Search Results

Search found 61432 results on 2458 pages for 'data execution prevention'.

Page 25/2458 | < Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >

  • Data take on with Drupal 6

    - by Robert MacLean
    We are migrating our current intranet to Drupal 6 and there is a lot of data within the current system which can be classified into: List data, general lists of fields. Common use is phone list of the employees phone numbers. Document repository. Just basically a web version of a file share for documents. I can easily get the data + meta infomation out, but how do I bulk upload the two types of data into Drupal, as uploading the hundred of thousands of items manually is just not acceptable.

    Read the article

  • Summing up spreadsheet data when a column contains “#N/A”

    - by Doris
    I am using Goggle Spreadsheet to work up some historical stock data and I use a Google function (=googlefinance=…) to import the historical closing prices for a stock, then I work with that data further. But, in that list of data generated from the =googlefinance=… function, one of the amounts comes up as #N/A. I don’t know why, but it happens for various symbols that I have tried. When I use a max function on the array, which includes the N/A line, the max function does not come up with anything but an N/A, so the N/A throws off any further functions. I thought I’d create a second column to the right of the imported data in which I can give it an IF function, something like, If ((A1 <0), "0", A1), with the expectation that it would return 0 if cell A1 is the N/A, and the cell value if it is not N/A. However, this still returns N/A. I also tried an IS BLANK function but that resulted in the same NA. Does anyone have any suggestions for a workaround to eliminate the N/A from an array of numbers that I am trying to work with?

    Read the article

  • TDWI World Conference Features Oracle and Big Data

    - by Mandy Ho
    Oracle is a Gold Sponsor at this year's TDWI World Conference Series, held at the Manchester Grand Hyatt in San Diego, California - July 31 to Aug 1. The theme of this event is Big Data Tipping Point: BI Strategies in the Era of Big Data. The conference features an educational look at how data is now being generated so quickly that organizations across all industries need new technologies to stay ahead - to understand customer behavior, detect fraud, improve processes and accelerate performance. Attendees will hear how the internet, social media and streaming data are fundamentally changing business intelligence and data warehousing. Big data is reaching critical mass - the tipping point. Oracle will be conducting the following Evening Workshop. To reserve your space, call 1.800.820.5592 ext 10775. Title...:    Integrating Big Data into Your Data Center (or A Big Data Reference Architecture) Date.:    Wed., August 1, 2012, at 7:00 p.m Venue:: Manchester Grand Hyatt, San Diego, Room Weblogs, Social Media, smart meters, senors and other devices generate high volumes of low density information that isn't readily accessible in enterprise data warehouses and business intelligence applications today. But, this data can have relevant business value, especially when analyzed alongside traditional information sources. In this session, we will outline a reference architecture for big data that will help you maximize the value of your big data implementation. You will learn: The key technologies in a big architecture, and their specific use case The integration point of the various technologies and how they fit into your existing IT environment How effectively leverage analytical sandboxes for data discovery and agile development of data driven solutions   At the end of this session you will understand the reference architecture and have the tools to implement this architecture at your company. Presenter: Jean-Pierre Dijcks, Senior Principal Product Manager Don't miss our booth and the chance to meet with our Big data experts on the exhibition floor at booth #306. 

    Read the article

  • How do you encode Algebraic Data Types in a C#- or Java-like language?

    - by Jörg W Mittag
    There are some problems which are easily solved by Algebraic Data Types, for example a List type can be very succinctly expressed as: data ConsList a = Empty | ConsCell a (ConsList a) consmap f Empty = Empty consmap f (ConsCell a b) = ConsCell (f a) (consmap f b) l = ConsCell 1 (ConsCell 2 (ConsCell 3 Empty)) consmap (+1) l This particular example is in Haskell, but it would be similar in other languages with native support for Algebraic Data Types. It turns out that there is an obvious mapping to OO-style subtyping: the datatype becomes an abstract base class and every data constructor becomes a concrete subclass. Here's an example in Scala: sealed abstract class ConsList[+T] { def map[U](f: T => U): ConsList[U] } object Empty extends ConsList[Nothing] { override def map[U](f: Nothing => U) = this } final class ConsCell[T](first: T, rest: ConsList[T]) extends ConsList[T] { override def map[U](f: T => U) = new ConsCell(f(first), rest.map(f)) } val l = (new ConsCell(1, new ConsCell(2, new ConsCell(3, Empty))) l.map(1+) The only thing needed beyond naive subclassing is a way to seal classes, i.e. a way to make it impossible to add subclasses to a hierarchy. How would you approach this problem in a language like C# or Java? The two stumbling blocks I found when trying to use Algebraic Data Types in C# were: I couldn't figure out what the bottom type is called in C# (i.e. I couldn't figure out what to put into class Empty : ConsList< ??? >) I couldn't figure out a way to seal ConsList so that no subclasses can be added to the hierarchy What would be the most idiomatic way to implement Algebraic Data Types in C# and/or Java? Or, if it isn't possible, what would be the idiomatic replacement?

    Read the article

  • Why is my ServiceOperation method missing from my WCF Data Services client proxy code?

    - by Kev
    I have a simple WCF Data Services service and I want to expose a Service Operation as follows: [System.ServiceModel.ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class ConfigurationData : DataService<ProductRepository> { // This method is called only once to initialize service-wide policies. public static void InitializeService(IDataServiceConfiguration config) { config.SetEntitySetAccessRule("*", EntitySetRights.ReadMultiple | EntitySetRights.ReadSingle); config.SetServiceOperationAccessRule("*", ServiceOperationRights.All); config.UseVerboseErrors = true; } // This operation isn't getting generated client side [WebGet] public IQueryable<Product> GetProducts() { // Simple example for testing return (new ProductRepository()).Product; } Why isn't the GetProducts method visible when I add the service reference on the client?

    Read the article

  • How to Convert multiple sets of Data going from left to right to top to bottom the Pythonic way?

    - by ThinkCode
    Following is a sample of sets of contacts for each company going from left to right. ID Company ContactFirst1 ContactLast1 Title1 Email1 ContactFirst2 ContactLast2 Title2 Email2 1 ABC John Doe CEO [email protected] Steve Bern CIO [email protected] How do I get them to go top to bottom as shown? ID Company Contactfirst ContactLast Title Email 1 ABC John Doe CEO [email protected] 1 ABC Steve Bern CIO [email protected] I am hoping there is a Pythonic way of solving this task. Any pointers or samples are really appreciated! p.s : In the actual file, there are 10 sets of contacts going from left to right and there are few thousand such records. It is a CSV file and I loaded into MySQL to manipulate the data.

    Read the article

  • How to add data manually in core data entity

    - by pankaj
    Hi I am working on core data for the first time. I have just created an entity and attributes for that entity. I want to add some data inside the entity(u can say i want to add data in a table), earlier i when i was using sqlite, i would add data using terminal. But here in core data i am not able to find a place where i can manually add data. I just want to add data in entity and display it in a UITableView. I have gone through the the documentation of core data but it does not explain how to add data manually although it explains how i can add it programmiticaly but i dont need to do it programically. I want to do it manually. Thanks in advance

    Read the article

  • What is a good approach for a Data Access Layer?

    - by Adil Mughal
    Our software is a customized Human Resource Management System (HRMS) using ASP.NET with Oracle as the database and now we are actually moving to make it a product that supports multiple tenants with their own databases. Our options: Use NHibernate to support Multiple databases and use of OO. But we concern related to NHibernate learning curve and any problem we faced. Make a generalized DAL which will continue working with Oracle using stored procedures and use tools to convert it to other databases such as SQL Server or MySql. There is a risk associated with having to support multiple database-dependent versions of a single script. Provide the software as a Service (SaaS) and maintain the way we conduct business. However there can may be clients who do not want or trust the Cloud or other SaaS business models. With this in mind, what's the best Data access layer technique?

    Read the article

  • How do I set default values on new properties for existing entities after light weight core data migration?

    - by Moritz
    I've successfully completed light weight migration on my core data model. My custom entity Vehicle received a new property 'tirePressure' which is an optional property of type double with the default value 0.00. When 'old' Vehicles are fetched from the store (Vehicles that were created before the migration took place) the value for their 'tirePressure' property is nil. (Is that expected behavior?) So I thought: "No problem, I'll just do this in the Vehicle class:" - (void)awakeFromFetch { [super awakeFromFetch]; if (nil == self.tirePressure) { [self willChangeValueForKey:@"tirePressure"]; self.tirePressure = [NSNumber numberWithDouble:0.0]; [self didChangeValueForKey:@"tirePressure"]; } } Since "change processing is explicitly disabled around" awakeFromFetch I thought the calls to willChangeValueForKey and didChangeValueForKey would mark 'tirePresure' as dirty. But they don't. Every time these Vehicles are fetched from the store 'tirePressure' continues to be nil despite having saved the context.

    Read the article

  • How do you verify the correct data is in a data mart?

    - by blockcipher
    I'm working on a data warehouse and I'm trying to figure out how to best verify that data from our data cleansing (normalized) database makes it into our data marts correctly. I've done some searches, but the results so far talk more about ensuring things like constraints are in place and that you need to do data validation during the ETL process (E.g. dates are valid, etc.). The dimensions were pretty easy as I could easily either leverage the primary key or write a very simple and verifiable query to get the data. The fact tables are more complex. Any thoughts? We're trying to make this very easy for a subject matter export to run a couple queries, see some data from both the data cleansing database and the data marts, and visually compare the two to ensure they are correct.

    Read the article

  • Select data from three different tables with null data

    - by user3678972
    I am new in Sql. My question is how to get data from three different tables with null values. I have tried a query as below: SELECT * FROM [USER] JOIN [Location] ON ([Location].UserId = [USER].Id) JOIN [ParentChild] ON ([ParentChild].UserId = [USER].Id) WHERE ParentId=7 which I find from this link. Its working fine but, it not fetches all and each data associated with the ParentId Something like it only fetches data which are available in all tables, but also omits some data which not available in Location tables but it comes under the given ParentId. For example: UserId ParentId 1 7 8 7 For userId 8, there is data available in Location table,so it fetches all data. But there is no data for userId 1 available in Location table, so the query didn't work for this. But I want all and every data. If there is no data for userId then it can return only null columns. Is it possible ?? hope everyone can understand my problem.

    Read the article

  • How does Core Data determine if an NSObjects data can be dropped?

    - by Kevin
    In the app I am working on now I was storing about 500 images in Core Data. I have since pulled those images out and store them in the file system now, but in the process I found that the app would crash on the device if I had an array of 500 objects with image data in them. An array with 500 object ids with the image data in those objects worked fine. The 500 objects without the image data also worked fine. I found that I got the best performance with both an array of object ids and image data stored on the filesystem instead of in core data. The conclusion I came to was that if I had an object in an array that told Core Data I was "using" that object and Core Data would hold on to the data. Is this correct?

    Read the article

  • ParallelWork: Feature rich multithreaded fluent task execution library for WPF

    - by oazabir
    ParallelWork is an open source free helper class that lets you run multiple work in parallel threads, get success, failure and progress update on the WPF UI thread, wait for work to complete, abort all work (in case of shutdown), queue work to run after certain time, chain parallel work one after another. It’s more convenient than using .NET’s BackgroundWorker because you don’t have to declare one component per work, nor do you need to declare event handlers to receive notification and carry additional data through private variables. You can safely pass objects produced from different thread to the success callback. Moreover, you can wait for work to complete before you do certain operation and you can abort all parallel work while they are in-flight. If you are building highly responsive WPF UI where you have to carry out multiple job in parallel yet want full control over those parallel jobs completion and cancellation, then the ParallelWork library is the right solution for you. I am using the ParallelWork library in my PlantUmlEditor project, which is a free open source UML editor built on WPF. You can see some realistic use of the ParallelWork library there. Moreover, the test project comes with 400 lines of Behavior Driven Development flavored tests, that confirms it really does what it says it does. The source code of the library is part of the “Utilities” project in PlantUmlEditor source code hosted at Google Code. The library comes in two flavors, one is the ParallelWork static class, which has a collection of static methods that you can call. Another is the Start class, which is a fluent wrapper over the ParallelWork class to make it more readable and aesthetically pleasing code. ParallelWork allows you to start work immediately on separate thread or you can queue a work to start after some duration. You can start an immediate work in a new thread using the following methods: void StartNow(Action doWork, Action onComplete) void StartNow(Action doWork, Action onComplete, Action<Exception> failed) For example, ParallelWork.StartNow(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }, () => { workEndedAt = DateTime.Now; }); Or you can use the fluent way Start.Work: Start.Work(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }) .OnComplete(() => { workCompletedAt = DateTime.Now; }) .Run(); Besides simple execution of work on a parallel thread, you can have the parallel thread produce some object and then pass it to the success callback by using these overloads: void StartNow<T>(Func<T> doWork, Action<T> onComplete) void StartNow<T>(Func<T> doWork, Action<T> onComplete, Action<Exception> fail) For example, ParallelWork.StartNow<Dictionary<string, string>>( () => { test = new Dictionary<string,string>(); test.Add("test", "test"); return test; }, (result) => { Assert.True(result.ContainsKey("test")); }); Or, the fluent way: Start<Dictionary<string, string>>.Work(() => { test = new Dictionary<string, string>(); test.Add("test", "test"); return test; }) .OnComplete((result) => { Assert.True(result.ContainsKey("test")); }) .Run(); You can also start a work to happen after some time using these methods: DispatcherTimer StartAfter(Action onComplete, TimeSpan duration) DispatcherTimer StartAfter(Action doWork,Action onComplete,TimeSpan duration) You can use this to perform some timed operation on the UI thread, as well as perform some operation in separate thread after some time. ParallelWork.StartAfter( () => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }, () => { workCompletedAt = DateTime.Now; }, waitDuration); Or, the fluent way: Start.Work(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }) .OnComplete(() => { workCompletedAt = DateTime.Now; }) .RunAfter(waitDuration);   There are several overloads of these functions to have a exception callback for handling exceptions or get progress update from background thread while work is in progress. For example, I use it in my PlantUmlEditor to perform background update of the application. // Check if there's a newer version of the app Start<bool>.Work(() => { return UpdateChecker.HasUpdate(Settings.Default.DownloadUrl); }) .OnComplete((hasUpdate) => { if (hasUpdate) { if (MessageBox.Show(Window.GetWindow(me), "There's a newer version available. Do you want to download and install?", "New version available", MessageBoxButton.YesNo, MessageBoxImage.Information) == MessageBoxResult.Yes) { ParallelWork.StartNow(() => { var tempPath = System.IO.Path.Combine( Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData), Settings.Default.SetupExeName); UpdateChecker.DownloadLatestUpdate(Settings.Default.DownloadUrl, tempPath); }, () => { }, (x) => { MessageBox.Show(Window.GetWindow(me), "Download failed. When you run next time, it will try downloading again.", "Download failed", MessageBoxButton.OK, MessageBoxImage.Warning); }); } } }) .OnException((x) => { MessageBox.Show(Window.GetWindow(me), x.Message, "Download failed", MessageBoxButton.OK, MessageBoxImage.Exclamation); }); The above code shows you how to get exception callbacks on the UI thread so that you can take necessary actions on the UI. Moreover, it shows how you can chain two parallel works to happen one after another. Sometimes you want to do some parallel work when user does some activity on the UI. For example, you might want to save file in an editor while user is typing every 10 second. In such case, you need to make sure you don’t start another parallel work every 10 seconds while a work is already queued. You need to make sure you start a new work only when there’s no other background work going on. Here’s how you can do it: private void ContentEditor_TextChanged(object sender, EventArgs e) { if (!ParallelWork.IsAnyWorkRunning()) { ParallelWork.StartAfter(SaveAndRefreshDiagram, TimeSpan.FromSeconds(10)); } } If you want to shutdown your application and want to make sure no parallel work is going on, then you can call the StopAll() method. ParallelWork.StopAll(); If you want to wait for parallel works to complete without a timeout, then you can call the WaitForAllWork(TimeSpan timeout). It will block the current thread until the all parallel work completes or the timeout period elapses. result = ParallelWork.WaitForAllWork(TimeSpan.FromSeconds(1)); The result is true, if all parallel work completed. If it’s false, then the timeout period elapsed and all parallel work did not complete. For details how this library is built and how it works, please read the following codeproject article: ParallelWork: Feature rich multithreaded fluent task execution library for WPF http://www.codeproject.com/KB/WPF/parallelwork.aspx If you like the article, please vote for me.

    Read the article

  • Using SQL Execution Plans to discover the Swedish alphabet

    - by Rob Farley
    SQL Server is quite remarkable in a bunch of ways. In this post, I’m using the way that the Query Optimizer handles LIKE to keep it SARGable, the Execution Plans that result, Collations, and PowerShell to come up with the Swedish alphabet. SARGability is the ability to seek for items in an index according to a particular set of criteria. If you don’t have SARGability in play, you need to scan the whole index (or table if you don’t have an index). For example, I can find myself in the phonebook easily, because it’s sorted by LastName and I can find Farley in there by moving to the Fs, and so on. I can’t find everyone in my suburb easily, because the phonebook isn’t sorted that way. I can’t even find people who have six letters in their last name, because also the book is sorted by LastName, it’s not sorted by LEN(LastName). This is all stuff I’ve looked at before, including in the talk I gave at SQLBits in October 2010. If I try to find everyone who’s names start with F, I can do that using a query a bit like: SELECT LastName FROM dbo.PhoneBook WHERE LEFT(LastName,1) = 'F'; Unfortunately, the Query Optimizer doesn’t realise that all the entries that satisfy LEFT(LastName,1) = 'F' will be together, and it has to scan the whole table to find them. But if I write: SELECT LastName FROM dbo.PhoneBook WHERE LastName LIKE 'F%'; then SQL is smart enough to understand this, and performs an Index Seek instead. To see why, I look further into the plan, in particular, the properties of the Index Seek operator. The ToolTip shows me what I’m after: You’ll see that it does a Seek to find any entries that are at least F, but not yet G. There’s an extra Predicate in there (a Residual Predicate if you like), which checks that each LastName is really LIKE F% – I suppose it doesn’t consider that the Seek Predicate is quite enough – but most of the benefit is seen by its working out the Seek Predicate, filtering to just the “at least F but not yet G” section of the data. This got me curious though, particularly about where the G comes from, and whether I could leverage it to create the Swedish alphabet. I know that in the Swedish language, there are three extra letters that appear at the end of the alphabet. One of them is ä that appears in the word Västerås. It turns out that Västerås is quite hard to find in an index when you’re looking it up in a Swedish map. I talked about this briefly in my five-minute talk on Collation from SQLPASS (the one which was slightly less than serious). So by looking at the plan, I can work out what the next letter is in the alphabet of the collation used by the column. In other words, if my alphabet were Swedish, I’d be able to tell what the next letter after F is – just in case it’s not G. It turns out it is… Yes, the Swedish letter after F is G. But I worked this out by using a copy of my PhoneBook table that used the Finnish_Swedish_CI_AI collation. I couldn’t find how the Query Optimizer calculates the G, and my friend Paul White (@SQL_Kiwi) tells me that it’s frustratingly internal to the QO. He’s particularly smart, even if he is from New Zealand. To investigate further, I decided to do some PowerShell, leveraging the Get-SqlPlan function that I blogged about recently (make sure you also have the SqlServerCmdletSnapin100 snap-in added). I started by indicating that I was going to use Finnish_Swedish_CI_AI as my collation of choice, and that I’d start whichever letter cam straight after the number 9. I figure that this is a cheat’s way of guessing the first letter of the alphabet (but it doesn’t actually work in Unicode – luckily I’m using varchar not nvarchar. Actually, there are a few aspects of this code that only work using ASCII, so apologies if you were wanting to apply it to Greek, Japanese, etc). I also initialised my $alphabet variable. $collation = 'Finnish_Swedish_CI_AI'; $firstletter = '9'; $alphabet = ''; Now I created the table for my test. A single field would do, and putting a Clustered Index on it would suffice for the Seeks. Invoke-Sqlcmd -server . -data tempdb -query "create table dbo.collation_test (col varchar(10) collate $collation primary key);" Now I get into the looping. $c = $firstletter; $stillgoing = $true; while ($stillgoing) { I construct the query I want, seeking for entries which start with whatever $c has reached, and get the plan for it: $query = "select col from dbo.collation_test where col like '$($c)%';"; [xml] $pl = get-sqlplan $query "." "tempdb"; At this point, my $pl variable is a scary piece of XML, representing the execution plan. A bit of hunting through it showed me that the EndRange element contained what I was after, and that if it contained NULL, then I was done. $stillgoing = ($pl.ShowPlanXML.BatchSequence.Batch.Statements.StmtSimple.QueryPlan.RelOp.IndexScan.SeekPredicates.SeekPredicateNew.SeekKeys.EndRange -ne $null); Now I could grab the value out of it (which came with apostrophes that needed stripping), and append that to my $alphabet variable.   if ($stillgoing)   {  $c=$pl.ShowPlanXML.BatchSequence.Batch.Statements.StmtSimple.QueryPlan.RelOp.IndexScan.SeekPredicates.SeekPredicateNew.SeekKeys.EndRange.RangeExpressions.ScalarOperator.ScalarString.Replace("'","");     $alphabet += $c;   } Finally, finishing the loop, dropping the table, and showing my alphabet! } Invoke-Sqlcmd -server . -data tempdb -query "drop table dbo.collation_test;"; $alphabet; When I run all this, I see that the Swedish alphabet is ABCDEFGHIJKLMNOPQRSTUVXYZÅÄÖ, which matches what I see at Wikipedia. Interesting to see that the letters on the end are still there, even with Case Insensitivity. Turns out they’re not just “letters with accents”, they’re letters in their own right. I’m sure you gave up reading long ago, and really aren’t that fazed about the idea of doing this using PowerShell. I chose PowerShell because I’d already come up with an easy way of grabbing the estimated plan for a query, and PowerShell does allow for easy navigation of XML. I find the most interesting aspect of this as the fact that the Query Optimizer uses the next letter of the alphabet to maintain the SARGability of LIKE. I’m hoping they do something similar for a whole bunch of operations. Oh, and the fact that you know how to find stuff in the IKEA catalogue. Footnote: If you are interested in whether this works in other languages, you might want to consider the following screenshot, which shows that in principle, it should work with Japanese. It might be a bit harder to run this in PowerShell though, as I’m not sure how it translates. In Hiragana, the Japanese alphabet starts ?, ?, ?, ?, ?, ...

    Read the article

  • Business Insight, IT Execution: 9 Project Management Tips

    - by Sylvie MacKenzie, PMP
    Excerpt from Profit Magazine - by David Rosenbaum When Marcos Baccetto was first asked to be the business-side project lead on Eaton Corporation’s Vehicle Group South America (VGSA) Oracle project, the operations services manager responsible for running manufacturing was, he confesses, “a little afraid” because of his lack of IT experience. Today, Baccetto calls the project “a fantastic experience,” and he is a true believer in the benefits of a close relationship between IT implementers and their line-of-business peers. Through his partnership with Jesiele Lima, then VGSA IT manager, Baccetto and Eaton’s South American operations team came to understand several important principles of business and IT. Here he shares nine tips managers should consider when working on an enterprise technology project. 1. Make it a business project, not an IT project. All levels of functional management must have ownership, responsibility, and accountability for the success of the implementation. 2. Share responsibility. Business owners should sign off on tests and data conversion. 3. Clean your data. Dedicating a team to improve core data quality prior to project launch can be a significant time-saver. 4. Select resources properly. Have functional people who can translate business needs to IT and can influence organizational change. 5. Manage scope. Follow project management methodologies and disciplines. 6. Adopt common processes, global solutions. Avoid customized, local solutions. The big-picture business goals can get lost in the details. 7. Implement processes prior to the go-live date. Change management can be key. Keep the workforce informed and train users in advance. 8. Define metrics milestones. Assume there will be a crisis during deployment. Having baseline metrics to compare against will help implementers keep their cool—and the project moving forward. 9. The sponsor’s commitment is critical. It is needed to support the truly difficult decisions.

    Read the article

  • How to handle encryption key conflicts when synchronizing data?

    - by Rafael
    Assume that there is data that gets synchronized between several devices. The data is protected with a symmetric encryption algorithm and a key. The key is stored on each device and encrypted with a password. When a user changes the password only the key gets re-encrypted. Under normal circumstances, when there is a good network connection to other peers, the current key gets synchronized and all data on the new device gets encrypted with the same key. But how to handle situations where a new device doesn’t have a network connection and e.g. creates its own new, but incompatible key? How to keep the usability as high as possible under such circumstances? The application could detect that there is no network and hence refuse to start. That’s very bad usability in my opinion, because the application isn’t functional at all in this case. I don’t consider this a solution. The application could ignore the missing network connection and create a new key. But what to do when the application gains a network connection? There will be several incompatible keys and some parts of the underlying data could only be encrypted with one key and other parts with another key. The situation would get worse if there would be more keys than just two and the application would’ve to ask every time for a password when another object that should get decrypted with another key would be needed. It is very messy and time consuming to try to re-encrypt all data that is encrypted with another key with a main key. What should be the main key at all in this case? The oldest key? The key with the most encrypted objects? What if the key got synchronized but not all objects that got encrypted with this particular key? How should the user know for which particular password the application asks and why it takes probably very long to re-encrypt the data? It’s very hard to describe encryption “issues” to users. So far I didn’t find an acceptable solution, nor some kind of generic strategy. Do you have some hints about a concrete strategy or some books / papers that describe synchronization of symmetrically encrypted data with keys that could cause conflicts?

    Read the article

  • Same SELECT used in an INSERT has different execution plan

    - by amacias
    A customer complained that a query and its INSERT counterpart had different execution plans, and of course, the INSERT was slower. First lets look at the SELECT : SELECT ua_tr_rundatetime,        ua_ch_treatmentcode,        ua_tr_treatmentcode,        ua_ch_cellid,        ua_tr_cellid FROM   (SELECT DISTINCT CH.treatmentcode AS UA_CH_TREATMENTCODE,                         CH.cellid        AS UA_CH_CELLID         FROM    CH,                 DL         WHERE  CH.contactdatetime > SYSDATE - 5                AND CH.treatmentcode = DL.treatmentcode) CH_CELLS,        (SELECT DISTINCT T.treatmentcode AS UA_TR_TREATMENTCODE,                         T.cellid        AS UA_TR_CELLID,                         T.rundatetime   AS UA_TR_RUNDATETIME         FROM    T,                 DL         WHERE  T.treatmentcode = DL.treatmentcode) TRT_CELLS WHERE  CH_CELLS.ua_ch_treatmentcode(+) = TRT_CELLS.ua_tr_treatmentcode;  The query has 2 DISTINCT subqueries.  The execution plan shows one with DISTICT Placement transformation applied and not the other. The view in Step 5 has the prefix VW_DTP which means DISTINCT Placement. -------------------------------------------------------------------- | Id  | Operation                    | Name            | Cost (%CPU) -------------------------------------------------------------------- |   0 | SELECT STATEMENT             |                 |   272K(100) |*  1 |  HASH JOIN OUTER             |                 |   272K  (1) |   2 |   VIEW                       |                 |  4408   (1) |   3 |    HASH UNIQUE               |                 |  4408   (1) |*  4 |     HASH JOIN                |                 |  4407   (1) |   5 |      VIEW                    | VW_DTP_48BAF62C |  1660   (2) |   6 |       HASH UNIQUE            |                 |  1660   (2) |   7 |        TABLE ACCESS FULL     | DL              |  1644   (1) |   8 |      TABLE ACCESS FULL       | T               |  2744   (1) |   9 |   VIEW                       |                 |   267K  (1) |  10 |    HASH UNIQUE               |                 |   267K  (1) |* 11 |     HASH JOIN                |                 |   267K  (1) |  12 |      PARTITION RANGE ITERATOR|                 |   266K  (1) |* 13 |       TABLE ACCESS FULL      | CH              |   266K  (1) |  14 |      TABLE ACCESS FULL       | DL              |  1644   (1) -------------------------------------------------------------------- Query Block Name / Object Alias (identified by operation id): -------------------------------------------------------------    1 - SEL$1    2 - SEL$AF418D5F / TRT_CELLS@SEL$1    3 - SEL$AF418D5F    5 - SEL$F6AECEDE / VW_DTP_48BAF62C@SEL$48BAF62C    6 - SEL$F6AECEDE    7 - SEL$F6AECEDE / DL@SEL$3    8 - SEL$AF418D5F / T@SEL$3    9 - SEL$2        / CH_CELLS@SEL$1   10 - SEL$2   13 - SEL$2        / CH@SEL$2   14 - SEL$2        / DL@SEL$2 Predicate Information (identified by operation id): ---------------------------------------------------    1 - access("CH_CELLS"."UA_CH_TREATMENTCODE"="TRT_CELLS"."UA_TR_TREATMENTCODE")    4 - access("T"."TREATMENTCODE"="ITEM_1")   11 - access("CH"."TREATMENTCODE"="DL"."TREATMENTCODE")   13 - filter("CH"."CONTACTDATETIME">SYSDATE@!-5) The outline shows PLACE_DISTINCT(@"SEL$3" "DL"@"SEL$3") indicating that the QB3 is the one that got the transformation. Outline Data -------------   /*+       BEGIN_OUTLINE_DATA       IGNORE_OPTIM_EMBEDDED_HINTS       OPTIMIZER_FEATURES_ENABLE('11.2.0.3')       DB_VERSION('11.2.0.3')       ALL_ROWS       OUTLINE_LEAF(@"SEL$2")       OUTLINE_LEAF(@"SEL$F6AECEDE")       OUTLINE_LEAF(@"SEL$AF418D5F") PLACE_DISTINCT(@"SEL$3" "DL"@"SEL$3")       OUTLINE_LEAF(@"SEL$1")       OUTLINE(@"SEL$48BAF62C")       OUTLINE(@"SEL$3")       NO_ACCESS(@"SEL$1" "TRT_CELLS"@"SEL$1")       NO_ACCESS(@"SEL$1" "CH_CELLS"@"SEL$1")       LEADING(@"SEL$1" "TRT_CELLS"@"SEL$1" "CH_CELLS"@"SEL$1")       USE_HASH(@"SEL$1" "CH_CELLS"@"SEL$1")       FULL(@"SEL$2" "CH"@"SEL$2")       FULL(@"SEL$2" "DL"@"SEL$2")       LEADING(@"SEL$2" "CH"@"SEL$2" "DL"@"SEL$2")       USE_HASH(@"SEL$2" "DL"@"SEL$2")       USE_HASH_AGGREGATION(@"SEL$2")       NO_ACCESS(@"SEL$AF418D5F" "VW_DTP_48BAF62C"@"SEL$48BAF62C")       FULL(@"SEL$AF418D5F" "T"@"SEL$3")       LEADING(@"SEL$AF418D5F" "VW_DTP_48BAF62C"@"SEL$48BAF62C" "T"@"SEL$3")       USE_HASH(@"SEL$AF418D5F" "T"@"SEL$3")       USE_HASH_AGGREGATION(@"SEL$AF418D5F")       FULL(@"SEL$F6AECEDE" "DL"@"SEL$3")       USE_HASH_AGGREGATION(@"SEL$F6AECEDE")       END_OUTLINE_DATA   */ The 10053 shows there is a comparative of cost with and without the transformation. This means the transformation belongs to Cost-Based Query Transformations (CBQT). In SEL$3 the optimization of the query block without the transformation is 6659.73 and with the transformation is 4408.41 so the transformation is kept. GBP/DP: Checking validity of GBP/DP for query block SEL$3 (#3) DP: Checking validity of distinct placement for query block SEL$3 (#3) DP: Using search type: linear DP: Considering distinct placement on query block SEL$3 (#3) DP: Starting iteration 1, state space = (5) : (0) DP: Original query DP: Costing query block. DP: Updated best state, Cost = 6659.73 DP: Starting iteration 2, state space = (5) : (1) DP: Using DP transformation in this iteration. DP: Transformed query DP: Costing query block. DP: Updated best state, Cost = 4408.41 DP: Doing DP on the original QB. DP: Doing DP on the preserved QB. In SEL$2 the cost without the transformation is less than with it so it is not kept. GBP/DP: Checking validity of GBP/DP for query block SEL$2 (#2) DP: Checking validity of distinct placement for query block SEL$2 (#2) DP: Using search type: linear DP: Considering distinct placement on query block SEL$2 (#2) DP: Starting iteration 1, state space = (3) : (0) DP: Original query DP: Costing query block. DP: Updated best state, Cost = 267936.93 DP: Starting iteration 2, state space = (3) : (1) DP: Using DP transformation in this iteration. DP: Transformed query DP: Costing query block. DP: Not update best state, Cost = 267951.66 To the same query an INSERT INTO is added and the result is a very different execution plan. INSERT  INTO cc               (ua_tr_rundatetime,                ua_ch_treatmentcode,                ua_tr_treatmentcode,                ua_ch_cellid,                ua_tr_cellid)SELECT ua_tr_rundatetime,       ua_ch_treatmentcode,       ua_tr_treatmentcode,       ua_ch_cellid,       ua_tr_cellidFROM   (SELECT DISTINCT CH.treatmentcode AS UA_CH_TREATMENTCODE,                        CH.cellid        AS UA_CH_CELLID        FROM    CH,                DL        WHERE  CH.contactdatetime > SYSDATE - 5               AND CH.treatmentcode = DL.treatmentcode) CH_CELLS,       (SELECT DISTINCT T.treatmentcode AS UA_TR_TREATMENTCODE,                        T.cellid        AS UA_TR_CELLID,                        T.rundatetime   AS UA_TR_RUNDATETIME        FROM    T,                DL        WHERE  T.treatmentcode = DL.treatmentcode) TRT_CELLSWHERE  CH_CELLS.ua_ch_treatmentcode(+) = TRT_CELLS.ua_tr_treatmentcode;----------------------------------------------------------| Id  | Operation                     | Name | Cost (%CPU)----------------------------------------------------------|   0 | INSERT STATEMENT              |      |   274K(100)|   1 |  LOAD TABLE CONVENTIONAL      |      |            |*  2 |   HASH JOIN OUTER             |      |   274K  (1)|   3 |    VIEW                       |      |  6660   (1)|   4 |     SORT UNIQUE               |      |  6660   (1)|*  5 |      HASH JOIN                |      |  6659   (1)|   6 |       TABLE ACCESS FULL       | DL   |  1644   (1)|   7 |       TABLE ACCESS FULL       | T    |  2744   (1)|   8 |    VIEW                       |      |   267K  (1)|   9 |     SORT UNIQUE               |      |   267K  (1)|* 10 |      HASH JOIN                |      |   267K  (1)|  11 |       PARTITION RANGE ITERATOR|      |   266K  (1)|* 12 |        TABLE ACCESS FULL      | CH   |   266K  (1)|  13 |       TABLE ACCESS FULL       | DL   |  1644   (1)----------------------------------------------------------Query Block Name / Object Alias (identified by operation id):-------------------------------------------------------------   1 - SEL$1   3 - SEL$3 / TRT_CELLS@SEL$1   4 - SEL$3   6 - SEL$3 / DL@SEL$3   7 - SEL$3 / T@SEL$3   8 - SEL$2 / CH_CELLS@SEL$1   9 - SEL$2  12 - SEL$2 / CH@SEL$2  13 - SEL$2 / DL@SEL$2Predicate Information (identified by operation id):---------------------------------------------------   2 - access("CH_CELLS"."UA_CH_TREATMENTCODE"="TRT_CELLS"."UA_TR_TREATMENTCODE")   5 - access("T"."TREATMENTCODE"="DL"."TREATMENTCODE")  10 - access("CH"."TREATMENTCODE"="DL"."TREATMENTCODE")  12 - filter("CH"."CONTACTDATETIME">SYSDATE@!-5)Outline Data-------------  /*+      BEGIN_OUTLINE_DATA      IGNORE_OPTIM_EMBEDDED_HINTS      OPTIMIZER_FEATURES_ENABLE('11.2.0.3')      DB_VERSION('11.2.0.3')      ALL_ROWS      OUTLINE_LEAF(@"SEL$2")      OUTLINE_LEAF(@"SEL$3")      OUTLINE_LEAF(@"SEL$1")      OUTLINE_LEAF(@"INS$1")      FULL(@"INS$1" "CC"@"INS$1")      NO_ACCESS(@"SEL$1" "TRT_CELLS"@"SEL$1")      NO_ACCESS(@"SEL$1" "CH_CELLS"@"SEL$1")      LEADING(@"SEL$1" "TRT_CELLS"@"SEL$1" "CH_CELLS"@"SEL$1")      USE_HASH(@"SEL$1" "CH_CELLS"@"SEL$1")      FULL(@"SEL$2" "CH"@"SEL$2")      FULL(@"SEL$2" "DL"@"SEL$2")      LEADING(@"SEL$2" "CH"@"SEL$2" "DL"@"SEL$2")      USE_HASH(@"SEL$2" "DL"@"SEL$2")      USE_HASH_AGGREGATION(@"SEL$2")      FULL(@"SEL$3" "DL"@"SEL$3")      FULL(@"SEL$3" "T"@"SEL$3")      LEADING(@"SEL$3" "DL"@"SEL$3" "T"@"SEL$3")      USE_HASH(@"SEL$3" "T"@"SEL$3")      USE_HASH_AGGREGATION(@"SEL$3")      END_OUTLINE_DATA  */ There is no DISTINCT Placement view and no hint.The 10053 trace shows a new legend "DP: Bypassed: Not SELECT"implying that this is a transformation that it is possible only for SELECTs. GBP/DP: Checking validity of GBP/DP for query block SEL$3 (#4) DP: Checking validity of distinct placement for query block SEL$3 (#4) DP: Bypassed: Not SELECT. GBP/DP: Checking validity of GBP/DP for query block SEL$2 (#3) DP: Checking validity of distinct placement for query block SEL$2 (#3) DP: Bypassed: Not SELECT. In 12.1 (and hopefully in 11.2.0.4 when released) the restriction on applying CBQT to some DMLs and DDLs (like CTAS) is lifted.This is documented in BugTag Note:10013899.8 Allow CBQT for some DML / DDLAnd interestingly enough, it is possible to have a one-off patch in 11.2.0.3. SQL> select DESCRIPTION,OPTIMIZER_FEATURE_ENABLE,IS_DEFAULT     2  from v$system_fix_control where BUGNO='10013899'; DESCRIPTION ---------------------------------------------------------------- OPTIMIZER_FEATURE_ENABLE  IS_DEFAULT ------------------------- ---------- enable some transformations for DDL and DML statements 11.2.0.4                           1

    Read the article

  • ?12c database ????Adaptive Execution Plans ????????

    - by Liu Maclean(???)
    12c R1 ????SQL??????- Adaptive Execution Plans ????????,???????optimizer ??????(runtime)???????????????, ????????????????????? SQL???????? ????????????, ?????????????????????????????????????????????????????????????adaptive plan ????????????????????????????????????,?????subplan???????????????????? ??????, ???????? ???????????????,?????????, ?????? ???????????????”???”????, ???????????????????buffer ???????  ????????????,?????,??????????????????? ???optimizer ?????????????????????????,?????????????????????????????????????????plan???? ??12C?????????????, ???????????????????,?????? ???????????? ????????????2???: Dynamic Plans????: ???????????????????????;??????,???optimizer??????????subplans??????????????, ???????????????????,?????????????? Reoptimization????: ?Dynamic Plans????,Reoptimization??????????????????????Reoptimization??,?????????????????????????,??reoptimization????? OPTIMIZER_ADAPTIVE_REPORTING_ONLY ???? report-only????????????????TRUE,?????????report-only????,???????????????,??????????????? Dynamic Plans ??????????????,????????????????????????, ?????????????,???????????,????????????????????????????????????????? ?????????????final plan??????????????default plan, ??final plan?default plan???????,????????????? subplan ???????????????,???????????????????????? ??????,???????statistics collector ?buffer???????????statistics collector?????????????????,???????????????????????????? ?????????????????????????????????????????,??????????,?????????????? ???????????,???????buffer???? ???????????????,?????????????????????????????,??????buffer,??????final plan? ????????,???????????????????????,????????????????? ?V$SQL??????IS_RESOLVED_DYNAMIC_PLAN??????????final plan???default plan? ??????dynamic plan ???????SQL PLAN directives?????? declare cursor PLAN_DIRECTIVE_IDS is select directive_id from DBA_SQL_PLAN_DIRECTIVES; begin for z in PLAN_DIRECTIVE_IDS loop DBMS_SPD.DROP_SQL_PLAN_DIRECTIVE(z.directive_id); end loop; end; / explain plan for select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id; select * from table(dbms_xplan.display()); Plan hash value: 1255158658 www.askmaclean.com ------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 4 | 128 | 7 (0)| 00:00:01 | | 1 | NESTED LOOPS | | | | | | | 2 | NESTED LOOPS | | 4 | 128 | 7 (0)| 00:00:01 | |* 3 | TABLE ACCESS FULL | ORDER_ITEMS | 4 | 48 | 3 (0)| 00:00:01 | |* 4 | INDEX UNIQUE SCAN | PRODUCT_INFORMATION_PK | 1 | | 0 (0)| 00:00:01 | | 5 | TABLE ACCESS BY INDEX ROWID| PRODUCT_INFORMATION | 1 | 20 | 1 (0)| 00:00:01 | ------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("O"."UNIT_PRICE"=15 AND "QUANTITY">1) 4 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") alter session set events '10053 trace name context forever,level 1'; OR alter session set events 'trace[SQL_Plan_Directive] disk highest'; select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id; ---------------------------------------------------------------+-----------------------------------+ | Id | Operation | Name | Rows | Bytes | Cost | Time | ---------------------------------------------------------------+-----------------------------------+ | 0 | SELECT STATEMENT | | | | 7 | | | 1 | HASH JOIN | | 4 | 128 | 7 | 00:00:01 | | 2 | NESTED LOOPS | | | | | | | 3 | NESTED LOOPS | | 4 | 128 | 7 | 00:00:01 | | 4 | STATISTICS COLLECTOR | | | | | | | 5 | TABLE ACCESS FULL | ORDER_ITEMS | 4 | 48 | 3 | 00:00:01 | | 6 | INDEX UNIQUE SCAN | PRODUCT_INFORMATION_PK| 1 | | 0 | | | 7 | TABLE ACCESS BY INDEX ROWID | PRODUCT_INFORMATION | 1 | 20 | 1 | 00:00:01 | | 8 | TABLE ACCESS FULL | PRODUCT_INFORMATION | 1 | 20 | 1 | 00:00:01 | ---------------------------------------------------------------+-----------------------------------+ Predicate Information: ---------------------- 1 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") 5 - filter(("O"."UNIT_PRICE"=15 AND "QUANTITY">1)) 6 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") ===================================== SPD: BEGIN context at statement level ===================================== Stmt: ******* UNPARSED QUERY IS ******* SELECT /*+ OPT_ESTIMATE (@"SEL$1" JOIN ("P"@"SEL$1" "O"@"SEL$1") ROWS=13.000000 ) OPT_ESTIMATE (@"SEL$1" TABLE "O"@"SEL$1" ROWS=13.000000 ) */ "P"."PRODUCT_NAME" "PRODUCT_NAME" FROM "OE"."ORDER_ITEMS" "O","OE"."PRODUCT_INFORMATION" "P" WHERE "O"."UNIT_PRICE"=15 AND "O"."QUANTITY">1 AND "P"."PRODUCT_ID"="O"."PRODUCT_ID" Objects referenced in the statement PRODUCT_INFORMATION[P] 92194, type = 1 ORDER_ITEMS[O] 92197, type = 1 Objects in the hash table Hash table Object 92197, type = 1, ownerid = 6573730143572393221: No Dynamic Sampling Directives for the object Hash table Object 92194, type = 1, ownerid = 17822962561575639002: No Dynamic Sampling Directives for the object Return code in qosdInitDirCtx: ENBLD =================================== SPD: END context at statement level =================================== ======================================= SPD: BEGIN context at query block level ======================================= Query Block SEL$1 (#0) Return code in qosdSetupDirCtx4QB: NOCTX ===================================== SPD: END context at query block level ===================================== SPD: Return code in qosdDSDirSetup: NOCTX, estType = TABLE SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92197, objtyp = 1, vecsize = 6, colvec = [4, 5, ], fid = 2896834833840853267 SPD: Inserted felem, fid=2896834833840853267, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = YES, keep = YES SPD: qosdCreateFindingSingTab retCode = CREATED, fid = 2896834833840853267 SPD: qosdCreateDirCmp retCode = CREATED, fid = 2896834833840853267 SPD: Return code in qosdDSDirSetup: NOCTX, estType = TABLE SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = JOIN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SKIP_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = JOIN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92197, objtyp = 1, vecsize = 6, colvec = [4, 5, ], fid = 2896834833840853267 SPD: Modified felem, fid=2896834833840853267, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = YES, keep = YES SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92194, objtyp = 1, vecsize = 2, colvec = [1, ], fid = 5618517328604016300 SPD: Modified felem, fid=5618517328604016300, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92194, objtyp = 1, vecsize = 2, colvec = [1, ], fid = 1142802697078608149 SPD: Modified felem, fid=1142802697078608149, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO SPD: Generating finding id: type = 1, reason = 2, objcnt = 2, obItr = 0, objid = 92194, objtyp = 1, vecsize = 0, obItr = 1, objid = 92197, objtyp = 1, vecsize = 0, fid = 1437680122701058051 SPD: Modified felem, fid=1437680122701058051, ftype = 1, freason = 2, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO select * from table(dbms_xplan.display_cursor(format=>'report')) ; ????report????adaptive plan Adaptive plan: ------------- This cursor has an adaptive plan, but adaptive plans are enabled for reporting mode only.  The plan that would be executed if adaptive plans were enabled is displayed below. ------------------------------------------------------------------------------------------ | Id  | Operation          | Name                | Rows  | Bytes | Cost (%CPU)| Time     | ------------------------------------------------------------------------------------------ |   0 | SELECT STATEMENT   |                     |       |       |     7 (100)|          | |*  1 |  HASH JOIN         |                     |     4 |   128 |     7   (0)| 00:00:01 | |*  2 |   TABLE ACCESS FULL| ORDER_ITEMS         |     4 |    48 |     3   (0)| 00:00:01 | |   3 |   TABLE ACCESS FULL| PRODUCT_INFORMATION |     1 |    20 |     1   (0)| 00:00:01 | ------------------------------------------------------------------------------------------ SQL> select SQL_ID,IS_RESOLVED_DYNAMIC_PLAN,sql_text from v$SQL WHERE SQL_TEXT like '%MALCEAN%' and sql_text not like '%like%'; SQL_ID IS -------------------------- -- SQL_TEXT -------------------------------------------------------------------------------- 6ydj1bn1bng17 Y select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id ???? explain plan for ????default plan, ??????optimizer???final plan,??V$SQL.IS_RESOLVED_DYNAMIC_PLAN???Y,????????????? DBA_SQL_PLAN_DIRECTIVES?????????????SQL PLAN DIRECTIVES, ???12c? ???MMON?????DML ???column usage??????????,????SMON??? MMON????SGA??PLAN DIRECTIVES??? ?????DBMS_SPD.flush_sql_plan_directive???? select directive_id,type,reason from DBA_SQL_PLAN_DIRECTIVES / DIRECTIVE_ID TYPE REASON ----------------------------------- -------------------------------- ----------------------------- 10321283028317893030 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE 4757086536465754886 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE 16085268038103121260 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE SQL> set pages 9999 SQL> set lines 300 SQL> col state format a5 SQL> col subobject_name format a11 SQL> col col_name format a11 SQL> col object_name format a13 SQL> select d.directive_id, o.object_type, o.object_name, o.subobject_name col_name, d.type, d.state, d.reason 2 from dba_sql_plan_directives d, dba_sql_plan_dir_objects o 3 where d.DIRECTIVE_ID=o.DIRECTIVE_ID 4 and o.object_name in ('ORDER_ITEMS') 5 order by d.directive_id; DIRECTIVE_ID OBJECT_TYPE OBJECT_NAME COL_NAME TYPE STATE REASON ------------ ------------ ------------- ----------- -------------------------------- ----- ------------------------------------- --- 1.8156E+19 COLUMN ORDER_ITEMS UNIT_PRICE DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1.8156E+19 TABLE ORDER_ITEMS DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1.8156E+19 COLUMN ORDER_ITEMS QUANTITY DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE DBA_SQL_PLAN_DIRECTIVES????? _BASE_OPT_DIRECTIVE ? _BASE_OPT_FINDING SELECT d.dir_own#, d.dir_id, d.f_id, decode(type, 1, 'DYNAMIC_SAMPLING', 'UNKNOWN'), decode(state, 1, 'NEW', 2, 'MISSING_STATS', 3, 'HAS_STATS', 4, 'CANDIDATE', 5, 'PERMANENT', 6, 'DISABLED', 'UNKNOWN'), decode(bitand(flags, 1), 1, 'YES', 'NO'), cast(d.created as timestamp), cast(d.last_modified as timestamp), -- Please see QOSD_DAYS_TO_UPDATE and QOSD_PLUS_SECONDS for more details -- about 6.5 cast(d.last_used as timestamp) - NUMTODSINTERVAL(6.5, 'day') FROM sys.opt_directive$ d ??dbms_spd??? SQL PLAN DIRECTIVES, SQL PLAN DIRECTIVES???retention ???53?: Package: DBMS_SPD This package provides subprograms for managing Sql Plan Directives(SPD). SPD are objects generated automatically by Oracle server. For example, if server detects that the single table cardinality estimated by optimizer is off from the actual number of rows returned when accessing the table, it will automatically create a directive to do dynamic sampling for the table. When any Sql statement referencing the table is compiled, optimizer will perform dynamic sampling for the table to get more accurate estimate. Notes: DBMSL_SPD is a invoker-rights package. The invoker requires ADMINISTER SQL MANAGEMENT OBJECT privilege for executing most of the subprograms of this package. Also the subprograms commit the current transaction (if any), perform the operation and commit it again. DBA view dba_sql_plan_directives shows all the directives created in the system and the view dba_sql_plan_dir_objects displays the objects that are included in the directives. -- Default value for SPD_RETENTION_WEEKS SPD_RETENTION_WEEKS_DEFAULT CONSTANT varchar2(4) := '53'; | STATE : NEW : Newly created directive. | : MISSING_STATS : The directive objects do not | have relevant stats. | : HAS_STATS : The objects have stats. | : PERMANENT : A permanent directive. Server | evaluated effectiveness and these | directives are useful. | | AUTO_DROP : YES : Directive will be dropped | automatically if not | used for SPD_RETENTION_WEEKS. | This is the default behavior. | NO : Directive will not be dropped | automatically. Procedure: flush_sql_plan_directive This procedure allows manually flushing the Sql Plan directives that are automatically recorded in SGA memory while executing sql statements. The information recorded in SGA are periodically flushed by oracle background processes. This procedure just provides a way to flush the information manually. ????”_optimizer_dynamic_plans”(enable dynamic plans)????????,???TRUE??DYNAMIC PLAN? ???FALSE???????????? ????,Dynamic Plan????????????Nested Loop?Hash Join???case ,????????Nested loop???????????HASH JOIN,?HASH JOIN????????????????? ????????subplan?????,???? pass?? ?join method???,?????STATISTICS COLLECTOR???cardinality?,???????HASH JOIN?????Nested Loop,????????????subplan?????access path; ???????Sales??????????????????,????HASH JOIN,??SUBPLAN??customers?????????;?????Nested Loop,???????cust_id?????Range Scan+Access by Rowid? Cardinality feedback Cardinality feedback????????11.2????,????????re-optimization???;  ???????????,Cardinality feedback?????????????????????????? ???????????????????,?????????????????,??????????Cardinality feedback????????????? ????????????????????????? ??????????????Cardinality feedback ??: ????????,???????????,??????????,????????????????selectivity ??? ????????????: ??????,?????????????????????????????????,??????????????????? ????????????????????????????????????????,?????????????????????????? ?????????,???????????????,?????????? ??????????Cardinality ????,??????join Cardinality ????????? Cardinality feedback???????cursor?,?Cursor???aged out????? SELECT /*+ gather_plan_statistics */ product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id Plan hash value: 1553478007 ---------------------------------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | OMem | 1Mem | Used-Mem | ---------------------------------------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 13 |00:00:00.01 | 24 | 20 | | | | |* 1 | HASH JOIN | | 1 | 4 | 13 |00:00:00.01 | 24 | 20 | 2061K| 2061K| 429K (0)| |* 2 | TABLE ACCESS FULL| ORDER_ITEMS | 1 | 4 | 13 |00:00:00.01 | 7 | 6 | | | | | 3 | TABLE ACCESS FULL| PRODUCT_INFORMATION | 1 | 1 | 288 |00:00:00.01 | 17 | 14 | | | | ---------------------------------------------------------------------------------------------------------------------------------------- SELECT /*+ gather_plan_statistics */ product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id Plan hash value: 1553478007 ------------------------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ------------------------------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 13 |00:00:00.01 | 24 | | | | |* 1 | HASH JOIN | | 1 | 13 | 13 |00:00:00.01 | 24 | 2061K| 2061K| 413K (0)| |* 2 | TABLE ACCESS FULL| ORDER_ITEMS | 1 | 13 | 13 |00:00:00.01 | 7 | | | | | 3 | TABLE ACCESS FULL| PRODUCT_INFORMATION | 1 | 288 | 288 |00:00:00.01 | 17 | | | | ------------------------------------------------------------------------------------------------------------------------------- Note ----- - statistics feedback used for this statement SQL> select count(*) from v$SQL where SQL_ID='cz0hg2zkvd10y'; COUNT(*) ---------- 2 SQL>select sql_ID,USE_FEEDBACK_STATS FROM V$SQL_SHARED_CURSOR where USE_FEEDBACK_STATS ='Y'; SQL_ID U ------------- - cz0hg2zkvd10y Y ????????Cardinality feedback????,???????????????????????????,????????????order_items???????? ????2??????plan hash value??(??????????),?????2????child cursor??????gather_plan_statistics???actual : A-ROWS  estimate :E-ROWS????????? Automatic Re-optimization ???dynamic plan, Re-optimization???????????????  ?  ??????????????? ????????????????????????????????  ???????????,??????????????, ???????????????????? ???????????  Re-optimization??, ????????????????????? Re-optimization????dynamic plan??????????  dynamic plan????????????????????, ???????????????????? ????,??????????join order ??????????????,?????????????join order????? ??????,????????Re-optimization, ??Re-optimization ??????????????????? ?Oracle database 12c?,join statistics?????????????????????,??????????????????????Re-optimization???????????adaptive cursor sharing????? ????????????????,???????????? ????? ???????statistics collectors ????????????????????Re-optimization??????2?????????????,???????????????? ??????????????Re-optimization?????,?????????????????????? ???v$SQL??????IS_REOPTIMIZABLE?????????????????????Re-optimization,??????????Re-optimization???,?????Re-optimization ,???????reporting????? IS_REOPTIMIZABLE VARCHAR2(1) This columns shows whether the next execution matching this child cursor will trigger a reoptimization. The values are:   Y: If the next execution will trigger a reoptimization R: If the child cursor contains reoptimization information, but will not trigger reoptimization because the cursor was compiled in reporting mode N: If the child cursor has no reoptimization information ??1: select plan_table_output from table (dbms_xplan.display_cursor('gwf99gfnm0t7g',NULL,'ALLSTATS LAST')); SQL_ID  gwf99gfnm0t7g, child number 0 ------------------------------------- SELECT /*+ SFTEST gather_plan_statistics */ o.order_id, v.product_name FROM  orders o,   ( SELECT order_id, product_name FROM order_items o, product_information p     WHERE  p.product_id = o.product_id AND list_price < 50 AND min_price < 40  ) v WHERE o.order_id = v.order_id Plan hash value: 1906736282 ------------------------------------------------------------------------------------------------------------------------------------------- | Id  | Operation             | Name                | Starts | E-Rows | A-Rows |   A-Time   | Buffers | Reads  |  OMem |  1Mem | Used-Mem | ------------------------------------------------------------------------------------------------------------------------------------------- |   0 | SELECT STATEMENT      |                     |      1 |        |    269 |00:00:00.02 |    1336 |     18 |       |       |          | |   1 |  NESTED LOOPS         |                     |      1 |      1 |    269 |00:00:00.02 |    1336 |     18 |       |       |          | |   2 |   MERGE JOIN CARTESIAN|                     |      1 |      4 |   9135 |00:00:00.02 |      34 |     15 |       |       |          | |*  3 |    TABLE ACCESS FULL  | PRODUCT_INFORMATION |      1 |      1 |     87 |00:00:00.01 |      33 |     14 |       |       |          | |   4 |    BUFFER SORT        |                     |     87 |    105 |   9135 |00:00:00.01 |       1 |      1 |  4096 |  4096 | 4096  (0)| |   5 |     INDEX FULL SCAN   | ORDER_PK            |      1 |    105 |    105 |00:00:00.01 |       1 |      1 |       |       |          | |*  6 |   INDEX UNIQUE SCAN   | ORDER_ITEMS_UK      |   9135 |      1 |    269 |00:00:00.01 |    1302 |      3 |       |       |          | ------------------------------------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): ---------------------------------------------------    3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))    6 - access("O"."ORDER_ID"="ORDER_ID" AND "P"."PRODUCT_ID"="O"."PRODUCT_ID") SQL_ID  gwf99gfnm0t7g, child number 1 ------------------------------------- SELECT /*+ SFTEST gather_plan_statistics */ o.order_id, v.product_name FROM  orders o,   ( SELECT order_id, product_name FROM order_items o, product_information p     WHERE  p.product_id = o.product_id AND list_price < 50 AND min_price < 40  ) v WHERE o.order_id = v.order_id Plan hash value: 35479787 -------------------------------------------------------------------------------------------------------------------------------------------- | Id  | Operation              | Name                | Starts | E-Rows | A-Rows |   A-Time   | Buffers | Reads  |  OMem |  1Mem | Used-Mem | -------------------------------------------------------------------------------------------------------------------------------------------- |   0 | SELECT STATEMENT       |                     |      1 |        |    269 |00:00:00.01 |      63 |      3 |       |       |          | |   1 |  NESTED LOOPS          |                     |      1 |    269 |    269 |00:00:00.01 |      63 |      3 |       |       |          | |*  2 |   HASH JOIN            |                     |      1 |    313 |    269 |00:00:00.01 |      42 |      3 |  1321K|  1321K| 1234K (0)| |*  3 |    TABLE ACCESS FULL   | PRODUCT_INFORMATION |      1 |     87 |     87 |00:00:00.01 |      16 |      0 |       |       |          | |   4 |    INDEX FAST FULL SCAN| ORDER_ITEMS_UK      |      1 |    665 |    665 |00:00:00.01 |      26 |      3 |       |       |          | |*  5 |   INDEX UNIQUE SCAN    | ORDER_PK            |    269 |      1 |    269 |00:00:00.01 |      21 |      0 |       |       |          | -------------------------------------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): ---------------------------------------------------    2 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")    3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))    5 - access("O"."ORDER_ID"="ORDER_ID") Note -----    - statistics feedback used for this statement    SQL> select IS_REOPTIMIZABLE,child_number FROM V$SQL  A where A.SQL_ID='gwf99gfnm0t7g'; IS CHILD_NUMBER -- ------------ Y             0 N             1    1* select child_number,other_xml From v$SQL_PLAN  where SQL_ID='gwf99gfnm0t7g' and other_xml is not nul SQL> / CHILD_NUMBER OTHER_XML ------------ --------------------------------------------------------------------------------            1 <other_xml><info type="cardinality_feedback">yes</info><info type="db_version">1              2.1.0.1</info><info type="parse_schema"><![CDATA["OE"]]></info><info type="plan_              hash">35479787</info><info type="plan_hash_2">3382491761</info><outline_data><hi              nt><![CDATA[IGNORE_OPTIM_EMBEDDED_HINTS]]></hint><hint><![CDATA[OPTIMIZER_FEATUR              ES_ENABLE('12.1.0.1')]]></hint><hint><![CDATA[DB_VERSION('12.1.0.1')]]></hint><h              int><![CDATA[ALL_ROWS]]></hint><hint><![CDATA[OUTLINE_LEAF(@"SEL$F5BB74E1")]]></              hint><hint><![CDATA[MERGE(@"SEL$2")]]></hint><hint><![CDATA[OUTLINE(@"SEL$1")]]>              </hint><hint><![CDATA[OUTLINE(@"SEL$2")]]></hint><hint><![CDATA[FULL(@"SEL$F5BB7              4E1" "P"@"SEL$2")]]></hint><hint><![CDATA[INDEX_FFS(@"SEL$F5BB74E1" "O"@"SEL$2"              ("ORDER_ITEMS"."ORDER_ID" "ORDER_ITEMS"."PRODUCT_ID"))]]></hint><hint><![CDATA[I              NDEX(@"SEL$F5BB74E1" "O"@"SEL$1" ("ORDERS"."ORDER_ID"))]]></hint><hint><![CDATA[              LEADING(@"SEL$F5BB74E1" "P"@"SEL$2" "O"@"SEL$2" "O"@"SEL$1")]]></hint><hint><![C              DATA[USE_HASH(@"SEL$F5BB74E1" "O"@"SEL$2")]]></hint><hint><![CDATA[USE_NL(@"SEL$              F5BB74E1" "O"@"SEL$1")]]></hint></outline_data></other_xml>            0 <other_xml><info type="db_version">12.1.0.1</info><info type="parse_schema"><![C              DATA["OE"]]></info><info type="plan_hash">1906736282</info><info type="plan_hash              _2">2579473118</info><outline_data><hint><![CDATA[IGNORE_OPTIM_EMBEDDED_HINTS]]>              </hint><hint><![CDATA[OPTIMIZER_FEATURES_ENABLE('12.1.0.1')]]></hint><hint><![CD              ATA[DB_VERSION('12.1.0.1')]]></hint><hint><![CDATA[ALL_ROWS]]></hint><hint><![CD              ATA[OUTLINE_LEAF(@"SEL$F5BB74E1")]]></hint><hint><![CDATA[MERGE(@"SEL$2")]]></hi              nt><hint><![CDATA[OUTLINE(@"SEL$1")]]></hint><hint><![CDATA[OUTLINE(@"SEL$2")]]>              </hint><hint><![CDATA[FULL(@"SEL$F5BB74E1" "P"@"SEL$2")]]></hint><hint><![CDATA[              INDEX(@"SEL$F5BB74E1" "O"@"SEL$1" ("ORDERS"."ORDER_ID"))]]></hint><hint><![CDATA              [INDEX(@"SEL$F5BB74E1" "O"@"SEL$2" ("ORDER_ITEMS"."ORDER_ID" "ORDER_ITEMS"."PROD              UCT_ID"))]]></hint><hint><![CDATA[LEADING(@"SEL$F5BB74E1" "P"@"SEL$2" "O"@"SEL$1              " "O"@"SEL$2")]]></hint><hint><![CDATA[USE_MERGE_CARTESIAN(@"SEL$F5BB74E1" "O"@"              SEL$1")]]></hint><hint><![CDATA[USE_NL(@"SEL$F5BB74E1" "O"@"SEL$2")]]></hint></o              utline_data></other_xml> ??2: SELECT /*+gather_plan_statistics*/ * FROM customers WHERE cust_state_province='CA' AND country_id='US'; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID b74nw722wjvy3, child number 0 ------------------------------------- select /*+gather_plan_statistics*/ * from customers where CUST_STATE_PROVINCE='CA' and country_id='US' Plan hash value: 1683234692 -------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | -------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 17 | 14 | |* 1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 8 | 29 |00:00:00.01 | 17 | 14 | -------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US')) SELECT SQL_ID, CHILD_NUMBER, SQL_TEXT, IS_REOPTIMIZABLE FROM V$SQL WHERE SQL_TEXT LIKE 'SELECT /*+gather_plan_statistics*/%'; SQL_ID CHILD_NUMBER SQL_TEXT I ------------- ------------ ----------- - b74nw722wjvy3 0 select /*+g Y ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE; SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME, o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID AND o.OWNER IN ('SH') ORDER BY 1,2,3,4,5; DIR_ID OWNER OBJECT_NAME COL_NAME OBJECT TYPE STATE REASON ----------------------- ----- ------------- ----------- ------ ---------------- ----- ------------------------ 1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY PROVINCE MISESTIMATE 1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE SELECT /*+gather_plan_statistics*/ * FROM customers WHERE cust_state_province='CA' AND country_id='US'; ELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID b74nw722wjvy3, child number 1 ------------------------------------- select /*+gather_plan_statistics*/ * from customers where CUST_STATE_PROVINCE='CA' and country_id='US' Plan hash value: 1683234692 ----------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ----------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 17 | |* 1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 29 | 29 |00:00:00.01 | 17 | ----------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US')) Note ----- - cardinality feedback used for this statement SELECT SQL_ID, CHILD_NUMBER, SQL_TEXT, IS_REOPTIMIZABLE FROM V$SQL WHERE SQL_TEXT LIKE 'SELECT /*+gather_plan_statistics*/%'; SQL_ID CHILD_NUMBER SQL_TEXT I ------------- ------------ ----------- - b74nw722wjvy3 0 select /*+g Y ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' b74nw722wjvy3 1 select /*+g N ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' SELECT /*+gather_plan_statistics*/ CUST_EMAIL FROM CUSTOMERS WHERE CUST_STATE_PROVINCE='MA' AND COUNTRY_ID='US'; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID 3tk6hj3nkcs2u, child number 0 ------------------------------------- Select /*+gather_plan_statistics*/ cust_email From customers Where cust_state_province='MA' And country_id='US' Plan hash value: 1683234692 ------------------------------------------------------------------------------- |Id | Operation | Name | Starts|E-Rows|A-Rows| A-Time |Buffers| ------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 2 |00:00:00.01| 16 | |*1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 2| 2 |00:00:00.01| 16 | ----------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='MA' AND "COUNTRY_ID"='US')) Note ----- - dynamic sampling used for this statement (level=2) - 1 Sql Plan Directive used for this statement EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE; SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME, o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID AND o.OWNER IN ('SH') ORDER BY 1,2,3,4,5; DIR_ID OW OBJECT_NA COL_NAME OBJECT TYPE STATE REASON ------------------- -- --------- ---------- ------- --------------- ------------- ------------------------ 1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY MISESTIMATE 1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY PROVINCE MISESTIMATE 1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY MISESTIMATE

    Read the article

  • How to switch from Core Data automatic lightweight migration to manual?

    - by Jaanus
    My situation is similar to this question. I am using lightweight migration with the following code, fairly vanilla from Apple docs and other SO threads. It runs upon app startup when initializing the Core Data stack. NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys: [NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption, [NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption, nil]; NSError *error = nil; NSString *storeType = nil; if (USE_SQLITE) { // app configuration storeType = NSSQLiteStoreType; } else { storeType = NSBinaryStoreType; } persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] initWithManagedObjectModel:[self managedObjectModel]]; // the following line sometimes crashes on app startup if (![persistentStoreCoordinator addPersistentStoreWithType:storeType configuration:nil URL:[self persistentStoreURL] options:options error:&error]) { // handle the error } For some users, especially with slower devices, I have crashes confirmed by logs at the indicated line. I understand that a fix is to switch this to manual mapping and migration. What is the recipe to do that? The long way for me would be to go through all Apple docs, but I don't recall there being good examples and tutorials specifically for schema migration.

    Read the article

  • Core data migration failing with "Can't find model for source store" but managedObjectModel for source is present

    - by Ira Cooke
    I have a cocoa application using core-data, which is now at the 4th version of its managed object model. My managed object model contains abstract entities but so far I have managed to get migration working by creating appropriate mapping models and creating my persistent store using addPersistentStoreWithType:configuration:options:error and with the NSMigratePersistentStoresAutomaticallyOption set to YES. NSDictionary *optionsDictionary = [NSDictionary dictionaryWithObject:[NSNumber numberWithBool:YES] forKey:NSMigratePersistentStoresAutomaticallyOption]; NSURL *url = [NSURL fileURLWithPath: [applicationSupportFolder stringByAppendingPathComponent: @"MyApp.xml"]]; NSError *error=nil; [theCoordinator addPersistentStoreWithType:NSXMLStoreType configuration:nil URL:url options:optionsDictionary error:&error] This works fine when I migrate from model version 3 to 4, which is a migration that involves adding attributes to several entities. Now when I try to add a new model version (version 5), the call to addPersistentStoreWithType returns nil and the error remains empty. The migration from 4 to 5 involves adding a single attribute. I am struggling to debug the problem and have checked all the following; The source database is in fact at version 4 and the persistentStoreCoordinator's managed object model is at version 5. The 4-5 mapping model as well as managed object models for versions 4 and 5 are present in the resources folder of my built application. I've tried various model upgrade paths. Strangely I find that upgrading from an early version 3 - 5 works .. but upgrading from 4 - 5 fails. I've tried adding a custom entity migration policy for migration of the entity whose attributes are changing ... in this case I overrode the method beginEntityMapping:manager:error: . Interestingly this method does get called when migration works (ie when I migrate from 3 to 4, or from 3 to 5 ), but it does not get called in the case that fails ( 4 to 5 ). I'm pretty much at a loss as to where to proceed. Any ideas to help debug this problem would be much appreciated.

    Read the article

  • Bridging the Gap in Cloud, Big Data, and Real-time

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} With all the buzz of around big data and cloud computing, it is easy to overlook one of your most precious commodities—your data. Today’s businesses cannot stand still when it comes to data. Market success now depends on speed, volume, complexity, and keeping pace with the latest data integration breakthroughs. Are you up to speed with big data, cloud integration, real-time analytics? Join us in this three part blog series where we’ll look at each component in more detail. Meet us online on October 24th where we’ll take your questions about what issues you are facing in this brave new world of integration. Let’s start first with Cloud. What happens with your data when you decide to implement a private cloud architecture? Or public cloud? Data integration solutions play a vital role migrating data simply, efficiently, and reliably to the cloud; they are a necessary ingredient of any platform as a service strategy because they support cloud deployments with data-layer application integration between on-premise and cloud environments of all kinds. For private cloud architectures, consolidation of your databases and data stores is an important step to take to be able to receive the full benefits of cloud computing. Private cloud integration requires bidirectional replication between heterogeneous systems to allow you to perform data consolidation without interrupting your business operations. In addition, integrating data requires bulk load and transformation into and out of your private cloud is a crucial step for those companies moving to private cloud. In addition, the need for managing data services as part of SOA/BPM solutions that enable agile application delivery and help build shared data services for organizations. But what about public Cloud? If you have moved your data to a public cloud application, you may also need to connect your on-premise enterprise systems and the cloud environment by moving data in bulk or as real-time transactions across geographies. For public and private cloud architectures both, Oracle offers a complete and extensible set of integration options that span not only data integration but also service and process integration, security, and management. For those companies investing in Oracle Cloud, you can move your data through Oracle SOA Suite using REST APIs to Oracle Messaging Cloud Service —a new service that lets applications deployed in Oracle Cloud securely and reliably communicate over Java Messaging Service . As an example of loading and transforming data into other public clouds, Oracle Data Integrator supports a knowledge module for Salesforce.com—now available on AppExchange. Other third-party knowledge modules are being developed by customers and partners every day. To learn more about how to leverage Oracle’s Data Integration products for Cloud, join us live: Data Integration Breakthroughs Webcast on October 24th 10 AM PST.

    Read the article

  • How to Secure a Data Role by Multiple Business Units

    - by Elie Wazen
    In this post we will see how a Role can be data secured by multiple Business Units (BUs).  Separate Data Roles are generally created for each BU if a corresponding data template generates roles on the basis of the BU dimension. The advantage of creating a policy with a rule that includes multiple BUs is that while mapping these roles in HCM Role Provisioning Rules, fewer number of entires need to be made. This could facilitate maintenance for enterprises with a large number of Business Units. Note: The example below applies as well if the securing entity is Inventory Organization. Let us take for example the case of a user provisioned with the "Accounts Payable Manager - Vision Operations" Data Role in Fusion Applications. This user will be able to access Invoices in Vision Operations but will not be able to see Invoices in Vision Germany. Figure 1. A User with a Data Role restricting them to Data from BU: Vision Operations With the role granted above, this is what the user will see when they attempt to select Business Units while searching for AP Invoices. Figure 2.The List Of Values of Business Units is limited to single one. This is the effect of the Data Role granted to that user as can be seen in Figure 1 In order to create a data role that secures by multiple BUs,  we need to start by creating a condition that groups those Business Units we want to include in that data role. This is accomplished by creating a new condition against the BU View .  That Condition will later be used to create a data policy for our newly created Role.  The BU View is a Database resource and  is accessed from APM as seen in the search below Figure 3.Viewing a Database Resource in APM The next step is create a new condition,  in which we define a sql predicate that includes 2 BUs ( The ids below refer to Vision Operations and Vision Germany).  At this point we have simply created a standalone condition.  We have not used this condition yet, and security is therefore not affected. Figure 4. Custom Role that inherits the Purchase Order Overview Duty We are now ready to create our Data Policy.  in APM, we search for our newly Created Role and Navigate to “Find Global Policies”.  we query the Role we want to secure and navigate to view its global policies. Figure 5. The Job Role we plan on securing We can see that the role was not defined with a Data Policy . So will create one that uses the condition we created earlier.   Figure 6. Creating a New Data Policy In the General Information tab, we have to specify the DB Resource that the Security Policy applies to:  In our case this is the BU View Figure 7. Data Policy Definition - Selection of the DB Resource we will secure by In the Rules Tab, we  make the rule applicable to multiple values of the DB Resource we selected in the previous tab.  This is where we associate the condition we created against the BU view to this data policy by entering the Condition name in the Condition field Figure 8. Data Policy Rule The last step of Defining the Data Policy, consists of  explicitly selecting  the Actions that are goverened by this Data Policy.  In this case for example we select the Actions displayed below in the right pane. Once the record is saved , we are ready to use our newly secured Data Role. Figure 9. Data Policy Actions We can now see a new Data Policy associated with our Role.  Figure 10. Role is now secured by a Data Policy We now Assign that new Role to the User.  Of course this does not have to be done in OIM and can be done using a Provisioning Rule in HCM. Figure 11. Role assigned to the User who previously was granted the Vision Ops secured role. Once that user accesses the Invoices Workarea this is what they see: In the image below the LOV of Business Unit returns the two values defined in our data policy namely: Vision Operations and Vision Germany Figure 12. The List Of Values of Business Units now includes the two we included in our data policy. This is the effect of the data role granted to that user as can be seen in Figure 11

    Read the article

  • First Day of Data Integration Track at Oracle OpenWorld 2012

    - by Irem Radzik
    OpenWorld started full speed for us today with a great set of sessions in the Data Integration track. After the exciting keynote session on Oracle Database 12c in the morning; Brad Adelberg, VP of Development for Data Integration products, presented Oracle’s data integration product strategy. His session highlighted the new requirements for data integration to achieve pervasive and continuous access to trusted data. The new requirements and product focus areas presented in this session are: Provide access to any data at any source On premise or on cloud Enable zero downtime operations and maximum performance Leverage real-time data for accurate business insights And ensure high quality data is used across the enterprise During the session Brad walked over how Oracle’s data integration products, Oracle Data Integrator, Oracle GoldenGate, Oracle Enterprise Data Quality, and Oracle Data Service Integrator, deliver on these requirements and how recent product releases build on this strategy. Soon after Brad’s session we heard from a panel of Oracle GoldenGate customers, St. Jude Medical, Equifax, and Bank of America, how they achieved zero downtime operations using Oracle GoldenGate. The panel presented different use cases of GoldenGate, from Active-Active replication to offloading reporting. Especially St. Jude Medical’s implementation, which involves the alert management system for patients that use their pacemakers, reminded me in some cases downtime of mission-critical systems can be a matter of life or death. It is very comforting to hear that GoldenGate delivers highly-reliable continuous availability for life-saving medical systems. In the afternoon, Nick Wagner from the Product Management team and I followed the customer panel with the review of Oracle GoldenGate 11gR2’s New Features.  Many questions we received from audience were about GoldenGate’s new Integrated Capture for Oracle Database and the enhanced Conflict Management features, as well as how GoldenGate compares to Oracle Streams. In addition to giving details on GoldenGate’s unique capability to capture changed data with a direct integration to the Oracle DBMS engine, we reminded the audience that enhancements to Oracle GoldenGate will continue, while Streams will be primarily maintained. Last but not least, Tim Garrod and Ryan Fonnett from Raymond James presented a unified real-time data integration solution using Oracle Data Integrator and GoldenGate for their operational data store (ODS). The ODS supports application services across the enterprise and providing timely data is a critical requirement. In this solution, Oracle GoldenGate does the log-based change data capture for Oracle Data Integrator’s near real-time data integration between heterogeneous systems. As Raymond James’ ODS supports mission-critical services for their advisors, the project team had to set up this integration environment to be highly available. During the session, Ryan and Tim explained how they use ODI to enable automated process execution and “always-on” integration processes. Their presentation included 2 demonstrations that focused on CDC patterns deployed with ODI and the automated multi-instance execution and monitoring. We are very grateful to Tim and Ryan for their very-well prepared presentation at OpenWorld this year. Day 2 (Tuesday) will be also a busy day in our track. In addition to the Fusion Middleware Innovation Awards ceremony at 11:45am at Moscone West 3001, we have the following DI sessions Real-World Operational Reporting Customer Panel 11:45am Moscone West- 3005 Oracle Data Integrator Product Update and Future Strategy 1:15pm Moscone West- 3005 High-volume OLTP with Oracle GoldenGate: Best Practices from Comcast 1:15pm Moscone West- 3005 Everything You need to Know about Monitoring Oracle GoldenGate 5pm Moscone West-3005 If you are at OpenWorld please join us in these sessions. For a full review of data integration track at OpenWorld please see our Focus-On document.

    Read the article

  • Launching php script through comman line - keeping terminal window open after execution

    - by somethis
    Oh, my girlfriend really likes it when I launch php scripts! There's something special about them, she says ... Thus, I coded this script to run throught the CLI (Command Line Interface) - so it's running locally, not on a web server. It launches just fine through right click open run in terminal but closes right after execution. **Is there a way to keep the terminal window open? Of course I can launch it through a terminal window - which would stay open - but I'm looking for a one click action. With bash scripts I use $SHELL but that didn't work (see code below). So far, the only thing I came up with is sleep(10); which gives me 10 seconds for my girl to check the output. I'd rather close the terminal window manually, though. #!/usr/bin/php -q <?php echo "Hello World \n"; # wait before closing terminal window sleep(10); # the following line doesn't work $SHELL; ?> (PHP 5.4.6-1ubuntu1.2 (cli) (built: Mar 11 2013 14:57:54) Copyright (c) 1997-2012 The PHP Group Zend Engine v2.4.0, Copyright (c) 1998-2012 Zend Technologies )

    Read the article

  • Execution plan warnings–All that glitters is not gold

    - by Dave Ballantyne
    In a previous post, I showed you the new execution plan warnings related to implicit and explicit warnings.  Pretty much as soon as i hit ’post’,  I noticed something rather odd happening. This statement : select top(10) SalesOrderHeader.SalesOrderID, SalesOrderNumberfrom Sales.SalesOrderHeaderjoin Sales.SalesOrderDetail on SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID   Throws the “Type conversion may affect cardinality estimation” warning.     Ive done no such conversion in my statement why would that be ?  Well, SalesOrderNumber is a computed column , “(isnull(N'SO'+CONVERT([nvarchar](23),[SalesOrderID],0),N'*** ERROR ***'))”,  so thats where the conversion is.   Wait!!! Am i saying that every type conversion will throw the warning ?  Thankfully, no.  It only appears for columns that are used in predicates ,even if the predicate / join condition is fine ,  and the column is indexed ( and/or , presumably has statistics).    Hopefully , this wont lead to to many wild goose chases, but is definitely something to bear in mind.  If you want to see this fixed then upvote my connect item here.

    Read the article

< Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >