Search Results

Search found 19555 results on 783 pages for 'job performance'.

Page 245/783 | < Previous Page | 241 242 243 244 245 246 247 248 249 250 251 252  | Next Page >

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Is there a work around for slow performance of do.call(cbind.xts,...) in R 2.15.2?

    - by Petr Matousu
    I would expect cbind.xts and do.call(cbind.xts) to perform with similar elapsed time. That was true for R2.11, R2.14. For R2.15.2 and xts 0.8-8, the do.call(cbind.xts,...) variant performs drastically slower, which effectively breaks my previous codes. As Josh Ulrich notes in a comment below, the xts package maintainers are aware of this problem. In the meantime, is there a convenient work around?

    Read the article

  • Testing IPP Printing with ipptool

    - by senloe
    I'm trying to send an IPP print job using the ipptool. Using the sample .test files, I can send commands to the printer, but I am unable to successfully use the print-job.test file. Here's an example using ipptool. c:\...>ipptool -v ipp://name.local.:631/ipp/printer print-job.test ipptool: Filename "$filename" on line 21 cannot be read. ipptool: Filename mapped to "". It looks like it's failing resolving the variable $filename within the test file so I attempted to hardcode this value in the test file. In this case I get no error, but still no print. Does anybody have any experience using ipptool to test ipp printing?

    Read the article

  • ulimit not reflected for jenkins slave

    - by techastute
    Problem Got java.io.IOException: Too many open files in solr indexing through jenkins. Did some googling and found we have to set the ulimit for the box in where we are running the job. So set the ulimit in a linux box with spec Linux x86_64 GNU/Linux in both of the following fashions ulimit -n 1000000 /etc/security/limits.conf userx soft nofile 1000000 userx hard nofile 1000000 Given userx is the user through which the jenkins job is being executed. when doing ssh to the box as userx manually through terminal and check ulimit -n am getting 10000000 Question But when executing the same ulimit -n through a jenkins job, only getting 1024 which is the default. Any advice would be much helpful?

    Read the article

  • Deploy to JBoss 7 using Hudson Deploy plugin

    - by Uluk Biy
    I have 2 machines where one of them contains the Hudson CI and other JBoss 7 AS. In Hudson, I have installed "Deploy Plugin", created new job and filled required JBoss manager user connection fields. When I run the job, the project successfully built however the deployment process to remote JBoss AS is not being triggered. No errors or messages about the deployment in log. What should I do? EDIT The deployment is triggered (at least expected) as "Post-build Action" with parameters: [x] Deploy war/ear to a container WAR/EAR files : **/*.war Container : JBoss 7.x Manager user name : test Manager password : * * * * JBoss URL : http://192.168.1.2 JBoss JMX Management port : 9990 It is not a separate job.

    Read the article

  • Server Administration

    - by Kassem
    Hi everyone, My client asked me for a job description of a system administration because I might be assigned this position along with the other guy I'm working with. To be honest, I do not know much about a System Administrator's job but I'm willing to learn. Questions: What are the security requirements of a server? * What are the key responsibilities in a system admin's job description? What are some of the day to day tasks of a system admin? What is the average monthly salary of a system admin? Note: I will be working inside a Windows environment. But your replies do not necessarily need to be constricted to a Windows environment. (*) Other software I know will be required are: Windows Server 2008 IIS 7.0 MS SQL Server .NET 4.0 Runtime Let me know if there are other things I should be aware of as well. Thanks!

    Read the article

  • TRIM in centos 5.X?

    - by Frank Farmer
    I've got a bunch of centos 5 boxes with Intel X-25 drives (x25-m in dev, x25-e in prod, I think). We're seeing severely degraded disk performance on one of our dev boxes (which easily does 5+ gb of writes every day, meaning we write the full drive's worth of data several times a month). The box in question: Intel x25-m Ext3 (which doesn't support TRIM) centos 5 vmware ESXi Wikipedia mentions that newer versions of hdparm (which centos5 doesn't include) can bulk-TRIM free blocks. This utility also sounds potentially useful: http://blog.patshead.com/2009/12/a-quick-and-dirty-wipersh-fix-for-intel-x25-m.html Disk write performance has dropped to <1 MB/sec while copying a 300 meg directory on this system, as of a month or so ago -- it used to be able to perform the same copy operation at least 5 times faster. What can I do to recover performance on this system?

    Read the article

  • Running "Rebuild Index" maintenance plan with "Online indexing"

    - by Bharanidharan
    Hi I am using Windows Server 2003 SP 2 and SQL Server 2005 Enterprise edition I am creating a "Rebuild Index" job for a particular database and I am successfully able to run the job. But when I try to enable the "Keep index online while rebuilding" option, the job does not execute successfully and throws out errors. I have attached the screenshots. Any help would be app http://img535.imageshack.us/gal.php?g=error1r.png PS: I am not able to attach the images here since i do not have 10 points yet! Thanks.

    Read the article

  • What would happen in a Software Raid 1 of one HDD and one SSD?

    - by Adrian Grigore
    Hi, I'm running my Windows 7 installation and all of my apps from an SSD for performance reasons. Since SSD's can instantly die at any moment, I'm looking for some kind of data backup strategy. Right Now I regularly backing up the drive image on a hard disk, but that only happens once per day, which is not enough for my taste. So I got an idea: What if I created a software raid 1 of the SSD and partition on my Hard disk? All data would be mirrored on both drives, making this a lot safer. But what about performance? Will Windows 7 detect that the SSD is faster than the hard drive and always read from the SSD? Or will it randomly read from both, thus reducing read performance? Thanks, Adrian Edit: I just found this article which basically answers my question. Feel free to close this post.

    Read the article

  • Hypervisor for mixed client and server OSes

    - by Mark
    I need to replace three old boxes I use for development, running Linux, Win Server and Win XP. Instead of purchasing three new boxes I am thinking of purchasing a single box and virtualizing the OSes. As it is for development, absolute performance is not a problem, but I want the Linux and Win servers to run continuously, while running Win 7 as if it is a regular PC. Therefore running Linux and Win Server on top off Win 7 is not an option. Is this a viable solution? Has anyone done this? What is performance like? I'd like to get decent graphics performance with Win 7, sufficient to run the occasional game. If so, I'm looking for suggestions or recommendations on which hypervisor or virtualization option to go for.

    Read the article

  • Should I install Windows 7 on a 3 years old PC?

    - by Jitendra vyas
    This is my PC configuration, Should I upgrade my Windows XP to Windows 7. Currently I'm using Windows XP SP3 32 bit. Now will I get same performance or better performance or bad performance if I install Windows 7 on this system? Or would sticking with XP be better? Memory (RAM): 1472 MB DDR RAM (not DDR 2) CPU Info: AMD Sempron(tm) Processor 2500+ CPU Speed: 1398.7 MHz Sound card: Vinyl AC'97 Audio (WAVE) Display Adapters: VIA/S3G UniChrome Pro IGP | NetMeeting driver | RDPDD Chained DD Network Adapters: Bluetooth Device (Personal Area Network) | WAN (PPP/SLIP) Interface Hard Disks: 300 GB SATA HDD Manufacturer: Phoenix Technologies, LTD Product Make: MS-7142 AC Power Status: OnLine BIOS Info: AT/AT COMPATIBLE | 01/18/06 | VIAK8M - 42302e31 Motherboard: MICRO-STAR INTERNATIONAL CO., LTD MS-7142 Modem: ZTE USB Modem FFFE CDMA :

    Read the article

  • SQL Server 2005 Default Backup Plan

    - by tylerl
    I noticed that a newly imported database on SQLServer 2005 had configured itself (without my knowledge) to perform daily backups; but it's not deleting old files and quickly filling up the disk. I don't know how the backup job got configured (maybe that's something that gets transferred when you move a database?) but I'm having trouble modifying it. The backup runs as part of SQL Server Agent job called "Daily Backups". This job runs a package called "(SSIS Packages)\Maintenance Plans\Backup Plan" -- which I can't find. The "Management\Maintenance Plans" area for my server is empty. I imagine I could delete the existing plan and re-create it manually, but I was hoping to just modify what was already there, since all that's missing is deleting old files.

    Read the article

  • Which Message Queue should I choose (must run on Linux)

    - by MHS
    There are many open source Message queues for Linux, and I need some help deciding what I should go for. My problem is simple - I get sent a list of files that needs to be processed. Each job can't be split up, but they are self contained and can be spread to multiple computers. I'm thinking of solving this using a message queue. Multiple clients send a message to a central queue. Each queue has a number of subscribers that will take jobs from that queue when they have finished processing the current job. Ideally it should have the following qualities Message queue must be able to store unprocessed messages in case of a shutdown/reboot A job can only be processed by a single subscriber (don't want duplicate jobs) The subscribers should be able to send jobs of their own, that will be processed by a different set of subscribers. Can anyone suggest a simple to use message queue?

    Read the article

  • Help with running crontab from root

    - by user242065
    Im using OSX and having trouble getting a cron job to run. I type the following: $ sudo -i $ crontab -e I then enter: * * * * * root ifconfig en0 down > /dev/null 0 19 * * * root ifconfig en0 down > /dev/null 0 7 * * * root ifconfig en0 up > /dev/null and no success, the first line is for testing. I want it to shut off my internet. The next two lines I plan to leave in, once I get this working. If I type this in to the terminal the internet goes off ifconfig en0 down Why is my cron job not shutting down the internet? FYI: This is a follow up question from http://stackoverflow.com/questions/3027362/how-can-i-write-a-cron-job-that-will-block-my-internet-from-7pm-to-7am-so-i-can most of the comments there are people making fun of me. And a few attempts to solve the problem with out cron jobs.

    Read the article

  • How many disks to use for eight channel RAID controller

    - by Tvrtko
    I have a 3ware 8 channel SAS controller and a back plane extender (also 8 channel) which can take 16 drives. I will be creating a single RAID 10 volume. I know that adding more drives has positive effect on performance, but I'm not sure if adding more than 8 drives on an 8 channel controller will have any positive impact at all. Am I wrong? Should I put 16 drives for best performance? Would 8 drives give me the same performance?

    Read the article

  • How to configure/save layout of SQL Server's Log File Viewer?

    - by gernblandston
    When I'm viewing the job history of a particular SQL Agent Job, I typically want to see whether it succeeded, its duration and maybe the duration of the individual steps of the job. When I open the history in the Log File Viewer, I always need to scroll over and shrink the 'Message' column and drag the 'Duration' column over next to the 'Step Name' column. Is there a way to configure the layout of the Log File Viewer (e.g. reposition columns, resize columns) and save it for future sessions? Thanks!

    Read the article

  • Printer options follow Office documents

    - by tkalve
    One person (John) creates an Office document, and prints this document to his HP printer which is using HP Universal Printing PS (v4.7) driver. He has got Job Storage (Personal job) enabled for this printer, with custom username and a personal PIN. He later sends this document in an e-mail to his colleagues. Another person (Anne) opens the document, and tries to print the document to her HP printer (also using HP Universal Printing driver), but is not able to fetch it on the printer. The Job Storage options from Johns computer follows the Office Excel document, so Anne has to change this manually to her username and her PIN before she can print. What on earth is causing this, and how do we fix it?

    Read the article

  • SQL 2005 Log Shipping - Was working, now isnt!

    - by Jim
    Hello, I had log shipping working between two SQL 2005 server fine. I suspect that a job was added to the source server which backed up the transaction log to disk (nothing to do with the existing log shipping job). As I understand it, if you do this then log shipping will fail to work. Sure enough, it no longer works. I've deleted the job which had just been created. Log shipping still does not work. I've rebooted both servers and, again, Log shipping does not work. I'm at a loss now... all I get is the folloing error: The log shipping secondary database XXXXXXXXXX has restore threshold of 45 minutes and is out of sync. No restore was performed for 5882 minutes. Restored latency is 15 minutes. Check agent log and logshipping monitor information. Any help appreciated! Thanks in advance.

    Read the article

  • Will Software RAID And iSCSI Work For A SAN

    - by Justin
    I am looking for a SAN solution, but can't afford even entry level solutions. Basically, the SAN is for development and a proof of concept product. The performance doesn't have to be amazing, but needs to be functional. My buddy says we should just setup sotware RAID and software iSCSI in Linux. Essentially I have a spare server with dual Xeon processors, 4GB of memory, and (2) 500GB 7200RPM drives. It's a bit old but working. I am sure there is reason people don't do software RAID and iSCSI, but will performance be usable? Thinking of configuring the drives in RAID 0 (for performance).

    Read the article

  • pnp4nagios does not generate perfdata

    - by gonvaled
    I am running nagios2, pnp4nagios-0.6.16 and php 5.2.4-2ubuntu5.19. In my setup, pnp4nagios is correctly generating perfdata, which can be seen via the web interface in graphical form for lots of services. The perfdata directory contains entries of the kind: /usr/local/pnp4nagios/var/perfdata/zeus/Disk_Space_Home.rrd /usr/local/pnp4nagios/var/perfdata/zeus/Disk_Space_Home.xml I have activated performance data for a new nagios service: define serviceextinfo { host_name zeus service_description 450average action_url /pnp4nagios/index.php?host=$HOSTNAME$&srv=$SERVICEDESC$ } This service is generating monitoring data in the format: status_info|perf_data as required for performance gathering. But somehow the performance data related to this service is not being collected by pnp4nagios (no related entries in /usr/local/pnp4nagios/var/perfdata) Are there any pnp4nagios scripts or settings which I could use to debug this?

    Read the article

  • Should I disable write caching on my Windows 2008 VM?

    - by javano
    I have a Windows Server 2008 x64 Standard virtual machine that runs on a machine with a hardware RAID controller, a Perc 6/i, which has a battery on-board. Doing everything I can for additional performance, I think I should disable this. Is this very dangerous though? My understand is that Battery Backed Write Caching gives a performance boost to the host OS, telling it the write was complete when they are still sitting in flash waiting to be written. However, I can't see how it would be detrimental to performance, but is there a gain (even if marginal) to enabling it / disabling it? P.s. There machine has a backup power. Here is a screen shot for clarification:

    Read the article

  • Will Software RAID And iSCSI Work For A SAN

    - by Justin
    I am looking for a SAN solution, but can't afford even entry level solutions. Basically, the SAN is for development and a proof of concept product. The performance doesn't have to be amazing, but needs to be functional. My buddy says we should just setup sotware RAID and software iSCSI in Linux. Essentially I have a spare server with dual Xeon processors, 4GB of memory, and (2) 500GB 7200RPM drives. It's a bit old but working. I am sure there is reason people don't do software RAID and iSCSI, but will performance be usable? Thinking of configuring the drives in RAID 0 (for performance).

    Read the article

  • Backup SQL server db issue: delete old backup files

    - by David.Chu.ca
    I tried to use sqlmaint.exe tool to back up a database on a remote PC. Here is an example of backup: sqlmaint.exe -S remoteSQLServer\SQLInstance -U username -P pwdxxx -D myDB -BkUpMedia DISK -BkUpDB C:\MSSQL_Backups -DelBkUps 3days ... Here I specified to delete backups older than 3 days. However, the job seems not deleting old bak files on the remote PC(where the SQL server sits). The remote PC has Windows 2008 Server. I also set the C:\MSQL_Backups as shared network drive for EnyOne as owner. My understanding is that the job will delete any bak files older than 3 days. Not sure what I missed? By the way, the job runs at a box with SQL server 2005 installed.

    Read the article

  • File store: CouchDB vs SQL Server + file system

    - by Andrey
    I'm exploring different ways of storing user-uploaded files (all are MS Office documents or alikes) on our high load web site. It's currently designed to store documents as files and have a SQL database store all metadata for those files. I'm concerned about growing out of the storage server and SQL server performance when number of documents reaches hundreds of millions. I was reading a lot of good information about CouchDB including its built-in scalability and performance, but I'm not sure how storing files as attachments in CouchDB would compare to storing files on a file system in terms of performance. Anybody used CouchDB clusters for storing LARGE amounts of documents and in high load environment?

    Read the article

  • Organizing files relationally in Windows 7?

    - by Cayetano Gonçalves
    I just took a new job as a policy analyst, and after even one week keeping track of hundreds of files- lawsuits, legislation, letters, etc- in Windows 7 is proving difficult. In my last job I was a database architect and I helped build Linux based servers to track files among an entire department, however there is no way for me to do that at this time in this job. Is there any way to track files/indices/locations/tags/themes and store them in some kind of RDBMS system, instead of storing the files in folders that only allow for flat and fixed storage? For example, if I have a file that deals with: ELID organization Appeals court John Smith It really is inconvenient to have to decide which one of these tags to create into a folder and place the file into it, when it falls under all the categories. Even if I could place tags the way you can in Stack Exchange on files, it would solve a lot of heart ache.

    Read the article

< Previous Page | 241 242 243 244 245 246 247 248 249 250 251 252  | Next Page >