Search Results

Search found 3797 results on 152 pages for 'talk'.

Page 24/152 | < Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >

  • Red Gate's on the road in 2012 - Will you catch us?

    - by RedAndTheCommunity
    Annabel Bradford, our Communities and Events Manager, tells all about her experience of our 1st SQL Saturday of the year. The first stop this year was SQL Saturday #104 Colorado Springs, back in early January. I made the trip across from the UK just for this SQL Saturday event, and I'm so glad I did. I picked up Max from Red Gate's Pasadena office and we flew into Colorado Springs airport late on Friday evening to be greeted by freezing temperatures, which was quite a shock after the California sunshine. Rising before the sun, we arrived at Mr Biggs, the venue for the event, in the darkness. It was great to see so many smiling attendees so bright and early on a Saturday morning. Everyone was eager to learn more about SQL Server, and hundreds of people came and chatted with us at the table, saw demos and learnt more about Red Gate tools. The event highlights for the attendees were definitely the unlimited lazer quest, bowling and pool available during the break times. For Max, Grant Fritchey and I on the Red Gate table, the highlights have to be meeting customers and getting the opportunity to meet attendees who'd heard of, but wanted to know more about, Red Gate. We were delighted to hear lots of valuable feedback that we took back to share with the team. As a thank you for sharing insights about their work lives and how they use SQL Server and Red Gate tools, attendees are able to take away Red Gate SQL Server books. We aim to have a range of titles available when we exhibit, so that attendees can choose a book that's going to be most interesting to them, and that they can use as a reference back at the office. Every time I meet a Red Gate user or a member of the SQL community, I'm always overwhelmed by the enthusiasm they have for their industry. Everyone who gives up their time to learn more about their job should be rewarded, and at Red Gate we like to do just that. Red Gate has long supported the SQL community through sponsorship to facilitate user group meetings and community events, but it's only though face-to-face contact that we really get a chance to see the impact of our support. I hope we'll have the chance to see you on the road at some point this year. We'll be at a range of events, including free SQL Saturdays, one day free events 'the Red Gate way', two-day Rallys, and full-week conferences. Next stop is SQL Saturday #109 Silicon Valley on March 3rd where you'll meet Jeff and Arneh, two of our US-based SQL team members. Be sure to ask them any questions you've got about the Red Gate tools, as these guys will be delighted to hear your questions, show you the options, and will make a note of your feedback to send through to the development team. Until the next time. Happy learning! Annabel                         Grant, Max and Annabel at SQL Saturday #104 Colorado Springs

    Read the article

  • SortedDictionary and SortedList

    - by Simon Cooper
    Apart from Dictionary<TKey, TValue>, there's two other dictionaries in the BCL - SortedDictionary<TKey, TValue> and SortedList<TKey, TValue>. On the face of it, these two classes do the same thing - provide an IDictionary<TKey, TValue> interface where the iterator returns the items sorted by the key. So what's the difference between them, and when should you use one rather than the other? (as in my previous post, I'll assume you have some basic algorithm & datastructure knowledge) SortedDictionary We'll first cover SortedDictionary. This is implemented as a special sort of binary tree called a red-black tree. Essentially, it's a binary tree that uses various constraints on how the nodes of the tree can be arranged to ensure the tree is always roughly balanced (for more gory algorithmical details, see the wikipedia link above). What I'm concerned about in this post is how the .NET SortedDictionary is actually implemented. In .NET 4, behind the scenes, the actual implementation of the tree is delegated to a SortedSet<KeyValuePair<TKey, TValue>>. One example tree might look like this: Each node in the above tree is stored as a separate SortedSet<T>.Node object (remember, in a SortedDictionary, T is instantiated to KeyValuePair<TKey, TValue>): class Node { public bool IsRed; public T Item; public SortedSet<T>.Node Left; public SortedSet<T>.Node Right; } The SortedSet only stores a reference to the root node; all the data in the tree is accessed by traversing the Left and Right node references until you reach the node you're looking for. Each individual node can be physically stored anywhere in memory; what's important is the relationship between the nodes. This is also why there is no constructor to SortedDictionary or SortedSet that takes an integer representing the capacity; there are no internal arrays that need to be created and resized. This may seen trivial, but it's an important distinction between SortedDictionary and SortedList that I'll cover later on. And that's pretty much it; it's a standard red-black tree. Plenty of webpages and datastructure books cover the algorithms behind the tree itself far better than I could. What's interesting is the comparions between SortedDictionary and SortedList, which I'll cover at the end. As a side point, SortedDictionary has existed in the BCL ever since .NET 2. That means that, all through .NET 2, 3, and 3.5, there has been a bona-fide sorted set class in the BCL (called TreeSet). However, it was internal, so it couldn't be used outside System.dll. Only in .NET 4 was this class exposed as SortedSet. SortedList Whereas SortedDictionary didn't use any backing arrays, SortedList does. It is implemented just as the name suggests; two arrays, one containing the keys, and one the values (I've just used random letters for the values): The items in the keys array are always guarenteed to be stored in sorted order, and the value corresponding to each key is stored in the same index as the key in the values array. In this example, the value for key item 5 is 'z', and for key item 8 is 'm'. Whenever an item is inserted or removed from the SortedList, a binary search is run on the keys array to find the correct index, then all the items in the arrays are shifted to accomodate the new or removed item. For example, if the key 3 was removed, a binary search would be run to find the array index the item was at, then everything above that index would be moved down by one: and then if the key/value pair {7, 'f'} was added, a binary search would be run on the keys to find the index to insert the new item, and everything above that index would be moved up to accomodate the new item: If another item was then added, both arrays would be resized (to a length of 10) before the new item was added to the arrays. As you can see, any insertions or removals in the middle of the list require a proportion of the array contents to be moved; an O(n) operation. However, if the insertion or removal is at the end of the array (ie the largest key), then it's only O(log n); the cost of the binary search to determine it does actually need to be added to the end (excluding the occasional O(n) cost of resizing the arrays to fit more items). As a side effect of using backing arrays, SortedList offers IList Keys and Values views that simply use the backing keys or values arrays, as well as various methods utilising the array index of stored items, which SortedDictionary does not (and cannot) offer. The Comparison So, when should you use one and not the other? Well, here's the important differences: Memory usage SortedDictionary and SortedList have got very different memory profiles. SortedDictionary... has a memory overhead of one object instance, a bool, and two references per item. On 64-bit systems, this adds up to ~40 bytes, not including the stored item and the reference to it from the Node object. stores the items in separate objects that can be spread all over the heap. This helps to keep memory fragmentation low, as the individual node objects can be allocated wherever there's a spare 60 bytes. In contrast, SortedList... has no additional overhead per item (only the reference to it in the array entries), however the backing arrays can be significantly larger than you need; every time the arrays are resized they double in size. That means that if you add 513 items to a SortedList, the backing arrays will each have a length of 1024. To conteract this, the TrimExcess method resizes the arrays back down to the actual size needed, or you can simply assign list.Capacity = list.Count. stores its items in a continuous block in memory. If the list stores thousands of items, this can cause significant problems with Large Object Heap memory fragmentation as the array resizes, which SortedDictionary doesn't have. Performance Operations on a SortedDictionary always have O(log n) performance, regardless of where in the collection you're adding or removing items. In contrast, SortedList has O(n) performance when you're altering the middle of the collection. If you're adding or removing from the end (ie the largest item), then performance is O(log n), same as SortedDictionary (in practice, it will likely be slightly faster, due to the array items all being in the same area in memory, also called locality of reference). So, when should you use one and not the other? As always with these sort of things, there are no hard-and-fast rules. But generally, if you: need to access items using their index within the collection are populating the dictionary all at once from sorted data aren't adding or removing keys once it's populated then use a SortedList. But if you: don't know how many items are going to be in the dictionary are populating the dictionary from random, unsorted data are adding & removing items randomly then use a SortedDictionary. The default (again, there's no definite rules on these sort of things!) should be to use SortedDictionary, unless there's a good reason to use SortedList, due to the bad performance of SortedList when altering the middle of the collection.

    Read the article

  • Justifiable Perks.

    - by Phil Factor
        I was once the director of a start-up IT Company, and had the task of recruiting a proportion of the management team. As my background was in IT management, I was rather more familiar with recruiting Geeks for technology jobs, but here, one of my early tasks was interviewing a Marketing Director.  The small group of financiers had suggested a rather strange Irishman called  Halleran.  From my background in City of London dealing-rooms, I was slightly unprepared for the experience of interviewing anyone wearing a pink suit. Many of my older City colleagues would have required resuscitation after seeing his white leather shoes. However, nobody will accuse me of prejudging an interviewee. After all, many Linux experts who I’ve come to rely on have appeared for interview dressed as hobbits. In fact, the interview went well, and we had even settled his salary.  I was somewhat unprepared for the coda.    ‘And I will need to be provided with a Ferrari  by the company.’    ‘Hmm. That seems reasonable.’    Initially, he looked startled, and then a slow smile of victory spread across his face.    ‘What colour would you like?’ I asked genially.    ‘It has to be red.’ He looked very earnest on this point.    ‘Fine. I have to go past Hamleys on the way home this evening, so I’ll pick one up then for you.’    ‘Er.. Hamley’s is a toyshop, not a Ferrari Dealership.’    I stared at him in bafflement for a few seconds. ‘You’re not seriously asking for a real Ferrari are you?’     ‘Well, yes. Not for my own sake, you understand. I’d much prefer a simple run-about, but my position demands it. How could I maintain the necessary status in the office without one? How could I do my job in marketing when my grey Datsun was all too visible in the car Park? It is a tool of the job.’    ‘Excuse me a moment, but I must confer with the MD’    I popped out to see Chris, the MD. ‘Chris, I’m interviewing a lunatic in a pink suit who is trying to demand that a Ferrari is a precondition of his employment. I tried the ‘misunderstanding trick’ but it didn’t faze him.’     ‘Sorry, Phil, but we’ve got to hire him. The VCs insist on it. You’ve got to think of something that doesn’t involve committing to the purchase of a Ferrari. Current funding barely covers the rent for the building.’    ‘OK boss. Leave it to me.’    On return, I slapped O’Halleran’s file on the table with a genial, paternalistic smile. ‘Of course you should have a Ferrari. The only trouble is that it will require a justification document that can be presented to the board. I’m sure you’ll have no problem in preparing this document in the required format.’ The initial look of despair was quickly followed by a bland look of acquiescence. He had, earlier in the interview, argued with great eloquence his skill in preparing the tiresome documents that underpin the essential corporate and government deals that were vital to the success of this new enterprise. The justification of a Ferrari should be a doddle.     After the interview, Chris nervously asked how I’d fared.     ‘I think it is all solved.’    ‘… without promising a Ferrari, I hope.’    ‘Well, I did actually; on condition he justified it in writing.’    Chris issued a stream of invective. The strain of juggling the resources in an underfunded startup was beginning to show.    ‘Don’t worry. In the unlikely event of him coming back with the required document, I’ll give him mine.’    ‘Yours?’ He strode over to the window to stare down at the car park.    He needn’t have worried: I knew that his breed of marketing man could more easily lay an ostrich egg than to prepare a decent justification document. My Ferrari is still there at the back of my garage. Few know of the Ferrari cultivator, a simple inexpensive motorized device designed for the subsistence farmers of southern Italy. It is the very devil to start, but it creates a perfect tilth for the seedbed.

    Read the article

  • Developing Schema Compare for Oracle (Part 3): Ghost Objects

    - by Simon Cooper
    In the previous blog post, I covered how we solved the problem of dependencies between objects and between schemas. However, that isn’t the end of the issue. The dependencies algorithm I described works when you’re querying live databases and you can get dependencies for a particular schema direct from the server, and that’s all well and good. To throw a (rather large) spanner in the works, Schema Compare also has the concept of a snapshot, which is a read-only compressed XML representation of a selection of schemas that can be compared in the same way as a live database. This can be useful for keeping historical records or a baseline of a database schema, or comparing a schema on a computer that doesn’t have direct access to the database. So, how do snapshots interact with dependencies? Inter-database dependencies don't pose an issue as we store the dependencies in the snapshot. However, comparing a snapshot to a live database with cross-schema dependencies does cause a problem; what if the live database has a dependency to an object that does not exist in the snapshot? Take a basic example schema, where you’re only populating SchemaA: SOURCE   TARGET (using snapshot) CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100)); In this case, we want to generate a sync script to synchronize SchemaA.Table1 on the database represented by the snapshot. When taking a snapshot, database dependencies are followed, but because you’re not comparing it to anything at the time, the comparison dependencies algorithm described in my last post cannot be used. So, as you only take a snapshot of SchemaA on the target database, SchemaB.Table1 will not be in the snapshot. If this snapshot is then used to compare against the above source schema, SchemaB.Table1 will be included in the source, but the object will not be found in the target snapshot. This is the same problem that was solved with comparison dependencies, but here we cannot use the comparison dependencies algorithm as the snapshot has not got any information on SchemaB! We've now hit quite a big problem - we’re trying to include SchemaB.Table1 in the target, but we simply do not know the status of this object on the database the snapshot was taken from; whether it exists in the database at all, whether it’s the same as the target, whether it’s different... What can we do about this sorry state of affairs? Well, not a lot, it would seem. We can’t query the original database, as it may not be accessible, and we cannot assume any default state as it could be wrong and break the script (and we currently do not have a roll-back mechanism for failed synchronizes). The only way to fix this properly is for the user to go right back to the start and re-create the snapshot, explicitly including the schemas of these 'ghost' objects. So, the only thing we can do is flag up dependent ghost objects in the UI, and ask the user what we should do with it – assume it doesn’t exist, assume it’s the same as the target, or specify a definition for it. Unfortunately, such functionality didn’t make the cut for v1 of Schema Compare (as this is very much an edge case for a non-critical piece of functionality), so we simply flag the ghost objects up in the sync wizard as unsyncable, and let the user sort out what’s going on and edit the sync script as appropriate. There are some things that we do do to alleviate somewhat this rather unhappy situation; if a user creates a snapshot from the source or target of a database comparison, we include all the objects registered from the database, not just the ones in the schemas originally selected for comparison. This includes any extra dependent objects registered through the comparison dependencies algorithm. If the user then compares the resulting snapshot against the same database they were comparing against when it was created, the extra dependencies will be included in the snapshot as required and everything will be good. Fortunately, this problem will come up quite rarely, and only when the user uses snapshots and tries to sync objects with unknown cross-schema dependencies. However, the solution is not an easy one, and lead to some difficult architecture and design decisions within the product. And all this pain follows from the simple decision to allow schema pre-filtering! Next: why adding a column to a table isn't as easy as you would think...

    Read the article

  • JavaOne 2012 Call for Papers

    - by Tori Wieldt
    JavaOne 2012 is happening Sept. 30-Oct 4 in San Francisco. The Call For Papers for this conference is now open. Java Evangelist Arun Gupta, who was on one of the selection committees and will be again this year, provided some great tips for submission (and a peek into the submission process): JavaOne is a technology-focused conference so any product, marketing or seemingly marketish talk are put at the bottom of the list. Oracle Open World and Oracle Develop are better options for submitting product specific talks. Make your title catchy. Remember the attendees are more likely to read the abstract if they like the title. We try our best to recategorize the talk to a different track if it needs to but please ensure that you are filing in the right track to have all the right eyeballs looking at it. Also, it does not hurt marking an alternate track if your talk meets the criteria. Make sure to coordinate within your team before the submission - multiple sessions from the same team or company does not ensure that the best speaker is picked. In such case we rely upon your "google presence" and/or review committee's prior knowledge of the speaker. The reviewers may not know you or your product at all and you get 750 characters to pitch your idea. Make sure to use all of them, to the last 750th character. Make sure to read your abstract multiple times to ensure that you are giving all the relevant information ? Think through your presentation and see if you are leaving out any important aspects. Also look if the abstract has any redundant information that will not required by the reviewers. There are additional sections that allow you to share information about the speaker and the presentation summary. Use them to blow the horn about yourself and any other relevant details. Please don't say "call me at xxx-xxx-xxxx to find out the details." :-) The tracks this year are: Core Java Platform Development Tools and Techniques Emerging Langauges on the JVM Enterprise Services Architectures and the Cloud Java EE Web Profile and Platform Technologies Java ME, Java Card, Embedded, and Devices Java FX and Rich User Experiences IMPORTANT: Submit your proposal as soon as possible, the the Call for Papers closes April 9th, a mere three weeks away!  Follow these channels to get the latest news about #JavaOne 2012.  originally posted on blogs.oracle.com/javaone

    Read the article

  • JavaOne 2012 Call for Papers

    - by Tori Wieldt
    JavaOne 2012 is happening Sept. 30-Oct 4 in San Francisco. The Call For Papers for this conference is now open. Java Evangelist Arun Gupta, who was on one of the selection committees and will be again this year, provided some great tips for submission (and a peek into the submission process): JavaOne is a technology-focused conference so any product, marketing or seemingly marketish talk are put at the bottom of the list. Oracle Open World and Oracle Develop are better options for submitting product specific talks. Make your title catchy. Remember the attendees are more likely to read the abstract if they like the title. We try our best to recategorize the talk to a different track if it needs to but please ensure that you are filing in the right track to have all the right eyeballs looking at it. Also, it does not hurt marking an alternate track if your talk meets the criteria. Make sure to coordinate within your team before the submission - multiple sessions from the same team or company does not ensure that the best speaker is picked. In such case we rely upon your "google presence" and/or review committee's prior knowledge of the speaker. The reviewers may not know you or your product at all and you get 750 characters to pitch your idea. Make sure to use all of them, to the last 750th character. Make sure to read your abstract multiple times to ensure that you are giving all the relevant information ? Think through your presentation and see if you are leaving out any important aspects. Also look if the abstract has any redundant information that will not required by the reviewers. There are additional sections that allow you to share information about the speaker and the presentation summary. Use them to blow the horn about yourself and any other relevant details. Please don't say "call me at xxx-xxx-xxxx to find out the details." :-) The tracks this year are: Core Java Platform Development Tools and Techniques Emerging Langauges on the JVM Enterprise Services Architectures and the Cloud Java EE Web Profile and Platform Technologies Java ME, Java Card, Embedded, and Devices Java FX and Rich User Experiences IMPORTANT: Submit your proposal as soon as possible, the the Call for Papers closes April 9th, a mere three weeks away!  Follow these channels to get the latest news about #JavaOne 2012. 

    Read the article

  • The clock hands of the buffer cache

    - by Tony Davis
    Over a leisurely beer at our local pub, the Waggon and Horses, Phil Factor was holding forth on the esoteric, but strangely poetic, language of SQL Server internals, riddled as it is with 'sleeping threads', 'stolen pages', and 'memory sweeps'. Generally, I remain immune to any twinge of interest in the bowels of SQL Server, reasoning that there are certain things that I don't and shouldn't need to know about SQL Server in order to use it successfully. Suddenly, however, my attention was grabbed by his mention of the 'clock hands of the buffer cache'. Back at the office, I succumbed to a moment of weakness and opened up Google. He wasn't lying. SQL Server maintains various memory buffers, or caches. For example, the plan cache stores recently-used execution plans. The data cache in the buffer pool stores frequently-used pages, ensuring that they may be read from memory rather than via expensive physical disk reads. These memory stores are classic LRU (Least Recently Updated) buffers, meaning that, for example, the least frequently used pages in the data cache become candidates for eviction (after first writing the page to disk if it has changed since being read into the cache). SQL Server clearly needs some mechanism to track which pages are candidates for being cleared out of a given cache, when it is getting too large, and it is this mechanism that is somewhat more labyrinthine than I previously imagined. Each page that is loaded into the cache has a counter, a miniature "wristwatch", which records how recently it was last used. This wristwatch gets reset to "present time", each time a page gets updated and then as the page 'ages' it clicks down towards zero, at which point the page can be removed from the cache. But what is SQL Server is suffering memory pressure and urgently needs to free up more space than is represented by zero-counter pages (or plans etc.)? This is where our 'clock hands' come in. Each cache has associated with it a "memory clock". Like most conventional clocks, it has two hands; one "external" clock hand, and one "internal". Slava Oks is very particular in stressing that these names have "nothing to do with the equivalent types of memory pressure". He's right, but the names do, in that peculiar Microsoft tradition, seem designed to confuse. The hands do relate to memory pressure; the cache "eviction policy" is determined by both global and local memory pressures on SQL Server. The "external" clock hand responds to global memory pressure, in other words pressure on SQL Server to reduce the size of its memory caches as a whole. Global memory pressure – which just to confuse things further seems sometimes to be referred to as physical memory pressure – can be either external (from the OS) or internal (from the process itself, e.g. due to limited virtual address space). The internal clock hand responds to local memory pressure, in other words the need to reduce the size of a single, specific cache. So, for example, if a particular cache, such as the plan cache, reaches a defined "pressure limit" the internal clock hand will start to turn and a memory sweep will be performed on that cache in order to remove plans from the memory store. During each sweep of the hands, the usage counter on the cache entry is reduced in value, effectively moving its "last used" time to further in the past (in effect, setting back the wrist watch on the page a couple of hours) and increasing the likelihood that it can be aged out of the cache. There is even a special Dynamic Management View, sys.dm_os_memory_cache_clock_hands, which allows you to interrogate the passage of the clock hands. Frequently turning hands equates to excessive memory pressure, which will lead to performance problems. Two hours later, I emerged from this rather frightening journey into the heart of SQL Server memory management, fascinated but still unsure if I'd learned anything that I'd put to any practical use. However, I certainly began to agree that there is something almost Tolkeinian in the language of the deep recesses of SQL Server. Cheers, Tony.

    Read the article

  • Why not to use StackTrace to find what method called you

    - by Alex.Davies
    Our obfuscator, SmartAssembly, does some pretty crazy reflection. It's an obfuscator, it's sort of its job to do things in the most awkward way possible. But sometimes, you can go too far. One such time is this little gem from the strings encoding feature: StackTrace stackTrace = new StackTrace(); StackFrame frame = stackTrace.GetFrame(1); Type ownerType = frame.GetMethod().DeclaringType; It's designed to find the type where the calling method is defined. A user found that strings encoding occasionally broke on x64 systems. Very strange. After some debugging (thank god for Reflector Pro, it would be impossible to debug processed assemblies without it) I found that the ownerType I got back was wrong. The reason is that the x64 JIT does tail call optimisation. This saves space on the stack, and speeds things up, by throwing away a method's stack frame if the last thing that it calls is the only thing returned. When this happens, the call to StackTrace faithfully tells you that the calling method is the one that called the one we really wanted. So using StackTrace isn't safe for anything other than debugging, and it will make your code fail in unpredictable ways. Don't use it!

    Read the article

  • How to Create Custom SharePoint Workflows in Visual Studio 2008

    Whereas simple workflows are possible using Microsoft Office SharePoint Designer, you will soon reach the point where you will need to use Visual Studio. In the third article in Charles' introduction to Workflows in Sharepoint, he demonstrates how to create a workflow from scratch using Visual Studio, and discusses the relative merits of the two tools for this sort of development work.

    Read the article

  • What do you call an obfuscator that isn't an obfuscator?

    - by Alex.Davies
    SmartAssembly, formerly {smartassembly}, version 5 is now available as an Early Access Build. You can get it here: http://www.red-gate.com/MessageBoard/viewforum.php?f=116 We're having second thoughts about the name change though. It isn't that we like the curly brackets, far from it. The trouble is that the first rule of product naming is to name a product by what it does. SmartAssembly may make an assembly smarter, but that's not something people really google for. The trouble is, I can't think of a better name for it. That's because SmartAssembly really does two completely separate things: Obfuscates Sets up your assembly for the awesome exception reports which get sent to you whenever your application crashes. You may have been (un?)lucky enough to see one in reflector if you use it. This is what those exception reports look like when they arrive back with the developer: Look at all those local variables! If you ask me, this is much cooler than the obfuscation. So obviously we don't want to call it just "Red Gate Obfuscator" or something, because it doesn't do justice to the exception reporting. What would you call it?

    Read the article

  • Time to Check Your Servers

    - by fatherjack
    Do you know how to find the time that your SQL Server started? Since SQL Server 2008 you can use: SELECT sqlserver_start_timeFROM sys.dm_os_sys_info On one of my servers this gives me: This is great, and can be used in lots of ways. I happened across the [sys].[dm_exec_requests]view the other day and out of curiosity ran the query SELECT MIN(start_time) AS [start time]FROM [sys].[dm_exec_requests] AS der And I was surprised to see the result as: Almost exactly an hour different. Now as...(read more)

    Read the article

  • Some notes on Reflector 7

    - by CliveT
    Both Bart and I have blogged about some of the changes that we (and other members of the team) have made to .NET Reflector for version 7, including the new tabbed browsing model, the inclusion of Jason Haley's PowerCommands add-in and some improvements to decompilation such as handling iterator blocks. The intention of this blog post is to cover all of the main new features in one place, and to describe the three new editions of .NET Reflector 7. If you'd simply like to try out the latest version of the beta for yourself you can do so here. Three new editions .NET Reflector 7 will come in three new editions: .NET Reflector .NET Reflector VS .NET Reflector VSPro The first edition is just the standalone Windows application. The latter two editions include the Windows application, but also add the power of Reflector into Visual Studio so that you can save time switching tools and quickly get to the bottom of a debugging issue that involves third-party code. Let's take a look at some of the new features in each edition. Tabbed browsing .NET Reflector now has a tabbed browsing model, in which the individual tabs have independent histories. You can open a new tab to view the selected object by using CTRL+CLICK. I've found this really useful when I'm investigating a particular piece of code but then want to focus on some other methods that I find along the way. For version 7, we wanted to implement the basic idea of tabs to see whether it is something that users will find helpful. If it is something that enhances productivity, we will add more tab-based features in a future version. PowerCommands add-in We have also included Jason Haley's PowerCommands add-in as part of version 7. This add-in provides a number of useful commands, including support for opening .xap files and extracting the constituent assemblies, and a query editor that allows C# queries to be written and executed against the Reflector object model . All of the PowerCommands features can be turned on from the options menu. We will be really interested to see what people are finding useful for further integration into the main tool in the future. My personal favourite part of the PowerCommands add-in is the query editor. You can set up as many of your own queries as you like, but we provide 25 to get you started. These do useful things like listing all extension methods in a given assembly, and displaying other lower-level information, such as the number of times that a given method uses the box IL instruction. These queries can be extracted and then executed from the 'Run Query' context menu within the assembly explorer. Moreover, the queries can be loaded, modified, and saved using the built-in editor, allowing very specific user customization and sharing of queries. The PowerCommands add-in contains many other useful utilities. For example, you can open an item using an external application, work with enumeration bit flags, or generate assembly binding redirect files. You can see Bart's earlier post for a more complete list. .NET Reflector VS .NET Reflector VS adds a brand new Reflector object browser into Visual Studio to save you time opening .NET Reflector separately and browsing for an object. A 'Decompile and Explore' option is also added to the context menu of references in the Solution Explorer, so you don't need to leave Visual Studio to look through decompiled code. We've also added some simple navigation features to allow you to move through the decompiled code as quickly and easily as you can in .NET Reflector. When this is selected, the add-in decompiles the given assembly, Once the decompilation has finished, a clone of the Reflector assembly explorer can be used inside Visual Studio. When Reflector generates the source code, it records the location information. You can therefore navigate from the source file to other decompiled source using the 'Go To Definition' context menu item. This then takes you to the definition in another decompiled assembly. .NET Reflector VSPro .NET Reflector VSPro builds on the features in .NET Reflector VS to add the ability to debug any source code you decompile. When you decompile with .NET Reflector VSPro, a matching .pdb is generated, so you can use Visual Studio to debug the source code as if it were part of the project. You can now use all the standard debugging techniques that you are used to in the Visual Studio debugger, and step through decompiled code as if it were your own. Again, you can select assemblies for decompilation. They are then decompiled. And then you can debug as if they were one of your own source code files. The future of .NET Reflector As I have mentioned throughout this post, most of the new features in version 7 are exploratory steps and we will be watching feedback closely. Although we don't want to speculate now about any other new features or bugs that will or won't be fixed in the next few versions of .NET Reflector, Bart has mentioned in a previous post that there are lots of improvements we intend to make. We plan to do this with great care and without taking anything away from the simplicity of the core product. User experience is something that we pride ourselves on at Red Gate, and it is clear that Reflector is still a long way off our usual standards. We plan for the next few versions of Reflector to be worked on by some of our top usability specialists who have been involved with our other market-leading products such as the ANTS Profilers and SQL Compare. I re-iterate the need for the really great simple mode in .NET Reflector to remain intact regardless of any other improvements we are planning to make. I really hope that you enjoy using some of the new features in version 7 and that Reflector continues to be your favourite .NET development tool for a long time to come.

    Read the article

  • Interviews: Going Beyond the Technical Quiz

    - by Tony Davis
    All developers will be familiar with the basic format of a technical interview. After a bout of CV-trawling to gauge basic experience, strengths and weaknesses, the interview turns technical. The whiteboard takes center stage and the challenge is set to design a function or query, or solve what on the face of it might seem a disarmingly simple programming puzzle. Most developers will have experienced those few panic-stricken moments, when one’s mind goes as blank as the whiteboard, before un-popping the marker pen, and hopefully one’s mental functions, to work through the problem. It is a way to probe the candidate’s knowledge of basic programming structures and techniques and to challenge their critical thinking. However, these challenges or puzzles, often devised by some of the smartest brains in the development team, have a tendency to become unnecessarily ‘tricksy’. They often seem somewhat academic in nature. While the candidate straight out of IT school might breeze through the construction of a Markov chain, a candidate with bags of practical experience but less in the way of formal training could become nonplussed. Also, a whiteboard and a marker pen make up only a very small part of the toolkit that a programmer will use in everyday work. I remember vividly my first job interview, for a position as technical editor. It went well, but after the usual CV grilling and technical questions, I was only halfway there. Later, they sat me alongside a team of editors, in front of a computer loaded with MS Word and copy of SQL Server Query Analyzer, and my task was to edit a real chapter for a real SQL Server book that they planned to publish, including validating and testing all the code. It was a tough challenge but I came away with a sound knowledge of the sort of work I’d do, and its context. It makes perfect sense, yet my impression is that many organizations don’t do this. Indeed, it is only relatively recently that Red Gate started to move over to this model for developer interviews. Now, instead of, or perhaps in addition to, the whiteboard challenges, the candidate can expect to sit with their prospective team, in front of Visual Studio, loaded with all the useful tools in the developer’s kit (ReSharper and so on) and asked to, for example, analyze and improve a real piece of software. The same principles should apply when interviewing for a database positon. In addition to the usual questions challenging the candidate’s knowledge of such things as b-trees, object permissions, database recovery models, and so on, sit the candidate down with the other database developers or DBAs. Arm them with a copy of Management Studio, and a few other tools, then challenge them to discover the flaws in a stored procedure, and improve its performance. Or present them with a corrupt database and ask them to get the database back online, and discover the cause of the corruption.

    Read the article

  • Table Variables: an empirical approach.

    - by Phil Factor
    It isn’t entirely a pleasant experience to publish an article only to have it described on Twitter as ‘Horrible’, and to have it criticized on the MVP forum. When this happened to me in the aftermath of publishing my article on Temporary tables recently, I was taken aback, because these critics were experts whose views I respect. What was my crime? It was, I think, to suggest that, despite the obvious quirks, it was best to use Table Variables as a first choice, and to use local Temporary Tables if you hit problems due to these quirks, or if you were doing complex joins using a large number of rows. What are these quirks? Well, table variables have advantages if they are used sensibly, but this requires some awareness by the developer about the potential hazards and how to avoid them. You can be hit by a badly-performing join involving a table variable. Table Variables are a compromise, and this compromise doesn’t always work out well. Explicit indexes aren’t allowed on Table Variables, so one cannot use covering indexes or non-unique indexes. The query optimizer has to make assumptions about the data rather than using column distribution statistics when a table variable is involved in a join, because there aren’t any column-based distribution statistics on a table variable. It assumes a reasonably even distribution of data, and is likely to have little idea of the number of rows in the table variables that are involved in queries. However complex the heuristics that are used might be in determining the best way of executing a SQL query, and they most certainly are, the Query Optimizer is likely to fail occasionally with table variables, under certain circumstances, and produce a Query Execution Plan that is frightful. The experienced developer or DBA will be on the lookout for this sort of problem. In this blog, I’ll be expanding on some of the tests I used when writing my article to illustrate the quirks, and include a subsequent example supplied by Kevin Boles. A simplified example. We’ll start out by illustrating a simple example that shows some of these characteristics. We’ll create two tables filled with random numbers and then see how many matches we get between the two tables. We’ll forget indexes altogether for this example, and use heaps. We’ll try the same Join with two table variables, two table variables with OPTION (RECOMPILE) in the JOIN clause, and with two temporary tables. It is all a bit jerky because of the granularity of the timing that isn’t actually happening at the millisecond level (I used DATETIME). However, you’ll see that the table variable is outperforming the local temporary table up to 10,000 rows. Actually, even without a use of the OPTION (RECOMPILE) hint, it is doing well. What happens when your table size increases? The table variable is, from around 30,000 rows, locked into a very bad execution plan unless you use OPTION (RECOMPILE) to provide the Query Analyser with a decent estimation of the size of the table. However, if it has the OPTION (RECOMPILE), then it is smokin’. Well, up to 120,000 rows, at least. It is performing better than a Temporary table, and in a good linear fashion. What about mixed table joins, where you are joining a temporary table to a table variable? You’d probably expect that the query analyzer would throw up its hands and produce a bad execution plan as if it were a table variable. After all, it knows nothing about the statistics in one of the tables so how could it do any better? Well, it behaves as if it were doing a recompile. And an explicit recompile adds no value at all. (we just go up to 45000 rows since we know the bigger picture now)   Now, if you were new to this, you might be tempted to start drawing conclusions. Beware! We’re dealing with a very complex beast: the Query Optimizer. It can come up with surprises What if we change the query very slightly to insert the results into a Table Variable? We change nothing else and just measure the execution time of the statement as before. Suddenly, the table variable isn’t looking so much better, even taking into account the time involved in doing the table insert. OK, if you haven’t used OPTION (RECOMPILE) then you’re toast. Otherwise, there isn’t much in it between the Table variable and the temporary table. The table variable is faster up to 8000 rows and then not much in it up to 100,000 rows. Past the 8000 row mark, we’ve lost the advantage of the table variable’s speed. Any general rule you may be formulating has just gone for a walk. What we can conclude from this experiment is that if you join two table variables, and can’t use constraints, you’re going to need that Option (RECOMPILE) hint. Count Dracula and the Horror Join. These tables of integers provide a rather unreal example, so let’s try a rather different example, and get stuck into some implicit indexing, by using constraints. What unusual words are contained in the book ‘Dracula’ by Bram Stoker? Here we get a table of all the common words in the English language (60,387 of them) and put them in a table. We put them in a Table Variable with the word as a primary key, a Table Variable Heap and a Table Variable with a primary key. We then take all the distinct words used in the book ‘Dracula’ (7,558 of them). We then create a table variable and insert into it all those uncommon words that are in ‘Dracula’. i.e. all the words in Dracula that aren’t matched in the list of common words. To do this we use a left outer join, where the right-hand value is null. The results show a huge variation, between the sublime and the gorblimey. If both tables contain a Primary Key on the columns we join on, and both are Table Variables, it took 33 Ms. If one table contains a Primary Key, and the other is a heap, and both are Table Variables, it took 46 Ms. If both Table Variables use a unique constraint, then the query takes 36 Ms. If neither table contains a Primary Key and both are Table Variables, it took 116383 Ms. Yes, nearly two minutes!! If both tables contain a Primary Key, one is a Table Variables and the other is a temporary table, it took 113 Ms. If one table contains a Primary Key, and both are Temporary Tables, it took 56 Ms.If both tables are temporary tables and both have primary keys, it took 46 Ms. Here we see table variables which are joined on their primary key again enjoying a  slight performance advantage over temporary tables. Where both tables are table variables and both are heaps, the query suddenly takes nearly two minutes! So what if you have two heaps and you use option Recompile? If you take the rogue query and add the hint, then suddenly, the query drops its time down to 76 Ms. If you add unique indexes, then you've done even better, down to half that time. Here are the text execution plans.So where have we got to? Without drilling down into the minutiae of the execution plans we can begin to create a hypothesis. If you are using table variables, and your tables are relatively small, they are faster than temporary tables, but as the number of rows increases you need to do one of two things: either you need to have a primary key on the column you are using to join on, or else you need to use option (RECOMPILE) If you try to execute a query that is a join, and both tables are table variable heaps, you are asking for trouble, well- slow queries, unless you give the table hint once the number of rows has risen past a point (30,000 in our first example, but this varies considerably according to context). Kevin’s Skew In describing the table-size, I used the term ‘relatively small’. Kevin Boles produced an interesting case where a single-row table variable produces a very poor execution plan when joined to a very, very skewed table. In the original, pasted into my article as a comment, a column consisted of 100000 rows in which the key column was one number (1) . To this was added eight rows with sequential numbers up to 9. When this was joined to a single-tow Table Variable with a key of 2 it produced a bad plan. This problem is unlikely to occur in real usage, and the Query Optimiser team probably never set up a test for it. Actually, the skew can be slightly less extreme than Kevin made it. The following test showed that once the table had 54 sequential rows in the table, then it adopted exactly the same execution plan as for the temporary table and then all was well. Undeniably, real data does occasionally cause problems to the performance of joins in Table Variables due to the extreme skew of the distribution. We've all experienced Perfectly Poisonous Table Variables in real live data. As in Kevin’s example, indexes merely make matters worse, and the OPTION (RECOMPILE) trick does nothing to help. In this case, there is no option but to use a temporary table. However, one has to note that once the slight de-skew had taken place, then the plans were identical across a huge range. Conclusions Where you need to hold intermediate results as part of a process, Table Variables offer a good alternative to temporary tables when used wisely. They can perform faster than a temporary table when the number of rows is not great. For some processing with huge tables, they can perform well when only a clustered index is required, and when the nature of the processing makes an index seek very effective. Table Variables are scoped to the batch or procedure and are unlikely to hang about in the TempDB when they are no longer required. They require no explicit cleanup. Where the number of rows in the table is moderate, you can even use them in joins as ‘Heaps’, unindexed. Beware, however, since, as the number of rows increase, joins on Table Variable heaps can easily become saddled by very poor execution plans, and this must be cured either by adding constraints (UNIQUE or PRIMARY KEY) or by adding the OPTION (RECOMPILE) hint if this is impossible. Occasionally, the way that the data is distributed prevents the efficient use of Table Variables, and this will require using a temporary table instead. Tables Variables require some awareness by the developer about the potential hazards and how to avoid them. If you are not prepared to do any performance monitoring of your code or fine-tuning, and just want to pummel out stuff that ‘just runs’ without considering namby-pamby stuff such as indexes, then stick to Temporary tables. If you are likely to slosh about large numbers of rows in temporary tables without considering the niceties of processing just what is required and no more, then temporary tables provide a safer and less fragile means-to-an-end for you.

    Read the article

  • What Counts For a DBA: Ego

    - by Louis Davidson
    Leaving aside, for a second, Freud’s psychoanalytical definitions, the term “ego” generally refers to a person’s sense of self, and their self-esteem. In casual usage, however, it usually appears in the adjectival form, “egotistical” (most often followed by “jerk”). You don’t need to be a jerk to be a DBA; humility is important. However, ego is important too. A good DBA needs a certain degree of self-esteem…a belief and pride in what he or she can do better than anyone else can. The ideal DBA needs to be humble enough to admit when they are wrong but egotistical enough to know when they are right, and to stand up for that knowledge and make their voice heard. In most organizations, the DBA team is seriously outnumbered by headstrong developers and clock driven managers, and “great” DBAs will often be outnumbered by…well…the not so great. In order to be heard in this environment, a DBA will not only need to be very skilled, but will also need a healthy dose of ego. As Freud might have put it, the unconscious desire of the DBA (the id) is for iron-fist control over their databases, and code that runs in them. However, the ego moderates this desire, seeking to “satisfy the id in realistic ways that, in the long term, bring benefit rather than grief“. In other words, the ego understands the need to exert a measure of control and self-belief, but also to tolerate and play nicely with developers and other DBAs. The trick, naturally, is learning how to be heard when it is important, but also to make everyone around you welcome that input, even when you have to be bold to make the “I know what I am talking about, and you…well…not so much” decisions. Consider a baseball team, bottom of the ninth inning of the championship game, man on first and down one run. Almost anyone on that team will have the ability to hit a home run, but only one or two will have the iron belief that they can pull it off in this critical, end-game situation. The player you need in this situation is the one who has passionately gone the extra mile preparing for just this moment, is bursting at the seams with self-confidence, and can look the coach in the eye and state, boldly, “Put me in, I am your best bet“. Likewise, on those occasions when high customer demand coincides with copious system errors, and panic is bubbling just beneath the surface, you don’t need the minimally qualified support person, armed with the “reboot and hope” technique (though that sometimes works!). You need the DBA who steps up and says, “Put me in” and has the skill and tenacity to back up those words and to fix the pinpoint and fix the problem, whatever it takes, while keeping customers and managers happy. Of course, the egotistical DBA will happily spend hours telling you how great they are at their job, and how brilliantly they put out a previous fire, and this is no guarantee that they can deliver. However, if an otherwise-humble DBA looks you in the eye and says, “I can do it”, then hear them out. Sometimes, this burst of ego will be exactly what’s required.

    Read the article

  • .NET Reflector Pro to the rescue

    Almost all applications have to interface with components or modules written by somebody else, for which you don't have the source code. This is fine until things go wrong, but when you need to refactor your code and you keep getting strange exceptions, you'll start to wish you could place breakpoints in someone else's code and step through it. Now, of course, you can, as Geoffrey Braaf discovered.

    Read the article

  • Back-sliding into Unmanaged Code

    - by Laila
    It is difficult to write about Microsoft's ambivalence to .NET without mentioning clichés about dog food.  In case you've been away a long time, you'll remember that Microsoft surprised everyone with the speed and energy with which it introduced and evangelised the .NET Framework for managed code. There was good reason for this. Once it became obvious to all that it had sleepwalked into third place as a provider of development languages, behind Borland and Sun, it reacted quickly to attract the best talent in the industry to produce a windows version of the Java runtime, with Bounds-checking, Automatic Garbage collection, structures exception handling and common data types. To develop applications for this managed runtime, it produced several excellent languages, and more are being provided. The only thing Microsoft ever got wrong was to give it a stupid name. The logical step for Microsoft would be to base the entire operating system on the .NET framework, and to re-engineer its own applications. In 2002, Bill Gates, then Microsoft Chairman and Chief Software Architect said about their plans for .NET, "This is a long-term approach. These things don't happen overnight." Now, eight years later, we're still waiting for signs of the 'long-term approach'. Microsoft's vision of an entirely managed operating system has subsided since the Vista fiasco, but stays alive yet dormant as Midori, still being developed by Microsoft Research. This is an Internet-centric fork of the singularity operating system, a research project started in 2003 to build a highly-dependable operating system in which the kernel, device drivers, and applications are all written in managed code. Midori is predicated on the prevalence of connected systems, with provisions for distributed concurrency where application components exist 'in the cloud', and supports a programming model that can tolerate cancellation, intermittent connectivity and latency. It features an entirely new security model that sandboxes applications for increased security. So have Microsoft converted its existing applications to the .NET framework? It seems not. What Windows applications can run on Mono? Very few, it seems. We all thought that .NET spelt the end of DLL Hell and the need for COM interop, but it looks as if Bill Gates' idea of 'not overnight' might stretch to a decade or more. The Operating System has shown only minimal signs of migrating to .NET. Even where the use of .NET has come to dominate, when used for server applications with IIS, IIS itself is still entirely developed in unmanaged code. This is an irritation to Microsoft's greatest supporters who committed themselves fully to the NET framework, only to find parts of the Ambivalent Microsoft Empire quietly backsliding into unmanaged code and the awful C++. It is a strategic mistake that the invigorated Apple didn't make with the Mac OS X Architecture. Cheers, Laila

    Read the article

  • Using SQL Sentry Plan Explorer

    - by fatherjack
    LiveJournal Tags: How To,SSMS,Tips and tricks,Execution Plans This is a quick tip that I hope will help you use SQL Sentry's Plan Explorer tool. It's a really great tool for viewing Execution Plans - something that SSMS isn't too great at. If you don't have the tool then you can download it for free from http://www.sqlsentry.net/plan-explorer/sql-server-query-view.asp. So, just a little setup is required before I can show you the tip in full. Create a directory on your Desktop called Execution...(read more)

    Read the article

  • Pub banter - content strategy at the ballot box?

    - by Roger Hart
    Last night, I was challenged to explain (and defend) content strategy. Three sheets to the wind after a pub quiz, this is no simple task, but I hope I acquitted myself passably. I say "hope" because there was a really interesting question I couldn't answer to my own satisfaction. I wonder if any of you folks out there in the ethereal internet hive-mind can help me out? A friend - a rather concrete thinker who mathematically models complex biological systems for a living - pointed out that my examples were largely routed in business-to-business web sales and support. He challenged me with: Say you've got a political website, so your goal is to have somebody read it and vote for you - how do you measure the effectiveness of that content? Well, you would. umm. Oh dear. I guess what we're talking about here, to yank it back to my present comfort zone, is a sales process where your point of conversion is off the site. The political example is perhaps a little below the belt, since what you can and can't do, and what data you can and can't collect is so restricted. You can't throw up a "How did you hear about this election?" questionnaire in the polling booth. Exit polls don't pull in your browsing history and site session information. Not everyone fatuously tweets and geo-tags each moment of their lives. Oh, and folks lie. The business example might be easier to attack. You could have, say, a site for a farm shop that only did over the counter sales. Either way, it's tricky. I fell back on some of the work I've done usability testing and benchmarking documentation, and suggested similar, quick and dirty, small sample qualitative UX trials. I'm not wholly sure that was right. Any thoughts? How might we measure and curate for this kind of discontinuous conversion?

    Read the article

  • Why lock statements don't scale

    - by Alex.Davies
    We are going to have to stop using lock statements one day. Just like we had to stop using goto statements. The problem is similar, they're pretty easy to follow in small programs, but code with locks isn't composable. That means that small pieces of program that work in isolation can't necessarily be put together and work together. Of course actors scale fine :) Why lock statements don't scale as software gets bigger Deadlocks. You have a program with lots of threads picking up lots of locks. You already know that if two of your threads both try to pick up a lock that the other already has, they will deadlock. Your program will come to a grinding halt, and there will be fire and brimstone. "Easy!" you say, "Just make sure all the threads pick up the locks in the same order." Yes, that works. But you've broken composability. Now, to add a new lock to your code, you have to consider all the other locks already in your code and check that they are taken in the right order. Algorithm buffs will have noticed this approach means it takes quadratic time to write a program. That's bad. Why lock statements don't scale as hardware gets bigger Memory bus contention There's another headache, one that most programmers don't usually need to think about, but is going to bite us in a big way in a few years. Locking needs exclusive use of the entire system's memory bus while taking out the lock. That's not too bad for a single or dual-core system, but already for quad-core systems it's a pretty large overhead. Have a look at this blog about the .NET 4 ThreadPool for some numbers and a weird analogy (see the author's comment). Not too bad yet, but I'm scared my 1000 core machine of the future is going to go slower than my machine today! I don't know the answer to this problem yet. Maybe some kind of per-core work queue system with hierarchical work stealing. Definitely hardware support. But what I do know is that using locks specifically prevents any solution to this. We should be abstracting our code away from the details of locks as soon as possible, so we can swap in whatever solution arrives when it does. NAct uses locks at the moment. But my advice is that you code using actors (which do scale well as software gets bigger). And when there's a better way of implementing actors that'll scale well as hardware gets bigger, only NAct needs to work out how to use it, and your program will go fast on it's own.

    Read the article

  • Importing PSTs with PowerShell in Exchange 2010 SP1

    Unless you use Red Gate's PST Importer, the import and export of PST files with Exchange 2010 is a complex and error-prone business. Microsoft have acknowledged this in the release of Exchange 2010 SP1, since they have now re-engineered the way that PSTs are handled to try and ease the pain of importing and exporting them, but it is still a matter of using Powershell with cmdlets, rather than a GUI. Jaap Wesselius takes a look at the new process.

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 1

    - by Simon Cooper
    Before we look at the bytes comprising the CLR-specific data inside an assembly, we first need to understand the logical format of the metadata (For this post I only be looking at simple pure-IL assemblies; mixed-mode assemblies & other things complicates things quite a bit). Metadata streams Most of the CLR-specific data inside an assembly is inside one of 5 streams, which are analogous to the sections in a PE file. The name of each section in a PE file starts with a ., and the name of each stream in the CLR metadata starts with a #. All but one of the streams are heaps, which store unstructured binary data. The predefined streams are: #~ Also called the metadata stream, this stream stores all the information on the types, methods, fields, properties and events in the assembly. Unlike the other streams, the metadata stream has predefined contents & structure. #Strings This heap is where all the namespace, type & member names are stored. It is referenced extensively from the #~ stream, as we'll be looking at later. #US Also known as the user string heap, this stream stores all the strings used in code directly. All the strings you embed in your source code end up in here. This stream is only referenced from method bodies. #GUID This heap exclusively stores GUIDs used throughout the assembly. #Blob This heap is for storing pure binary data - method signatures, generic instantiations, that sort of thing. Items inside the heaps (#Strings, #US, #GUID and #Blob) are indexed using a simple binary offset from the start of the heap. At that offset is a coded integer giving the length of that item, then the item's bytes immediately follow. The #GUID stream is slightly different, in that GUIDs are all 16 bytes long, so a length isn't required. Metadata tables The #~ stream contains all the assembly metadata. The metadata is organised into 45 tables, which are binary arrays of predefined structures containing information on various aspects of the metadata. Each entry in a table is called a row, and the rows are simply concatentated together in the file on disk. For example, each row in the TypeRef table contains: A reference to where the type is defined (most of the time, a row in the AssemblyRef table). An offset into the #Strings heap with the name of the type An offset into the #Strings heap with the namespace of the type. in that order. The important tables are (with their table number in hex): 0x2: TypeDef 0x4: FieldDef 0x6: MethodDef 0x14: EventDef 0x17: PropertyDef Contains basic information on all the types, fields, methods, events and properties defined in the assembly. 0x1: TypeRef The details of all the referenced types defined in other assemblies. 0xa: MemberRef The details of all the referenced members of types defined in other assemblies. 0x9: InterfaceImpl Links the types defined in the assembly with the interfaces that type implements. 0xc: CustomAttribute Contains information on all the attributes applied to elements in this assembly, from method parameters to the assembly itself. 0x18: MethodSemantics Links properties and events with the methods that comprise the get/set or add/remove methods of the property or method. 0x1b: TypeSpec 0x2b: MethodSpec These tables provide instantiations of generic types and methods for each usage within the assembly. There are several ways to reference a single row within a table. The simplest is to simply specify the 1-based row index (RID). The indexes are 1-based so a value of 0 can represent 'null'. In this case, which table the row index refers to is inferred from the context. If the table can't be determined from the context, then a particular row is specified using a token. This is a 4-byte value with the most significant byte specifying the table, and the other 3 specifying the 1-based RID within that table. This is generally how a metadata table row is referenced from the instruction stream in method bodies. The third way is to use a coded token, which we will look at in the next post. So, back to the bytes Now we've got a rough idea of how the metadata is logically arranged, we can now look at the bytes comprising the start of the CLR data within an assembly: The first 8 bytes of the .text section are used by the CLR loader stub. After that, the CLR-specific data starts with the CLI header. I've highlighted the important bytes in the diagram. In order, they are: The size of the header. As the header is a fixed size, this is always 0x48. The CLR major version. This is always 2, even for .NET 4 assemblies. The CLR minor version. This is always 5, even for .NET 4 assemblies, and seems to be ignored by the runtime. The RVA and size of the metadata header. In the diagram, the RVA 0x20e4 corresponds to the file offset 0x2e4 Various flags specifying if this assembly is pure-IL, whether it is strong name signed, and whether it should be run as 32-bit (this is how the CLR differentiates between x86 and AnyCPU assemblies). A token pointing to the entrypoint of the assembly. In this case, 06 (the last byte) refers to the MethodDef table, and 01 00 00 refers to to the first row in that table. (after a gap) RVA of the strong name signature hash, which comes straight after the CLI header. The RVA 0x2050 corresponds to file offset 0x250. The rest of the CLI header is mainly used in mixed-mode assemblies, and so is zeroed in this pure-IL assembly. After the CLI header comes the strong name hash, which is a SHA-1 hash of the assembly using the strong name key. After that comes the bodies of all the methods in the assembly concatentated together. Each method body starts off with a header, which I'll be looking at later. As you can see, this is a very small assembly with only 2 methods (an instance constructor and a Main method). After that, near the end of the .text section, comes the metadata, containing a metadata header and the 5 streams discussed above. We'll be looking at this in the next post. Conclusion The CLI header data doesn't have much to it, but we've covered some concepts that will be important in later posts - the logical structure of the CLR metadata and the overall layout of CLR data within the .text section. Next, I'll have a look at the contents of the #~ stream, and how the table data is arranged on disk.

    Read the article

  • An Introduction to Information Rights Management in Exchange 2010

    If you’re a Systems Administrator concerned about information security, you could do worse than implementing Microsoft’s Information Rights Management system; especially if you already have Active Directory Rights Management Services in place. Elie Bou Issa talks Hub Servers, Transport Protection Rules and Outlook integration in this excellent guide to getting started with IRM.

    Read the article

  • Implementing User-Defined Hierarchies in SQL Server Analysis Services

    To be able to drill into multidimensional cube data at several levels, you must implement all of the hierarchies on the database dimensions. Then you'll create the attribute relationships necessary to optimize performance. Analysis Services hierarchies offer plenty of possibilities for displaying the data that your business requires. Rob Sheldon continues his series on SQL Server Analysis Services 2008.

    Read the article

< Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >