Search Results

Search found 6323 results on 253 pages for 'angularjs compile'.

Page 240/253 | < Previous Page | 236 237 238 239 240 241 242 243 244 245 246 247  | Next Page >

  • The dynamic Type in C# Simplifies COM Member Access from Visual FoxPro

    - by Rick Strahl
    I’ve written quite a bit about Visual FoxPro interoperating with .NET in the past both for ASP.NET interacting with Visual FoxPro COM objects as well as Visual FoxPro calling into .NET code via COM Interop. COM Interop with Visual FoxPro has a number of problems but one of them at least got a lot easier with the introduction of dynamic type support in .NET. One of the biggest problems with COM interop has been that it’s been really difficult to pass dynamic objects from FoxPro to .NET and get them properly typed. The only way that any strong typing can occur in .NET for FoxPro components is via COM type library exports of Visual FoxPro components. Due to limitations in Visual FoxPro’s type library support as well as the dynamic nature of the Visual FoxPro language where few things are or can be described in the form of a COM type library, a lot of useful interaction between FoxPro and .NET required the use of messy Reflection code in .NET. Reflection is .NET’s base interface to runtime type discovery and dynamic execution of code without requiring strong typing. In FoxPro terms it’s similar to EVALUATE() functionality albeit with a much more complex API and corresponiding syntax. The Reflection APIs are fairly powerful, but they are rather awkward to use and require a lot of code. Even with the creation of wrapper utility classes for common EVAL() style Reflection functionality dynamically access COM objects passed to .NET often is pretty tedious and ugly. Let’s look at a simple example. In the following code I use some FoxPro code to dynamically create an object in code and then pass this object to .NET. An alternative to this might also be to create a new object on the fly by using SCATTER NAME on a database record. How the object is created is inconsequential, other than the fact that it’s not defined as a COM object – it’s a pure FoxPro object that is passed to .NET. Here’s the code: *** Create .NET COM InstanceloNet = CREATEOBJECT('DotNetCom.DotNetComPublisher') *** Create a Customer Object Instance (factory method) loCustomer = GetCustomer() loCustomer.Name = "Rick Strahl" loCustomer.Company = "West Wind Technologies" loCustomer.creditLimit = 9999999999.99 loCustomer.Address.StreetAddress = "32 Kaiea Place" loCustomer.Address.Phone = "808 579-8342" loCustomer.Address.Email = "[email protected]" *** Pass Fox Object and echo back values ? loNet.PassRecordObject(loObject) RETURN FUNCTION GetCustomer LOCAL loCustomer, loAddress loCustomer = CREATEOBJECT("EMPTY") ADDPROPERTY(loCustomer,"Name","") ADDPROPERTY(loCustomer,"Company","") ADDPROPERTY(loCUstomer,"CreditLimit",0.00) ADDPROPERTY(loCustomer,"Entered",DATETIME()) loAddress = CREATEOBJECT("Empty") ADDPROPERTY(loAddress,"StreetAddress","") ADDPROPERTY(loAddress,"Phone","") ADDPROPERTY(loAddress,"Email","") ADDPROPERTY(loCustomer,"Address",loAddress) RETURN loCustomer ENDFUNC Now prior to .NET 4.0 you’d have to access this object passed to .NET via Reflection and the method code to do this would looks something like this in the .NET component: public string PassRecordObject(object FoxObject) { // *** using raw Reflection string Company = (string) FoxObject.GetType().InvokeMember( "Company", BindingFlags.GetProperty,null, FoxObject,null); // using the easier ComUtils wrappers string Name = (string) ComUtils.GetProperty(FoxObject,"Name"); // Getting Address object – then getting child properties object Address = ComUtils.GetProperty(FoxObject,"Address");    string Street = (string) ComUtils.GetProperty(FoxObject,"StreetAddress"); // using ComUtils 'Ex' functions you can use . Syntax     string StreetAddress = (string) ComUtils.GetPropertyEx(FoxObject,"AddressStreetAddress"); return Name + Environment.NewLine + Company + Environment.NewLine + StreetAddress + Environment.NewLine + " FOX"; } Note that the FoxObject is passed in as type object which has no specific type. Since the object doesn’t exist in .NET as a type signature the object is passed without any specific type information as plain non-descript object. To retrieve a property the Reflection APIs like Type.InvokeMember or Type.GetProperty().GetValue() etc. need to be used. I made this code a little simpler by using the Reflection Wrappers I mentioned earlier but even with those ComUtils calls the code is pretty ugly requiring passing the objects for each call and casting each element. Using .NET 4.0 Dynamic Typing makes this Code a lot cleaner Enter .NET 4.0 and the dynamic type. Replacing the input parameter to the .NET method from type object to dynamic makes the code to access the FoxPro component inside of .NET much more natural: public string PassRecordObjectDynamic(dynamic FoxObject) { // *** using raw Reflection string Company = FoxObject.Company; // *** using the easier ComUtils class string Name = FoxObject.Name; // *** using ComUtils 'ex' functions to use . Syntax string Address = FoxObject.Address.StreetAddress; return Name + Environment.NewLine + Company + Environment.NewLine + Address + Environment.NewLine + " FOX"; } As you can see the parameter is of type dynamic which as the name implies performs Reflection lookups and evaluation on the fly so all the Reflection code in the last example goes away. The code can use regular object ‘.’ syntax to reference each of the members of the object. You can access properties and call methods this way using natural object language. Also note that all the type casts that were required in the Reflection code go away – dynamic types like var can infer the type to cast to based on the target assignment. As long as the type can be inferred by the compiler at compile time (ie. the left side of the expression is strongly typed) no explicit casts are required. Note that although you get to use plain object syntax in the code above you don’t get Intellisense in Visual Studio because the type is dynamic and thus has no hard type definition in .NET . The above example calls a .NET Component from VFP, but it also works the other way around. Another frequent scenario is an .NET code calling into a FoxPro COM object that returns a dynamic result. Assume you have a FoxPro COM object returns a FoxPro Cursor Record as an object: DEFINE CLASS FoxData AS SESSION OlePublic cAppStartPath = "" FUNCTION INIT THIS.cAppStartPath = ADDBS( JustPath(Application.ServerName) ) SET PATH TO ( THIS.cAppStartpath ) ENDFUNC FUNCTION GetRecord(lnPk) LOCAL loCustomer SELECT * FROM tt_Cust WHERE pk = lnPk ; INTO CURSOR TCustomer IF _TALLY < 1 RETURN NULL ENDIF SCATTER NAME loCustomer MEMO RETURN loCustomer ENDFUNC ENDDEFINE If you call this from a .NET application you can now retrieve this data via COM Interop and cast the result as dynamic to simplify the data access of the dynamic FoxPro type that was created on the fly: int pk = 0; int.TryParse(Request.QueryString["id"],out pk); // Create Fox COM Object with Com Callable Wrapper FoxData foxData = new FoxData(); dynamic foxRecord = foxData.GetRecord(pk); string company = foxRecord.Company; DateTime entered = foxRecord.Entered; This code looks simple and natural as it should be – heck you could write code like this in days long gone by in scripting languages like ASP classic for example. Compared to the Reflection code that previously was necessary to run similar code this is much easier to write, understand and maintain. For COM interop and Visual FoxPro operation dynamic type support in .NET 4.0 is a huge improvement and certainly makes it much easier to deal with FoxPro code that calls into .NET. Regardless of whether you’re using COM for calling Visual FoxPro objects from .NET (ASP.NET calling a COM component and getting a dynamic result returned) or whether FoxPro code is calling into a .NET COM component from a FoxPro desktop application. At one point or another FoxPro likely ends up passing complex dynamic data to .NET and for this the dynamic typing makes coding much cleaner and more readable without having to create custom Reflection wrappers. As a bonus the dynamic runtime that underlies the dynamic type is fairly efficient in terms of making Reflection calls especially if members are repeatedly accessed. © Rick Strahl, West Wind Technologies, 2005-2010Posted in COM  FoxPro  .NET  CSharp  

    Read the article

  • From Binary to Data Structures

    - by Cédric Menzi
    Table of Contents Introduction PE file format and COFF header COFF file header BaseCoffReader Byte4ByteCoffReader UnsafeCoffReader ManagedCoffReader Conclusion History This article is also available on CodeProject Introduction Sometimes, you want to parse well-formed binary data and bring it into your objects to do some dirty stuff with it. In the Windows world most data structures are stored in special binary format. Either we call a WinApi function or we want to read from special files like images, spool files, executables or may be the previously announced Outlook Personal Folders File. Most specifications for these files can be found on the MSDN Libarary: Open Specification In my example, we are going to get the COFF (Common Object File Format) file header from a PE (Portable Executable). The exact specification can be found here: PECOFF PE file format and COFF header Before we start we need to know how this file is formatted. The following figure shows an overview of the Microsoft PE executable format. Source: Microsoft Our goal is to get the PE header. As we can see, the image starts with a MS-DOS 2.0 header with is not important for us. From the documentation we can read "...After the MS DOS stub, at the file offset specified at offset 0x3c, is a 4-byte...". With this information we know our reader has to jump to location 0x3c and read the offset to the signature. The signature is always 4 bytes that ensures that the image is a PE file. The signature is: PE\0\0. To prove this we first seek to the offset 0x3c, read if the file consist the signature. So we need to declare some constants, because we do not want magic numbers.   private const int PeSignatureOffsetLocation = 0x3c; private const int PeSignatureSize = 4; private const string PeSignatureContent = "PE";   Then a method for moving the reader to the correct location to read the offset of signature. With this method we always move the underlining Stream of the BinaryReader to the start location of the PE signature.   private void SeekToPeSignature(BinaryReader br) { // seek to the offset for the PE signagure br.BaseStream.Seek(PeSignatureOffsetLocation, SeekOrigin.Begin); // read the offset int offsetToPeSig = br.ReadInt32(); // seek to the start of the PE signature br.BaseStream.Seek(offsetToPeSig, SeekOrigin.Begin); }   Now, we can check if it is a valid PE image by reading of the next 4 byte contains the content PE.   private bool IsValidPeSignature(BinaryReader br) { // read 4 bytes to get the PE signature byte[] peSigBytes = br.ReadBytes(PeSignatureSize); // convert it to a string and trim \0 at the end of the content string peContent = Encoding.Default.GetString(peSigBytes).TrimEnd('\0'); // check if PE is in the content return peContent.Equals(PeSignatureContent); }   With this basic functionality we have a good base reader class to try the different methods of parsing the COFF file header. COFF file header The COFF header has the following structure: Offset Size Field 0 2 Machine 2 2 NumberOfSections 4 4 TimeDateStamp 8 4 PointerToSymbolTable 12 4 NumberOfSymbols 16 2 SizeOfOptionalHeader 18 2 Characteristics If we translate this table to code, we get something like this:   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public MachineType Machine; public ushort NumberOfSections; public uint TimeDateStamp; public uint PointerToSymbolTable; public uint NumberOfSymbols; public ushort SizeOfOptionalHeader; public Characteristic Characteristics; } BaseCoffReader All readers do the same thing, so we go to the patterns library in our head and see that Strategy pattern or Template method pattern is sticked out in the bookshelf. I have decided to take the template method pattern in this case, because the Parse() should handle the IO for all implementations and the concrete parsing should done in its derived classes.   public CoffHeader Parse() { using (var br = new BinaryReader(File.Open(_fileName, FileMode.Open, FileAccess.Read, FileShare.Read))) { SeekToPeSignature(br); if (!IsValidPeSignature(br)) { throw new BadImageFormatException(); } return ParseInternal(br); } } protected abstract CoffHeader ParseInternal(BinaryReader br);   First we open the BinaryReader, seek to the PE signature then we check if it contains a valid PE signature and rest is done by the derived implementations. Byte4ByteCoffReader The first solution is using the BinaryReader. It is the general way to get the data. We only need to know which order, which data-type and its size. If we read byte for byte we could comment out the first line in the CoffHeader structure, because we have control about the order of the member assignment.   protected override CoffHeader ParseInternal(BinaryReader br) { CoffHeader coff = new CoffHeader(); coff.Machine = (MachineType)br.ReadInt16(); coff.NumberOfSections = (ushort)br.ReadInt16(); coff.TimeDateStamp = br.ReadUInt32(); coff.PointerToSymbolTable = br.ReadUInt32(); coff.NumberOfSymbols = br.ReadUInt32(); coff.SizeOfOptionalHeader = (ushort)br.ReadInt16(); coff.Characteristics = (Characteristic)br.ReadInt16(); return coff; }   If the structure is as short as the COFF header here and the specification will never changed, there is probably no reason to change the strategy. But if a data-type will be changed, a new member will be added or ordering of member will be changed the maintenance costs of this method are very high. UnsafeCoffReader Another way to bring the data into this structure is using a "magically" unsafe trick. As above, we know the layout and order of the data structure. Now, we need the StructLayout attribute, because we have to ensure that the .NET Runtime allocates the structure in the same order as it is specified in the source code. We also need to enable "Allow unsafe code (/unsafe)" in the project's build properties. Then we need to add the following constructor to the CoffHeader structure.   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public CoffHeader(byte[] data) { unsafe { fixed (byte* packet = &data[0]) { this = *(CoffHeader*)packet; } } } }   The "magic" trick is in the statement: this = *(CoffHeader*)packet;. What happens here? We have a fixed size of data somewhere in the memory and because a struct in C# is a value-type, the assignment operator = copies the whole data of the structure and not only the reference. To fill the structure with data, we need to pass the data as bytes into the CoffHeader structure. This can be achieved by reading the exact size of the structure from the PE file.   protected override CoffHeader ParseInternal(BinaryReader br) { return new CoffHeader(br.ReadBytes(Marshal.SizeOf(typeof(CoffHeader)))); }   This solution is the fastest way to parse the data and bring it into the structure, but it is unsafe and it could introduce some security and stability risks. ManagedCoffReader In this solution we are using the same approach of the structure assignment as above. But we need to replace the unsafe part in the constructor with the following managed part:   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public CoffHeader(byte[] data) { IntPtr coffPtr = IntPtr.Zero; try { int size = Marshal.SizeOf(typeof(CoffHeader)); coffPtr = Marshal.AllocHGlobal(size); Marshal.Copy(data, 0, coffPtr, size); this = (CoffHeader)Marshal.PtrToStructure(coffPtr, typeof(CoffHeader)); } finally { Marshal.FreeHGlobal(coffPtr); } } }     Conclusion We saw that we can parse well-formed binary data to our data structures using different approaches. The first is probably the clearest way, because we know each member and its size and ordering and we have control about the reading the data for each member. But if add member or the structure is going change by some reason, we need to change the reader. The two other solutions use the approach of the structure assignment. In the unsafe implementation we need to compile the project with the /unsafe option. We increase the performance, but we get some security risks.

    Read the article

  • Using Unity – Part 1

    - by nmarun
    I have been going through implementing some IoC pattern using Unity and so I decided to share my learnings (I know that’s not an English word, but you get the point). Ok, so I have an ASP.net project named ProductWeb and a class library called ProductModel. In the model library, I have a class called Product: 1: public class Product 2: { 3: public string Name { get; set; } 4: public string Description { get; set; } 5:  6: public Product() 7: { 8: Name = "iPad"; 9: Description = "Not just a reader!"; 10: } 11:  12: public string WriteProductDetails() 13: { 14: return string.Format("Name: {0} Description: {1}", Name, Description); 15: } 16: } In the Page_Load event of the default.aspx, I’ll need something like: 1: Product product = new Product(); 2: productDetailsLabel.Text = product.WriteProductDetails(); Now, let’s go ‘Unity’fy this application. I assume you have all the bits for the pattern. If not, get it from here. I found this schematic representation of Unity pattern from the above link. This image might not make much sense to you now, but as we proceed, things will get better. The first step to implement the Inversion of Control pattern is to create interfaces that your types will implement. An IProduct interface is added to the ProductModel project. 1: public interface IProduct 2: { 3: string WriteProductDetails(); 4: } Let’s make our Product class to implement the IProduct interface. The application will compile and run as before despite the changes made. Add the following references to your web project: Microsoft.Practices.Unity Microsoft.Practices.Unity.Configuration Microsoft.Practices.Unity.StaticFactory Microsoft.Practices.ObjectBuilder2 We need to add a few lines to the web.config file. The line below tells what version of Unity pattern we’ll be using. 1: <configSections> 2: <section name="unity" type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection, Microsoft.Practices.Unity.Configuration, Version=1.2.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/> 3: </configSections> Add another block with the same name as the section name declared above – ‘unity’. 1: <unity> 2: <typeAliases> 3: <!--Custom object types--> 4: <typeAlias alias="IProduct" type="ProductModel.IProduct, ProductModel"/> 5: <typeAlias alias="Product" type="ProductModel.Product, ProductModel"/> 6: </typeAliases> 7: <containers> 8: <container name="unityContainer"> 9: <types> 10: <type type="IProduct" mapTo="Product"/> 11: </types> 12: </container> 13: </containers> 14: </unity> From the Unity Configuration schematic shown above, you see that the ‘unity’ block has a ‘typeAliases’ and a ‘containers’ segment. The typeAlias element gives a ‘short-name’ for a type. This ‘short-name’ can be used to point to this type any where in the configuration file (web.config in our case, but all this information could be coming from an external xml file as well). The container element holds all the mapping information. This container is referenced through its name attribute in the code and you can have multiple of these container elements in the containers segment. The ‘type’ element in line 10 basically says: ‘When Unity requests to resolve the alias IProduct, return an instance of whatever the short-name of Product points to’. This is the most basic piece of Unity pattern and all of this is accomplished purely through configuration. So, in future you have a change in your model, all you need to do is - implement IProduct on the new model class and - either add a typeAlias for the new type and point the mapTo attribute to the new alias declared - or modify the mapTo attribute of the type element to point to the new alias (as the case may be). Now for the calling code. It’s a good idea to store your unity container details in the Application cache, as this is rarely bound to change and also adds for better performance. The Global.asax.cs file comes for our rescue: 1: protected void Application_Start(object sender, EventArgs e) 2: { 3: // create and populate a new Unity container from configuration 4: IUnityContainer unityContainer = new UnityContainer(); 5: UnityConfigurationSection section = (UnityConfigurationSection)ConfigurationManager.GetSection("unity"); 6: section.Containers["unityContainer"].Configure(unityContainer); 7: Application["UnityContainer"] = unityContainer; 8: } 9:  10: protected void Application_End(object sender, EventArgs e) 11: { 12: Application["UnityContainer"] = null; 13: } All this says is: create an instance of UnityContainer() and read the ‘unity’ section from the configSections segment of the web.config file. Then get the container named ‘unityContainer’ and store it in the Application cache. In my code-behind file, I’ll make use of this UnityContainer to create an instance of the Product type. 1: public partial class _Default : Page 2: { 3: private IUnityContainer unityContainer; 4: protected void Page_Load(object sender, EventArgs e) 5: { 6: unityContainer = Application["UnityContainer"] as IUnityContainer; 7: if (unityContainer == null) 8: { 9: productDetailsLabel.Text = "ERROR: Unity Container not populated in Global.asax.<p />"; 10: } 11: else 12: { 13: IProduct productInstance = unityContainer.Resolve<IProduct>(); 14: productDetailsLabel.Text = productInstance.WriteProductDetails(); 15: } 16: } 17: } Looking the ‘else’ block, I’m asking the unityContainer object to resolve the IProduct type. All this does, is to look at the matching type in the container, read its mapTo attribute value, get the full name from the alias and create an instance of the Product class. Fabulous!! I’ll go more in detail in the next blog. The code for this blog can be found here.

    Read the article

  • Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 1

    - by rajbk
    The Open Data Protocol, referred to as OData, is a new data-sharing standard that breaks down silos and fosters an interoperative ecosystem for data consumers (clients) and producers (services) that is far more powerful than currently possible. It enables more applications to make sense of a broader set of data, and helps every data service and client add value to the whole ecosystem. WCF Data Services (previously known as ADO.NET Data Services), then, was the first Microsoft technology to support the Open Data Protocol in Visual Studio 2008 SP1. It provides developers with client libraries for .NET, Silverlight, AJAX, PHP and Java. Microsoft now also supports OData in SQL Server 2008 R2, Windows Azure Storage, Excel 2010 (through PowerPivot), and SharePoint 2010. Many other other applications in the works. * This post walks you through how to create an OData feed, define a shape for the data and pre-filter the data using Visual Studio 2010, WCF Data Services and the Entity Framework. A sample project is attached at the bottom of Part 2 of this post. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Create the Web Application File –› New –› Project, Select “ASP.NET Empty Web Application” Add the Entity Data Model Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “ADO.NET Entity Data Model” under "Data”. Name the Model “Northwind” and click “Add”.   In the “Choose Model Contents”, select “Generate Model From Database” and click “Next”   Define a connection to your database containing the Northwind database in the next screen. We are going to expose the Products table through our OData feed. Select “Products” in the “Choose your Database Object” screen.   Click “Finish”. We are done creating our Entity Data Model. Save the Northwind.edmx file created. Add the WCF Data Service Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “WCF Data Service” from the list and call the service “DataService” (creative, huh?). Click “Add”.   Enable Access to the Data Service Open the DataService.svc.cs class. The class is well commented and instructs us on the next steps. public class DataService : DataService< /* TODO: put your data source class name here */ > { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { // TODO: set rules to indicate which entity sets and service operations are visible, updatable, etc. // Examples: // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead); // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } Replace the comment that starts with “/* TODO:” with “NorthwindEntities” (the entity container name of the Model we created earlier).  WCF Data Services is initially locked down by default, FTW! No data is exposed without you explicitly setting it. You have explicitly specify which Entity sets you wish to expose and what rights are allowed by using the SetEntitySetAccessRule. The SetServiceOperationAccessRule on the other hand sets rules for a specified operation. Let us define an access rule to expose the Products Entity we created earlier. We use the EnititySetRights.AllRead since we want to give read only access. Our modified code is shown below. public class DataService : DataService<NorthwindEntities> { public static void InitializeService(DataServiceConfiguration config) { config.SetEntitySetAccessRule("Products", EntitySetRights.AllRead); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } We are done setting up our ODataFeed! Compile your project. Right click on DataService.svc and select “View in Browser” to see the OData feed. To view the feed in IE, you must make sure that "Feed Reading View" is turned off. You set this under Tools -› Internet Options -› Content tab.   If you navigate to “Products”, you should see the Products feed. Note also that URIs are case sensitive. ie. Products work but products doesn’t.   Filtering our data OData has a set of system query operations you can use to perform common operations against data exposed by the model. For example, to see only Products in CategoryID 2, we can use the following request: /DataService.svc/Products?$filter=CategoryID eq 2 At the time of this writing, supported operations are $orderby, $top, $skip, $filter, $expand, $format†, $select, $inlinecount. Pre-filtering our data using Query Interceptors The Product feed currently returns all Products. We want to change that so that it contains only Products that have not been discontinued. WCF introduces the concept of interceptors which allows us to inject custom validation/policy logic into the request/response pipeline of a WCF data service. We will use a QueryInterceptor to pre-filter the data so that it returns only Products that are not discontinued. To create a QueryInterceptor, write a method that returns an Expression<Func<T, bool>> and mark it with the QueryInterceptor attribute as shown below. [QueryInterceptor("Products")] public Expression<Func<Product, bool>> OnReadProducts() { return o => o.Discontinued == false; } Viewing the feed after compilation will only show products that have not been discontinued. We also confirm this by looking at the WHERE clause in the SQL generated by the entity framework. SELECT [Extent1].[ProductID] AS [ProductID], ... ... [Extent1].[Discontinued] AS [Discontinued] FROM [dbo].[Products] AS [Extent1] WHERE 0 = [Extent1].[Discontinued] Other examples of Query/Change interceptors can be seen here including an example to filter data based on the identity of the authenticated user. We are done pre-filtering our data. In the next part of this post, we will see how to shape our data. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Foot Notes * http://msdn.microsoft.com/en-us/data/aa937697.aspx † $format did not work for me. The way to get a Json response is to include the following in the  request header “Accept: application/json, text/javascript, */*” when making the request. This is easily done with most JavaScript libraries.

    Read the article

  • Soapi.CS : A fully relational fluent .NET Stack Exchange API client library

    - by Sky Sanders
    Soapi.CS for .Net / Silverlight / Windows Phone 7 / Mono as easy as breathing...: var context = new ApiContext(apiKey).Initialize(false); Question thisPost = context.Official .StackApps .Questions.ById(386) .WithComments(true) .First(); Console.WriteLine(thisPost.Title); thisPost .Owner .Questions .PageSize(5) .Sort(PostSort.Votes) .ToList() .ForEach(q=> { Console.WriteLine("\t" + q.Score + "\t" + q.Title); q.Timeline.ToList().ForEach(t=> Console.WriteLine("\t\t" + t.TimelineType + "\t" + t.Owner.DisplayName)); Console.WriteLine(); }); // if you can think it, you can get it. Output Soapi.CS : A fully relational fluent .NET Stack Exchange API client library 21 Soapi.CS : A fully relational fluent .NET Stack Exchange API client library Revision code poet Revision code poet Votes code poet Votes code poet Revision code poet Revision code poet Revision code poet Votes code poet Votes code poet Votes code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Revision code poet Votes code poet Comment code poet Revision code poet Votes code poet Revision code poet Revision code poet Revision code poet Answer code poet Revision code poet Revision code poet 14 SOAPI-WATCH: A realtime service that notifies subscribers via twitter when the API changes in any way. Votes code poet Revision code poet Votes code poet Comment code poet Comment code poet Comment code poet Votes lfoust Votes code poet Comment code poet Comment code poet Comment code poet Comment code poet Revision code poet Comment lfoust Votes code poet Revision code poet Votes code poet Votes lfoust Votes code poet Revision code poet Comment Dave DeLong Revision code poet Revision code poet Votes code poet Comment lfoust Comment Dave DeLong Comment lfoust Comment lfoust Comment Dave DeLong Revision code poet 11 SOAPI-EXPLORE: Self-updating single page JavaSript API test harness Votes code poet Votes code poet Votes code poet Votes code poet Votes code poet Comment code poet Revision code poet Votes code poet Revision code poet Revision code poet Revision code poet Comment code poet Revision code poet Votes code poet Comment code poet Question code poet Votes code poet 11 Soapi.JS V1.0: fluent JavaScript wrapper for the StackOverflow API Comment George Edison Comment George Edison Comment George Edison Comment George Edison Comment George Edison Comment George Edison Answer George Edison Votes code poet Votes code poet Votes code poet Votes code poet Revision code poet Revision code poet Answer code poet Comment code poet Revision code poet Comment code poet Comment code poet Comment code poet Revision code poet Revision code poet Votes code poet Votes code poet Votes code poet Votes code poet Comment code poet Comment code poet Comment code poet Comment code poet Comment code poet 9 SOAPI-DIFF: Your app broke? Check SOAPI-DIFF to find out what changed in the API Votes code poet Revision code poet Comment Dennis Williamson Answer Dennis Williamson Votes code poet Votes Dennis Williamson Comment code poet Question code poet Votes code poet About A robust, fully relational, easy to use, strongly typed, end-to-end StackOverflow API Client Library. Out of the box, Soapi provides you with a robust client library that abstracts away most all of the messy details of consuming the API and lets you concentrate on implementing your ideas. A few features include: A fully relational model of the API data set exposed via a fully 'dot navigable' IEnumerable (LINQ) implementation. Simply tell Soapi what you want and it will get it for you. e.g. "On my first question, from the author of the first comment, get the first page of comments by that person on any post" my.Questions.First().Comments.First().Owner.Comments.ToList(); (yes this is a real expression that returns the data as expressed!) Full coverage of the API, all routes and all parameters with an intuitive syntax. Strongly typed Domain Data Objects for all API data structures. Eager and Lazy Loading of 'stub' objects. Eager\Lazy loading may be disabled. When finer grained control of requests is desired, the core RouteMap objects may be leveraged to request data from any of the API paths using all available parameters as documented on the help pages. A rich Asynchronous implementation. A configurable request cache to reduce unnecessary network traffic and to simplify your usage logic. There is no need to go out of your way to be frugal. You may set a distinct cache duration for any particular route. A configurable request throttle to ensure compliance with the api terms of usage and to simplify your code in that you do not have to worry about and respond to 50X errors. The RequestCache and Throttled Queue are thread-safe, so can make as many requests as you like from as many threads as you like as fast as you like and not worry about abusing the api or having to write reams of management/compensation code. Configurable retry threshold that will, by default, make up to 3 attempts to retrieve a request before failing. Every request made by Soapi is properly formed and directed so most any http error will be the result of a timeout or other network infrastructure. A retry buffer provides a level of fault tolerance that you can rely on. An almost identical javascript library, Soapi.JS, and it's full figured big brother, Soapi.JS2, that will enable you to leverage your server cycles and bandwidth for only those tasks that require it and offload things like status updates to the client's browser. License Licensed GPL Version 2 license. Why is Soapi.CS GPL? Can I get an LGPL license for Soapi.CS? (hint: probably) Platforms .NET 3.5 .NET 4.0 Silverlight 3 Silverlight 4 Windows Phone 7 Mono Download Source code lives @ http://soapics.codeplex.com. Binary releases are forthcoming. codeplex is acting up again. get the source and binaries @ http://bitbucket.org/bitpusher/soapi.cs/downloads The source is C# 3.5. and includes projects and solutions for the following IDEs Visual Studio 2008 Visual Studio 2010 ModoDevelop 2.4 Documentation Full documentation is available at http://soapi.info/help/cs/index.aspx Sample Code / Usage Examples Sample code and usage examples will be added as answers to this question. Full API Coverage all API routes are covered Full Parameter Parity If the API exposes it, Soapi giftwraps it for you. Building a simple app with Soapi.CS - a simple app that gathers all traces of a user in the whole stackiverse. Fluent Configuration - Setting up a Soapi.ApiContext could not be easier Bulk Data Import - A tiny app that quickly loads a SQLite data file with all users in the stackiverse. Paged Results - Soapi.CS transparently handles multi-page operations. Asynchronous Requests - Soapi.CS provides a rich asynchronous model that is especially useful when writing api apps in Silverlight or Windows Phone 7. Caching and Throttling - how and why Apps that use Soapi.CS Soapi.FindUser - .net utility for locating a user anywhere in the stackiverse Soapi.Explore - The entire API at your command Soapi.LastSeen - List users by last access time Add your app/site here - I know you are out there ;-) if you are not comfortable editing this post, simply add a comment and I will add it. The CS/SL/WP7/MONO libraries all compile the same code and with the exception of environmental considerations of Silverlight, the code samples are valid for all libraries. You may also find guidance in the test suites. More information on the SOAPI eco-system. Contact This library is currently the effort of me, Sky Sanders (code poet) and can be reached at gmail - sky.sanders Any who are interested in improving this library are welcome. Support Soapi You can help support this project by voting for Soapi's Open Source Ad post For more information about the origins of Soapi.CS and the rest of the Soapi eco-system see What is Soapi and why should I care?

    Read the article

  • SQL Azure Reporting Limited CTP Arrived

    - by Shaun
    It’s about 3 months later when I registered the SQL Azure Reporting CTP on the Microsoft Connect after TechED 2010 China. Today when I checked my mailbox I found that the SQL Azure team had just accepted my request and sent the activation code over to me. So let’s have a look on the new SQL Azure Reporting.   Concept The SQL Azure Reporting provides cloud-based reporting as a service, built on SQL Server Reporting Services and SQL Azure technologies. Cloud-based reporting solutions such as SQL Azure Reporting provide many benefits, including rapid provisioning, cost-effective scalability, high availability, and reduced management overhead for report servers; and secure access, viewing, and management of reports. By using the SQL Azure Reporting service, we can do: Embed the Visual Studio Report Viewer ADO.NET Ajax control or Windows Form control to view the reports deployed on SQL Azure Reporting Service in our web or desktop application. Leverage the SQL Azure Reporting SOAP API to manage and retrieve the report content from any kinds of application. Use the SQL Azure Reporting Service Portal to navigate and view the reports deployed on the cloud. Since the SQL Azure Reporting was built based on the SQL Server 2008 R2 Reporting Service, we can use any tools we are familiar with, such as the SQL Server Integration Studio, Visual Studio Report Viewer. The SQL Azure Reporting Service runs as a remote SQL Server Reporting Service just on the cloud rather than on a server besides us.   Establish a New SQL Azure Reporting Let’s move to the windows azure deveploer portal and click the Reporting item from the left side navigation bar. If you don’t have the activation code you can click the Sign Up button to send a requirement to the Microsoft Connect. Since I already recieved the received code mail I clicked the Provision button. Then after agree the terms of the service I will select the subscription for where my SQL Azure Reporting CTP should be provisioned. In this case I selected my free Windows Azure Pass subscription. Then the final step, paste the activation code and enter the password of our SQL Azure Reporting Service. The user name of the SQL Azure Reporting will be generated by SQL Azure automatically. After a while the new SQL Azure Reporting Server will be shown on our developer portal. The Reporting Service URL and the user name will be shown as well. We can reset the password from the toolbar button.   Deploy Report to SQL Azure Reporting If you are familiar with SQL Server Reporting Service you will find this part will be very similar with what you know and what you did before. Firstly we open the SQL Server Business Intelligence Development Studio and create a new Report Server Project. Then we will create a shared data source where the report data will be retrieved from. This data source can be SQL Azure but we can use local SQL Server or other database if it opens the port up. In this case we use a SQL Azure database located in the same data center of our reporting service. In the Credentials tab page we entered the user name and password to this SQL Azure database. The SQL Azure Reporting CTP only available at the North US Data Center now so that the related SQL Server and hosted service might be better to select the same data center to avoid the external data transfer fee. Then we create a very simple report, just retrieve all records from a table named Members and have a table in the report to list them. In the data source selection step we choose the shared data source we created before, then enter the T-SQL to select all records from the Member table, then put all fields into the table columns. The report will be like this as following In order to deploy the report onto the SQL Azure Reporting Service we need to update the project property. Right click the project node from the solution explorer and select the property item. In the Target Server URL item we will specify the reporting server URL of our SQL Azure Reporting. We can go back to the developer portal and select the reporting node from the left side, then copy the Web Service URL and paste here. But notice that we need to append “/reportserver” after pasted. Then just click the Deploy menu item in the context menu of the project, the Visual Studio will compile the report and then upload to the reporting service accordingly. In this step we will be prompted to input the user name and password of our SQL Azure Reporting Service. We can get the user name from the developer portal, just next to the Web Service URL in the SQL Azure Reporting page. And the password is the one we specified when created the reporting service. After about one minute the report will be deployed succeed.   View the Report in Browser SQL Azure Reporting allows us to view the reports which deployed on the cloud from a standard browser. We copied the Web Service URL from the reporting service main page and appended “/reportserver” in HTTPS protocol then we will have the SQL Azure Reporting Service login page. After entered the user name and password of the SQL Azure Reporting Service we can see the directories and reports listed. Click the report will launch the Report Viewer to render the report.   View Report in a Web Role with the Report Viewer The ASP.NET and Windows Form Report Viewer works well with the SQL Azure Reporting Service as well. We can create a ASP.NET Web Role and added the Report Viewer control in the default page. What we need to change to the report viewer are Change the Processing Mode to Remote. Specify the Report Server URL under the Server Remote category to the URL of the SQL Azure Reporting Web Service URL with “/reportserver” appended. Specify the Report Path to the report which we want to display. The report name should NOT include the extension name. For example my report was in the SqlAzureReportingTest project and named MemberList.rdl then the report path should be /SqlAzureReportingTest/MemberList. And the next one is to specify the SQL Azure Reporting Credentials. We can use the following class to wrap the report server credential. 1: private class ReportServerCredentials : IReportServerCredentials 2: { 3: private string _userName; 4: private string _password; 5: private string _domain; 6:  7: public ReportServerCredentials(string userName, string password, string domain) 8: { 9: _userName = userName; 10: _password = password; 11: _domain = domain; 12: } 13:  14: public WindowsIdentity ImpersonationUser 15: { 16: get 17: { 18: return null; 19: } 20: } 21:  22: public ICredentials NetworkCredentials 23: { 24: get 25: { 26: return null; 27: } 28: } 29:  30: public bool GetFormsCredentials(out Cookie authCookie, out string user, out string password, out string authority) 31: { 32: authCookie = null; 33: user = _userName; 34: password = _password; 35: authority = _domain; 36: return true; 37: } 38: } And then in the Page_Load method, pass it to the report viewer. 1: protected void Page_Load(object sender, EventArgs e) 2: { 3: ReportViewer1.ServerReport.ReportServerCredentials = new ReportServerCredentials( 4: "<user name>", 5: "<password>", 6: "<sql azure reporting web service url>"); 7: } Finally deploy it to Windows Azure and enjoy the report.   Summary In this post I introduced the SQL Azure Reporting CTP which had just available. Likes other features in Windows Azure, the SQL Azure Reporting is very similar with the SQL Server Reporting. As you can see in this post we can use the existing and familiar tools to build and deploy the reports and display them on a website. But the SQL Azure Reporting is just in the CTP stage which means It is free. There’s no support for it. Only available at the North US Data Center. You can get more information about the SQL Azure Reporting CTP from the links following SQL Azure Reporting Limited CTP at MSDN SQL Azure Reporting Samples at TechNet Wiki You can download the solutions and the projects used in this post here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Using delegates in C# (Part 2)

    - by rajbk
    Part 1 of this post can be read here. We are now about to see the different syntaxes for invoking a delegate and some c# syntactic sugar which allows you to code faster. We have the following console application. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: Operation op1 = new Operation(Division); 9: double result = op1.Invoke(10, 5); 10: 11: Console.WriteLine(result); 12: Console.ReadLine(); 13: } 14: 15: static double Division(double x, double y) { 16: return x / y; 17: } 18: } Line 1 defines a delegate type called Operation with input parameters (double x, double y) and a return type of double. On Line 8, we create an instance of this delegate and set the target to be a static method called Division (Line 15) On Line 9, we invoke the delegate (one entry in the invocation list). The program outputs 5 when run. The language provides shortcuts for creating a delegate and invoking it (see line 9 and 11). Line 9 is a syntactical shortcut for creating an instance of the Delegate. The C# compiler will infer on its own what the delegate type is and produces intermediate language that creates a new instance of that delegate. Line 11 uses a a syntactical shortcut for invoking the delegate by removing the Invoke method. The compiler sees the line and generates intermediate language which invokes the delegate. When this code is compiled, the generated IL will look exactly like the IL of the compiled code above. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //shortcut constructor syntax 9: Operation op1 = Division; 10: //shortcut invoke syntax 11: double result = op1(10, 2); 12: 13: Console.WriteLine(result); 14: Console.ReadLine(); 15: } 16: 17: static double Division(double x, double y) { 18: return x / y; 19: } 20: } C# 2.0 introduced Anonymous Methods. Anonymous methods avoid the need to create a separate method that contains the same signature as the delegate type. Instead you write the method body in-line. There is an interesting fact about Anonymous methods and closures which won’t be covered here. Use your favorite search engine ;-)We rewrite our code to use anonymous methods (see line 9): 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //Anonymous method 9: Operation op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } We could rewrite our delegate to be of a generic type like so (see line 2 and line 9). You will see why soon. 1: //Generic delegate 2: public delegate T Operation<T>(T x, T y); 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: Operation<double> op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } The .NET 3.5 framework introduced a whole set of predefined delegates for us including public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2); Our code can be modified to use this delegate instead of the one we declared. Our delegate declaration has been removed and line 7 has been changed to use the Func delegate type. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //Func is a delegate defined in the .NET 3.5 framework 7: Func<double, double, double> op1 = delegate (double x, double y) { 8: return x / y; 9: }; 10: double result = op1(10, 2); 11: 12: Console.WriteLine(result); 13: Console.ReadLine(); 14: } 15: 16: static double Division(double x, double y) { 17: return x / y; 18: } 19: } .NET 3.5 also introduced lambda expressions. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. We change our code to use lambda expressions. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //lambda expression 7: Func<double, double, double> op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } C# 3.0 introduced the keyword var (implicitly typed local variable) where the type of the variable is inferred based on the type of the associated initializer expression. We can rewrite our code to use var as shown below (line 7).  The implicitly typed local variable op1 is inferred to be a delegate of type Func<double, double, double> at compile time. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //implicitly typed local variable 7: var op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } You have seen how we can write code in fewer lines by using a combination of the Func delegate type, implicitly typed local variables and lambda expressions.

    Read the article

  • Flashing your Windows Phone Dummies

    - by Martin Hinshelwood
    The rate at which vendors release new updates for the HD2 is ridiculously slow. You have to wait for Microsoft to release the new OS, then you wait for HTC to build it into a ROM, and then you have to wait up to 6 months for your operator to badly customise it for their network. Once Windows Phone 7 is released this problem should go away as Microsoft is likely to be able to update the phone over the air, but what do we do until then? I want Windows Mobile 6.5.5 now!   I’m an early adopter. If there is a new version of something then that’s the version I want. As long as you accept that you are using something on a “let the early adopter beware” and accept that there may be bugs, sometimes serious crippling bugs the go for it. Note that I won't be responsible if you end up bricking your phone, unlocking or flashing your radio or ROM can be risky. If you follow the instructions then you should be fine, I've flashed my phones (SPV, M300, M1000, M2000, M3100, TyTN, TyTN 2, HD2) hundreds of times without any problems! I have been using Windows Mobile 6.5.5 before it was called 6.5.5 and for long enough that I don’t even remember when I first started using it. I was using it on my HTC TyTN 2 before I got an HD2 a couple of months before Christmas, and the first custom ROM’s for the HD2 were a couple of months after that. I always update to the latest ROM that I like, and occasionally I go back to the stock ROM’s to have a look see, but I am always disappointed. Terms: Soft Reset: Same as pulling out the battery, but is like a reboot for your phone Hard Reset: Reinstalls the Operating system from the Image that is stored on it ROM: This is Image that is loaded onto your phone and it is used to reinstall your phone whenever you do a “hard reset”. Stock ROM: A ROM from the original vendor… So HTC Cook a ROM: Referring to Cooking a ROM is the process a ROM developer goes through to take all of the parts (OS, Drivers and Applications) that make up a running phone and compiling them into a ROM. ROM Kitchen: A place where you get an SDK and all the component parts of the phone: OD, Drivers and Application. There are usually lots of Tools for making it easier to compile and build the image. Flashing: The process of updating one of the layers of your phone with a new layer Bricked: This is what happens when flashing goes wrong. Your phone is now good for only one thing… stopping paper blowing away in a windy place. You can “cook” you own ROM using one of the many good “ROM Kitchens” or you can use a ROM built and tested by someone else. I have cooked my own ROM before, and while the tutorials are good, it is a lot of hassle. You can only Flash new ROM’s that are specifically for your phone only so find a ROM for your phone and XDA Developers is the best place to look. It has a forum based structure and you can find your phone quite easily. XDA Developer Forum Installing a new ROM does have its risks. In the past there have been stories about phones being “bricked” but I have not heard of a bricked phone for quite some years. if you follow the instructions carefully you should not have any problems. note: Most of the tools are written by people for whom English is not their first language to you will need concentrate hard to understand some of the instructions. Have you ever read a manual that was just literally translated from another language? Enough said… There are a number of layers on your phone that you will need to know about: SPL: This is the lowest level, like a BIOS on a PC and is the Operating Systems gateway to the hardware Radio: I think of this as the hardware drivers, and you will need a different Radio for CDMA than GSM networks ROM: This is like your Windows CD, but it is stored internally to the Phone. Flashing your phone consists of replacing one Image with another and then wiping your phone and automatically reinstall from the Image. Sometimes when you download an Image wither it is for a Radio or for ROM you only get a file called *.nbh. What do you do with this? Well you need an RUU application to push that Image to your phone. The RUU’s are different per phone, but there is a CustomRUU for the HD2 that will update your phone with any *.nbh placed in the same directory. Download and Instructions for CustomRUU #1 Flash HardSPL An SPL is kind of like a BIOS, and the default one has checks to make sure that you are only installing a signed ROM. This would prevent you from installing one that comes from any other source but the vendor. NOTE: Installing a HARD SPL invalidates your warranty so remember to Flash your phone with a “stock” vendor ROM before trying to send your phone in for repairs. Is the warranty reinstated when you go back to a stock ROM? I don’t know… Updating your SPL to a HardSPL effectively unlocks your phone so you can install anything you like. I would recommend the HardSPL2. Download and Instructions for HardSPL2 #2 Task29 One of the problems that has been seen on the HD2 when flashing new ROM’s is that things are left over from the old ROM. For a while the recommendation was to Flash a stock ROM first, but some clever cookies have come up with “Task29” which formats your phone first. After running this your phone will be blank and will only boot to the white HTC logo and no further. You should follow the instructions and reboot (remove battery) and hold down the “volume down” button while turning you HD2 on to enter the bootloader. From here you can run CustomRUU once the USB message appears. Download and Instructions for Task29 #2 Flash Radio You may need to play around with this one, there is no good and bad version and the latest is not always the best. You know that annoying thing when you hit “end call” on your phone and nothing happens? Well that's down to the Radio. Get this version right for you and you may even be able to make calls. From a Windows Mobile as well Download There are no instructions here, but they are the same as th ROM, but you use this *.nbh file. #3 Flash ROM If you have gotten this far then you are probably a pro by now Just download the latest ROM below and Flash to your phone. I have been really impressed by the Artemis line of ROM’s but it is no way the only choice. I like this one as the developer builds them as close to the stock ROM as possible while updating to the latest of everything. Download and Instructions for  Artemis HD2 vXX Conclusion While updating your ROM is not for the faint hearted it provides more options than the Stock ROM’s and quicker feature updates than waiting… Technorati Tags: WM6

    Read the article

  • Code excavations, wishful invocations, perimeters and domain specific unit test frameworks

    - by RoyOsherove
    One of the talks I did at QCON London was about a subject that I’ve come across fairly recently , when I was building SilverUnit – a “pure” unit test framework for silverlight objects that depend on the silverlight runtime to run. It is the concept of “cogs in the machine” – when your piece of code needs to run inside a host framework or runtime that you have little or no control over for testability related matters. Examples of such cogs and machines can be: your custom control running inside silverlight runtime in the browser your plug-in running inside an IDE your activity running inside a windows workflow your code running inside a java EE bean your code inheriting from a COM+ (enterprise services) component etc.. Not all of these are necessarily testability problems. The main testability problem usually comes when your code actually inherits form something inside the system. For example. one of the biggest problems with testing objects like silverlight controls is the way they depend on the silverlight runtime – they don’t implement some silverlight interface, they don’t just call external static methods against the framework runtime that surrounds them – they actually inherit parts of the framework: they all inherit (in this case) from the silverlight DependencyObject Wrapping it up? An inheritance dependency is uniquely challenging to bring under test, because “classic” methods such as wrapping the object under test with a framework wrapper will not work, and the only way to do manually is to create parallel testable objects that get delegated with all the possible actions from the dependencies.    In silverlight’s case, that would mean creating your own custom logic class that would be called directly from controls that inherit from silverlight, and would be tested independently of these controls. The pro side is that you get the benefit of understanding the “contract” and the “roles” your system plays against your logic, but unfortunately, more often than not, it can be very tedious to create, and may sometimes feel unnecessary or like code duplication. About perimeters A perimeter is that invisible line that your draw around your pieces of logic during a test, that separate the code under test from any dependencies that it uses. Most of the time, a test perimeter around an object will be the list of seams (dependencies that can be replaced such as interfaces, virtual methods etc.) that are actually replaced for that test or for all the tests. Role based perimeters In the case of creating a wrapper around an object – one really creates a “role based” perimeter around the logic that is being tested – that wrapper takes on roles that are required by the code under test, and also communicates with the host system to implement those roles and provide any inputs to the logic under test. in the image below – we have the code we want to test represented as a star. No perimeter is drawn yet (we haven’t wrapped it up in anything yet). in the image below is what happens when you wrap your logic with a role based wrapper – you get a role based perimeter anywhere your code interacts with the system: There’s another way to bring that code under test – using isolation frameworks like typemock, rhino mocks and MOQ (but if your code inherits from the system, Typemock might be the only way to isolate the code from the system interaction.   Ad-Hoc Isolation perimeters the image below shows what I call ad-hoc perimeter that might be vastly different between different tests: This perimeter’s surface is much smaller, because for that specific test, that is all the “change” that is required to the host system behavior.   The third way of isolating the code from the host system is the main “meat” of this post: Subterranean perimeters Subterranean perimeters are Deep rooted perimeters  - “always on” seams that that can lie very deep in the heart of the host system where they are fully invisible even to the test itself, not just to the code under test. Because they lie deep inside a system you can’t control, the only way I’ve found to control them is with runtime (not compile time) interception of method calls on the system. One way to get such abilities is by using Aspect oriented frameworks – for example, in SilverUnit, I’ve used the CThru AOP framework based on Typemock hooks and CLR profilers to intercept such system level method calls and effectively turn them into seams that lie deep down at the heart of the silverlight runtime. the image below depicts an example of what such a perimeter could look like: As you can see, the actual seams can be very far away form the actual code under test, and as you’ll discover, that’s actually a very good thing. Here is only a partial list of examples of such deep rooted seams : disabling the constructor of a base class five levels below the code under test (this.base.base.base.base) faking static methods of a type that’s being called several levels down the stack: method x() calls y() calls z() calls SomeType.StaticMethod()  Replacing an async mechanism with a synchronous one (replacing all timers with your own timer behavior that always Ticks immediately upon calls to “start()” on the same caller thread for example) Replacing event mechanisms with your own event mechanism (to allow “firing” system events) Changing the way the system saves information with your own saving behavior (in silverunit, I replaced all Dependency Property set and get with calls to an in memory value store instead of using the one built into silverlight which threw exceptions without a browser) several questions could jump in: How do you know what to fake? (how do you discover the perimeter?) How do you fake it? Wouldn’t this be problematic  - to fake something you don’t own? it might change in the future How do you discover the perimeter to fake? To discover a perimeter all you have to do is start with a wishful invocation. a wishful invocation is the act of trying to invoke a method (or even just create an instance ) of an object using “regular” test code. You invoke the thing that you’d like to do in a real unit test, to see what happens: Can I even create an instance of this object without getting an exception? Can I invoke this method on that instance without getting an exception? Can I verify that some call into the system happened? You make the invocation, get an exception (because there is a dependency) and look at the stack trace. choose a location in the stack trace and disable it. Then try the invocation again. if you don’t get an exception the perimeter is good for that invocation, so you can move to trying out other methods on that object. in a future post I will show the process using CThru, and how you end up with something close to a domain specific test framework after you’re done creating the perimeter you need.

    Read the article

  • New Validation Attributes in ASP.NET MVC 3 Future

    - by imran_ku07
         Introduction:             Validating user inputs is an very important step in collecting information from users because it helps you to prevent errors during processing data. Incomplete or improperly formatted user inputs will create lot of problems for your application. Fortunately, ASP.NET MVC 3 makes it very easy to validate most common input validations. ASP.NET MVC 3 includes Required, StringLength, Range, RegularExpression, Compare and Remote validation attributes for common input validation scenarios. These validation attributes validates most of your user inputs but still validation for Email, File Extension, Credit Card, URL, etc are missing. Fortunately, some of these validation attributes are available in ASP.NET MVC 3 Future. In this article, I will show you how to leverage Email, Url, CreditCard and FileExtensions validation attributes(which are available in ASP.NET MVC 3 Future) in ASP.NET MVC 3 application.       Description:             First of all you need to download ASP.NET MVC 3 RTM Source Code from here. Then extract all files in a folder. Then open MvcFutures project from mvc3-rtm-sources\mvc3\src\MvcFutures folder. Build the project. In case, if you get compile time error(s) then simply remove the reference of System.Web.WebPages and System.Web.Mvc assemblies and add the reference of System.Web.WebPages and System.Web.Mvc 3 assemblies again but from the .NET tab and then build the project again, it will create a Microsoft.Web.Mvc assembly inside mvc3-rtm-sources\mvc3\src\MvcFutures\obj\Debug folder. Now we can use Microsoft.Web.Mvc assembly inside our application.             Create a new ASP.NET MVC 3 application. For demonstration purpose, I will create a dummy model UserInformation. So create a new class file UserInformation.cs inside Model folder and add the following code,   public class UserInformation { [Required] public string Name { get; set; } [Required] [EmailAddress] public string Email { get; set; } [Required] [Url] public string Website { get; set; } [Required] [CreditCard] public string CreditCard { get; set; } [Required] [FileExtensions(Extensions = "jpg,jpeg")] public string Image { get; set; } }             Inside UserInformation class, I am using Email, Url, CreditCard and FileExtensions validation attributes which are defined in Microsoft.Web.Mvc assembly. By default FileExtensionsAttribute allows png, jpg, jpeg and gif extensions. You can override this by using Extensions property of FileExtensionsAttribute class.             Then just open(or create) HomeController.cs file and add the following code,   public class HomeController : Controller { public ActionResult Index() { return View(); } [HttpPost] public ActionResult Index(UserInformation u) { return View(); } }             Next just open(or create) Index view for Home controller and add the following code,  @model NewValidationAttributesinASPNETMVC3Future.Model.UserInformation @{ ViewBag.Title = "Index"; Layout = "~/Views/Shared/_Layout.cshtml"; } <h2>Index</h2> <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script> @using (Html.BeginForm()) { @Html.ValidationSummary(true) <fieldset> <legend>UserInformation</legend> <div class="editor-label"> @Html.LabelFor(model => model.Name) </div> <div class="editor-field"> @Html.EditorFor(model => model.Name) @Html.ValidationMessageFor(model => model.Name) </div> <div class="editor-label"> @Html.LabelFor(model => model.Email) </div> <div class="editor-field"> @Html.EditorFor(model => model.Email) @Html.ValidationMessageFor(model => model.Email) </div> <div class="editor-label"> @Html.LabelFor(model => model.Website) </div> <div class="editor-field"> @Html.EditorFor(model => model.Website) @Html.ValidationMessageFor(model => model.Website) </div> <div class="editor-label"> @Html.LabelFor(model => model.CreditCard) </div> <div class="editor-field"> @Html.EditorFor(model => model.CreditCard) @Html.ValidationMessageFor(model => model.CreditCard) </div> <div class="editor-label"> @Html.LabelFor(model => model.Image) </div> <div class="editor-field"> @Html.EditorFor(model => model.Image) @Html.ValidationMessageFor(model => model.Image) </div> <p> <input type="submit" value="Save" /> </p> </fieldset> } <div> @Html.ActionLink("Back to List", "Index") </div>             Now just run your application. You will find that both client side and server side validation for the above validation attributes works smoothly.                      Summary:             Email, URL, Credit Card and File Extension input validations are very common. In this article, I showed you how you can validate these input validations into your application. I explained this with an example. I am also attaching a sample application which also includes Microsoft.Web.Mvc.dll. So you can add a reference of Microsoft.Web.Mvc assembly directly instead of doing any manual work. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Building extensions for Expression Blend 4 using MEF

    - by Timmy Kokke
    Introduction Although it was possible to write extensions for Expression Blend and Expression Design, it wasn’t very easy and out of the box only one addin could be used. With Expression Blend 4 it is possible to write extensions using MEF, the Managed Extensibility Framework. Until today there’s no documentation on how to build these extensions, so look thru the code with Reflector is something you’ll have to do very often. Because Blend and Design are build using WPF searching the visual tree with Snoop and Mole belong to the tools you’ll be using a lot exploring the possibilities.  Configuring the extension project Extensions are regular .NET class libraries. To create one, load up Visual Studio 2010 and start a new project. Because Blend is build using WPF, choose a WPF User Control Library from the Windows section and give it a name and location. I named mine DemoExtension1. Because Blend looks for addins named *.extension.dll  you’ll have to tell Visual Studio to use that in the Assembly Name. To change the Assembly Name right click your project and go to Properties. On the Application tab, add .Extension to name already in the Assembly name text field. To be able to debug this extension, I prefer to set the output path on the Build tab to the extensions folder of Expression Blend. This means that everything that used to go into the Debug folder is placed in the extensions folder. Including all referenced assemblies that have the copy local property set to false. One last setting. To be able to debug your extension you could start Blend and attach the debugger by hand. I like it to be able to just hit F5. Go to the Debug tab and add the the full path to Blend.exe in the Start external program text field. Extension Class Add a new class to the project.  This class needs to be inherited from the IPackage interface. The IPackage interface can be found in the Microsoft.Expression.Extensibility namespace. To get access to this namespace add Microsoft.Expression.Extensibility.dll to your references. This file can be found in the same folder as the (Expression Blend 4 Beta) Blend.exe file. Make sure the Copy Local property is set to false in this reference. After implementing the interface the class would look something like: using Microsoft.Expression.Extensibility; namespace DemoExtension1 { public class DemoExtension1:IPackage { public void Load(IServices services) { } public void Unload() { } } } These two methods are called when your addin is loaded and unloaded. The parameter passed to the Load method, IServices services, is your main entry point into Blend. The IServices interface exposes the GetService<T> method. You will be using this method a lot. Almost every part of Blend can be accessed thru a service. For example, you can use to get to the commanding services of Blend by calling GetService<ICommandService>() or to get to the Windowing services by calling GetService<IWindowService>(). To get Blend to load the extension we have to implement MEF. (You can get up to speed on MEF on the community site or read the blog of Mr. MEF, Glenn Block.)  In the case of Blend extensions, all that needs to be done is mark the class with an Export attribute and pass it the type of IPackage. The Export attribute can be found in the System.ComponentModel.Composition namespace which is part of the .NET 4 framework. You need to add this to your references. using System.ComponentModel.Composition; using Microsoft.Expression.Extensibility;   namespace DemoExtension1 { [Export(typeof(IPackage))] public class DemoExtension1:IPackage { Blend is able to find your addin now. Adding UI The addin doesn’t do very much at this point. The WPF User Control Library came with a UserControl so lets use that in this example. I just drop a Button and a TextBlock onto the surface of the control to have something to show in the demo. To get the UserControl to work in Blend it has to be registered with the WindowService.  Call GetService<IWindowService>() on the IServices interface to get access to the windowing services. The UserControl will be used in Blend on a Palette and has to be registered to enable it. This is done by calling the RegisterPalette on the IWindowService interface and passing it an identifier, an instance of the UserControl and a caption for the palette. public void Load(IServices services) { IWindowService windowService = services.GetService<IWindowService>(); UserControl1 uc = new UserControl1(); windowService.RegisterPalette("DemoExtension", uc, "Demo Extension"); } After hitting F5 to start debugging Expression Blend will start. You should be able to find the addin in the Window menu now. Activating this window will show the “Demo Extension” palette with the UserControl, style according to the settings of Blend. Now what? Because little is publicly known about how to access different parts of Blend adding breakpoints in Debug mode and browsing thru objects using the Quick Watch feature of Visual Studio is something you have to do very often. This demo extension can be used for that purpose very easily. Add the click event handler to the button on the UserControl. Change the contructor to take the IServices interface and store this in a field. Set a breakpoint in the Button_Click method. public partial class UserControl1 : UserControl { private readonly IServices _services;   public UserControl1(IServices services) { _services = services; InitializeComponent(); }   private void button1_Click(object sender, RoutedEventArgs e) { } } Change the call to the constructor in the load method and pass it the services property. public void Load(IServices services) { IWindowService service = services.GetService<IWindowService>(); UserControl1 uc = new UserControl1(services); service.RegisterPalette("DemoExtension", uc, "Demo Extension"); } Hit F5 to compile and start Blend. Got to the window menu and start show the addin. Click on  the button to hit the breakpoint. Now place the carrot text _services text in the code window and hit Shift+F9 to show the Quick Watch window. Now start exploring and discovering where to find everything you need.  More Information The are no official resources available yet. Microsoft has released one extension for expression Blend that is very useful as a reference, the Microsoft Expression Blend® Add-in Preview for Windows® Phone. This will install a .extension.dll file in the extension folder of Blend. You can load this file with Reflector and have a peek at how Microsoft is building his addins. Conclusion I hope this gives you something to get started building extensions for Expression Blend. Until Microsoft releases the final version, which hopefully includes more information about building extensions, we’ll have to work on documenting it in the community.

    Read the article

  • CodePlex Daily Summary for Sunday, April 18, 2010

    CodePlex Daily Summary for Sunday, April 18, 2010New ProjectsBare Bones Email Trace Listener: Bare Bones Email Trace Listener is about the simplest email trace listener you can have. No bells, no whistles, and no good if you need authenticat...Cartellino: Scopo del progetto è la realizzazione di un software in grado di rilevare i dati dai rilevatori 3Tec (www.3tec.it) e stampare i cartellini presenza...Castle Windsor app.config Properties: The Castle Windsor app.config Properties library makes it possible for users of Castle Windsor to reference appSettings values in Windsor's XML pro...DeskD: This is a simple desktop dictionary application(something like WordWeb) created in Java using Netbeans IDE. Since i am new to codeplex all updates ...FunPokerMakerOnline: It is a play of poker online with a game editor. It is done with .net 4 and WPF and SOAP or WCF. KLOCS Team GIN Project: This is a Master's Degree program group project. It may have academic interest, but won't be maintained after June 2010KNN: This is KNN projectProject Santa: Program to organize teams using mysql databases and c# in a clean and robust task and group system. For more information see my blog post at http:/...ProjetoIntegradoJuridico: Sistema Integrado de Acompanhamento JurídicoRSSR for Windows Phone 7: This is a simple RSS reader application, the project aims to show people that it is easy to build application for windows phones. The applicatio...Simple Rcon: Simple Rcon is a simple lightweight rcon client for HL1/HL2 Servers. It is developed in C# and WPFTAB METHOD SQL Create a data dictionary from your Transact SQL code: TABMETHODSQL makes it easier for data/information workers to document their work. Create a data governance solution that maps sql data process, inc...TM BF Tournament: WPF software to manage Trackmania tournament with Battle France RulesviBlog: visinia plugin, this plugin is used to add blogging facility in visinia cmsviNews: visinia plugin, this plugin can be used to create a news portal like cnn.com nytimeVolumeMaster: VolumeMaster is an On Screen Display (OSD) that gets activated whenever the volume changes. It's written in WPF and uses Vista Core Audio API by Ra...WiiCIS.NET: This is a managed port of WiiCIS, which is a Nintendo Wiimote library originally created by TheOboeNerd and posted on Sourceforge.New ReleasesCastle Windsor app.config Properties: Version 1.0: Initial release.Code for Rapid C# Windows Development eBook: Enumerable Debugger Visualizer Version 1.1: Second release of the Enumerable Debugger Visualizer. There are more classes registered and it is more robust. The list of classes I have register...Convection Game Engine (Basic Edition): Convection Basic (40223): Compiled version of Convection Basic change set 40223.CycleMania Starter Kit EAP - ASP.NET 4 Problem - Design - Solution: Cyclemania 0.08.59: See Source Code tab for recent change history.DbEntry.Net (Lephone Framework): DbEntry.Net 3.9: DbEntry.Net is a lightweight Object Relational Mapping (ORM) database access compnent for .Net 3.5. It has clearly and easily programing interface ...Hash Calculator: HashCalculator 2.0: Upgraded to .NET Framework 4.0 Added support to calculate CRC32 hash function Added "Cancel" button in the Windows 7 taskbar thumbnailHKGolden Express: HKGoldenExpress (Build 201004172120): New features: Added jump links at top of page of message. Bug fix: Fixed page count bug. Improvements: HKGolden Express now uses DocumentBuild...HTML Ruby: 6.21.4: Styles added to override those on some sites for better rendering of ruby Fix regression on complex ruby annotation rendering Better spacingHTML Ruby: 6.21.5: Removed debug code in preference handling Status bar indicator now resets for each action Replace ruby in place without using document fragment...IceChat: IceChat 2009 Alpha 12.4 EXE Update: This is simply an update to the main IceChat program files and DLL. Simpply overwrite the ones in the place where IceChat 2009 is installed.IceChat: IceChat 2009 Alpha 12.4 Full Install: Build Alpha 12.4 - April 17 2010 Added IceChatScript.dll , needs to be added in same folder with EXE and IPluginIceChat.dll Added Self Notice in ...PokeIn Comet Ajax Library: PokeIn Library v05 x64: With this version, PokeIn library has become a stable. Numerous tests have completed. This is the first release candidate of PokeIn. Cheers!PokeIn Comet Ajax Library: PokeIn Library v05 x86: PokeIn Library version 0.5 (x86) With this version, PokeIn library has become a stable. Numerous tests have completed. This is the first release c...Project Santa: Project Santa V1.0: The first initial release of my project manager program, for more information see http://coderplex.blogspot.com/2010/04/project-manager-using-mysq...Salient: TestingWithVSDevServer v1: Using code from Salient, I have assembled a few strategies for programmatic contol of the Visual Studio Development Server (WebDev.WebServer.exe). ...SharePoint Navigation Menu: spNavigationMenu 1.1: Changed the CAML query so it will order by Link Order, then Title. Added the ability to override the On Hover event on the parent menu to use On ...Simple Rcon: Simple Rcon Version 1: Version 1TAB METHOD SQL Create a data dictionary from your Transact SQL code: RELEASE 1: TESTING THE RELEASE SYSTEMTribe.Cache: Tribe.Cache Beta 0.1: Beta release of Tribe.Cache - Now with cache expiration serviceviBlog: viBlog_beta: visinia plugin to add blogging facility in visinia cmsviNews: viNews_beta: visinia plugin.visinia: visinia_beta2: visinia beta 2 released with many new feature.Visual Studio DSite: Visual C++ 2008 Login Form: A simple login form made in visual c 2008. Source code only.WiiCIS.NET: WiiCIS.NET v0.11: 0.11 Removed an unnecessary function from the Wiimote class, and improved the demo. You will need the latest version of SlimDX to compile the sourc...WinControls TreeListView: TreeListView 1.5.1: -fixes issue #5837 -Preliminary feature #5874WoW Character Viewer: Viewer Setup: Finally, I've brought out the next setup of WoW Viewer. Most loose ends have been tied up. Loading and Saving of character files has been fixed.Most Popular ProjectsRawrAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseMicrosoft SQL Server Community & Samplespatterns & practices – Enterprise LibraryPHPExcelFacebook Developer ToolkitBlogEngine.NETMvcContrib: a Codeplex Foundation projectIronPythonMost Active ProjectsRawrpatterns & practices – Enterprise LibraryIndustrial DashboardFarseer Physics EnginejQuery Library for SharePoint Web ServicesIonics Isapi Rewrite FilterGMap.NET - Great Maps for Windows Forms & PresentationProxi [Proxy Interface]BlogEngine.NETCaliburn: An Application Framework for WPF and Silverlight

    Read the article

  • It's not just “Single Sign-on” by Steve Knott (aurionPro SENA)

