Search Results

Search found 785 results on 32 pages for 'gettype'.

Page 25/32 | < Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >

  • C# HashSet<T>

    - by Ben Griswold
    I hadn’t done much (read: anything) with the C# generic HashSet until I recently needed to produce a distinct collection.  As it turns out, HashSet<T> was the perfect tool. As the following snippet demonstrates, this collection type offers a lot: // Using HashSet<T>: // http://www.albahari.com/nutshell/ch07.aspx var letters = new HashSet<char>("the quick brown fox");   Console.WriteLine(letters.Contains('t')); // true Console.WriteLine(letters.Contains('j')); // false   foreach (char c in letters) Console.Write(c); // the quickbrownfx Console.WriteLine();   letters = new HashSet<char>("the quick brown fox"); letters.IntersectWith("aeiou"); foreach (char c in letters) Console.Write(c); // euio Console.WriteLine();   letters = new HashSet<char>("the quick brown fox"); letters.ExceptWith("aeiou"); foreach (char c in letters) Console.Write(c); // th qckbrwnfx Console.WriteLine();   letters = new HashSet<char>("the quick brown fox"); letters.SymmetricExceptWith("the lazy brown fox"); foreach (char c in letters) Console.Write(c); // quicklazy Console.WriteLine(); The MSDN documentation is a bit light on HashSet<T> documentation but if you search hard enough you can find some interesting information and benchmarks. But back to that distinct list I needed… // MSDN Add // http://msdn.microsoft.com/en-us/library/bb353005.aspx var employeeA = new Employee {Id = 1, Name = "Employee A"}; var employeeB = new Employee {Id = 2, Name = "Employee B"}; var employeeC = new Employee {Id = 3, Name = "Employee C"}; var employeeD = new Employee {Id = 4, Name = "Employee D"};   var naughty = new List<Employee> {employeeA}; var nice = new List<Employee> {employeeB, employeeC};   var employees = new HashSet<Employee>(); naughty.ForEach(x => employees.Add(x)); nice.ForEach(x => employees.Add(x));   foreach (Employee e in employees) Console.WriteLine(e); // Returns Employee A Employee B Employee C The Add Method returns true on success and, you guessed it, false if the item couldn’t be added to the collection.  I’m using the Linq ForEach syntax to add all valid items to the employees HashSet.  It works really great.  This is just a rough sample, but you may have noticed I’m using Employee, a reference type.  Most samples demonstrate the power of the HashSet with a collection of integers which is kind of cheating.  With value types you don’t have to worry about defining your own equality members.  With reference types, you do. internal class Employee {     public int Id { get; set; }     public string Name { get; set; }       public override string ToString()     {         return Name;     }          public bool Equals(Employee other)     {         if (ReferenceEquals(null, other)) return false;         if (ReferenceEquals(this, other)) return true;         return other.Id == Id;     }       public override bool Equals(object obj)     {         if (ReferenceEquals(null, obj)) return false;         if (ReferenceEquals(this, obj)) return true;         if (obj.GetType() != typeof (Employee)) return false;         return Equals((Employee) obj);     }       public override int GetHashCode()     {         return Id;     }       public static bool operator ==(Employee left, Employee right)     {         return Equals(left, right);     }       public static bool operator !=(Employee left, Employee right)     {         return !Equals(left, right);     } } Fortunately, with Resharper, it’s a snap. Click on the class name, ALT+INS and then follow with the handy dialogues. That’s it. Try out the HashSet<T>. It’s good stuff.

    Read the article

  • MVC Portable Areas Enhancement &ndash; Embedded Resource Controller

    - by Steve Michelotti
    MvcContrib contains a feature called Portable Areas which I’ve recently blogged about. In short, portable areas provide a way to distribute MVC binary components as simple .NET assemblies where the aspx/ascx files are actually compiled into the assembly as embedded resources. This is an extremely cool feature but once you start building robust portable areas, you’ll also want to be able to access other external files like css and javascript.  After my recent post suggesting portable areas be expanded to include other embedded resources, Eric Hexter asked me if I’d like to contribute the code to MvcContrib (which of course I did!). Embedded resources are stored in a case-sensitive way in .NET assemblies and the existing embedded view engine inside MvcContrib already took this into account. Obviously, we’d want the same case sensitivity handling to be taken into account for any embedded resource so my job consisted of 1) adding the Embedded Resource Controller, and 2) a little refactor to extract the logic that deals with embedded resources so that the embedded view engine and the embedded resource controller could both leverage it and, therefore, keep the code DRY. The embedded resource controller targets these scenarios: External image files that are referenced in an <img> tag External files referenced like css or JavaScript files Image files referenced inside css files Embedded Resources Walkthrough This post will describe a walkthrough of using the embedded resource controller in your portable areas to include the scenarios outlined above. I will build a trivial “Quick Links” widget to illustrate the concepts. The portable area registration is the starting point for all portable areas. The MvcContrib.PortableAreas.EmbeddedResourceController is optional functionality – you must opt-in if you want to use it.  To do this, you simply “register” it by providing a route in your area registration that uses it like this: 1: context.MapRoute("ResourceRoute", "quicklinks/resource/{resourceName}", 2: new { controller = "EmbeddedResource", action = "Index" }, 3: new string[] { "MvcContrib.PortableAreas" }); First, notice that I can specify any route I want (e.g., “quicklinks/resources/…”).  Second, notice that I need to include the “MvcContrib.PortableAreas” namespace as the fourth parameter so that the framework is able to find the EmbeddedResourceController at runtime. The handling of embedded views and embedded resources have now been merged.  Therefore, the call to: 1: RegisterTheViewsInTheEmmeddedViewEngine(GetType()); has now been removed (breaking change).  It has been replaced with: 1: RegisterAreaEmbeddedResources(); Other than that, the portable area registration remains unchanged. The solution structure for the static files in my portable area looks like this: I’ve got a css file in a folder called “Content” as well as a couple of image files in a folder called “images”. To reference these in my aspx/ascx code, all of have to do is this: 1: <link href="<%= Url.Resource("Content.QuickLinks.css") %>" rel="stylesheet" type="text/css" /> 2: <img src="<%= Url.Resource("images.globe.png") %>" /> This results in the following HTML mark up: 1: <link href="/quicklinks/resource/Content.QuickLinks.css" rel="stylesheet" type="text/css" /> 2: <img src="/quicklinks/resource/images.globe.png" /> The Url.Resource() method is now included in MvcContrib as well. Make sure you import the “MvcContrib” namespace in your views. Next, I have to following html to render the quick links: 1: <ul class="links"> 2: <li><a href="http://www.google.com">Google</a></li> 3: <li><a href="http://www.bing.com">Bing</a></li> 4: <li><a href="http://www.yahoo.com">Yahoo</a></li> 5: </ul> Notice the <ul> tag has a class called “links”. This is defined inside my QuickLinks.css file and looks like this: 1: ul.links li 2: { 3: background: url(/quicklinks/resource/images.navigation.png) left 4px no-repeat; 4: padding-left: 20px; 5: margin-bottom: 4px; 6: } On line 3 we’re able to refer to the url for the background property. As a final note, although we already have complete control over the location of the embedded resources inside the assembly, what if we also want control over the physical URL routes as well. This point was raised by John Nelson in this post. This has been taken into account as well. For example, suppose you want your physical url to look like this: 1: <img src="/quicklinks/images/globe.png" /> instead of the same corresponding URL shown above (i.e., “/quicklinks/resources/images.globe.png”). You can do this easily by specifying another route for it which includes a “resourcePath” parameter that is pre-pended. Here is the complete code for the area registration with the custom route for the images shown on lines 9-11: 1: public class QuickLinksRegistration : PortableAreaRegistration 2: { 3: public override void RegisterArea(System.Web.Mvc.AreaRegistrationContext context, IApplicationBus bus) 4: { 5: context.MapRoute("ResourceRoute", "quicklinks/resource/{resourceName}", 6: new { controller = "EmbeddedResource", action = "Index" }, 7: new string[] { "MvcContrib.PortableAreas" }); 8:   9: context.MapRoute("ResourceImageRoute", "quicklinks/images/{resourceName}", 10: new { controller = "EmbeddedResource", action = "Index", resourcePath = "images" }, 11: new string[] { "MvcContrib.PortableAreas" }); 12:   13: context.MapRoute("quicklink", "quicklinks/{controller}/{action}", 14: new {controller = "links", action = "index"}); 15:   16: this.RegisterAreaEmbeddedResources(); 17: } 18:   19: public override string AreaName 20: { 21: get 22: { 23: return "QuickLinks"; 24: } 25: } 26: } The Quick Links portable area results in the following requests (including custom route formats): The complete code for this post is now included in the Portable Areas sample solution in the latest MvcContrib source code. You can get the latest code now.  Portable Areas open up exciting new possibilities for MVC development!

