)D3DX_PI * 0.0008f;
rotationAngleX += (float)D3DX_PI * 0.0005f;
WorldMatrix = rotationYMatrix * rotationXMatrix;
// Set the input layout
mpD3DDevice->IASetInputLayout(modelObject.pVertexLayout);
pWorldMatrixVarible->SetMatrix((float*)&WorldMatrix);
// Set vertex buffer
UINT stride = sizeof(VertexPos);
UINT offset = 0;
mpD3DDevice->IASetVertexBuffers(0, 1, &modelObject.pVertexBuffer, &stride, &offset);
// Set primitive topology
mpD3DDevice->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
//ViewMatrix._43 += 0.005f;
// Combine and send the final matrix to the shader
D3DXMATRIX finalMatrix = (WorldMatrix * ViewMatrix * ProjectionMatrix);
pProjectionMatrixVariable->SetMatrix((float*)&finalMatrix);
// make sure modelObject is valid
// Render a model object
D3D10_TECHNIQUE_DESC techniqueDescription;
modelObject.pTechnique->GetDesc(&techniqueDescription);
// Loop through the technique passes
for(UINT p=0; p < techniqueDescription.Passes; ++p)
{
modelObject.pTechnique->GetPassByIndex(p)->Apply(0);
// draw the cube using all 36 vertices and 12 triangles
mpD3DDevice->Draw(36,0);
}
}
//Render actually incapsulates Gamedraw, so you can call data before you actually clear the buffer or after you
//present data
void MyGame::Render()
{
DX3dApp::Render();
}
bool MyGame::CreateObject()
{
//Create Layout
D3D10_INPUT_ELEMENT_DESC layout[] = {
{"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0},
{"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0},
{"NORMAL",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 24, D3D10_INPUT_PER_VERTEX_DATA, 0},
{"TEXCOORD",0, DXGI_FORMAT_R32G32_FLOAT, 0 , 36, D3D10_INPUT_PER_VERTEX_DATA, 0}
};
UINT numElements = (sizeof(layout)/sizeof(layout[0]));
modelObject.numVertices = sizeof(vertices)/sizeof(VertexPos);
for(int i = 0; i < modelObject.numVertices; i += 3)
{
D3DXVECTOR3 out;
D3DXVECTOR3 v1 = vertices[0 + i].pos;
D3DXVECTOR3 v2 = vertices[1 + i].pos;
D3DXVECTOR3 v3 = vertices[2 + i].pos;
D3DXVECTOR3 u = v2 - v1;
D3DXVECTOR3 v = v3 - v1;
D3DXVec3Cross(&out, &u, &v);
D3DXVec3Normalize(&out, &out);
vertices[0 + i].normal = out;
vertices[1 + i].normal = out;
vertices[2 + i].normal = out;
}
//Create buffer desc
D3D10_BUFFER_DESC bufferDesc;
bufferDesc.Usage = D3D10_USAGE_DEFAULT;
bufferDesc.ByteWidth = sizeof(VertexPos) * modelObject.numVertices;
bufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;
bufferDesc.CPUAccessFlags = 0;
bufferDesc.MiscFlags = 0;
D3D10_SUBRESOURCE_DATA initData;
initData.pSysMem = vertices;
//Create the buffer
HRESULT hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pVertexBuffer);
if(FAILED(hr))
return false;
/*
//Create indices
DWORD indices[] =
{
0,1,3,
1,2,3
};
ModelObject.numIndices = sizeof(indices)/sizeof(DWORD);
bufferDesc.ByteWidth = sizeof(DWORD) * ModelObject.numIndices;
bufferDesc.BindFlags = D3D10_BIND_INDEX_BUFFER;
initData.pSysMem = indices;
hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &ModelObject.pIndicesBuffer);
if(FAILED(hr))
return false;*/
/////////////////////////////////////////////////////////////////////////////
//Set up fx files
LPCWSTR effectFilename = L"effect.fx";
modelObject.pEffect = NULL;
hr = D3DX10CreateEffectFromFile(effectFilename,
NULL,
NULL,
"fx_4_0",
D3D10_SHADER_ENABLE_STRICTNESS,
0,
mpD3DDevice,
NULL,
NULL,
&modelObject.pEffect,
NULL,
NULL);
if(FAILED(hr))
return false;
pProjectionMatrixVariable = modelObject.pEffect->GetVariableByName("Projection")->AsMatrix();
pWorldMatrixVarible = modelObject.pEffect->GetVariableByName("WorldMatrix")->AsMatrix();
pTextureSR = modelObject.pEffect->GetVariableByName("tex2D")->AsShaderResource();
ID3D10ShaderResourceView* textureSRV;
D3DX10CreateShaderResourceViewFromFile(mpD3DDevice,L"crate.jpg",NULL,NULL,&textureSRV,NULL);
pLightVarible = modelObject.pEffect->GetVariableByName("lightSource")->AsVector();
//Dont sweat the technique. Get it!
LPCSTR effectTechniqueName = "Render";
D3DXVECTOR3 vLight(1.0f, 1.0f, 1.0f);
pLightVarible->SetFloatVector(vLight);
modelObject.pTechnique = modelObject.pEffect->GetTechniqueByName(effectTechniqueName);
if(modelObject.pTechnique == NULL)
return false;
pTextureSR->SetResource(textureSRV);
//Create Vertex layout
D3D10_PASS_DESC passDesc;
modelObject.pTechnique->GetPassByIndex(0)->GetDesc(&passDesc);
hr = mpD3DDevice->CreateInputLayout(layout, numElements,
passDesc.pIAInputSignature,
passDesc.IAInputSignatureSize,
&modelObject.pVertexLayout);
if(FAILED(hr))
return false;
return true;
}
And here is my cube coordinates. I actually only added coordinates to one side. And that is the front side. To double check I flipped the cube in all directions just to make sure i didnt accidentally place the text on the incorrect side
//Create vectors and put in vertices
// Create vertex buffer
VertexPos vertices[] =
{
// BACK SIDES
{ D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(1.0,0.0)},
{ D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)},
{ D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
// 2 FRONT SIDE
{ D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(2.0,0.0)},
{ D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,2.0)},
{ D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,2.0)},
{ D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f) , D3DXVECTOR2(2.0,0.0)},
{ D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(2.0,2.0)},
// 3
{ D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
// 4
{ D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
// 5
{ D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)},
{ D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)},
// 6
{D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
{D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)},
};