    - by Greg Jensen
    It is true that Oracle Enterprise Single Sign-on (Oracle ESSO) started out as purely an application single sign-on tool but as we have seen in the previous articles in this series the product has matured into a suite of tools that can do more than just automated single sign-on and can also provide rapidly deployed, cost effective solution to many demanding password management problems. In the last article of this series I would like to discuss three cases where customers faced password scenarios that required more than just single sign-on and how some of the less well known tools in the Oracle ESSO suite “kitbag” helped solve these challenges. Case #1 One of the issues often faced by our customers is how to keep their applications compliant. I had a client who liked the idea of automated single sign-on for most of his applications but had a key requirement to actually increase the security for one specific SOX application. For the SOX application he wanted to secure access by using two-factor authentication with a smartcard. The problem was that the application did not support two-factor authentication. The solution was to use a feature from the Oracle ESSO suite called authentication manager. This feature enables you to have multiple authentication methods for the same user which in this case was a smartcard and the Windows password.  Within authentication manager each authenticator can be configured with a security grade so we gave the smartcard a high grade and the Windows password a normal grade. Security grading in Oracle ESSO can be configured on a per application basis so we set the SOX application to require the higher grade smartcard authenticator. The end result for the user was that they enjoyed automated single sign-on for most of the applications apart from the SOX application. When the SOX application was launched, the user was required by ESSO to present their smartcard before being given access to the application. Case #2 Another example solving compliance issues was in the case of a large energy company who had a number of core billing applications. New regulations required that users change their password regularly and use a complex password. The problem facing the customer was that the core billing applications did not have any native user password change functionality. The customer could not replace the core applications because of the cost and time required to re-develop them. With a reputation for innovation aurionPro SENA were approached to provide a solution to this problem using Oracle ESSO. Oracle ESSO has a password expiry feature that can be triggered periodically based on the timestamp of the users’ last password creation therefore our strategy here was to leverage this feature to provide the password change experience. The trigger can launch an application change password event however in this scenario there was no native change password feature that could be launched therefore a “dummy” change password screen was created that could imitate the missing change password function and connect to the application database on behalf of the user. Oracle ESSO was configured to trigger a change password event every 60 days. After this period if the user launched the application Oracle ESSO would detect the logon screen and invoke the password expiry feature. Oracle ESSO would trigger the “dummy screen,” detect it automatically as the application change password screen and insert a complex password on behalf of the user. After the password event had completed the user was logged on to the application with their new password. All this was provided at a fraction of the cost of re-developing the core applications. Case #3 Recent popular initiatives such as the BYOD and working from home schemes bring with them many challenges in administering “unmanaged machines” and sometimes “unmanageable users.” In a recent case, a client had a dispersed community of casual contractors who worked for the business using their own laptops to access applications. To improve security the around password management the security goal was to provision the passwords directly to these contractors. In a previous article we saw how Oracle ESSO has the capability to provision passwords through Provisioning Gateway but the challenge in this scenario was how to get the Oracle ESSO agent to the casual contractor on an unmanaged machine. The answer was to use another tool in the suite, Oracle ESSO Anywhere. This component can compile the normal Oracle ESSO functionality into a deployment package that can be made available from a website in a similar way to a streamed application. The ESSO Anywhere agent does not actually install into the registry or program files but runs in a folder within the user’s profile therefore no local administrator rights are required for installation. The ESSO Anywhere package can also be configured to stay persistent or disable itself at the end of the user’s session. In this case the user just needed to be told where the website package was located and download the package. Once the download was complete the agent started automatically and the user was provided with single sign-on to their applications without ever knowing the application passwords. Finally, as we have seen in these series Oracle ESSO not only has great utilities in its own tool box but also has direct integration with Oracle Privileged Account Manager, Oracle Identity Manager and Oracle Access Manager. Integrated together with these tools provides a complete and complementary platform to address even the most complex identity and access management requirements. So what next for Oracle ESSO? “Agentless ESSO available in the cloud” – but that will be a subject for a future Oracle ESSO series!                                                                                                                               

    Read the article

  • Setup and Use SpecFlow BDD with DevExpress XAF

    - by Patrick Liekhus
    Let’s get started with using the SpecFlow BDD syntax for writing tests with the DevExpress XAF EasyTest scripting syntax.  In order for this to work you will need to download and install the prerequisites listed below.  Once they are installed follow the steps outlined below and enjoy. Prerequisites Install the following items: DevExpress eXpress Application Framework (XAF) found here SpecFlow found here Liekhus BDD/XAF Testing library found here Assumptions I am going to assume at this point that you have created your XAF application and have your Module, Win.Module and Win ready for usage.  You should have also set any attributes and/or settings as you see fit. Setup So where to start. Create a new testing project within your solution. I typically call this with a similar naming convention as used by XAF, my project name .FunctionalTests (i.e. AlbumManager.FunctionalTests). Add the following references to your project.  It should look like the reference list below. DevExpress.Data.v11.x DevExpress.Persistent.Base.v11.x DevExpress.Persistent.BaseImpl.v11.x DevExpress.Xpo.v11.2 Liekhus.Testing.BDD.Core Liekhus.Testing.BDD.DevExpress TechTalk.SpecFlow TestExecutor.v11.x (found in %Program Files%\DevExpress 2011.x\eXpressApp Framework\Tools\EasyTest Right click the TestExecutor reference and set the “Copy Local” setting to True.  This forces the TestExecutor executable to be available in the bin directory which is where the EasyTest script will be executed further down in the process. Add an Application Configuration File (app.config) to your test application.  You will need to make a few modifications to have SpecFlow generate Microsoft style unit tests.  First add the section handler for SpecFlow and then set your choice of testing framework.  I prefer MS Tests for my projects. Add the EasyTest configuration file to your project.  Add a new XML file and call it Config.xml. Open the properties window for the Config.xml file and set the “Copy to Ouput Directory” to “Copy Always”. You will setup the Config file according to the specifications of the EasyTest library my mapping to your executable and other settings.  You can find the details for the configuration of EasyTest here.  My file looks like this Create a new folder in your test project called “StepDefinitions”.  Add a new SpecFlow Step Definition file item under the StepDefinitions folder.  I typically call this class StepDefinition.cs. Have your step definition inherit from the Liekhus.Testing.BDD.DevExpress.StepDefinition class.  This will give you the default behaviors for your test in the next section. OK.  Now that we have done this series of steps, we will work on simplifying this.  This is an early preview of this new project and is not fully ready for consumption.  If you would like to experiment with it, please feel free.  Our goals are to make this a installable project on it’s own with it’s own project templates and default settings.  This will be coming in later versions.  Currently this project is in Alpha release. Let’s write our first test Remove the basic test that is created for you. We will not use the default test but rather create our own SpecFlow “Feature” files. Add a new item to your project and select the SpecFlow Feature file under C#. Name your feature file as you do your class files after the test they are performing. Writing a feature file uses the Cucumber syntax of Given… When… Then.  Think of it in these terms.  Givens are the pre-conditions for the test.  The Whens are the actual steps for the test being performed.  The Thens are the verification steps that confirm your test either passed or failed.  All of these steps are generated into a an EasyTest format and executed against your XAF project.  You can find more on the Cucumber syntax by using the Secret Ninja Cucumber Scrolls.  This document has several good styles of tests, plus you can get your fill of Chuck Norris vs Ninjas.  Pretty humorous document but full of great content. My first test is going to test the entry of a new Album into the application and is outlined below. The Feature section at the top is more for your documentation purposes.  Try to be descriptive of the test so that it makes sense to the next person behind you.  The Scenario outline is described in the Ninja Scrolls, but think of it as test template.  You can write one test outline and have multiple datasets (Scenarios) executed against that test.  Here are the steps of my test and their descriptions Given I am starting a new test – tells our test to create a new EasyTest file And (Given) the application is open – tells EasyTest to open our application defined in the Config.xml When I am at the “Albums” screen – tells XAF to navigate to the Albums list view And (When) I click the “New:Album” button – tells XAF to click the New Album button on the ribbon And (When) I enter the following information – tells XAF to find the field on the screen and put the value in that field And (When) I click the “Save and Close” button – tells XAF to click the “Save and Close” button on the detail window Then I verify results as “user” – tells the testing framework to execute the EasyTest as your configured user Once you compile and prepare your tests you should see the following in your Test View.  For each of your CreateNewAlbum lines in your scenarios, you will see a new test ready to execute. From here you will use your testing framework of choice to execute the test.  This in turn will execute the EasyTest framework to call back into your XAF application and test your business application. Again, please remember that this is an early preview and we are still working out the details.  Please let us know if you have any comments/questions/concerns. Thanks and happy testing.

    Read the article

  • Dynamically creating a Generic Type at Runtime

    - by Rick Strahl
    I learned something new today. Not uncommon, but it's a core .NET runtime feature I simply did not know although I know I've run into this issue a few times and worked around it in other ways. Today there was no working around it and a few folks on Twitter pointed me in the right direction. The question I ran into is: How do I create a type instance of a generic type when I have dynamically acquired the type at runtime? Yup it's not something that you do everyday, but when you're writing code that parses objects dynamically at runtime it comes up from time to time. In my case it's in the bowels of a custom JSON parser. After some thought triggered by a comment today I realized it would be fairly easy to implement two-way Dictionary parsing for most concrete dictionary types. I could use a custom Dictionary serialization format that serializes as an array of key/value objects. Basically I can use a custom type (that matches the JSON signature) to hold my parsed dictionary data and then add it to the actual dictionary when parsing is complete. Generic Types at Runtime One issue that came up in the process was how to figure out what type the Dictionary<K,V> generic parameters take. Reflection actually makes it fairly easy to figure out generic types at runtime with code like this: if (arrayType.GetInterface("IDictionary") != null) { if (arrayType.IsGenericType) { var keyType = arrayType.GetGenericArguments()[0]; var valueType = arrayType.GetGenericArguments()[1]; … } } The GetArrayType method gets passed a type instance that is the array or array-like object that is rendered in JSON as an array (which includes IList, IDictionary, IDataReader and a few others). In my case the type passed would be something like Dictionary<string, CustomerEntity>. So I know what the parent container class type is. Based on the the container type using it's then possible to use GetGenericTypeArguments() to retrieve all the generic types in sequential order of definition (ie. string, CustomerEntity). That's the easy part. Creating a Generic Type and Providing Generic Parameters at RunTime The next problem is how do I get a concrete type instance for the generic type? I know what the type name and I have a type instance is but it's generic, so how do I get a type reference to keyvaluepair<K,V> that is specific to the keyType and valueType above? Here are a couple of things that come to mind but that don't work (and yes I tried that unsuccessfully first): Type elementType = typeof(keyvalue<keyType, valueType>); Type elementType = typeof(keyvalue<typeof(keyType), typeof(valueType)>); The problem is that this explicit syntax expects a type literal not some dynamic runtime value, so both of the above won't even compile. I turns out the way to create a generic type at runtime is using a fancy bit of syntax that until today I was completely unaware of: Type elementType = typeof(keyvalue<,>).MakeGenericType(keyType, valueType); The key is the type(keyvalue<,>) bit which looks weird at best. It works however and produces a non-generic type reference. You can see the difference between the full generic type and the non-typed (?) generic type in the debugger: The nonGenericType doesn't show any type specialization, while the elementType type shows the string, CustomerEntity (truncated above) in the type name. Once the full type reference exists (elementType) it's then easy to create an instance. In my case the parser parses through the JSON and when it completes parsing the value/object it creates a new keyvalue<T,V> instance. Now that I know the element type that's pretty trivial with: // Objects start out null until we find the opening tag resultObject = Activator.CreateInstance(elementType); Here the result object is picked up by the JSON array parser which creates an instance of the child object (keyvalue<K,V>) and then parses and assigns values from the JSON document using the types  key/value property signature. Internally the parser then takes each individually parsed item and adds it to a list of  List<keyvalue<K,V>> items. Parsing through a Generic type when you only have Runtime Type Information When parsing of the JSON array is done, the List needs to be turned into a defacto Dictionary<K,V>. This should be easy since I know that I'm dealing with an IDictionary, and I know the generic types for the key and value. The problem is again though that this needs to happen at runtime which would mean using several Convert.ChangeType() calls in the code to dynamically cast at runtime. Yuk. In the end I decided the easier and probably only slightly slower way to do this is a to use the dynamic type to collect the items and assign them to avoid all the dynamic casting madness: else if (IsIDictionary) { IDictionary dict = Activator.CreateInstance(arrayType) as IDictionary; foreach (dynamic item in items) { dict.Add(item.key, item.value); } return dict; } This code creates an instance of the generic dictionary type first, then loops through all of my custom keyvalue<K,V> items and assigns them to the actual dictionary. By using Dynamic here I can side step all the explicit type conversions that would be required in the three highlighted areas (not to mention that this nested method doesn't have access to the dictionary item generic types here). Static <- -> Dynamic Dynamic casting in a static language like C# is a bitch to say the least. This is one of the few times when I've cursed static typing and the arcane syntax that's required to coax types into the right format. It works but it's pretty nasty code. If it weren't for dynamic that last bit of code would have been a pretty ugly as well with a bunch of Convert.ChangeType() calls to litter the code. Fortunately this type of type convulsion is rather rare and reserved for system level code. It's not every day that you create a string to object parser after all :-)© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Fixing a SkyDrive Sync Disaster

    - by Rick Strahl
    For a few months I've been using SkyDrive to handle some basic synching tasks for a number of folders of mine. Specifically I've been dumping a few of my development folders into sky drive so I have a live running backup. It had been working just fine until about a week ago when something went awry. Badly! The idea is that the SkyDrive should sync files, but somewhere in its sync relationship it appears that SkyDrive got confused and assumed it needed to sync back older files to my local machine from the SkyDrive server. So rather than syncing my newer files to the server SkyDrive was pushing older files back to me. Because SkyDrive is so slow actually updating data it's not unusual for SkyDrive to be far behind in syncing and apparently some files were out of date by several months. Of course this is insidious because I didn't notice it for quite some time. I'd been happily working away on my files when a few days ago I noted a bunch of files with -RasXps (my machine name) popping up in various folders. At first I thought my Git repository was giving me a fit, but eventually realized that SkyDrive was actually pushing old files into my monitored folders. To be fair SkyDrive did make backups of the existing files, but by the time I caught it there were literally a few thousand files scattered on my machine that were now updated with old files from online. Here's what some of this looks like: If you look at the directory list you see a bunch of files with a -RasXps postfix appended to them. Those are the files that SkyDrive replaced and backed up on my machine. As you can see the backed up files are actually newer than the ones it pulled from the online SkyDrive. Unless I modified the files after they were updated they all were older than the existing local files. Not exactly how I imagined my synching would work. At first I started cleaning up this mess manually. In most cases the obvious solution was to simply delete the original file and replace with the -RasXps file, but not in all files. Some scrutiny was required and besides being a pain in the ass to rename files, quite frequently I had to dig out Beyond Compare to compare a few files where it wasn't quite clear what's wrong. I quickly realized that doing this by hand would be too hard for the large number of files that got hosed. Hacking together a small .NET Utility So, I figured the easiest way to tackle this is to write a small utility app that shows me all the mangled files that have backups, allows me to compare them and then quickly select and update them, removing the -RasXps file after choosing one of the two files. What I ended up with was a quick and dirty WinForms app that allows me to pick a root folder, and then shows all the -MachineName files: I start by picking a base folder and a template to search for - typically the -MachineName. Clicking Go brings up a list of all files in that folder and its subdirectories.  The list also displays the dates for the saved (-MachineName) file and the current file on disk, along with highlighting for the newer of the two. I can right click on any file and get a context menu pop up to open the folder in Explorer, or open Beyond Compare and view the two files to compare differences which I found very helpful for a number of files where I had modified the files after SkyDrive had updated to an old one. Typically these would be the green files (of which there were thankfully few). To 'fix' files I can select any number of files in the list, then use one of the three buttons on the right to apply an operation. I can use the Saved files - that is the backup file that SkyDrive created with the -MachineName extension (-RasXps above). Or I can use the current file, which is the file with the right name on disk right now and delete the -MachineName file. Or on some occasions I can just opt to delete both of them. For some files like binaries it's often easier to just delete and them be rebuild than choosing. For the most part the process involves accepting the pink files, and checking the few green files and see if any modifications were made since the file was updated incorrectly by SkyDrive. For me luckily those are few in number. Anyways, I thought I share this utility in case anybody else runs into this issue. I've included the VS2012 solution and all the source code so you can see how it works and you can tweak it as needed. The .NET 4.5 binaries are also included if you can't compile. Be warned though!  This rough code is provided as is and makes no guarantees or claims about file safety. All three of the action buttons on the form will delete data. It's a very rough utility and there are no safeguards that ask nicely before deleting files. I highly recommend you make a backup before you have at it. This tools is very narrow in focus, but it might also work with other sync issues from other vendors. I seem to remember that I had similar issues with SugarSync at some point and it too created the -MachineName style files on sync conflicts. Hope this helps somebody out so you can avoid wasting the better part of a full work day on this… Resources Download the Source Code and Binaries for SkyDrive Rescue© Rick Strahl, West Wind Technologies, 2005-2013Posted in Windows  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Generate Strongly Typed Observable Events for the Reactive Extensions for .NET (Rx)

    - by Bobby Diaz
    I must have tried reading through the various explanations and introductions to the new Reactive Extensions for .NET before the concepts finally started sinking in.  The article that gave me the ah-ha moment was over on SilverlightShow.net and titled Using Reactive Extensions in Silverlight.  The author did a good job comparing the "normal" way of handling events vs. the new "reactive" methods. Admittedly, I still have more to learn about the Rx Framework, but I wanted to put together a sample project so I could start playing with the new Observable and IObservable<T> constructs.  I decided to throw together a whiteboard application in Silverlight based on the Drawing with Rx example on the aforementioned article.  At the very least, I figured I would learn a thing or two about a new technology, but my real goal is to create a fun application that I can share with the kids since they love drawing and coloring so much! Here is the code sample that I borrowed from the article: var mouseMoveEvent = Observable.FromEvent<MouseEventArgs>(this, "MouseMove"); var mouseLeftButtonDown = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonDown"); var mouseLeftButtonUp = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonUp");       var draggingEvents = from pos in mouseMoveEvent                              .SkipUntil(mouseLeftButtonDown)                              .TakeUntil(mouseLeftButtonUp)                              .Let(mm => mm.Zip(mm.Skip(1), (prev, cur) =>                                  new                                  {                                      X2 = cur.EventArgs.GetPosition(this).X,                                      X1 = prev.EventArgs.GetPosition(this).X,                                      Y2 = cur.EventArgs.GetPosition(this).Y,                                      Y1 = prev.EventArgs.GetPosition(this).Y                                  })).Repeat()                          select pos;       draggingEvents.Subscribe(p =>     {         Line line = new Line();         line.Stroke = new SolidColorBrush(Colors.Black);         line.StrokeEndLineCap = PenLineCap.Round;         line.StrokeLineJoin = PenLineJoin.Round;         line.StrokeThickness = 5;         line.X1 = p.X1;         line.Y1 = p.Y1;         line.X2 = p.X2;         line.Y2 = p.Y2;         this.LayoutRoot.Children.Add(line);     }); One thing that was nagging at the back of my mind was having to deal with the event names as strings, as well as the verbose syntax for the Observable.FromEvent<TEventArgs>() method.  I came up with a couple of static/helper classes to resolve both issues and also created a T4 template to auto-generate these helpers for any .NET type.  Take the following code from the above example: var mouseMoveEvent = Observable.FromEvent<MouseEventArgs>(this, "MouseMove"); var mouseLeftButtonDown = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonDown"); var mouseLeftButtonUp = Observable.FromEvent<MouseButtonEventArgs>(this, "MouseLeftButtonUp"); Turns into this with the new static Events class: var mouseMoveEvent = Events.Mouse.Move.On(this); var mouseLeftButtonDown = Events.Mouse.LeftButtonDown.On(this); var mouseLeftButtonUp = Events.Mouse.LeftButtonUp.On(this); Or better yet, just remove the variable declarations altogether:     var draggingEvents = from pos in Events.Mouse.Move.On(this)                              .SkipUntil(Events.Mouse.LeftButtonDown.On(this))                              .TakeUntil(Events.Mouse.LeftButtonUp.On(this))                              .Let(mm => mm.Zip(mm.Skip(1), (prev, cur) =>                                  new                                  {                                      X2 = cur.EventArgs.GetPosition(this).X,                                      X1 = prev.EventArgs.GetPosition(this).X,                                      Y2 = cur.EventArgs.GetPosition(this).Y,                                      Y1 = prev.EventArgs.GetPosition(this).Y                                  })).Repeat()                          select pos; The Move, LeftButtonDown and LeftButtonUp members of the Events.Mouse class are readonly instances of the ObservableEvent<TTarget, TEventArgs> class that provide type-safe access to the events via the On() method.  Here is the code for the class: using System; using System.Collections.Generic; using System.Linq;   namespace System.Linq {     /// <summary>     /// Represents an event that can be managed via the <see cref="Observable"/> API.     /// </summary>     /// <typeparam name="TTarget">The type of the target.</typeparam>     /// <typeparam name="TEventArgs">The type of the event args.</typeparam>     public class ObservableEvent<TTarget, TEventArgs> where TEventArgs : EventArgs     {         /// <summary>         /// Initializes a new instance of the <see cref="ObservableEvent"/> class.         /// </summary>         /// <param name="eventName">Name of the event.</param>         protected ObservableEvent(String eventName)         {             EventName = eventName;         }           /// <summary>         /// Registers the specified event name.         /// </summary>         /// <param name="eventName">Name of the event.</param>         /// <returns></returns>         public static ObservableEvent<TTarget, TEventArgs> Register(String eventName)         {             return new ObservableEvent<TTarget, TEventArgs>(eventName);         }           /// <summary>         /// Creates an enumerable sequence of event values for the specified target.         /// </summary>         /// <param name="target">The target.</param>         /// <returns></returns>         public IObservable<IEvent<TEventArgs>> On(TTarget target)         {             return Observable.FromEvent<TEventArgs>(target, EventName);         }           /// <summary>         /// Gets or sets the name of the event.         /// </summary>         /// <value>The name of the event.</value>         public string EventName { get; private set; }     } } And this is how it's used:     /// <summary>     /// Categorizes <see cref="ObservableEvents"/> by class and/or functionality.     /// </summary>     public static partial class Events     {         /// <summary>         /// Implements a set of predefined <see cref="ObservableEvent"/>s         /// for the <see cref="System.Windows.System.Windows.UIElement"/> class         /// that represent mouse related events.         /// </summary>         public static partial class Mouse         {             /// <summary>Represents the MouseMove event.</summary>             public static readonly ObservableEvent<UIElement, MouseEventArgs> Move =                 ObservableEvent<UIElement, MouseEventArgs>.Register("MouseMove");               // additional members omitted...         }     } The source code contains a static Events class with prefedined members for various categories (Key, Mouse, etc.).  There is also an Events.tt template that you can customize to generate additional event categories for any .NET type.  All you should have to do is add the name of your class to the types collection near the top of the template:     types = new Dictionary<String, Type>()     {         //{ "Microsoft.Maps.MapControl.Map, Microsoft.Maps.MapControl", null }         { "System.Windows.FrameworkElement, System.Windows", null },         { "Whiteboard.MainPage, Whiteboard", null }     }; The template is also a bit rough at this point, but at least it generates code that *should* compile.  Please let me know if you run into any issues with it.  Some people have reported errors when trying to use T4 templates within a Silverlight project, but I was able to get it to work with a little black magic...  You can download the source code for this project or play around with the live demo.  Just be warned that it is at a very early stage so don't expect to find much today.  I plan on adding alot more options like pen colors and sizes, saving, printing, etc. as time permits.  HINT: hold down the ESC key to erase! Enjoy! Additional Resources Using Reactive Extensions in Silverlight DevLabs: Reactive Extensions for .NET (Rx) Rx Framework Part III - LINQ to Events - Generating GetEventName() Wrapper Methods using T4

    Read the article

  • C#: Optional Parameters - Pros and Pitfalls

    - by James Michael Hare
    When Microsoft rolled out Visual Studio 2010 with C# 4, I was very excited to learn how I could apply all the new features and enhancements to help make me and my team more productive developers. Default parameters have been around forever in C++, and were intentionally omitted in Java in favor of using overloading to satisfy that need as it was though that having too many default parameters could introduce code safety issues.  To some extent I can understand that move, as I’ve been bitten by default parameter pitfalls before, but at the same time I feel like Java threw out the baby with the bathwater in that move and I’m glad to see C# now has them. This post briefly discusses the pros and pitfalls of using default parameters.  I’m avoiding saying cons, because I really don’t believe using default parameters is a negative thing, I just think there are things you must watch for and guard against to avoid abuses that can cause code safety issues. Pro: Default Parameters Can Simplify Code Let’s start out with positives.  Consider how much cleaner it is to reduce all the overloads in methods or constructors that simply exist to give the semblance of optional parameters.  For example, we could have a Message class defined which allows for all possible initializations of a Message: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message() 5: : this(string.Empty) 6: { 7: } 8:  9: public Message(string text) 10: : this(text, null) 11: { 12: } 13:  14: public Message(string text, IDictionary<string, string> properties) 15: : this(text, properties, -1) 16: { 17: } 18:  19: public Message(string text, IDictionary<string, string> properties, long timeToLive) 20: { 21: // ... 22: } 23: }   Now consider the same code with default parameters: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message(string text = "", IDictionary<string, string> properties = null, long timeToLive = -1) 5: { 6: // ... 7: } 8: }   Much more clean and concise and no repetitive coding!  In addition, in the past if you wanted to be able to cleanly supply timeToLive and accept the default on text and properties above, you would need to either create another overload, or pass in the defaults explicitly.  With named parameters, though, we can do this easily: 1: var msg = new Message(timeToLive: 100);   Pro: Named Parameters can Improve Readability I must say one of my favorite things with the default parameters addition in C# is the named parameters.  It lets code be a lot easier to understand visually with no comments.  Think how many times you’ve run across a TimeSpan declaration with 4 arguments and wondered if they were passing in days/hours/minutes/seconds or hours/minutes/seconds/milliseconds.  A novice running through your code may wonder what it is.  Named arguments can help resolve the visual ambiguity: 1: // is this days/hours/minutes/seconds (no) or hours/minutes/seconds/milliseconds (yes) 2: var ts = new TimeSpan(1, 2, 3, 4); 3:  4: // this however is visually very explicit 5: var ts = new TimeSpan(days: 1, hours: 2, minutes: 3, seconds: 4);   Or think of the times you’ve run across something passing a Boolean literal and wondered what it was: 1: // what is false here? 2: var sub = CreateSubscriber(hostname, port, false); 3:  4: // aha! Much more visibly clear 5: var sub = CreateSubscriber(hostname, port, isBuffered: false);   Pitfall: Don't Insert new Default Parameters In Between Existing Defaults Now let’s consider a two potential pitfalls.  The first is really an abuse.  It’s not really a fault of the default parameters themselves, but a fault in the use of them.  Let’s consider that Message constructor again with defaults.  Let’s say you want to add a messagePriority to the message and you think this is more important than a timeToLive value, so you decide to put messagePriority before it in the default, this gives you: 1: public class Message 2: { 3: public Message(string text = "", IDictionary<string, string> properties = null, int priority = 5, long timeToLive = -1) 4: { 5: // ... 6: } 7: }   Oh boy have we set ourselves up for failure!  Why?  Think of all the code out there that could already be using the library that already specified the timeToLive, such as this possible call: 1: var msg = new Message(“An error occurred”, myProperties, 1000);   Before this specified a message with a TTL of 1000, now it specifies a message with a priority of 1000 and a time to live of -1 (infinite).  All of this with NO compiler errors or warnings. So the rule to take away is if you are adding new default parameters to a method that’s currently in use, make sure you add them to the end of the list or create a brand new method or overload. Pitfall: Beware of Default Parameters in Inheritance and Interface Implementation Now, the second potential pitfalls has to do with inheritance and interface implementation.  I’ll illustrate with a puzzle: 1: public interface ITag 2: { 3: void WriteTag(string tagName = "ITag"); 4: } 5:  6: public class BaseTag : ITag 7: { 8: public virtual void WriteTag(string tagName = "BaseTag") { Console.WriteLine(tagName); } 9: } 10:  11: public class SubTag : BaseTag 12: { 13: public override void WriteTag(string tagName = "SubTag") { Console.WriteLine(tagName); } 14: } 15:  16: public static class Program 17: { 18: public static void Main() 19: { 20: SubTag subTag = new SubTag(); 21: BaseTag subByBaseTag = subTag; 22: ITag subByInterfaceTag = subTag; 23:  24: // what happens here? 25: subTag.WriteTag(); 26: subByBaseTag.WriteTag(); 27: subByInterfaceTag.WriteTag(); 28: } 29: }   What happens?  Well, even though the object in each case is SubTag whose tag is “SubTag”, you will get: 1: SubTag 2: BaseTag 3: ITag   Why?  Because default parameter are resolved at compile time, not runtime!  This means that the default does not belong to the object being called, but by the reference type it’s being called through.  Since the SubTag instance is being called through an ITag reference, it will use the default specified in ITag. So the moral of the story here is to be very careful how you specify defaults in interfaces or inheritance hierarchies.  I would suggest avoiding repeating them, and instead concentrating on the layer of classes or interfaces you must likely expect your caller to be calling from. For example, if you have a messaging factory that returns an IMessage which can be either an MsmqMessage or JmsMessage, it only makes since to put the defaults at the IMessage level since chances are your user will be using the interface only. So let’s sum up.  In general, I really love default and named parameters in C# 4.0.  I think they’re a great tool to help make your code easier to read and maintain when used correctly. On the plus side, default parameters: Reduce redundant overloading for the sake of providing optional calling structures. Improve readability by being able to name an ambiguous argument. But remember to make sure you: Do not insert new default parameters in the middle of an existing set of default parameters, this may cause unpredictable behavior that may not necessarily throw a syntax error – add to end of list or create new method. Be extremely careful how you use default parameters in inheritance hierarchies and interfaces – choose the most appropriate level to add the defaults based on expected usage. Technorati Tags: C#,.NET,Software,Default Parameters

    Read the article

  • ASP.NET MVC 3 Hosting :: Rolling with Razor in MVC v3 Preview

    - by mbridge
    Razor is an alternate view engine for asp.net MVC.  It was introduced in the “WebMatrix” tool and has now been released as part of the asp.net MVC 3 preview 1.  Basically, Razor allows us to replace the clunky <% %> syntax with a much cleaner coding model, which integrates very nicely with HTML.  Additionally, it provides some really nice features for master page type scenarios and you don’t lose access to any of the features you are currently familiar with, such as HTML helper methods. First, download and install the ASP.NET MVC Preview 1.  You can find this at http://www.microsoft.com/downloads/details.aspx?FamilyID=cb42f741-8fb1-4f43-a5fa-812096f8d1e8&displaylang=en. Now, follow these steps to create your first asp.net mvc project using Razor: 1. Open Visual Studio 2010 2. Create a new project.  Select File->New->Project (Shift Control N) 3. You will see the list of project types which should look similar to what’s shown:   4. Select “ASP.NET MVC 3 Web Application (Razor).”  Set the application name to RazorTest and the path to c:projectsRazorTest for this tutorial. If you select accidently select ASPX, you will end up with the standard asp.net view engine and template, which isn’t what you want. 5. For this tutorial, and ONLY for this tutorial, select “No, do not create a unit test project.”  In general, you should create and use a unit test project.  Code without unit tests is kind of like diet ice cream.  It just isn’t very good. Now, once we have this done, our brand new project will be created.    In all likelihood, Visual Studio will leave you looking at the “HomeController.cs” class, as shown below: Immediately, you should notice one difference.  The Index action used to look like: public ActionResult Index () { ViewData[“Message”] = “Welcome to ASP.Net MVC!”; Return View(); } While this will still compile and run just fine, ASP.Net MVC 3 has a much nicer way of doing this: public ActionResult Index() { ViewModel.Message = “Welcome to ASP.Net MVC!”; Return View(); } Instead of using ViewData we are using the new ViewModel object, which uses the new dynamic data typing of .Net 4.0 to allow us to express ourselves much more cleanly.  This isn’t a tutorial on ALL of MVC 3, but the ViewModel concept is one we will need as we dig into Razor. What comes in the box? When we create a project using the ASP.Net MVC 3 Template with Razor, we get a standard project setup, just like we did in ASP.NET MVC 2.0 but with some differences.  Instead of seeing “.aspx” view files and “.ascx” files, we see files with the “.cshtml” which is the default razor extension.  Before we discuss the details of a razor file, one thing to keep in mind is that since this is an extremely early preview, intellisense is not currently enabled with the razor view engine.  This is promised as an updated before the final release.  Just like with the aspx view engine, the convention of the folder name for a set of views matching the controller name without the word “Controller” still stands.  Similarly, each action in the controller will usually have a corresponding view file in the appropriate view directory.  Remember, in asp.net MVC, convention over configuration is key to successful development! The initial template organizes views in the following folders, located in the project under Views: - Account – The default account management views used by the Account controller.  Each file represents a distinct view. - Home – Views corresponding to the appropriate actions within the home controller. - Shared – This contains common view objects used by multiple views.  Within here, master pages are stored, as well as partial page views (user controls).  By convention, these partial views are named “_XXXPartial.cshtml” where XXX is the appropriate name, such as _LogonPartial.cshtml.  Additionally, display templates are stored under here. With this in mind, let us take a look at the index.cshtml file under the home view directory.  When you open up index.cshtml you should see 1:   @inherits System.Web.Mvc.WebViewPage 2:  @{ 3:          View.Title = "Home Page"; 4:       LayoutPage = "~/Views/Shared/_Layout.cshtml"; 5:   } 6:  <h2>@View.Message</h2> 7:  <p> 8:     To learn more about ASP.NET MVC visit <a href="http://asp.net/mvc" title="ASP.NET MVC     9:    Website">http://asp.net/mvc</a>. 10:  </p> So looking through this, we observe the following facts: Line 1 imports the base page that all views (using Razor) are based on, which is System.Web.Mvc.WebViewPage.  Note that this is different than System.Web.MVC.ViewPage which is used by asp.net MVC 2.0 Also note that instead of the <% %> syntax, we use the very simple ‘@’ sign.  The View Engine contains enough context sensitive logic that it can even distinguish between @ in code and @ in an email.  It’s a very clean markup.  Line 2 introduces the idea of a code block in razor.  A code block is a scoping mechanism just like it is in a normal C# class.  It is designated by @{… }  and any C# code can be placed in between.  Note that this is all server side code just like it is when using the aspx engine and <% %>.  Line 3 allows us to set the page title in the client page’s file.  This is a new feature which I’ll talk more about when we get to master pages, but it is another of the nice things razor brings to asp.net mvc development. Line 4 is where we specify our “master” page, but as you can see, you can place it almost anywhere you want, because you tell it where it is located.  A Layout Page is similar to a master page, but it gains a bit when it comes to flexibility.  Again, we’ll come back to this in a later installment.  Line 6 and beyond is where we display the contents of our view.  No more using <%: %> intermixed with code.  Instead, we get to use very clean syntax such as @View.Message.  This is a lot easier to read than <%:@View.Message%> especially when intermixed with html.  For example: <p> My name is @View.Name and I live at @View.Address </p> Compare this to the equivalent using the aspx view engine <p> My name is <%:View.Name %> and I live at <%: View.Address %> </p> While not an earth shaking simplification, it is easier on the eyes.  As  we explore other features, this clean markup will become more and more valuable.

    Read the article

  • Documenting C# Library using GhostDoc and SandCastle

    - by sreejukg
    Documentation is an essential part of any IT project, especially when you are creating reusable components that will be used by other developers (such as class libraries). Without documentation re-using a class library is almost impossible. Just think of coding .net applications without MSDN documentation (Ooops I can’t think of it). Normally developers, who know the bits and pieces of their classes, see this as a boring work to write details again to generate the documentation. Also the amount of work to make this and manage it changes made the process of manual creation of Documentation impossible or tedious. So what is the effective solution? Let me divide this into two steps 1. Generate comments for your code while you are writing the code. 2. Create documentation file using these comments. Now I am going to examine these processes. Step 1: Generate XML Comments automatically Most of the developers write comments for their code. The best thing is that the comments will be entered during the development process. Additionally comments give a good reference to the code, make your code more manageable/readable. Later these comments can be converted into documentation, along with your source code by identifying properties and methods I found an add-in for visual studio, GhostDoc that automatically generates XML documentation comments for C#. The add-in is available in Visual Studio Gallery at MSDN. You can download this from the url http://visualstudiogallery.msdn.microsoft.com/en-us/46A20578-F0D5-4B1E-B55D-F001A6345748. I downloaded the free version from the above url. The free version suits my requirement. There is a professional version (you need to pay some $ for this) available that gives you some more features. I found the free version itself suits my requirements. The installation process is straight forward. A couple of clicks will do the work for you. The best thing with GhostDoc is that it supports multiple versions of visual studio such as 2005, 2008 and 2010. After Installing GhostDoc, when you start Visual studio, the GhostDoc configuration dialog will appear. The first screen asks you to assign a hot key, pressing this hotkey will enter the comment to your code file with the necessary structure required by GhostDoc. Click Assign to go to the next step where you configure the rules for generating the documentation from the code file. Click Create to start creating the rules. Click finish button to close this wizard. Now you performed the necessary configuration required by GhostDoc. Now In Visual Studio tools menu you can find the GhostDoc that gives you some options. Now let us examine how GhostDoc generate comments for a method. I have write the below code in my code behind file. public Char GetChar(string str, int pos) { return str[pos]; } Now I need to generate the comments for this function. Select the function and enter the hot key assigned during the configuration. GhostDoc will generate the comments as follows. /// <summary> /// Gets the char. /// </summary> /// <param name="str">The STR.</param> /// <param name="pos">The pos.</param> /// <returns></returns> public Char GetChar(string str, int pos) { return str[pos]; } So this is a very handy tool that helps developers writing comments easily. You can generate the xml documentation file separately while compiling the project. This will be done by the C# compiler. You can enable the xml documentation creation option (checkbox) under Project properties -> Build tab. Now when you compile, the xml file will created under the bin folder. Step 2: Generate the documentation from the XML file Now you have generated the xml file documentation. Sandcastle is the tool from Microsoft that generates MSDN style documentation from the compiler produced XML file. The project is available in codeplex http://sandcastle.codeplex.com/. Download and install Sandcastle to your computer. Sandcastle is a command line tool that doesn’t have a rich GUI. If you want to automate the documentation generation, definitely you will be using the command line tools. Since I want to generate the documentation from the xml file generated in the previous step, I was expecting a GUI where I can see the options. There is a GUI available for Sandcastle called Sandcastle Help File Builder. See the link to the project in codeplex. http://www.codeplex.com/wikipage?ProjectName=SHFB. You need to install Sandcastle and then the Sandcastle Help file builder. From here I assume that you have installed both sandcastle and Sandcastle help file builder successfully. Once you installed the help file builder, it will be available in your all programs list. Click on the Sandcastle Help File Builder GUI, will launch application. First you need to create a project. Click on File -> New project The New project dialog will appear. Choose a folder to store your project file and give a name for your documentation project. Click the save button. Now you will see your project properties. Now from the Project explorer, right click on the Documentation Sources, Click on the Add Documentation Source link. A documentation source is a file such as an assembly or a Visual Studio solution or project from which information will be extracted to produce API documentation. From the Add Documentation source dialog, I have selected the XML file generated by my project. Once you add the xml file to the project, you will see the dll file automatically added by the help file builder. Now click on the build button. Now the application will generate the help file. The Build window gives to the result of each steps. Once the process completed successfully, you will have the following output in the build window. Now navigate to your Help Project (I have selected the folder My Documents\Documentation), inside help folder, you can find the chm file. Open the chm file will give you MSDN like documentation. Documentation is an important part of development life cycle. Sandcastle with GhostDoc make this process easier so that developers can implement the documentation in the projects with simple to use steps.

    Read the article

  • Process.Start() and ShellExecute() fails with URLs on Windows 8

    - by Rick Strahl
    Since I installed Windows 8 I've noticed that a number of my applications appear to have problems opening URLs. That is when I click on a link inside of a Windows application, either nothing happens or there's an error that occurs. It's happening both to my own applications and a host of Windows applications I'm running. At first I thought this was an issue with my default browser (Chrome) but after switching the default browser to a few others and experimenting a bit I noticed that the errors occur - oddly enough - only when I run an application as an Administrator. I also tried switching to FireFox and Opera as my default browser and saw exactly the same behavior. The scenario for this is a bit bizarre: Running on Windows 8 Call Process.Start() (or ShellExecute() in Win32 API) with a URL or an HTML file Run 'As Administrator' (works fine under non-elevated user account!) or with UAC off A browser other than Internet Explorer is set as your Default Web Browser Talk about a weird scenario: Something that doesn't work when you run as an Administrator which is supposed to have rights to everything on the system! Instead running under an Admin account - either elevated with a User Account Control prompt or even when running as a full Administrator fails. It appears that this problem does not occur for everyone, but when I looked for a solution to this, I saw quite a few posts in relation to this with no clear resolutions. I have three Windows 8 machines running here in the office and all three of them showed this behavior. Lest you think this is just a programmer's problem - this can affect any software running on your system that needs to run under administrative rights. Try it out Now, in order for this next example to fail, any browser but Internet Explorer has to be your default browser and even then it may not fail depending on how you installed your browser. To see if this is a problem create a small Console application and call Process.Start() with a URL in it:namespace Win8ShellBugConsole { class Program { static void Main(string[] args) { Console.WriteLine("Launching Url..."); Process.Start("http://microsoft.com"); Console.Write("Press any key to continue..."); Console.ReadKey(); Console.WriteLine("\r\n\r\nLaunching image..."); Process.Start(Path.GetFullPath(@"..\..\sailbig.jpg")); Console.Write("Press any key to continue..."); Console.ReadKey(); } } } Compile this code. Then execute the code from Explorer (not from Visual Studio because that may change the permissions). If you simply run the EXE and you're not running as an administrator, you'll see the Web page pop up in the browser as well as the image loading. Now run the same thing with Run As Administrator: Now when you run it you get a nice error when Process.Start() is fired: The same happens if you are running with User Account Control off altogether - ie. you are running as a full admin account. Now if you comment out the URL in the code above and just fire the image display - that works just fine in any user mode. As does opening any other local file type or even starting a new EXE locally (ie. Process.Start("c:\windows\notepad.exe"). All that works, EXCEPT for URLs. The code above uses Process.Start() in .NET but the same happens in Win32 Applications that use the ShellExecute API. In some of my older Fox apps ShellExecute returns an error code of 31 - which is No Shell Association found. What's the Deal? It turns out the problem has to do with the way browsers are registering themselves on Windows. Internet Explorer - being a built-in application in Windows 8 - apparently does this correctly, but other browsers possibly don't or at least didn't at the time I installed them. So even Chrome, which continually updates itself, has a recent version that apparently has this registration issue fixed, I was unable to simply set IE as my default browser then use Chrome to 'Set as Default Browser'. It still didn't work. Neither did using the Set Program Associations dialog which lets you assign what extensions are mapped to by a given application. Each application provides a set of extension/moniker mappings that it supports and this dialog lets you associate them on a system wide basis. This also did not work for Chrome or any of the other browsers at first. However, after repeated retries here eventually I did manage to get FireFox to work, but not any of the others. What Works? Reinstall the Browser In the end I decided on the hard core pull the plug solution: Totally uninstall and re-install Chrome in this case. And lo and behold, after reinstall everything was working fine. Now even removing the association for Chrome, switching to IE as the default browser and then back to Chrome works. But, even though the version of Chrome I was running before uninstalling and reinstalling is the same as I'm running now after the reinstall now it works. Of course I had to find out the hard way, before Richard commented with a note regarding what the issue is with Chrome at least: http://code.google.com/p/chromium/issues/detail?id=156400 As expected the issue is a registration issue - with keys not being registered at the machine level. Reading this I'm still not sure why this should be a problem - an elevated account still runs under the same user account (ie. I'm still rickstrahl even if I Run As Administrator), so why shouldn't an app be able to read my Current User registry hive? And also that doesn't quite explain why if I register the extensions using Run As Administrator in Chrome when using Set as Default Browser). But in the end it works… Not so fast It's now a couple of days later and still there are some oddball problems although this time they appear to be purely Chrome issues. After the reinstall Chrome seems to pop up properly with ShellExecute() calls both in regular user and Admin mode. However, it now looks like Chrome is actually running two completely separate user profiles for each. For example, when I run Visual Studio in Admin mode and go to View in browser, Chrome complains that it was installed in Admin mode and can't launch (WTF?). Then you retry a few times later and it ends up working. When launched that way some of the plug-ins installed don't show up with the effect that sometimes they're visible sometimes they're not. Also Chrome seems to loose my configuration and Google sign in between sessions now, presumably when switching user modes. Add-ins installed in admin mode don't show up in user mode and vice versa. Ah, this is lovely. Did I mention that I freaking hate UAC precisely because of this kind of bullshit. You can never tell exactly what account your app is running under, and apparently apps also have a hard time trying to put data into the right place that works for both scenarios. And as my recent post on using Windows Live accounts shows it's yet another level of abstraction ontop of the underlying system identity that can cause all sort of small side effect headaches like this. Hopefully, most of you are skirting this issue altogether - having installed more recent versions of your favorite browsers. If not, hopefully this post will take you straight to reinstallation to fix this annoying issue.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Windows  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C# Extension Methods - To Extend or Not To Extend...

    - by James Michael Hare
    I've been thinking a lot about extension methods lately, and I must admit I both love them and hate them. They are a lot like sugar, they taste so nice and sweet, but they'll rot your teeth if you eat them too much.   I can't deny that they aren't useful and very handy. One of the major components of the Shared Component library where I work is a set of useful extension methods. But, I also can't deny that they tend to be overused and abused to willy-nilly extend every living type.   So what constitutes a good extension method? Obviously, you can write an extension method for nearly anything whether it is a good idea or not. Many times, in fact, an idea seems like a good extension method but in retrospect really doesn't fit.   So what's the litmus test? To me, an extension method should be like in the movies when a person runs into their twin, separated at birth. You just know you're related. Obviously, that's hard to quantify, so let's try to put a few rules-of-thumb around them.   A good extension method should:     Apply to any possible instance of the type it extends.     Simplify logic and improve readability/maintainability.     Apply to the most specific type or interface applicable.     Be isolated in a namespace so that it does not pollute IntelliSense.     So let's look at a few examples in relation to these rules.   The first rule, to me, is the most important of all. Once again, it bears repeating, a good extension method should apply to all possible instances of the type it extends. It should feel like the long lost relative that should have been included in the original class but somehow was missing from the family tree.    Take this nifty little int extension, I saw this once in a blog and at first I really thought it was pretty cool, but then I started noticing a code smell I couldn't quite put my finger on. So let's look:       public static class IntExtensinos     {         public static int Seconds(int num)         {             return num * 1000;         }           public static int Minutes(int num)         {             return num * 60000;         }     }     This is so you could do things like:       ...     Thread.Sleep(5.Seconds());     ...     proxy.Timeout = 1.Minutes();     ...     Awww, you say, that's cute! Well, that's the problem, it's kitschy and it doesn't always apply (and incidentally you could achieve the same thing with TimeStamp.FromSeconds(5)). It's syntactical candy that looks cool, but tends to rot and pollute the code. It would allow things like:       total += numberOfTodaysOrders.Seconds();     which makes no sense and should never be allowed. The problem is you're applying an extension method to a logical domain, not a type domain. That is, the extension method Seconds() doesn't really apply to ALL ints, it applies to ints that are representative of time that you want to convert to milliseconds.    Do you see what I mean? The two problems, in a nutshell, are that a) Seconds() called off a non-time value makes no sense and b) calling Seconds() off something to pass to something that does not take milliseconds will be off by a factor of 1000 or worse.   Thus, in my mind, you should only ever have an extension method that applies to the whole domain of that type.   For example, this is one of my personal favorites:       public static bool IsBetween<T>(this T value, T low, T high)         where T : IComparable<T>     {         return value.CompareTo(low) >= 0 && value.CompareTo(high) <= 0;     }   This allows you to check if any IComparable<T> is within an upper and lower bound. Think of how many times you type something like:       if (response.Employee.Address.YearsAt >= 2         && response.Employee.Address.YearsAt <= 10)     {     ...     }     Now, you can instead type:       if(response.Employee.Address.YearsAt.IsBetween(2, 10))     {     ...     }     Note that this applies to all IComparable<T> -- that's ints, chars, strings, DateTime, etc -- and does not depend on any logical domain. In addition, it satisfies the second point and actually makes the code more readable and maintainable.   Let's look at the third point. In it we said that an extension method should fit the most specific interface or type possible. Now, I'm not saying if you have something that applies to enumerables, you create an extension for List, Array, Dictionary, etc (though you may have reasons for doing so), but that you should beware of making things TOO general.   For example, let's say we had an extension method like this:       public static T ConvertTo<T>(this object value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This lets you do more fluent conversions like:       double d = "5.0".ConvertTo<double>();     However, if you dig into Reflector (LOVE that tool) you will see that if the type you are calling on does not implement IConvertible, what you convert to MUST be the exact type or it will throw an InvalidCastException. Now this may or may not be what you want in this situation, and I leave that up to you. Things like this would fail:       object value = new Employee();     ...     // class cast exception because typeof(IEmployee) != typeof(Employee)     IEmployee emp = value.ConvertTo<IEmployee>();       Yes, that's a downfall of working with Convertible in general, but if you wanted your fluent interface to be more type-safe so that ConvertTo were only callable on IConvertibles (and let casting be a manual task), you could easily make it:         public static T ConvertTo<T>(this IConvertible value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This is what I mean by choosing the best type to extend. Consider that if we used the previous (object) version, every time we typed a dot ('.') on an instance we'd pull up ConvertTo() whether it was applicable or not. By filtering our extension method down to only valid types (those that implement IConvertible) we greatly reduce our IntelliSense pollution and apply a good level of compile-time correctness.   Now my fourth rule is just my general rule-of-thumb. Obviously, you can make extension methods as in-your-face as you want. I included all mine in my work libraries in its own sub-namespace, something akin to:       namespace Shared.Core.Extensions { ... }     This is in a library called Shared.Core, so just referencing the Core library doesn't pollute your IntelliSense, you have to actually do a using on Shared.Core.Extensions to bring the methods in. This is very similar to the way Microsoft puts its extension methods in System.Linq. This way, if you want 'em, you use the appropriate namespace. If you don't want 'em, they won't pollute your namespace.   To really make this work, however, that namespace should only include extension methods and subordinate types those extensions themselves may use. If you plant other useful classes in those namespaces, once a user includes it, they get all the extensions too.   Also, just as a personal preference, extension methods that aren't simply syntactical shortcuts, I like to put in a static utility class and then have extension methods for syntactical candy. For instance, I think it imaginable that any object could be converted to XML:       namespace Shared.Core     {         // A collection of XML Utility classes         public static class XmlUtility         {             ...             // Serialize an object into an xml string             public static string ToXml(object input)             {                 var xs = new XmlSerializer(input.GetType());                   // use new UTF8Encoding here, not Encoding.UTF8. The later includes                 // the BOM which screws up subsequent reads, the former does not.                 using (var memoryStream = new MemoryStream())                 using (var xmlTextWriter = new XmlTextWriter(memoryStream, new UTF8Encoding()))                 {                     xs.Serialize(xmlTextWriter, input);                     return Encoding.UTF8.GetString(memoryStream.ToArray());                 }             }             ...         }     }   I also wanted to be able to call this from an object like:       value.ToXml();     But here's the problem, if i made this an extension method from the start with that one little keyword "this", it would pop into IntelliSense for all objects which could be very polluting. Instead, I put the logic into a utility class so that users have the choice of whether or not they want to use it as just a class and not pollute IntelliSense, then in my extensions namespace, I add the syntactical candy:       namespace Shared.Core.Extensions     {         public static class XmlExtensions         {             public static string ToXml(this object value)             {                 return XmlUtility.ToXml(value);             }         }     }   So now it's the best of both worlds. On one hand, they can use the utility class if they don't want to pollute IntelliSense, and on the other hand they can include the Extensions namespace and use as an extension if they want. The neat thing is it also adheres to the Single Responsibility Principle. The XmlUtility is responsible for converting objects to XML, and the XmlExtensions is responsible for extending object's interface for ToXml().

    Read the article

  • Does Test Driven Development (TDD) improve Quality and Correctness? (Part 1)

    - by David V. Corbin
    Since the dawn of the computer age, various methodologies have been introduced to improve quality and reduce cost. In this posting, I will by sharing my experiences with Test Driven Development; both its benefits and limitations. To start this topic, we need to agree on what TDD is. The first is to define each of the three words as used in this context. Test - An item or action which measures something in some quantifiable form. Driven - The primary motivation or focus of a series of activities (process) Development - All phases of a software project/product from concept through delivery. The above are very simple definitions that result in the following: "TDD is a process where the primary focus is on measuring and quantifying all aspects of the creation of a (software) product." There are many places where TDD is used outside of software development, even though it is not known by this name. Consider the (conventional) education process that most of us grew up on. The focus was to get the best grades as measured by different tests. Many of these tests measured rote memorization and not understanding of the subject matter. The result of this that many people graduated with high scores but without "quality and correctness" in their ability to utilize the subject matter (of course, the flip side is true where certain people DID understand the material but were not very good at taking this type of test). Returning to software development, let us look at some common scenarios. While these items are generally applicable regardless of platform, language and tools; the remainder of this post will utilize Microsoft Visual Studio and Team Foundation Server (TFS) for examples. It should be realized that everyone does at least some aspect of TDD. At the most rudimentary level, getting a program to compile involves a "pass/fail" measurement (is the syntax valid) that drives their ability to proceed further (run the program). Other developers may create "Unit Tests" in the belief that having a test for every method/property of a class and good code coverage is the goal of TDD. These items may be helpful and even important, but really only address a small aspect of the overall effort. To see TDD in a bigger view, lets identify the various activities that are part of the Software Development LifeCycle. These are going to be presented in a Waterfall style for simplicity, but each item also occurs within Iterative methodologies such as Agile/Scrum. the key ones here are: Requirements Gathering Architecture Design Implementation Quality Assurance Can each of these items be subjected to a process which establishes metrics (quantified metrics) that reflect both the quality and correctness of each item? It should be clear that conventional Unit Tests do not apply to all of these items; at best they can verify that a local aspect (e.g. a Class/Method) of implementation matches the (test writers perspective of) the appropriate design document. So what can we do? For each of area, the goal is to create tests that are quantifiable and durable. The ability to quantify the measurements (beyond a simple pass/fail) is critical to tracking progress(eventually measuring the level of success that has been achieved) and for providing clear information on what items need to be addressed (along with the appropriate time to address them - in varying levels of detail) . Durability is important so that the test can be reapplied (ideally in an automated fashion) over the entire cycle. Returning for a moment back to our "education example", one must also be careful of how the tests are organized and how the measurements are taken. If a test is in a multiple choice format, there is a significant statistical probability that a correct answer might be the result of a random guess. Also, in many situations, having the student simply provide a final answer can obscure many important elements. For example, on a math test, having the student simply provide a numeric answer (rather than showing the methodology) may result in a complete mismatch between the process and the result. It is hard to determine which is worse: The student who makes a simple arithmetric error at one step of a long process (resulting in a wrong answer) or The student who (without providing the "workflow") uses a completely invalid approach, yet still comes up with the right number. The "Wrong Process"/"Right Answer" is probably the single biggest problem in software development. Even very simple items can suffer from this. As an example consider the following code for a "straight line" calculation....Is it correct? (for Integral Points)         int Solve(int m, int b, int x) { return m * x + b; }   Most people would respond "Yes". But let's take the question one step further... Is it correct for all possible values of m,b,x??? (no fair if you cheated by being focused on the bolded text!)  Without additional information regarding constrains on "the possible values of m,b,x" the answer must be NO, there is the risk of overflow/wraparound that will produce an incorrect result! To properly answer this question (i.e. Test the Code), one MUST be able to backtrack from the implementation through the design, and architecture all the way back to the requirements. And the requirement itself must be tested against the stakeholder(s). It is only when the bounding conditions are defined that it is possible to determine if the code is "Correct" and has "Quality". Yet, how many of us (myself included) have written such code without even thinking about it. In many canses we (think we) "know" what the bounds are, and that the code will be correct. As we all know, requirements change, "code reuse" causes implementations to be applied to different scenarios, etc. This leads directly to the types of system failures that plague so many projects. This approach to TDD is much more holistic than ones which start by focusing on the details. The fundamental concepts still apply: Each item should be tested. The test should be defined/implemented before (or concurrent with) the definition/implementation of the actual item. We also add concepts that expand the scope and alter the style by recognizing: There are many things beside "lines of code" that benefit from testing (measuring/evaluating in a formal way) Correctness and Quality can not be solely measured by "correct results" In the future parts, we will examine in greater detail some of the techniques that can be applied to each of these areas....

    Read the article

  • At most how many customized P3 attributes could be added into Agile?

    - by Jie Chen
    I have one customer/Oracle Partner Consultant asking me such question: how many customized attributes can be allowed to add to Agile's subclass Page Three? I never did research against this because Agile User Guide never says this and theoretically Agile supports unlimited amount of customized attributes, unless the browser itself cannot handle them in allocated memory. However my customers says when to add almost 1000 attributes, the browser (Web Client) will not show any Page Three attributes, including all the out-of-box attributes. Let's see why. Analysis It is horrible to add 1000 attributes manually. Let's do it by a batch SQL like below to add them to Item's subclass Page Three tab. Do not execute below SQL because it will not take effect due to your different node id. CREATE OR REPLACE PROCEDURE createP3Text(v_name IN VARCHAR2) IS v_nid NUMBER; v_pid NUMBER; BEGIN select SEQNODETABLE.nextval into v_nid from dual; Insert Into nodeTable ( id,parentID,description,objType,inherit,helpID,version,name ) values ( v_nid,2473003, v_name ,1,0,0,0, v_name); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,925, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,1,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,2,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,2,0,1,3,'50'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,5, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,2,0,1,6,'50'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,2,0,0,7,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,8,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,9,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,1,10,v_name); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,11,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,11743,1,14,'2'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,30, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,38, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,59,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,60,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,724,0,61, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,0,232,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,233,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,12239,1,415,'13307'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,0,605,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,610,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,716,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,795,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,2000008821,1,864,'2'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,923,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,0,719,'0'); Insert Into tableInfo ( tabID,tableID,classID,att,ordering ) values ( 2473005,1501,2473002,v_nid,9999); commit; END createP3Text; / BEGIN FOR i in 1..1000 LOOP createP3Text('MyText' || i); END LOOP; END; / DROP PROCEDURE createP3Text; COMMIT; Now restart Agile Server and check the Server's log, we noticed below: ***** Node Created : 85625 ***** Property Created : 184579 +++++++++++++++++++++++++++++++++++++ + Agile PLM Server Starting Up... + +++++++++++++++++++++++++++++++++++++ However the previously log before batch SQL is ***** Node Created : 84625 ***** Property Created : 157579 +++++++++++++++++++++++++++++++++++++ + Agile PLM Server Starting Up... + +++++++++++++++++++++++++++++++++++++ Obviously we successfully imported 1000 (85625-84625) attributes. Now go to JavaClient and confirm if we have them or not. Theoretically we are able to open such item object and see all these 1000 attributes and their values, but we get below error. We have no error tips in server log. But never mind we have the Java Console for JavaClient. If to open the same item in JavaClient we get a clear error and detailed trace in Java Console. ORA-01795: maximum number of expressions in a list is 1000 java.sql.SQLException: ORA-01795: maximum number of expressions in a list is 1000 at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:125) ... ... at weblogic.jdbc.wrapper.PreparedStatement.executeQuery(PreparedStatement.java:128) at com.agile.pc.cmserver.base.AgileFlexUtil.setFlexValuesForOneRowTable(AgileFlexUtil.java:1104) at com.agile.pc.cmserver.base.BaseFlexTableDAO.loadExtraFlexAttValues(BaseFlexTableDAO.java:111) at com.agile.pc.cmserver.base.BasePageThreeDAO.loadTable(BasePageThreeDAO.java:108) If you are interested in the background of the problem, you may de-compile the class com.agile.pc.cmserver.base.AgileFlexUtil.setFlexValuesForOneRowTable and find the root cause that Agile happens to hit Oracle Database's limitation that more than 1000 values in the "IN" clause. Check here http://ora-01795.ora-code.com If you need Oracle Agile's final solution, please contact Oracle Agile Support. Performance Below two screenshot are jvm heap usage from before-SQL and after-SQL. We can see there is no big memory gap between two cases. So definitely there is no performance impact to Agile Application Server unless you have more than 1000 attributes for EACH of your dozens of  subclasses. And for client, 1000 attributes should not impact the browser's performance because in HTML we only use dt and dd for each attribute's pair: label and value. It is quite lightweight.

    Read the article

  • SSIS: Deploying OLAP cubes using C# script tasks and AMO

    - by DrJohn
    As part of the continuing series on Building dynamic OLAP data marts on-the-fly, this blog entry will focus on how to automate the deployment of OLAP cubes using SQL Server Integration Services (SSIS) and Analysis Services Management Objects (AMO). OLAP cube deployment is usually done using the Analysis Services Deployment Wizard. However, this option was dismissed for a variety of reasons. Firstly, invoking external processes from SSIS is fraught with problems as (a) it is not always possible to ensure SSIS waits for the external program to terminate; (b) we cannot log the outcome properly and (c) it is not always possible to control the server's configuration to ensure the executable works correctly. Another reason for rejecting the Deployment Wizard is that it requires the 'answers' to be written into four XML files. These XML files record the three things we need to change: the name of the server, the name of the OLAP database and the connection string to the data mart. Although it would be reasonably straight forward to change the content of the XML files programmatically, this adds another set of complication and level of obscurity to the overall process. When I first investigated the possibility of using C# to deploy a cube, I was surprised to find that there are no other blog entries about the topic. I can only assume everyone else is happy with the Deployment Wizard! SSIS "forgets" assembly references If you build your script task from scratch, you will have to remember how to overcome one of the major annoyances of working with SSIS script tasks: the forgetful nature of SSIS when it comes to assembly references. Basically, you can go through the process of adding an assembly reference using the Add Reference dialog, but when you close the script window, SSIS "forgets" the assembly reference so the script will not compile. After repeating the operation several times, you will find that SSIS only remembers the assembly reference when you specifically press the Save All icon in the script window. This problem is not unique to the AMO assembly and has certainly been a "feature" since SQL Server 2005, so I am not amazed it is still present in SQL Server 2008 R2! Sample Package So let's take a look at the sample SSIS package I have provided which can be downloaded from here: DeployOlapCubeExample.zip  Below is a screenshot after a successful run. Connection Managers The package has three connection managers: AsDatabaseDefinitionFile is a file connection manager pointing to the .asdatabase file you wish to deploy. Note that this can be found in the bin directory of you OLAP database project once you have clicked the "Build" button in Visual Studio TargetOlapServerCS is an Analysis Services connection manager which identifies both the deployment server and the target database name. SourceDataMart is an OLEDB connection manager pointing to the data mart which is to act as the source of data for your cube. This will be used to replace the connection string found in your .asdatabase file Once you have configured the connection managers, the sample should run and deploy your OLAP database in a few seconds. Of course, in a production environment, these connection managers would be associated with package configurations or set at runtime. When you run the sample, you should see that the script logs its activity to the output screen (see screenshot above). If you configure logging for the package, then these messages will also appear in your SSIS logging. Sample Code Walkthrough Next let's walk through the code. The first step is to parse the connection string provided by the TargetOlapServerCS connection manager and obtain the name of both the target OLAP server and also the name of the OLAP database. Note that the target database does not have to exist to be referenced in an AS connection manager, so I am using this as a convenient way to define both properties. We now connect to the server and check for the existence of the OLAP database. If it exists, we drop the database so we can re-deploy. svr.Connect(olapServerName); if (svr.Connected) { // Drop the OLAP database if it already exists Database db = svr.Databases.FindByName(olapDatabaseName); if (db != null) { db.Drop(); } // rest of script } Next we start building the XMLA command that will actually perform the deployment. Basically this is a small chuck of XML which we need to wrap around the large .asdatabase file generated by the Visual Studio build process. // Start generating the main part of the XMLA command XmlDocument xmlaCommand = new XmlDocument(); xmlaCommand.LoadXml(string.Format("<Batch Transaction='false' xmlns='http://schemas.microsoft.com/analysisservices/2003/engine'><Alter AllowCreate='true' ObjectExpansion='ExpandFull'><Object><DatabaseID>{0}</DatabaseID></Object><ObjectDefinition/></Alter></Batch>", olapDatabaseName));  Next we need to merge two XML files which we can do by simply using setting the InnerXml property of the ObjectDefinition node as follows: // load OLAP Database definition from .asdatabase file identified by connection manager XmlDocument olapCubeDef = new XmlDocument(); olapCubeDef.Load(Dts.Connections["AsDatabaseDefinitionFile"].ConnectionString); // merge the two XML files by obtain a reference to the ObjectDefinition node oaRootNode.InnerXml = olapCubeDef.InnerXml;   One hurdle I had to overcome was removing detritus from the .asdabase file left by the Visual Studio build. Through an iterative process, I found I needed to remove several nodes as they caused the deployment to fail. The XMLA error message read "Cannot set read-only node: CreatedTimestamp" or similar. In comparing the XMLA generated with by the Deployment Wizard with that generated by my code, these read-only nodes were missing, so clearly I just needed to strip them out. This was easily achieved using XPath to find the relevant XML nodes, of which I show one example below: foreach (XmlNode node in rootNode.SelectNodes("//ns1:CreatedTimestamp", nsManager)) { node.ParentNode.RemoveChild(node); } Now we need to change the database name in both the ID and Name nodes using code such as: XmlNode databaseID = xmlaCommand.SelectSingleNode("//ns1:Database/ns1:ID", nsManager); if (databaseID != null) databaseID.InnerText = olapDatabaseName; Finally we need to change the connection string to point at the relevant data mart. Again this is easily achieved using XPath to search for the relevant nodes and then replace the content of the node with the new name or connection string. XmlNode connectionStringNode = xmlaCommand.SelectSingleNode("//ns1:DataSources/ns1:DataSource/ns1:ConnectionString", nsManager); if (connectionStringNode != null) { connectionStringNode.InnerText = Dts.Connections["SourceDataMart"].ConnectionString; } Finally we need to perform the deployment using the Execute XMLA command and check the returned XmlaResultCollection for errors before setting the Dts.TaskResult. XmlaResultCollection oResults = svr.Execute(xmlaCommand.InnerXml);  // check for errors during deployment foreach (Microsoft.AnalysisServices.XmlaResult oResult in oResults) { foreach (Microsoft.AnalysisServices.XmlaMessage oMessage in oResult.Messages) { if ((oMessage.GetType().Name == "XmlaError")) { FireError(oMessage.Description); HadError = true; } } } If you are not familiar with XML programming, all this may all seem a bit daunting, but perceiver as the sample code is pretty short. If you would like the script to process the OLAP database, simply uncomment the lines in the vicinity of Process method. Of course, you can extend the script to perform your own custom processing and to even synchronize the database to a front-end server. Personally, I like to keep the deployment and processing separate as the code can become overly complex for support staff.If you want to know more, come see my session at the forthcoming SQLBits conference.

    Read the article

< Previous Page | 236 237 238 239 240 241 242 243 244 245 246 247  | Next Page >