    Read the article

  • C# 4.0: Dynamic Programming

    - by Paulo Morgado
    The major feature of C# 4.0 is dynamic programming. Not just dynamic typing, but dynamic in broader sense, which means talking to anything that is not statically typed to be a .NET object. Dynamic Language Runtime The Dynamic Language Runtime (DLR) is piece of technology that unifies dynamic programming on the .NET platform, the same way the Common Language Runtime (CLR) has been a common platform for statically typed languages. The CLR always had dynamic capabilities. You could always use reflection, but its main goal was never to be a dynamic programming environment and there were some features missing. The DLR is built on top of the CLR and adds those missing features to the .NET platform. The Dynamic Language Runtime is the core infrastructure that consists of: Expression Trees The same expression trees used in LINQ, now improved to support statements. Dynamic Dispatch Dispatches invocations to the appropriate binder. Call Site Caching For improved efficiency. Dynamic languages and languages with dynamic capabilities are built on top of the DLR. IronPython and IronRuby were already built on top of the DLR, and now, the support for using the DLR is being added to C# and Visual Basic. Other languages built on top of the CLR are expected to also use the DLR in the future. Underneath the DLR there are binders that talk to a variety of different technologies: .NET Binder Allows to talk to .NET objects. JavaScript Binder Allows to talk to JavaScript in SilverLight. IronPython Binder Allows to talk to IronPython. IronRuby Binder Allows to talk to IronRuby. COM Binder Allows to talk to COM. Whit all these binders it is possible to have a single programming experience to talk to all these environments that are not statically typed .NET objects. The dynamic Static Type Let’s take this traditional statically typed code: Calculator calculator = GetCalculator(); int sum = calculator.Sum(10, 20); Because the variable that receives the return value of the GetCalulator method is statically typed to be of type Calculator and, because the Calculator type has an Add method that receives two integers and returns an integer, it is possible to call that Sum method and assign its return value to a variable statically typed as integer. Now lets suppose the calculator was not a statically typed .NET class, but, instead, a COM object or some .NET code we don’t know he type of. All of the sudden it gets very painful to call the Add method: object calculator = GetCalculator(); Type calculatorType = calculator.GetType(); object res = calculatorType.InvokeMember("Add", BindingFlags.InvokeMethod, null, calculator, new object[] { 10, 20 }); int sum = Convert.ToInt32(res); And what if the calculator was a JavaScript object? ScriptObject calculator = GetCalculator(); object res = calculator.Invoke("Add", 10, 20); int sum = Convert.ToInt32(res); For each dynamic domain we have a different programming experience and that makes it very hard to unify the code. With C# 4.0 it becomes possible to write code this way: dynamic calculator = GetCalculator(); int sum = calculator.Add(10, 20); You simply declare a variable who’s static type is dynamic. dynamic is a pseudo-keyword (like var) that indicates to the compiler that operations on the calculator object will be done dynamically. The way you should look at dynamic is that it’s just like object (System.Object) with dynamic semantics associated. Anything can be assigned to a dynamic. dynamic x = 1; dynamic y = "Hello"; dynamic z = new List<int> { 1, 2, 3 }; At run-time, all object will have a type. In the above example x is of type System.Int32. When one or more operands in an operation are typed dynamic, member selection is deferred to run-time instead of compile-time. Then the run-time type is substituted in all variables and normal overload resolution is done, just like it would happen at compile-time. The result of any dynamic operation is always dynamic and, when a dynamic object is assigned to something else, a dynamic conversion will occur. Code Resolution Method double x = 1.75; double y = Math.Abs(x); compile-time double Abs(double x) dynamic x = 1.75; dynamic y = Math.Abs(x); run-time double Abs(double x) dynamic x = 2; dynamic y = Math.Abs(x); run-time int Abs(int x) The above code will always be strongly typed. The difference is that, in the first case the method resolution is done at compile-time, and the others it’s done ate run-time. IDynamicMetaObjectObject The DLR is pre-wired to know .NET objects, COM objects and so forth but any dynamic language can implement their own objects or you can implement your own objects in C# through the implementation of the IDynamicMetaObjectProvider interface. When an object implements IDynamicMetaObjectProvider, it can participate in the resolution of how method calls and property access is done. The .NET Framework already provides two implementations of IDynamicMetaObjectProvider: DynamicObject : IDynamicMetaObjectProvider The DynamicObject class enables you to define which operations can be performed on dynamic objects and how to perform those operations. For example, you can define what happens when you try to get or set an object property, call a method, or perform standard mathematical operations such as addition and multiplication. ExpandoObject : IDynamicMetaObjectProvider The ExpandoObject class enables you to add and delete members of its instances at run time and also to set and get values of these members. This class supports dynamic binding, which enables you to use standard syntax like sampleObject.sampleMember, instead of more complex syntax like sampleObject.GetAttribute("sampleMember").

    Read the article

  • Programmatically use a server as the Build Server for multiple Project Collections

    Important: With this post you create an unsupported scenario by Microsoft. It will break your support for this server with Microsoft. So handle with care. I am the administrator an a TFS environment with a lot of Project Collections. In the supported configuration of Microsoft 2010 you need one Build Controller per Project Collection, and it is not supported to have multiple Build Controllers installed. Jim Lamb created a post how you can modify your system to change this behaviour. But since I have so many Project Collections, I automated this with the API of TFS. When you install a new build server via the UI, you do the following steps Register the build service (with this you hook the windows server into the build server environment) Add a new build controller Add a new build agent So in pseudo code, the code would look like foreach (projectCollection in GetAllProjectCollections) {       CreateNewWindowsService();       RegisterService();       AddNewController();       AddNewAgent(); } The following code fragements show you the most important parts of the method implementations. Attached is the full project. CreateNewWindowsService We create a new windows service with the SC command via the Diagnostics.Process class:             var pi = new ProcessStartInfo("sc.exe")                         {                             Arguments =                                 string.Format(                                     "create \"{0}\" start= auto binpath= \"C:\\Program Files\\Microsoft Team Foundation Server 2010\\Tools\\TfsBuildServiceHost.exe              /NamedInstance:{0}\" DisplayName= \"Visual Studio Team Foundation Build Service Host ({1})\"",                                     serviceHostName, tpcName)                         };            Process.Start(pi);             pi.Arguments = string.Format("failure {0} reset= 86400 actions= restart/60000", serviceHostName);            Process.Start(pi); RegisterService The trick in this method is that we set the NamedInstance static property. This property is Internal, so we need to set it through reflection. To get information on these you need nice Microsoft friends and the .Net reflector .             // Indicate which build service host instance we are using            typeof(BuildServiceHostUtilities).Assembly.GetType("Microsoft.TeamFoundation.Build.Config.BuildServiceHostProcess").InvokeMember("NamedInstance",              System.Reflection.BindingFlags.NonPublic | System.Reflection.BindingFlags.SetProperty | System.Reflection.BindingFlags.Static, null, null, new object[] { serviceName });             // Create the build service host            serviceHost = buildServer.CreateBuildServiceHost(serviceName, endPoint);            serviceHost.Save();             // Register the build service host            BuildServiceHostUtilities.Register(serviceHost, user, password); AddNewController and AddNewAgent Once you have the BuildServerHost, the rest is pretty straightforward. There are methods on the BuildServerHost to modify the controllers and the agents                 controller = serviceHost.CreateBuildController(controllerName);                 agent = controller.ServiceHost.CreateBuildAgent(agentName, buildDirectory, controller);                controller.AddBuildAgent(agent); You have now seen the highlights of the application. If you need it and want to have sample information when you work in this area, download the app TFS2010_RegisterBuildServerToTPCs

    Read the article

  • Rendering ASP.NET MVC Razor Views outside of MVC revisited

    - by Rick Strahl
    Last year I posted a detailed article on how to render Razor Views to string both inside of ASP.NET MVC and outside of it. In that article I showed several different approaches to capture the rendering output. The first and easiest is to use an existing MVC Controller Context to render a view by simply passing the controller context which is fairly trivial and I demonstrated a simple ViewRenderer class that simplified the process down to a couple lines of code. However, if no Controller Context is available the process is not quite as straight forward and I referenced an old, much more complex example that uses my RazorHosting library, which is a custom self-contained implementation of the Razor templating engine that can be hosted completely outside of ASP.NET. While it works inside of ASP.NET, it’s an awkward solution when running inside of ASP.NET, because it requires a bit of setup to run efficiently.Well, it turns out that I missed something in the original article, namely that it is possible to create a ControllerContext, if you have a controller instance, even if MVC didn’t create that instance. Creating a Controller Instance outside of MVCThe trick to make this work is to create an MVC Controller instance – any Controller instance – and then configure a ControllerContext through that instance. As long as an HttpContext.Current is available it’s possible to create a fully functional controller context as Razor can get all the necessary context information from the HttpContextWrapper().The key to make this work is the following method:/// <summary> /// Creates an instance of an MVC controller from scratch /// when no existing ControllerContext is present /// </summary> /// <typeparam name="T">Type of the controller to create</typeparam> /// <returns>Controller Context for T</returns> /// <exception cref="InvalidOperationException">thrown if HttpContext not available</exception> public static T CreateController<T>(RouteData routeData = null) where T : Controller, new() { // create a disconnected controller instance T controller = new T(); // get context wrapper from HttpContext if available HttpContextBase wrapper = null; if (HttpContext.Current != null) wrapper = new HttpContextWrapper(System.Web.HttpContext.Current); else throw new InvalidOperationException( "Can't create Controller Context if no active HttpContext instance is available."); if (routeData == null) routeData = new RouteData(); // add the controller routing if not existing if (!routeData.Values.ContainsKey("controller") && !routeData.Values.ContainsKey("Controller")) routeData.Values.Add("controller", controller.GetType().Name .ToLower() .Replace("controller", "")); controller.ControllerContext = new ControllerContext(wrapper, routeData, controller); return controller; }This method creates an instance of a Controller class from an existing HttpContext which means this code should work from anywhere within ASP.NET to create a controller instance that’s ready to be rendered. This means you can use this from within an Application_Error handler as I needed to or even from within a WebAPI controller as long as it’s running inside of ASP.NET (ie. not self-hosted). Nice.So using the ViewRenderer class from the previous article I can now very easily render an MVC view outside of the context of MVC. Here’s what I ended up in my Application’s custom error HttpModule: protected override void OnDisplayError(WebErrorHandler errorHandler, ErrorViewModel model) { var Response = HttpContext.Current.Response; Response.ContentType = "text/html"; Response.StatusCode = errorHandler.OriginalHttpStatusCode; var context = ViewRenderer.CreateController<ErrorController>().ControllerContext; var renderer = new ViewRenderer(context); string html = renderer.RenderView("~/Views/Shared/GenericError.cshtml", model); Response.Write(html); }That’s pretty sweet, because it’s now possible to use ViewRenderer just about anywhere in any ASP.NET application, not only inside of controller code. This also allows the constructor for the ViewRenderer from the last article to work without a controller context parameter, using a generic view as a base for the controller context when not passed:public ViewRenderer(ControllerContext controllerContext = null) { // Create a known controller from HttpContext if no context is passed if (controllerContext == null) { if (HttpContext.Current != null) controllerContext = CreateController<ErrorController>().ControllerContext; else throw new InvalidOperationException( "ViewRenderer must run in the context of an ASP.NET " + "Application and requires HttpContext.Current to be present."); } Context = controllerContext; }In this case I use the ErrorController class which is a generic controller instance that exists in the same assembly as my ViewRenderer class and that works just fine since ‘generically’ rendered views tend to not rely on anything from the controller other than the model which is explicitly passed.While these days most of my apps use MVC I do still have a number of generic pieces in most of these applications where Razor comes in handy. This includes modules like the above, which when they error often need to display error output. In other cases I need to generate string template output for emailing or logging data to disk. Being able to render simply render an arbitrary View to and pass in a model makes this super nice and easy at least within the context of an ASP.NET application!You can check out the updated ViewRenderer class below to render your ‘generic views’ from anywhere within your ASP.NET applications. Hope some of you find this useful.ResourcesViewRenderer Class in Westwind.Web.Mvc Library (Github)Original ViewRenderer ArticleRazor Hosting Library (GitHub)Original Razor Hosting Article© Rick Strahl, West Wind Technologies, 2005-2013Posted in ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • UserAppDataPath in WPF

    - by psheriff
    In Windows Forms applications you were able to get to your user's roaming profile directory very easily using the Application.UserAppDataPath property. This folder allows you to store information for your program in a custom folder specifically for your program. The format of this directory looks like this: C:\Users\YOUR NAME\AppData\Roaming\COMPANY NAME\APPLICATION NAME\APPLICATION VERSION For example, on my Windows 7 64-bit system, this folder would look like this for a Windows Forms Application: C:\Users\PSheriff\AppData\Roaming\PDSA, Inc.\WindowsFormsApplication1\1.0.0.0 For some reason Microsoft did not expose this property from the Application object of WPF applications. I guess they think that we don't need this property in WPF? Well, sometimes we still do need to get at this folder. You have two choices on how to retrieve this property. Add a reference to the System.Windows.Forms.dll to your WPF application and use this property directly. Or, you can write your own method to build the same path. If you add a reference to the System.Windows.Forms.dll you will need to use System.Windows.Forms.Application.UserAppDataPath to access this property. Create a GetUserAppDataPath Method in WPF If you want to build this path you can do so with just a few method calls in WPF using Reflection. The code below shows this fairly simple method to retrieve the same folder as shown above. C#using System.Reflection; public string GetUserAppDataPath(){  string path = string.Empty;  Assembly assm;  Type at;  object[] r;   // Get the .EXE assembly  assm = Assembly.GetEntryAssembly();  // Get a 'Type' of the AssemblyCompanyAttribute  at = typeof(AssemblyCompanyAttribute);  // Get a collection of custom attributes from the .EXE assembly  r = assm.GetCustomAttributes(at, false);  // Get the Company Attribute  AssemblyCompanyAttribute ct =                 ((AssemblyCompanyAttribute)(r[0]));  // Build the User App Data Path  path = Environment.GetFolderPath(              Environment.SpecialFolder.ApplicationData);  path += @"\" + ct.Company;  path += @"\" + assm.GetName().Version.ToString();   return path;} Visual BasicPublic Function GetUserAppDataPath() As String  Dim path As String = String.Empty  Dim assm As Assembly  Dim at As Type  Dim r As Object()   ' Get the .EXE assembly  assm = Assembly.GetEntryAssembly()  ' Get a 'Type' of the AssemblyCompanyAttribute  at = GetType(AssemblyCompanyAttribute)  ' Get a collection of custom attributes from the .EXE assembly  r = assm.GetCustomAttributes(at, False)  ' Get the Company Attribute  Dim ct As AssemblyCompanyAttribute = _                 DirectCast(r(0), AssemblyCompanyAttribute)  ' Build the User App Data Path  path = Environment.GetFolderPath( _                 Environment.SpecialFolder.ApplicationData)  path &= "\" & ct.Company  path &= "\" & assm.GetName().Version.ToString()   Return pathEnd Function Summary Getting the User Application Data Path folder in WPF is fairly simple with just a few method calls using Reflection. Of course, there is absolutely no reason you cannot just add a reference to the System.Windows.Forms.dll to your WPF application and use that Application object. After all, System.Windows.Forms.dll is a part of the .NET Framework and can be used from WPF with no issues at all. NOTE: Visit http://www.pdsa.com/downloads to get more tips and tricks like this one. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **We frequently offer a FREE gift for readers of my blog. Visit http://www.pdsa.com/Event/Blog for your FREE gift!

    Read the article

  • Implementing an Interceptor Using NHibernate’s Built In Dynamic Proxy Generator

    - by Ricardo Peres
    NHibernate 3.2 came with an included proxy generator, which means there is no longer the need – or the possibility, for that matter – to choose Castle DynamicProxy, LinFu or Spring. This is actually a good thing, because it means one less assembly to deploy. Apparently, this generator was based, at least partially, on LinFu. As there are not many tutorials out there demonstrating it’s usage, here’s one, for demonstrating one of the most requested features: implementing INotifyPropertyChanged. This interceptor, of course, will still feature all of NHibernate’s functionalities that you are used to, such as lazy loading, and such. We will start by implementing an NHibernate interceptor, by inheriting from the base class NHibernate.EmptyInterceptor. This class does not do anything by itself, but it allows us to plug in behavior by overriding some of its methods, in this case, Instantiate: 1: public class NotifyPropertyChangedInterceptor : EmptyInterceptor 2: { 3: private ISession session = null; 4:  5: private static readonly ProxyFactory factory = new ProxyFactory(); 6:  7: public override void SetSession(ISession session) 8: { 9: this.session = session; 10: base.SetSession(session); 11: } 12:  13: public override Object Instantiate(String clazz, EntityMode entityMode, Object id) 14: { 15: Type entityType = Type.GetType(clazz); 16: IProxy proxy = factory.CreateProxy(entityType, new _NotifyPropertyChangedInterceptor(), typeof(INotifyPropertyChanged)) as IProxy; 17: 18: _NotifyPropertyChangedInterceptor interceptor = proxy.Interceptor as _NotifyPropertyChangedInterceptor; 19: interceptor.Proxy = this.session.SessionFactory.GetClassMetadata(entityType).Instantiate(id, entityMode); 20:  21: this.session.SessionFactory.GetClassMetadata(entityType).SetIdentifier(proxy, id, entityMode); 22:  23: return (proxy); 24: } 25: } Then we need a class that implements the NHibernate dynamic proxy behavior, let’s place it inside our interceptor, because it will only need to be used there: 1: class _NotifyPropertyChangedInterceptor : NHibernate.Proxy.DynamicProxy.IInterceptor 2: { 3: private PropertyChangedEventHandler changed = delegate { }; 4:  5: public Object Proxy 6: { 7: get; 8: set;} 9:  10: #region IInterceptor Members 11:  12: public Object Intercept(InvocationInfo info) 13: { 14: Boolean isSetter = info.TargetMethod.Name.StartsWith("set_") == true; 15: Object result = null; 16:  17: if (info.TargetMethod.Name == "add_PropertyChanged") 18: { 19: PropertyChangedEventHandler propertyChangedEventHandler = info.Arguments[0] as PropertyChangedEventHandler; 20: this.changed += propertyChangedEventHandler; 21: } 22: else if (info.TargetMethod.Name == "remove_PropertyChanged") 23: { 24: PropertyChangedEventHandler propertyChangedEventHandler = info.Arguments[0] as PropertyChangedEventHandler; 25: this.changed -= propertyChangedEventHandler; 26: } 27: else 28: { 29: result = info.TargetMethod.Invoke(this.Proxy, info.Arguments); 30: } 31:  32: if (isSetter == true) 33: { 34: String propertyName = info.TargetMethod.Name.Substring("set_".Length); 35: this.changed(this.Proxy, new PropertyChangedEventArgs(propertyName)); 36: } 37:  38: return (result); 39: } 40:  41: #endregion 42: } What this does for every interceptable method (those who are either virtual or from the INotifyPropertyChanged) is: For methods that came from the INotifyPropertyChanged interface, add_PropertyChanged and remove_PropertyChanged (yes, events are methods ), we add an implementation that adds or removes the event handlers to the delegate which we declared as changed; For all the others, we direct them to the place where they are actually implemented, which is the Proxy field; If the call is setting a property, it fires afterwards the PropertyChanged event. In order to use this, we need to add the interceptor to the Configuration before building the ISessionFactory: 1: using (ISessionFactory factory = cfg.SetInterceptor(new NotifyPropertyChangedInterceptor()).BuildSessionFactory()) 2: { 3: using (ISession session = factory.OpenSession()) 4: using (ITransaction tx = session.BeginTransaction()) 5: { 6: Customer customer = session.Get<Customer>(100); //some id 7: INotifyPropertyChanged inpc = customer as INotifyPropertyChanged; 8: inpc.PropertyChanged += delegate(Object sender, PropertyChangedEventArgs e) 9: { 10: //fired when a property changes 11: }; 12: customer.Address = "some other address"; //will raise PropertyChanged 13: customer.RecentOrders.ToList(); //will trigger the lazy loading 14: } 15: } Any problems, questions, do drop me a line!

    Read the article

  • Simple Preferred time control using silverlight 3.

    - by mohanbrij
    Here I am going to show you a simple preferred time control, where you can select the day of the week and the time of the day. This can be used in lots of place where you may need to display the users preferred times. Sample screenshot is attached below. This control is developed using Silverlight 3 and VS2008, I am also attaching the source code with this post. This is a very basic example. You can download and customize if further for your requirement if you want. I am trying to explain in few words how this control works and what are the different ways in which you can customize it further. File: PreferredTimeControl.xaml, in this file I have just hardcoded the controls and their positions which you can see in the screenshot above. In this example, to change the start day of the week and time, you will have to go and change the design in XAML file, its not controlled by your properties or implementation classes. You can also customize it to change the start day of the week, Language, Display format, styles, etc, etc. File: PreferredTimeControl.xaml.cs, In this control using the code below, first I am taking all the checkbox from my form and store it in the Global Variable, which I can use across my page. List<CheckBox> checkBoxList; #region Constructor public PreferredTimeControl() { InitializeComponent(); GetCheckboxes();//Keep all the checkbox in List in the Load itself } #endregion #region Helper Methods private List<CheckBox> GetCheckboxes() { //Get all the CheckBoxes in the Form checkBoxList = new List<CheckBox>(); foreach (UIElement element in LayoutRoot.Children) { if (element.GetType().ToString() == "System.Windows.Controls.CheckBox") { checkBoxList.Add(element as CheckBox); } } return checkBoxList; } Then I am exposing the two methods which you can use in the container form to get and set the values in this controls. /// <summary> /// Set the Availability on the Form, with the Provided Timings /// </summary> /// <param name="selectedTimings">Provided timings comes from the DB in the form 11,12,13....37 /// Where 11 refers to Monday Morning, 12 Tuesday Morning, etc /// Here 1, 2, 3 is for Morning, Afternoon and Evening respectively, and for weekdays /// 1,2,3,4,5,6,7 where 1 is for Monday, Tuesday, Wednesday, Thrusday, Friday, Saturday and Sunday respectively /// So if we want Monday Morning, we can can denote it as 11, similarly for Saturday Evening we can write 36, etc /// </param> public void SetAvailibility(string selectedTimings) { foreach (CheckBox chk in checkBoxList) { chk.IsChecked = false; } if (!String.IsNullOrEmpty(selectedTimings)) { string[] selectedString = selectedTimings.Split(','); foreach (string selected in selectedString) { foreach (CheckBox chk in checkBoxList) { if (chk.Tag.ToString() == selected) { chk.IsChecked = true; } } } } } /// <summary> /// Gets the Availibility from the selected checkboxes /// </summary> /// <returns>String in the format of 11,12,13...41,42...31,32...37</returns> public string GetAvailibility() { string selectedText = string.Empty; foreach (CheckBox chk in GetCheckboxes()) { if (chk.IsChecked == true) { selectedText = chk.Tag.ToString() + "," + selectedText; } } return selectedText; }   In my example I am using the matrix format for Day and Time, for example Monday=1, Tuesday=2, Wednesday=3, Thursday = 4, Friday = 5, Saturday = 6, Sunday=7. And Morning = 1, Afternoon =2, Evening = 3. So if I want to represent Morning-Monday I will have to represent it as 11, Afternoon-Tuesday as 22, Morning-Wednesday as 13, etc. And in the other way to set the values in the control I am passing the values in the control in the same format as preferredTimeControl.SetAvailibility("11,12,13,16,23,22"); So this will set the checkbox value for Morning-Monday, Morning-Tuesday, Morning-Wednesday, Morning-Saturday, Afternoon of Tuesday and Afternoon of Wednesday. To implement this control, first I have to import this control in xmlns namespace as xmlns:controls="clr-namespace:PreferredTimeControlApp" and finally put in your page wherever you want, <Grid x:Name="LayoutRoot" Style="{StaticResource LayoutRootGridStyle}"> <Border x:Name="ContentBorder" Style="{StaticResource ContentBorderStyle}"> <controls:PreferredTimeControl x:Name="preferredTimeControl"></controls:PreferredTimeControl> </Border> </Grid> And in the code behind you can just include this code: private void InitializeControl() { preferredTimeControl.SetAvailibility("11,12,13,16,23,22"); } And you are ready to go. For more details you can refer to my code attached. I know there can be even simpler and better way to do this. Let me know if any other ideas. Sorry, Guys Still I have used Silverlight 3 and VS2008, as from the system I am uploading this is still not upgraded, but still you can use the same code with Silverlight 4 and VS2010 without any changes. May be just it will ask you to upgrade your project which will take care of rest. Download Source Code.   Thanks ~Brij

    Read the article

  • Yet another blog about IValueConverter

    - by codingbloke
    After my previous blog on a Generic Boolean Value Converter I thought I might as well blog up another IValueConverter implementation that I use. The Generic Boolean Value Converter effectively converters an input which only has two possible values to one of two corresponding objects.  The next logical step would be to create a similar converter that can take an input which has multiple (but finite and discrete) values to one of multiple corresponding objects.  To put it more simply a Generic Enum Value Converter. Now we already have a tool that can help us in this area, the ResourceDictionary.  A simple IValueConverter implementation around it would create a StringToObjectConverter like so:- StringToObjectConverter using System; using System.Windows; using System.Windows.Data; using System.Linq; using System.Windows.Markup; namespace SilverlightApplication1 {     [ContentProperty("Items")]     public class StringToObjectConverter : IValueConverter     {         public ResourceDictionary Items { get; set; }         public string DefaultKey { get; set; }                  public StringToObjectConverter()         {             DefaultKey = "__default__";         }         public virtual object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             if (value != null && Items.Contains(value.ToString()))                 return Items[value.ToString()];             else                 return Items[DefaultKey];         }         public virtual object ConvertBack(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             return Items.FirstOrDefault(kvp => value.Equals(kvp.Value)).Key;         }     } } There are some things to note here.  The bulk of managing the relationship between an object instance and the related string key is handled by the Items property being an ResourceDictionary.  Also there is a catch all “__default__” key value which allows for only a subset of the possible input values to mapped to an object with the rest falling through to the default. We can then set one of these up in Xaml:-             <local:StringToObjectConverter x:Key="StatusToBrush">                 <ResourceDictionary>                     <SolidColorBrush Color="Red" x:Key="Overdue" />                     <SolidColorBrush Color="Orange" x:Key="Urgent" />                     <SolidColorBrush Color="Silver" x:Key="__default__" />                 </ResourceDictionary>             </local:StringToObjectConverter> You could well imagine that in the model being bound these key names would actually be members of an enum.  This still works due to the use of ToString in the Convert method.  Hence the only requirement for the incoming object is that it has a ToString implementation which generates a sensible string instead of simply the type name. I can’t imagine right now a scenario where this converter would be used in a TwoWay binding but there is no reason why it can’t.  I prefer to avoid leaving the ConvertBack throwing an exception if that can be be avoided.  Hence it just enumerates the KeyValuePair entries to find a value that matches and returns the key its mapped to. Ah but now my sense of balance is assaulted again.  Whilst StringToObjectConverter is quite happy to accept an enum type via the Convert method it returns a string from the ConvertBack method not the original input enum type that arrived in the Convert.  Now I could address this by complicating the ConvertBack method and examining the targetType parameter etc.  However I prefer to a different approach, deriving a new EnumToObjectConverter class instead. EnumToObjectConverter using System; namespace SilverlightApplication1 {     public class EnumToObjectConverter : StringToObjectConverter     {         public override object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             string key = Enum.GetName(value.GetType(), value);             return base.Convert(key, targetType, parameter, culture);         }         public override object ConvertBack(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             string key = (string)base.ConvertBack(value, typeof(String), parameter, culture);             return Enum.Parse(targetType, key, false);         }     } }   This is a more belts and braces solution with specific use of Enum.GetName and Enum.Parse.  Whilst its more explicit in that the a developer has to  choose to use it, it is only really necessary when using TwoWay binding, in OneWay binding the base StringToObjectConverter would serve just as well. The observant might note that there is actually no “Generic” aspect to this solution in the end.  The use of a ResourceDictionary eliminates the need for that.

    Read the article

  • ASP.NET Web Forms Extensibility: Handler Factories

    - by Ricardo Peres
    An handler factory is the class that implements IHttpHandlerFactory and is responsible for instantiating an handler (IHttpHandler) that will process the current request. This is true for all kinds of web requests, whether they are for ASPX pages, ASMX/SVC web services, ASHX/AXD handlers, or any other kind of file. Also used for restricting access for certain file types, such as Config, Csproj, etc. Handler factories are registered on the global Web.config file, normally located at %WINDIR%\Microsoft.NET\Framework<x64>\vXXXX\Config for a given path and request type (GET, POST, HEAD, etc). This goes on section <httpHandlers>. You would create a custom handler factory for a number of reasons, let me list just two: A centralized place for using dependency injection; Also a centralized place for invoking custom methods or performing some kind of validation on all pages. Let’s see an example using Unity for injecting dependencies into a page, suppose we have this on Global.asax.cs: 1: public class Global : HttpApplication 2: { 3: internal static readonly IUnityContainer Unity = new UnityContainer(); 4: 5: void Application_Start(Object sender, EventArgs e) 6: { 7: Unity.RegisterType<IFunctionality, ConcreteFunctionality>(); 8: } 9: } We instantiate Unity and register a concrete implementation for an interface, this could/should probably go in the Web.config file. Forget about its actual definition, it’s not important. Then, we create a custom handler factory: 1: public class UnityPageHandlerFactory : PageHandlerFactory 2: { 3: public override IHttpHandler GetHandler(HttpContext context, String requestType, String virtualPath, String path) 4: { 5: IHttpHandler handler = base.GetHandler(context, requestType, virtualPath, path); 6: 7: //one scenario: inject dependencies 8: Global.Unity.BuildUp(handler.GetType(), handler, String.Empty); 9:  10: return (handler); 11: } 12: } It inherits from PageHandlerFactory, which is .NET’s included factory for building regular ASPX pages. We override the GetHandler method and issue a call to the BuildUp method, which will inject required dependencies, if any exist. An example page with dependencies might be: 1: public class SomePage : Page 2: { 3: [Dependency] 4: public IFunctionality Functionality 5: { 6: get; 7: set; 8: } 9: } Notice the DependencyAttribute, it is used by Unity to identify properties that require dependency injection. When BuildUp is called, the Functionality property (or any other properties with the DependencyAttribute attribute) will receive the concrete implementation associated with it’s type, as registered on Unity. Another example, checking a page for authorization. Let’s define an interface first: 1: public interface IRestricted 2: { 3: Boolean Check(HttpContext ctx); 4: } An a page implementing that interface: 1: public class RestrictedPage : Page, IRestricted 2: { 3: public Boolean Check(HttpContext ctx) 4: { 5: //check the context and return a value 6: return ...; 7: } 8: } For this, we would use an handler factory such as this: 1: public class RestrictedPageHandlerFactory : PageHandlerFactory 2: { 3: private static readonly IHttpHandler forbidden = new UnauthorizedHandler(); 4:  5: public override IHttpHandler GetHandler(HttpContext context, String requestType, String virtualPath, String path) 6: { 7: IHttpHandler handler = base.GetHandler(context, requestType, virtualPath, path); 8: 9: if (handler is IRestricted) 10: { 11: if ((handler as IRestricted).Check(context) == false) 12: { 13: return (forbidden); 14: } 15: } 16:  17: return (handler); 18: } 19: } 20:  21: public class UnauthorizedHandler : IHttpHandler 22: { 23: #region IHttpHandler Members 24:  25: public Boolean IsReusable 26: { 27: get { return (true); } 28: } 29:  30: public void ProcessRequest(HttpContext context) 31: { 32: context.Response.StatusCode = (Int32) HttpStatusCode.Unauthorized; 33: context.Response.ContentType = "text/plain"; 34: context.Response.Write(context.Response.Status); 35: context.Response.Flush(); 36: context.Response.Close(); 37: context.ApplicationInstance.CompleteRequest(); 38: } 39:  40: #endregion 41: } The UnauthorizedHandler is an example of an IHttpHandler that merely returns an error code to the client, but does not cause redirection to the login page, it is included merely as an example. One thing we must keep in mind is, there can be only one handler factory registered for a given path/request type (verb) tuple. A typical registration would be: 1: <httpHandlers> 2: <remove path="*.aspx" verb="*"/> 3: <add path="*.aspx" verb="*" type="MyNamespace.MyHandlerFactory, MyAssembly"/> 4: </httpHandlers> First we remove the previous registration for ASPX files, and then we register our own. And that’s it. A very useful mechanism which I use lots of times.

    Read the article

  • TFS API Add Favorites programmatically

    - by Tarun Arora
    01 – What are we trying to achieve? In this blog post I’ll be showing you how to add work item queries as favorites, it is also possible to use the same technique to add build definition as favorites. Once a shared query or build definition has been added as favorite it will show up on the team web access.  In this blog post I’ll be showing you a work around in the absence of a proper API how you can add queries to team favorites. 02 – Disclaimer There is no official API for adding favorites programmatically. In the work around below I am using the Identity service to store this data in a property bag which is used during display of favorites on the team web site. This uses an internal data structure that could change over time, there is no guarantee about the key names or content of the values. What is shown below is a workaround for a missing API. 03 – Concept There is no direct API support for favorites, but you could work around it using the identity service in TFS.  Favorites are stored in the property bag associated with the TeamFoundationIdentity (either the ‘team’ identity or the users identity depending on if these are ‘team’ or ‘my’ favorites).  The data is stored as json in the property bag of the identity, the key being prefixed by ‘Microsoft.TeamFoundation.Framework.Server.IdentityFavorites’. References - Microsoft.TeamFoundation.WorkItemTracking.Client - using Microsoft.TeamFoundation.Client; - using Microsoft.TeamFoundation.Framework.Client; - using Microsoft.TeamFoundation.Framework.Common; - using Microsoft.TeamFoundation.ProcessConfiguration.Client; - using Microsoft.TeamFoundation.Server; - using Microsoft.TeamFoundation.WorkItemTracking.Client; Services - IIdentityManagementService2 - TfsTeamService - WorkItemStore 04 – Solution Lets start by connecting to TFS programmatically // Create an instance of the services to be used during the program private static TfsTeamProjectCollection _tfs; private static ProjectInfo _selectedTeamProject; private static WorkItemStore _wis; private static TfsTeamService _tts; private static TeamSettingsConfigurationService _teamConfig; private static IIdentityManagementService2 _ids; // Connect to TFS programmatically public static bool ConnectToTfs() { var isSelected = false; var tfsPp = new TeamProjectPicker(TeamProjectPickerMode.SingleProject, false); tfsPp.ShowDialog(); _tfs = tfsPp.SelectedTeamProjectCollection; if (tfsPp.SelectedProjects.Any()) { _selectedTeamProject = tfsPp.SelectedProjects[0]; isSelected = true; } return isSelected; } Lets get all the work item queries from the selected team project static readonly Dictionary<string, string> QueryAndGuid = new Dictionary<string, string>(); // Get all queries and query guid in the selected team project private static void GetQueryGuidList(IEnumerable<QueryItem> query) { foreach (QueryItem subQuery in query) { if (subQuery.GetType() == typeof(QueryFolder)) GetQueryGuidList((QueryFolder)subQuery); else { QueryAndGuid.Add(subQuery.Name, subQuery.Id.ToString()); } } }   Pass the name of a valid Team in your team project and a name of a valid query in your team project. The team details will be extracted using the team name and query GUID will be extracted using the query name. These details will be used to construct the key and value that will be passed to the SetProperty method in the Identity service.           Key           “Microsoft.TeamFoundation.Framework.Server.IdentityFavorites..<TeamProjectURI>.<TeamId>.WorkItemTracking.Queries.<newGuid1>”           Value           "{"data":"<QueryGuid>","id":"<NewGuid1>","name":"<QueryKey>","type":"Microsoft.TeamFoundation.WorkItemTracking.QueryItem”}"           // Configure a Work Item Query for the given team private static void ConfigureTeamFavorites(string teamName, string queryName) { _ids = _tfs.GetService<IIdentityManagementService2>(); var g = Guid.NewGuid(); var guid = string.Empty; var teamDetail = _tts.QueryTeams(_selectedTeamProject.Uri).FirstOrDefault(t => t.Name == teamName); foreach (var q in QueryAndGuid.Where(q => q.Key == queryName)) { guid = q.Value; } if(guid == string.Empty) { Console.WriteLine("Query '{0}' - Not found!", queryName); return; } var key = string.Format( "Microsoft.TeamFoundation.Framework.Server.IdentityFavorites..{0}.{1}.WorkItemTracking.Queries{2}", new Uri(_selectedTeamProject.Uri).Segments.LastOrDefault(), teamDetail.Identity.TeamFoundationId, g); var value = string.Format( @"{0}""data"":""{1}"",""id"":""{2}"",""name"":""{3}"",""type"":""Microsoft.TeamFoundation.WorkItemTracking.QueryItem""{4}", "{", guid, g, QueryAndGuid.FirstOrDefault(q => q.Value==guid).Key, "}"); teamDetail.Identity.SetProperty(IdentityPropertyScope.Local, key, value); _ids.UpdateExtendedProperties(teamDetail.Identity); Console.WriteLine("{0}Added Query '{1}' as Favorite", Environment.NewLine, queryName); }   If you have any questions or suggestions leave a comment. Enjoy!

    Read the article

  • Node Serialization in NetBeans Platform 7.0

    - by Geertjan
    Node serialization makes sense when you're not interested in the data (since that should be serialized to a database), but in the state of the application. For example, when the application restarts, you want the last selected node to automatically be selected again. That's not the kind of information you'll want to store in a database, hence node serialization is not about data serialization but about application state serialization. I've written about this topic in October 2008, here and here, but want to show how to do this again, using NetBeans Platform 7.0. Somewhere I remember reading that this can't be done anymore and that's typically the best motivation for me, i.e., to prove that it can be done after all. Anyway, in a standard POJO/Node/BeanTreeView scenario, do the following: Remove the "@ConvertAsProperties" annotation at the top of the class, which you'll find there if you used the Window Component wizard. We're not going to use property-file based serialization, but plain old java.io.Serializable  instead. In the TopComponent, assuming it is named "UserExplorerTopComponent", typically at the end of the file, add the following: @Override public Object writeReplace() { //We want to work with one selected item only //and thanks to BeanTreeView.setSelectionMode, //only one node can be selected anyway: Handle handle = NodeOp.toHandles(em.getSelectedNodes())[0]; return new ResolvableHelper(handle); } public final static class ResolvableHelper implements Serializable { private static final long serialVersionUID = 1L; public Handle selectedHandle; private ResolvableHelper(Handle selectedHandle) { this.selectedHandle = selectedHandle; } public Object readResolve() { WindowManager.getDefault().invokeWhenUIReady(new Runnable() { @Override public void run() { try { //Get the TopComponent: UserExplorerTopComponent tc = (UserExplorerTopComponent) WindowManager.getDefault().findTopComponent("UserExplorerTopComponent"); //Get the display text to search for: String selectedDisplayName = selectedHandle.getNode().getDisplayName(); //Get the root, which is the parent of the node we want: Node root = tc.getExplorerManager().getRootContext(); //Find the node, by passing in the root with the display text: Node selectedNode = NodeOp.findPath(root, new String[]{selectedDisplayName}); //Set the explorer manager's selected node: tc.getExplorerManager().setSelectedNodes(new Node[]{selectedNode}); } catch (PropertyVetoException ex) { Exceptions.printStackTrace(ex); } catch (IOException ex) { Exceptions.printStackTrace(ex); } } }); return null; } } Assuming you have a node named "UserNode" for a type named "User" containing a property named "type", add the bits in bold below to your "UserNode": public class UserNode extends AbstractNode implements Serializable { static final long serialVersionUID = 1L; public UserNode(User key) { super(Children.LEAF); setName(key.getType()); } @Override public Handle getHandle() { return new CustomHandle(this, getName()); } public class CustomHandle implements Node.Handle { static final long serialVersionUID = 1L; private AbstractNode node = null; private final String searchString; public CustomHandle(AbstractNode node, String searchString) { this.node = node; this.searchString = searchString; } @Override public Node getNode() { node.setName(searchString); return node; } } } Run the application and select one of the user nodes. Close the application. Start it up again. The user node is not automatically selected, in fact, the window does not open, and you will see this in the output: Caused: java.io.InvalidClassException: org.serialization.sample.UserNode; no valid constructor Read this article and then you'll understand the need for this class: public class BaseNode extends AbstractNode { public BaseNode() { super(Children.LEAF); } public BaseNode(Children kids) { super(kids); } public BaseNode(Children kids, Lookup lkp) { super(kids, lkp); } } Now, instead of extending AbstractNode in your UserNode, extend BaseNode. Then the first non-serializable superclass of the UserNode has an explicitly declared no-args constructor, Do the same as the above for each node in the hierarchy that needs to be serialized. If you have multiple nodes needing serialization, you can share the "CustomHandle" inner class above between all the other nodes, while all the other nodes will also need to extend BaseNode (or provide their own non-serializable super class that explicitly declares a no-args constructor). Now, when I run the application, I select a node, then I close the application, restart it, and the previously selected node is automatically selected when the application has restarted.

    Read the article

  • Generically correcting data before save with Entity Framework

    - by koevoeter
    Been working with Entity Framework (.NET 4.0) for a week now for a data migration job and needed some code that generically corrects string values in the database. You probably also have seen things like empty strings instead of NULL or non-trimmed texts ("United States       ") in "old" databases, and you don't want to apply a correcting function on every column you migrate. Here's how I've done this (extending the partial class of my ObjectContext):public partial class MyDatacontext{    partial void OnContextCreated()    {        SavingChanges += OnSavingChanges;    }     private void OnSavingChanges(object sender, EventArgs e)    {        foreach (var entity in GetPersistingEntities(sender))        {            foreach (var propertyInfo in GetStringProperties(entity))            {                var value = (string)propertyInfo.GetValue(entity, null);                 if (value == null)                {                    continue;                }                 if (value.Trim().Length == 0 && IsNullable(propertyInfo))                {                    propertyInfo.SetValue(entity, null, null);                }                else if (value != value.Trim())                {                    propertyInfo.SetValue(entity, value.Trim(), null);                }            }        }    }     private IEnumerable<object> GetPersistingEntities(object sender)    {        return ((ObjectContext)sender).ObjectStateManager            .GetObjectStateEntries(EntityState.Added | EntityState.Modified)             .Select(e => e.Entity);    }    private IEnumerable<PropertyInfo> GetStringProperties(object entity)    {        return entity.GetType().GetProperties()            .Where(pi => pi.PropertyType == typeof(string));    }    private bool IsNullable(PropertyInfo propertyInfo)    {        return ((EdmScalarPropertyAttribute)propertyInfo             .GetCustomAttributes(typeof(EdmScalarPropertyAttribute), false)            .Single()).IsNullable;    }}   Obviously you can use similar code for other generic corrections.

    Read the article

  • BizTalk 2009 - Custom Functoid Wizard

    - by StuartBrierley
    When creating BizTalk maps you may find that there are times when you need perform tasks that the standard functoids do not cover.  At other times you may find yourself reapeating a pattern of standard functoids over and over again, adding visual complexity to an otherwise simple process.  In these cases you may find it preferable to create your own custom functoids.  In the past I have created a number of custom functoids from scratch, but recently I decided to try out the Custom Functoid Wizard for BizTalk 2009. After downloading and installing the wizard you should start Visual Studio and select to create a new BizTalk Server Functoid Project. Following the splash screen you will be presented with the General Properties screen, where you can set the classname, namespace, assembly name and strong name key file. The next screen is the first set of properties for the functoid.  First of all is the fuctoid ID; this must be a value above 6000. You should also then set the name, tooltip and description of the functoid.  The name will appear in the visual studio toolbox and the tooltip on hover over in the toolbox.  The descrition will be shown when you configure the functoid inputs when using it in a map; as such it should provide a decent level of information to allow the functoid to be used. Next you must set the category, exception mesage, icon and implementation language.  The category will affect the positioning of the functoid within the toolbox and also some of the behaviours of the functoid. We must then define the parameters and connections for our new functoid.  Here you can define the names and types of your input parameters along with the minimum and maximum number of input connections.  You will also need to define the types of connections accepted and the output type of the functoid. Finally you can click finish and your custom functoid project will be created. The results of this process can be seen in the solution explorer, where you will see that a project, functoid class file and a resource file have been created for you. If you open the class file you will see that the following code has been created for you: The "base" function sets all the properties that you previsouly detailed in the custom functoid wizard.  public TestFunctoids():base()  {    int functoidID;    // This has to be a number greater than 6000    functoidID = System.Convert.ToInt32(resmgr.GetString("FunctoidId"));    this.ID = functoidID;    // Set Resource strings, bitmaps    SetupResourceAssembly(ResourceName, Assembly.GetExecutingAssembly());    SetName("FunctoidName");                     SetTooltip("FunctoidToolTip");    SetDescription("FunctoidDescription");    SetBitmap("FunctoidBitmap");    // Minimum and maximum parameters that the functoid accepts    this.SetMinParams(2);    this.SetMaxParams(2);    /// Function name that needs to be called when this Functoid is invoked.    /// Put this in GAC.    SetExternalFunctionName(GetType().Assembly.FullName,     "MyCompany.BizTalk.Functoids.TestFuntoids.TestFunctoids", "Execute");    // Category for this functoid.    this.Category = FunctoidCategory.String;    // Input and output Connection type    this.OutputConnectionType = ConnectionType.AllExceptRecord;    AddInputConnectionType(ConnectionType.AllExceptRecord);   } The "Execute" function provides a skeleton function that contains the code to be executed by your new functoid.  The inputs and outputs should match those you defined in the Custom Functoid Wizard.   public System.Int32 Execute(System.Int32 Cool)   {    ResourceManager resmgr = new ResourceManager(ResourceName, Assembly.GetExecutingAssembly());    try    {     // TODO: Implement Functoid Logic    }    catch (Exception e)    {     throw new Exception(resmgr.GetString("FunctoidException"), e);    }   } Opening the resource file you will see some of the various string values that you defined in the Custom Functoid Wizard - Name, Tooltip, Description and Exception. You can also select to look at the image resources.  This will display the embedded icon image for the functoid.  To change this right click the icon and select "Import from File". Once you have completed the skeleton code you can then look at trying out your functoid. To do this you will need to build the project, copy the compiled DLL to C:\Program Files\Microsoft BizTalk Server 2009\Developer Tools\Mapper Extensions and then refresh the toolbox in visual studio.

    Read the article

  • How do you test an ICF based connector using Connector Facade Standalone?

    - by Shashidhar Malyala
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The following code helps in writing a standalone java program to test an ICF based connector. The sample code in this example takes into account an ICF based flatfile connector. It is possible to test various operations like create, update, delete, search etc... It is also possible to set values to the connector configuration parameters, add/remove attributes and their values. public class FlatFile { private static final java.lang.String BUNDLE_NAME = "<PACKAGE_NAME>"; //Ex: org.info.icf.flatfile private static final java.lang.String BUNDLE_VERSION = "1.0.0"; private static final java.lang.String CONNECTOR_NAME = "org.info.icf.flatfile.FlatFileConnector"; // Name of connector class i.e. the class implemting the connector SPI operations public ConnectorFacade getFacade() throws IOException { ConnectorInfoManagerFactory fact = ConnectorInfoManagerFactory .getInstance(); File bundleDirectory = new File("<BUNDLE_LOCATION>"); //Ex: /usr/oracle/connector_bundles/ URL url = IOUtil.makeURL(bundleDirectory, "org.info.icf.flatfile-1.0.0.jar"); ConnectorInfoManager manager = fact.getLocalManager(url); ConnectorKey key = new ConnectorKey(BUNDLE_NAME, BUNDLE_VERSION, CONNECTOR_NAME); ConnectorInfo info = manager.findConnectorInfo(key); // From the ConnectorInfo object, create the default APIConfiguration. APIConfiguration apiConfig = info.createDefaultAPIConfiguration(); // From the default APIConfiguration, retrieve the // ConfigurationProperties. ConfigurationProperties properties = apiConfig .getConfigurationProperties(); // Print out what the properties are (not necessary) List propertyNames = properties.getPropertyNames(); for (String propName : propertyNames) { ConfigurationProperty prop = properties.getProperty(propName); System.out.println("Property Name: " + prop.getName() + "\tProperty Type: " + prop.getType()); } properties .setPropertyValue("fileLocation", "/usr/oracle/accounts.csv"); // Set all of the ConfigurationProperties needed by the connector. // properties.setPropertyValue("host", FOOBAR_HOST); // properties.setPropertyValue("adminName", FOOBAR_ADMIN); // properties.setPropertyValue("adminPassword", FOOBAR_PASSWORD); // properties.setPropertyValue("useSSL", false); // Use the ConnectorFacadeFactory's newInstance() method to get a new // connector. ConnectorFacade connFacade = ConnectorFacadeFactory.getInstance() .newInstance(apiConfig); // Make sure we have set up the Configuration properly connFacade.validate(); return connFacade; } public static void main(String[] args) throws IOException { FlatFile file = new FlatFile(); ConnectorFacade cfac = file.getFacade(); Set attrSet = new HashSet(); attrSet.add(AttributeBuilder.build(Name.NAME, "Test01")); attrSet.add(AttributeBuilder.build("FIRST_NAME", "Test_First")); attrSet.add(AttributeBuilder.build("LAST_NAME", "Test_Last")); //Create Uid uid = cfac.create(ObjectClass.ACCOUNT, attrSet, null); //Delete Uid uidP = new Uid("Test01"); cfac.delete(ObjectClass.ACCOUNT, uidP, null); } }

    Read the article

  • Using Unity – Part 4

    - by nmarun
    In this part, I’ll be discussing about constructor and property or setter injection. I’ve created a new class – Product3: 1: public class Product3 : IProduct 2: { 3: public string Name { get; set; } 4: [Dependency] 5: public IDistributor Distributor { get; set; } 6: public ILogger Logger { get; set; } 7:  8: public Product3(ILogger logger) 9: { 10: Logger = logger; 11: Name = "Product 1"; 12: } 13:  14: public string WriteProductDetails() 15: { 16: StringBuilder productDetails = new StringBuilder(); 17: productDetails.AppendFormat("{0}<br/>", Name); 18: productDetails.AppendFormat("{0}<br/>", Logger.WriteLog()); 19: productDetails.AppendFormat("{0}<br/>", Distributor.WriteDistributorDetails()); 20: return productDetails.ToString(); 21: } 22: } This version has a property of type IDistributor and takes a constructor parameter of type ILogger. The IDistributor property has a Dependency attribute (Microsoft.Practices.Unity namespace) applied to it. IDistributor and its implementation are shown below: 1: public interface IDistributor 2: { 3: string WriteDistributorDetails(); 4: } 5:  6: public class Distributor : IDistributor 7: { 8: public List<string> DistributorNames = new List<string>(); 9:  10: public Distributor() 11: { 12: DistributorNames.Add("Distributor1"); 13: DistributorNames.Add("Distributor2"); 14: DistributorNames.Add("Distributor3"); 15: DistributorNames.Add("Distributor4"); 16: } 17: public string WriteDistributorDetails() 18: { 19: StringBuilder distributors = new StringBuilder(); 20: for (int i = 0; i < DistributorNames.Count; i++) 21: { 22: distributors.AppendFormat("{0}<br/>", DistributorNames[i]); 23: } 24: return distributors.ToString(); 25: } 26: } ILogger and the FileLogger have the following definition: 1: public interface ILogger 2: { 3: string WriteLog(); 4: } 5:  6: public class FileLogger : ILogger 7: { 8: public string WriteLog() 9: { 10: return string.Format("Type: {0}", GetType()); 11: } 12: } The Unity container creates an instance of the dependent class (the Distributor class) within the scope of the target object (an instance of Product3 class that will be called by doing a Resolve<IProduct>() in the calling code) and assign this dependent object to the attributed property of the target object. To add to it, property injection is a form of optional injection of dependent objects.The dependent object instance is generated before the container returns the target object. Unlike constructor injection, you must apply the appropriate attribute in the target class to initiate property injection. Let’s see how to change the config file to make this work. The first step is to add all the type aliases: 1: <typeAlias alias="Product3" type="ProductModel.Product3, ProductModel"/> 2: <typeAlias alias="ILogger" type="ProductModel.ILogger, ProductModel"/> 3: <typeAlias alias="FileLogger" type="ProductModel.FileLogger, ProductModel"/> 4: <typeAlias alias="IDistributor" type="ProductModel.IDistributor, ProductModel"/> 5: <typeAlias alias="Distributor" type="ProductModel.Distributor, ProductModel"/> Now define mappings for these aliases: 1: <type type="ILogger" mapTo="FileLogger" /> 2: <type type="IDistributor" mapTo="Distributor" /> Next step is to define the constructor and property injection in the config file: 1: <type type="IProduct" mapTo="Product3" name="ComplexProduct"> 2: <typeConfig extensionType="Microsoft.Practices.Unity.Configuration.TypeInjectionElement, Microsoft.Practices.Unity.Configuration"> 3: <constructor> 4: <param name="logger" parameterType="ILogger" /> 5: </constructor> 6: <property name="Distributor" propertyType="IDistributor"> 7: <dependency /> 8: </property> 9: </typeConfig> 10: </type> There you see a constructor element that tells there’s a property named ‘logger’ that is of type ILogger. By default, the type of ILogger gets resolved to type FileLogger. There’s also a property named ‘Distributor’ which is of type IDistributor and which will get resolved to type Distributor. On the calling side, I’ve added a new button, whose click event does the following: 1: protected void InjectionButton_Click(object sender, EventArgs e) 2: { 3: unityContainer.RegisterType<IProduct, Product3>(); 4: IProduct product3 = unityContainer.Resolve<IProduct>(); 5: productDetailsLabel.Text = product3.WriteProductDetails(); 6: } This renders the following output: This completes the part for constructor and property injection. In the next blog, I’ll talk about Arrays and Generics. Please see the code used here.

    Read the article

  • facebook application using iframe on Facebook Developer Toolkit 3.0

    - by adveb
    hey i am trying to build facebook iframe application using the Facebook Developer Toolkit 3.01 asp.net c#. i am working by the ifrmae sample of the toolkit can be download here. www.facebooktoolkit.codeplex.com/releases/view/39727 this is my facebook application that is the same as the iframe sample. http://apps.facebook.com/alefbet/ this is my code, it has 2 pages, master page and default. this 2 pages are the same as the iframe sample. 1) this is the master page. public partial class IFrameMaster : Facebook.Web.CanvasIFrameMasterPage { public IFrameMaster() { RequireLogin = true; } } 2) this is the default.aspx public partial class Default : System.Web.UI.Page { private const string SCRIPT_BLOCK_NAME = "dynamicScript"; protected void Page_Load(object sender, EventArgs e) { if (IsPostBack) { if (Master.Api.Users.HasAppPermission(Enums.ExtendedPermissions.email)) { SendThankYouEmail(); } Response.Redirect("ThankYou.aspx"); } else { if (Master.Api.Users.HasAppPermission(Enums.ExtendedPermissions.email)) { emailPermissionPanel.Visible = false; } CreateScript(); } } private void SendThankYouEmail() { var subject = "Thank you for telling us your favorite color"; var body = "Thank you for telling us what your favorite color is. We hope you have enjoyed using this application. Encourage your friends to tell us their favorite color as well!"; this.Master.Api.Notifications.SendEmail(this.Master.Api.Session.UserId.ToString(), subject, body, string.Empty); } private void CreateScript() { var saveColorScript = @" function saveColor(color) { document.getElementById('" + colorInput.ClientID + @"').value = color; } function submitForm() { document.getElementById('" + form.ClientID + @"').submit(); } "; if (!ClientScript.IsClientScriptBlockRegistered(SCRIPT_BLOCK_NAME)) { ClientScript.RegisterClientScriptBlock(this.GetType(), SCRIPT_BLOCK_NAME, saveColorScript); } } } my directory structure is 1)the master page is in the root. 2)the default.aspx is in the root/alfbet directory. 3)i have also have the xd_receiver.htm inside root/channel directory. that inside the master page their is the folowing line: <script type="text/javascript"> FB_RequireFeatures(["XFBML"], function() { FB.Facebook.init("c81f17ee4d4ffc5113c55f8b99fdcab5", "channel/xd_receiver.htm"); }); </script> the problem is that the applicatin dosent work apps.facebook.com/alefbet/default.aspx why it dosent work ? please help me and others who also obstacle in this issue. i tryied lots of things, one of them was to display the user id. for that i put label in the default.aspx and wrote lblTest.Text = Master.Api.Users.GetInfo().uid.ToString(); and it dosent event get to this line. i know it because it keeps display in the label.text the word "label" thank you very much.

    Read the article

  • ListView not firing OnItemCommand after preventing postback

    - by nevizi
    Hi there, I have a ListView inside a FormView that, for some strange reason, doesn't fire neither the ItemInsert nor the ItemCommand event. I'm populating the ListView with a generic list. I bind the list to the ListView on the OnPreRenderComplete. <asp:ListView runat="server" ID="lvReferences" DataKeyNames="idReference" OnItemInserting="ContractReferences_Inserting" OnItemDeleting="ContractReferences_Deleting" InsertItemPosition="LastItem" OnItemCommand="ContractReferences_Command" OnItemCreated="ContractReferences_ItemDataBound"> <LayoutTemplate> <ul> <asp:PlaceHolder ID="itemPlaceholder" runat="server" /> </ul> </LayoutTemplate> <ItemTemplate> <li class="obsItem"> <a href="#"><asp:TextBox ID="valRef" runat="server" Width="5px" Enabled="false" Text='<%#Bind("idProcessRecordRef") %>' /></a> <asp:TextBox id="txtRef" runat="server" Text='<%#Bind("description") %>' /> <asp:ImageButton ID="btDelete" runat="server" CommandName="Delete" ImageUrl="~/_layouts/web.commons/Images/eliminar.png" /> </li> </ItemTemplate> <InsertItemTemplate> <li class="obsItem"> <a href="#"><asp:TextBox ID="valRef" runat="server" Width="5px" Enabled="false" /></a> <asp:TextBox id="txtRef" runat="server" /> <asp:ImageButton ID="btDetail" CausesValidation="false" OnClientClick="javascript:openPopup();return false;" runat="server" ImageUrl="~/_layouts/web.commons/Images/novo.png" /> <asp:ImageButton ID="btSaveDs" runat="server" CommmandName="Insert" CausesValidation="false" ImageUrl="~/_layouts/web.commons/Images/gravarObs.png" /> </li> </InsertItemTemplate> </asp:ListView> My ItemDataBound method is: protected void ContractReferences_ItemDataBound(object sender, ListViewItemEventArgs e) { if (!IsPostBack) { TextBox valRef = e.Item.FindControl("valRef") as TextBox; TextBox txtRef = e.Item.FindControl("txtRef") as TextBox; ScriptManager.RegisterStartupScript(this, this.GetType(), "popup", "function openPopup(){ window.open('ContractPicker.aspx?c1=" + valRef.ClientID + "&c2=" + txtRef.ClientID + "');}", true); } } So, basically, in the InsertItemTemplate I put a button that opens a LOV and populates my valRef and txtRef fields. I had to put a "return false" in order for the parent page to not postback (and I think the problem lies here...). Then, when I click in the ImageButton with the CommandName="Insert", instead of firing the ItemCommand event, it enters once again in the ItemDataBound handler. So, any ideas? Thanks!

    Read the article

  • What output and recording ports does the Java Sound API find on your computer?

    - by Dave Carpeneto
    Hi all - I'm working with the Java Sound API, and it turns out if I want to adjust recording volumes I need to model the hardware that the OS exposes to Java. Turns out there's a lot of variety in what's presented. Because of this I'm humbly asking that anyone able to help me run the following on their computer and post back the results so that I can get an idea of what's out there. A thanks in advance to anyone that can assist :-) import javax.sound.sampled.*; public class SoundAudit { public static void main(String[] args) { try { System.out.println("OS: "+System.getProperty("os.name")+" "+ System.getProperty("os.version")+"/"+ System.getProperty("os.arch")+"\nJava: "+ System.getProperty("java.version")+" ("+ System.getProperty("java.vendor")+")\n"); for (Mixer.Info thisMixerInfo : AudioSystem.getMixerInfo()) { System.out.println("Mixer: "+thisMixerInfo.getDescription()+ " ["+thisMixerInfo.getName()+"]"); Mixer thisMixer = AudioSystem.getMixer(thisMixerInfo); for (Line.Info thisLineInfo:thisMixer.getSourceLineInfo()) { if (thisLineInfo.getLineClass().getName().equals( "javax.sound.sampled.Port")) { Line thisLine = thisMixer.getLine(thisLineInfo); thisLine.open(); System.out.println(" Source Port: " +thisLineInfo.toString()); for (Control thisControl : thisLine.getControls()) { System.out.println(AnalyzeControl(thisControl));} thisLine.close();}} for (Line.Info thisLineInfo:thisMixer.getTargetLineInfo()) { if (thisLineInfo.getLineClass().getName().equals( "javax.sound.sampled.Port")) { Line thisLine = thisMixer.getLine(thisLineInfo); thisLine.open(); System.out.println(" Target Port: " +thisLineInfo.toString()); for (Control thisControl : thisLine.getControls()) { System.out.println(AnalyzeControl(thisControl));} thisLine.close();}}} } catch (Exception e) {e.printStackTrace();}} public static String AnalyzeControl(Control thisControl) { String type = thisControl.getType().toString(); if (thisControl instanceof BooleanControl) { return " Control: "+type+" (boolean)"; } if (thisControl instanceof CompoundControl) { System.out.println(" Control: "+type+ " (compound - values below)"); String toReturn = ""; for (Control children: ((CompoundControl)thisControl).getMemberControls()) { toReturn+=" "+AnalyzeControl(children)+"\n";} return toReturn.substring(0, toReturn.length()-1);} if (thisControl instanceof EnumControl) { return " Control:"+type+" (enum: "+thisControl.toString()+")";} if (thisControl instanceof FloatControl) { return " Control: "+type+" (float: from "+ ((FloatControl) thisControl).getMinimum()+" to "+ ((FloatControl) thisControl).getMaximum()+")";} return " Control: unknown type";} } All the application does is print out a line about the OS, a line about the JVM, and a few lines about the hardware found that may pertain to recording hardware. For example on my PC at work I get the following: OS: Windows XP 5.1/x86 Java: 1.6.0_07 (Sun Microsystems Inc.) Mixer: Direct Audio Device: DirectSound Playback [Primary Sound Driver] Mixer: Direct Audio Device: DirectSound Playback [SoundMAX HD Audio] Mixer: Direct Audio Device: DirectSound Capture [Primary Sound Capture Driver] Mixer: Direct Audio Device: DirectSound Capture [SoundMAX HD Audio] Mixer: Software mixer and synthesizer [Java Sound Audio Engine] Mixer: Port Mixer [Port SoundMAX HD Audio] Source Port: MICROPHONE source port Control: Microphone (compound - values below) Control: Select (boolean) Control: Microphone Boost (boolean) Control: Front panel microphone (boolean) Control: Volume (float: from 0.0 to 1.0) Source Port: LINE_IN source port Control: Line In (compound - values below) Control: Select (boolean) Control: Volume (float: from 0.0 to 1.0) Control: Balance (float: from -1.0 to 1.0)

    Read the article

  • How can I load style resources from a dynamically loaded Silverlight application (XAP)?

    - by Tom
    I've followed Tim Heuer's video for dynamically loading other XAP's (into a 'master' Silverlight application), as well as some other links to tweak the loading of resources and am stuck on the particular issue of loading style resources from within the dynamically loaded XAP (i.e. the contents of Assets\Styles.xaml). When I run the master/hosting applcation, it successfully streams the dynamic XAP and I can read the deployment info etc. and load the assembly parts. However, when I actuall try to create an instance of a form from the Dynamic XAP, it fails with Cannot find a Resource with the Name/Key LayoutRootGridStyle which is in it's Assets\Styles.xaml file (it works if I run it directly so I know it's OK). For some reason these don't show up as application resources - not sure if I've totally got the wrong end of the stick, or am just missing something? Code snippet below (apologies it's a bit messy - just trying to get it working first) ... '' # Here's the code that reads the dynamic XAP from the web server ... '' #... wCli = New WebClient AddHandler wCli.OpenReadCompleted, AddressOf OpenXAPCompleted wCli.OpenReadAsync(New Uri("MyTest.xap", UriKind.Relative)) '' #... '' #Here's the sub that's called when openread is completed '' #... Private Sub OpenXAPCompleted(ByVal sender As Object, ByVal e As System.Net.OpenReadCompletedEventArgs) Dim sManifest As String = New StreamReader(Application.GetResourceStream(New StreamResourceInfo(e.Result, Nothing), New Uri("AppManifest.xaml", UriKind.Relative)).Stream).ReadToEnd Dim deploymentRoot As XElement = XDocument.Parse(sManifest).Root Dim deploymentParts As List(Of XElement) = _ (From assemblyParts In deploymentRoot.Elements().Elements() Select assemblyParts).ToList() Dim oAssembly As Assembly = Nothing For Each xElement As XElement In deploymentParts Dim asmPart As AssemblyPart = New AssemblyPart() Dim source As String = xElement.Attribute("Source").Value Dim sInfo As StreamResourceInfo = Application.GetResourceStream(New StreamResourceInfo(e.Result, "application/binary"), New Uri(source, UriKind.Relative)) If source = "MyTest.dll" Then oAssembly = asmPart.Load(sInfo.Stream) Else asmPart.Load(sInfo.Stream) End If Next Dim t As Type() = oAssembly.GetTypes() Dim AppClass = (From parts In t Where parts.FullName.EndsWith(".App") Select parts).SingleOrDefault() Dim mykeys As Array If Not AppClass Is Nothing Then Dim a As Application = DirectCast(oAssembly.CreateInstance(AppClass.FullName), Application) For Each strKey As String In a.Resources.Keys If Not Application.Current.Resources.Contains(strKey) Then Application.Current.Resources.Add(strKey, a.Resources(strKey)) End If Next End If Dim objectType As Type = oAssembly.GetType("MyTest.MainPage") Dim ouiel = Activator.CreateInstance(objectType) Dim myData As UIElement = DirectCast(ouiel, UIElement) Me.splMain.Children.Add(myData) Me.splMain.UpdateLayout() End Sub '' #... '' # And here's the line that fails with "Cannot find a Resource with the Name/Key LayoutRootGridStyle" '' # ... System.Windows.Application.LoadComponent(Me, New System.Uri("/MyTest;component/MainPage.xaml", System.UriKind.Relative)) '' #... any thoughts?

    Read the article

  • Using Microsoft.Office.Interop to save created file with C#

    - by Eyla
    I have the this code that will create excel file and work sheet then insert same values. The problem I'm facing that I'm not able to save the file with name giving ten colse it. I used SaveAs but did not work: wb.SaveAs(@"C:\mymytest.xlsx", missing, missing, missing, missing, missing, XlSaveAsAccessMode.xlExclusive, missing, missing, missing, missing, missing); this line of code would give me this error: Microsoft Office Excel cannot access the file 'C:\A3195000'. There are several possible reasons: • The file name or path does not exist. • The file is being used by another program. • The workbook you are trying to save has the same name as a currently open workbook. please advice to solve this problem. here is my code: private void button1_Click(object sender, EventArgs e) { Microsoft.Office.Interop.Excel.Application xlApp = new Microsoft.Office.Interop.Excel.Application(); if (xlApp == null) { MessageBox.Show("EXCEL could not be started. Check that your office installation and project references are correct."); return; } xlApp.Visible = true; Workbook wb = xlApp.Workbooks.Add(XlWBATemplate.xlWBATWorksheet); Worksheet ws = (Worksheet)wb.Worksheets[1]; if (ws == null) { MessageBox.Show("Worksheet could not be created. Check that your office installation and project references are correct."); } // Select the Excel cells, in the range c1 to c7 in the worksheet. Range aRange = ws.get_Range("C1", "C7"); if (aRange == null) { MessageBox.Show("Could not get a range. Check to be sure you have the correct versions of the office DLLs."); } // Fill the cells in the C1 to C7 range of the worksheet with the number 6. Object[] args = new Object[1]; args[0] = 6; aRange.GetType().InvokeMember("Value", BindingFlags.SetProperty, null, aRange, args); // Change the cells in the C1 to C7 range of the worksheet to the number 8. aRange.Value2 = 8; // object missing = Type.Missing; // wb.SaveAs(@"C:\mymytest.xlsx", missing, missing, missing, missing, //missing, XlSaveAsAccessMode.xlExclusive, missing, missing, missing, missing, //missing); }

    Read the article

  • Handling Model Inheritance in ASP.NET MVC2 & NHibernate

    - by enth
    I've gotten myself stuck on how to handle inheritance in my model when it comes to my controllers/views. Basic Model: public class Procedure : Entity { public Procedure() { } public int Id { get; set; } public DateTime ProcedureDate { get; set; } public ProcedureType Type { get; set; } } public ProcedureA : Procedure { public double VariableA { get; set; } public int VariableB { get; set; } public int Total { get; set; } } public ProcedureB : Procedure { public int Score { get; set; } } etc... many of different procedures eventually. So, I do things like list all the procedures: public class ProcedureController : Controller { public virtual ActionResult List() { IEnumerable<Procedure> procedures = _repository.GetAll(); return View(procedures); } } but now I'm kinda stuck. Basically, from the list page, I need to link to pages where the specific subclass details can be viewed/edited and I'm not sure what the best strategy is. I thought I could add an action on the ProcedureController that would conjure up the right subclass by dynamically figuring out what repository to use and loading the subclass to pass to the view. I had to store the class in the ProcedureType object. I had to create/implement a non-generic IRepository since I can't dynamically cast to a generic one. public virtual ActionResult Details(int procedureID) { Procedure procedure = _repository.GetById(procedureID, false); string className = procedure.Type.Class; Type type = Type.GetType(className, true); Type repositoryType = typeof (IRepository<>).MakeGenericType(type); var repository = (IRepository)DependencyRegistrar.Resolve(repositoryType); Entity procedure = repository.GetById(procedureID, false); return View(procedure); } I haven't even started sorting out how the view is going to determine which partial to load to display the subclass details. I'm wondering if this is a good approach? This makes determining the URL easy. It makes reusing the Procedure display code easy. Another approach is specific controllers for each subclass. It simplifies the controller code, but also means many simple controllers for the many procedure subclasses. Can work out the shared Procedure details with a partial view. How to get to construct the URL to get to the controller/action in the first place? Time to not think about it. Hopefully someone can show me the light. Thanks in advance.

    Read the article

  • How to inherit from DataAnnotations.ValidationAttribute (it appears SecureCritical under Visual Stud

    - by codetuner
    Hi, I have an [AllowPartiallyTrustedCallers] class library containing subtypes of the System.DataAnnotations.ValidationAttribute. The library is used on contract types of WCF services. In .NET 2/3.5, this worked fine. Since .NET 4.0 however, running a client of the service in the Visual Studio debugger results in the exception "Inheritance security rules violated by type: '(my subtype of ValidationAttribute)'. Derived types must either match the security accessibility of the base type or be less accessible." (System.TypeLoadException) The error appears to occure only when all of the following conditions are met: a subclass of ValidationAttribute is in an AllowPartiallyTrustedCallers assembly reflection is used to check for the attribute the Visual Studio hosting process is enabled (checkbox on Project properties, Debug tab) So basically, in Visual Studio.NET 2010: create a new Console project, add a reference to "System.ComponentModel.DataAnnotations" 4.0.0.0, write the following code: . using System; [assembly: System.Security.AllowPartiallyTrustedCallers()] namespace TestingVaidationAttributeSecurity { public class MyValidationAttribute : System.ComponentModel.DataAnnotations.ValidationAttribute { } [MyValidation] public class FooBar { } class Program { static void Main(string[] args) { Console.WriteLine("ValidationAttribute IsCritical: {0}", typeof(System.ComponentModel.DataAnnotations.ValidationAttribute).IsSecurityCritical); FooBar fb = new FooBar(); fb.GetType().GetCustomAttributes(true); Console.WriteLine("Press enter to end."); Console.ReadLine(); } } } Press F5 and you get the exception ! Press Ctrl-F5 (start without debugging), and it all works fine without exception... The strange thing is that the ValidationAttribute will or will not be securitycritical depending on the way you run the program (F5 or Ctrl+F5). As illustrated by the Console.WriteLine in the above code. But then again, this appear to happen with other attributes (and types?) too. Now the questions... Why do I have this behaviour when inheriting from ValidationAttribute, but not when inheriting from System.Attribute ? (Using Reflector I don't find special settings on the ValidationAttribute class or it's assembly) And what can I do to solve this ? How can I keep MyValidationAttribute inheriting from ValidationAttribute in an AllowPartiallyTrustedCallers assembly without marking it SecurityCritical, still using the new .NET 4 level 2 security model and still have it work using the VS.NET debug host (or other hosts) ?? Thanks a lot! Rudi

    Read the article

  • ListView not firing OnItemCommand (nor ItemInserting) after preventing postback

    - by nevizi
    Hi there, I have a ListView inside a FormView that, for some strange reason, doesn't fire neither the ItemInsert nor the ItemCommand event. I'm populating the ListView with a generic list. I bind the list to the ListView on the OnPreRenderComplete. <asp:ListView runat="server" ID="lvReferences" DataKeyNames="idReference" OnItemInserting="ContractReferences_Inserting" OnItemDeleting="ContractReferences_Deleting" InsertItemPosition="LastItem" OnItemCommand="ContractReferences_Command" OnItemCreated="ContractReferences_ItemDataBound"> <LayoutTemplate> <ul> <asp:PlaceHolder ID="itemPlaceholder" runat="server" /> </ul> </LayoutTemplate> <ItemTemplate> <li class="obsItem"> <a href="#"><asp:TextBox ID="valRef" runat="server" Width="5px" Enabled="false" Text='<%#Bind("idProcessRecordRef") %>' /></a> <asp:TextBox id="txtRef" runat="server" Text='<%#Bind("description") %>' /> <asp:ImageButton ID="btDelete" runat="server" CommandName="Delete" ImageUrl="~/_layouts/web.commons/Images/eliminar.png" /> </li> </ItemTemplate> <InsertItemTemplate> <li class="obsItem"> <a href="#"><asp:TextBox ID="valRef" runat="server" Width="5px" Enabled="false" /></a> <asp:TextBox id="txtRef" runat="server" /> <asp:ImageButton ID="btDetail" CausesValidation="false" OnClientClick="javascript:openPopup();return false;" runat="server" ImageUrl="~/_layouts/web.commons/Images/novo.png" /> <asp:ImageButton ID="btSaveDs" runat="server" CommmandName="Insert" CausesValidation="false" ImageUrl="~/_layouts/web.commons/Images/gravarObs.png" /> </li> </InsertItemTemplate> </asp:ListView> My ItemDataBound method is: protected void ContractReferences_ItemDataBound(object sender, ListViewItemEventArgs e) { if (!IsPostBack) { TextBox valRef = e.Item.FindControl("valRef") as TextBox; TextBox txtRef = e.Item.FindControl("txtRef") as TextBox; ScriptManager.RegisterStartupScript(this, this.GetType(), "popup", "function openPopup(){ window.open('ContractPicker.aspx?c1=" + valRef.ClientID + "&c2=" + txtRef.ClientID + "');}", true); } } So, basically, in the InsertItemTemplate I put a button that opens a LOV and populates my valRef and txtRef fields. I had to put a "return false" in order for the parent page to not postback (and I think the problem lies here...). Then, when I click in the ImageButton with the CommandName="Insert", instead of firing the ItemCommand event, it enters once again in the ItemDataBound handler. So, any ideas? Thanks!

    Read the article

  • Filtering a collection based on filtering rules

    - by Mike
    I have an observable collection of Entities, with each entity having a status added, deleted, modified and cancelled. I have four buttons (toggle) when clicked should filter my collection as below: If I select the button Added, then my collection should contain entities with status added. If I select the button Deleted and Added, then my collection should contain entities with status Deleted AND entities with status Added, none of the rest. If I select the button Deleted,Added and Modified, then my collection should contain entities with status Deleted, Added AND Modified. . . so on. If I unselect one of the buttons, it should remove those entities from the collection with that status. For example if I unselect Deleted, but select Added and Modified, then my collection should contain items with Added and Modified status and NOT Deleted ones. For implementing this I have created a master collection and a filtered collection. The Filter collection gets filtered based on the selections and unselections. The following is my code: private bool _clickedAdded; public bool ClickedAdded { get { return _clickedAdded; } set { _clickedAdded = value; if(!_clickedAdded) FilterAny(typeof(Added)); } } private bool _clickedDeleted; public bool ClickedDeleted { get { return _clickedDeleted; } set { _clickedDeleted = value; if (!_clickedDeleted) FilterAny(typeof(Deleted)); } } private bool _clickedModified; public bool ClickedModified { get { return _clickedModified; } set { _clickedModified = value; if (!_clickedModified) FilterAny(typeof(Modified)); } } private void FilterAny(Type status) { Func<Entity, bool> predicate = entity => entity.Status.GetType() != status; var filteredItems = MasterEntites.Where(predicate); FilteredEntities = new ObservableCollection<Entity>(filteredItems); } This however breaks the above rules - for example if I have all selected, and then I remove Added followed by deleted then it still shows the list of Added, Modified and Cancelled. It should be just Modified and Cancelled in the filtered collection. Can you please help me in solving this issue? Also do I need 2 different list to solve this. Please note that I'm using .NET 3.5.

    Read the article

< Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >