Search Results

Search found 58341 results on 2334 pages for 'learning net'.

Page 25/2334 | < Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >

  • .NET: Interface Problem VB.net Getter Only Interface

    - by snmcdonald
    Why does an interface override a class definition and violate class encapsulation? I have included two samples below, one in C# and one in VB.net? VB.net Module Module1 Sub Main() Dim testInterface As ITest = New TestMe Console.WriteLine(testInterface.Testable) ''// Prints False testInterface.Testable = True ''// Access to Private!!! Console.WriteLine(testInterface.Testable) ''// Prints True Dim testClass As TestMe = New TestMe Console.WriteLine(testClass.Testable) ''// Prints False ''//testClass.Testable = True ''// Compile Error Console.WriteLine(testClass.Testable) ''// Prints False End Sub End Module Public Class TestMe : Implements ITest Private m_testable As Boolean = False Public Property Testable As Boolean Implements ITest.Testable Get Return m_testable End Get Private Set(ByVal value As Boolean) m_testable = value End Set End Property End Class Interface ITest Property Testable As Boolean End Interface C# using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace InterfaceCSTest { class Program { static void Main(string[] args) { ITest testInterface = new TestMe(); Console.WriteLine(testInterface.Testable); testInterface.Testable = true; Console.WriteLine(testInterface.Testable); TestMe testClass = new TestMe(); Console.WriteLine(testClass.Testable); //testClass.Testable = true; Console.WriteLine(testClass.Testable); } } class TestMe : ITest { private bool m_testable = false; public bool Testable { get { return m_testable; } private set { m_testable = value; } } } interface ITest { bool Testable { get; set; } } } More Specifically How do I implement a interface in VB.net that will allow for a private setter. For example in C# I can declare: class TestMe : ITest { private bool m_testable = false; public bool Testable { get { return m_testable; } private set //No Compile Error here! { m_testable = value; } } } interface ITest { bool Testable { get; } } However, if I declare an interface property as readonly in VB.net I cannot create a setter. If I create a VB.net interface as just a plain old property then interface declarations will violate my encapsulation. Public Class TestMe : Implements ITest Private m_testable As Boolean = False Public ReadOnly Property Testable As Boolean Implements ITest.Testable Get Return m_testable End Get Private Set(ByVal value As Boolean) ''//Compile Error m_testable = value End Set End Property End Class Interface ITest ReadOnly Property Testable As Boolean End Interface So my question is, how do I define a getter only Interface in VB.net with proper encapsulation? I figured the first example would have been the best method. However, it appears as if interface definitions overrule class definitions. So I tried to create a getter only (Readonly) property like in C# but it does not work for VB.net. Maybe this is just a limitation of the language?

    Read the article

  • Parallelism in .NET – Part 10, Cancellation in PLINQ and the Parallel class

    - by Reed
    Many routines are parallelized because they are long running processes.  When writing an algorithm that will run for a long period of time, its typically a good practice to allow that routine to be cancelled.  I previously discussed terminating a parallel loop from within, but have not demonstrated how a routine can be cancelled from the caller’s perspective.  Cancellation in PLINQ and the Task Parallel Library is handled through a new, unified cooperative cancellation model introduced with .NET 4.0. Cancellation in .NET 4 is based around a new, lightweight struct called CancellationToken.  A CancellationToken is a small, thread-safe value type which is generated via a CancellationTokenSource.  There are many goals which led to this design.  For our purposes, we will focus on a couple of specific design decisions: Cancellation is cooperative.  A calling method can request a cancellation, but it’s up to the processing routine to terminate – it is not forced. Cancellation is consistent.  A single method call requests a cancellation on every copied CancellationToken in the routine. Let’s begin by looking at how we can cancel a PLINQ query.  Supposed we wanted to provide the option to cancel our query from Part 6: double min = collection .AsParallel() .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } We would rewrite this to allow for cancellation by adding a call to ParallelEnumerable.WithCancellation as follows: var cts = new CancellationTokenSource(); // Pass cts here to a routine that could, // in parallel, request a cancellation try { double min = collection .AsParallel() .WithCancellation(cts.Token) .Min(item => item.PerformComputation()); } catch (OperationCanceledException e) { // Query was cancelled before it finished } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, if the user calls cts.Cancel() before the PLINQ query completes, the query will stop processing, and an OperationCanceledException will be raised.  Be aware, however, that cancellation will not be instantaneous.  When cts.Cancel() is called, the query will only stop after the current item.PerformComputation() elements all finish processing.  cts.Cancel() will prevent PLINQ from scheduling a new task for a new element, but will not stop items which are currently being processed.  This goes back to the first goal I mentioned – Cancellation is cooperative.  Here, we’re requesting the cancellation, but it’s up to PLINQ to terminate. If we wanted to allow cancellation to occur within our routine, we would need to change our routine to accept a CancellationToken, and modify it to handle this specific case: public void PerformComputation(CancellationToken token) { for (int i=0; i<this.iterations; ++i) { // Add a check to see if we've been canceled // If a cancel was requested, we'll throw here token.ThrowIfCancellationRequested(); // Do our processing now this.RunIteration(i); } } With this overload of PerformComputation, each internal iteration checks to see if a cancellation request was made, and will throw an OperationCanceledException at that point, instead of waiting until the method returns.  This is good, since it allows us, as developers, to plan for cancellation, and terminate our routine in a clean, safe state. This is handled by changing our PLINQ query to: try { double min = collection .AsParallel() .WithCancellation(cts.Token) .Min(item => item.PerformComputation(cts.Token)); } catch (OperationCanceledException e) { // Query was cancelled before it finished } PLINQ is very good about handling this exception, as well.  There is a very good chance that multiple items will raise this exception, since the entire purpose of PLINQ is to have multiple items be processed concurrently.  PLINQ will take all of the OperationCanceledException instances raised within these methods, and merge them into a single OperationCanceledException in the call stack.  This is done internally because we added the call to ParallelEnumerable.WithCancellation. If, however, a different exception is raised by any of the elements, the OperationCanceledException as well as the other Exception will be merged into a single AggregateException. The Task Parallel Library uses the same cancellation model, as well.  Here, we supply our CancellationToken as part of the configuration.  The ParallelOptions class contains a property for the CancellationToken.  This allows us to cancel a Parallel.For or Parallel.ForEach routine in a very similar manner to our PLINQ query.  As an example, we could rewrite our Parallel.ForEach loop from Part 2 to support cancellation by changing it to: try { var cts = new CancellationTokenSource(); var options = new ParallelOptions() { CancellationToken = cts.Token }; Parallel.ForEach(customers, options, customer => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // Check for cancellation here options.CancellationToken.ThrowIfCancellationRequested(); // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } }); } catch (OperationCanceledException e) { // The loop was cancelled } Notice that here we use the same approach taken in PLINQ.  The Task Parallel Library will automatically handle our cancellation in the same manner as PLINQ, providing a clean, unified model for cancellation of any parallel routine.  The TPL performs the same aggregation of the cancellation exceptions as PLINQ, as well, which is why a single exception handler for OperationCanceledException will cleanly handle this scenario.  This works because we’re using the same CancellationToken provided in the ParallelOptions.  If a different exception was thrown by one thread, or a CancellationToken from a different CancellationTokenSource was used to raise our exception, we would instead receive all of our individual exceptions merged into one AggregateException.

    Read the article

  • Parallelism in .NET – Part 15, Making Tasks Run: The TaskScheduler

    - by Reed
    In my introduction to the Task class, I specifically made mention that the Task class does not directly provide it’s own execution.  In addition, I made a strong point that the Task class itself is not directly related to threads or multithreading.  Rather, the Task class is used to implement our decomposition of tasks.  Once we’ve implemented our tasks, we need to execute them.  In the Task Parallel Library, the execution of Tasks is handled via an instance of the TaskScheduler class. The TaskScheduler class is an abstract class which provides a single function: it schedules the tasks and executes them within an appropriate context.  This class is the class which actually runs individual Task instances.  The .NET Framework provides two (internal) implementations of the TaskScheduler class. Since a Task, based on our decomposition, should be a self-contained piece of code, parallel execution makes sense when executing tasks.  The default implementation of the TaskScheduler class, and the one most often used, is based on the ThreadPool.  This can be retrieved via the TaskScheduler.Default property, and is, by default, what is used when we just start a Task instance with Task.Start(). Normally, when a Task is started by the default TaskScheduler, the task will be treated as a single work item, and run on a ThreadPool thread.  This pools tasks, and provides Task instances all of the advantages of the ThreadPool, including thread pooling for reduced resource usage, and an upper cap on the number of work items.  In addition, .NET 4 brings us a much improved thread pool, providing work stealing and reduced locking within the thread pool queues.  By using the default TaskScheduler, our Tasks are run asynchronously on the ThreadPool. There is one notable exception to my above statements when using the default TaskScheduler.  If a Task is created with the TaskCreationOptions set to TaskCreationOptions.LongRunning, the default TaskScheduler will generate a new thread for that Task, at least in the current implementation.  This is useful for Tasks which will persist for most of the lifetime of your application, since it prevents your Task from starving the ThreadPool of one of it’s work threads. The Task Parallel Library provides one other implementation of the TaskScheduler class.  In addition to providing a way to schedule tasks on the ThreadPool, the framework allows you to create a TaskScheduler which works within a specified SynchronizationContext.  This scheduler can be retrieved within a thread that provides a valid SynchronizationContext by calling the TaskScheduler.FromCurrentSynchronizationContext() method. This implementation of TaskScheduler is intended for use with user interface development.  Windows Forms and Windows Presentation Foundation both require any access to user interface controls to occur on the same thread that created the control.  For example, if you want to set the text within a Windows Forms TextBox, and you’re working on a background thread, that UI call must be marshaled back onto the UI thread.  The most common way this is handled depends on the framework being used.  In Windows Forms, Control.Invoke or Control.BeginInvoke is most often used.  In WPF, the equivelent calls are Dispatcher.Invoke or Dispatcher.BeginInvoke. As an example, say we’re working on a background thread, and we want to update a TextBlock in our user interface with a status label.  The code would typically look something like: // Within background thread work... string status = GetUpdatedStatus(); Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action( () => { statusLabel.Text = status; })); // Continue on in background method .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This works fine, but forces your method to take a dependency on WPF or Windows Forms.  There is an alternative option, however.  Both Windows Forms and WPF, when initialized, setup a SynchronizationContext in their thread, which is available on the UI thread via the SynchronizationContext.Current property.  This context is used by classes such as BackgroundWorker to marshal calls back onto the UI thread in a framework-agnostic manner. The Task Parallel Library provides the same functionality via the TaskScheduler.FromCurrentSynchronizationContext() method.  When setting up our Tasks, as long as we’re working on the UI thread, we can construct a TaskScheduler via: TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); We then can use this scheduler on any thread to marshal data back onto the UI thread.  For example, our code above can then be rewritten as: string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); // Continue on in background method This is nice since it allows us to write code that isn’t tied to Windows Forms or WPF, but is still fully functional with those technologies.  I’ll discuss even more uses for the SynchronizationContext based TaskScheduler when I demonstrate task continuations, but even without continuations, this is a very useful construct. In addition to the two implementations provided by the Task Parallel Library, it is possible to implement your own TaskScheduler.  The ParallelExtensionsExtras project within the Samples for Parallel Programming provides nine sample TaskScheduler implementations.  These include schedulers which restrict the maximum number of concurrent tasks, run tasks on a single threaded apartment thread, use a new thread per task, and more.

    Read the article

  • Parallelism in .NET – Part 18, Task Continuations with Multiple Tasks

    - by Reed
    In my introduction to Task continuations I demonstrated how the Task class provides a more expressive alternative to traditional callbacks.  Task continuations provide a much cleaner syntax to traditional callbacks, but there are other reasons to switch to using continuations… Task continuations provide a clean syntax, and a very simple, elegant means of synchronizing asynchronous method results with the user interface.  In addition, continuations provide a very simple, elegant means of working with collections of tasks. Prior to .NET 4, working with multiple related asynchronous method calls was very tricky.  If, for example, we wanted to run two asynchronous operations, followed by a single method call which we wanted to run when the first two methods completed, we’d have to program all of the handling ourselves.  We would likely need to take some approach such as using a shared callback which synchronized against a common variable, or using a WaitHandle shared within the callbacks to allow one to wait for the second.  Although this could be accomplished easily enough, it requires manually placing this handling into every algorithm which requires this form of blocking.  This is error prone, difficult, and can easily lead to subtle bugs. Similar to how the Task class static methods providing a way to block until multiple tasks have completed, TaskFactory contains static methods which allow a continuation to be scheduled upon the completion of multiple tasks: TaskFactory.ContinueWhenAll. This allows you to easily specify a single delegate to run when a collection of tasks has completed.  For example, suppose we have a class which fetches data from the network.  This can be a long running operation, and potentially fail in certain situations, such as a server being down.  As a result, we have three separate servers which we will “query” for our information.  Now, suppose we want to grab data from all three servers, and verify that the results are the same from all three. With traditional asynchronous programming in .NET, this would require using three separate callbacks, and managing the synchronization between the various operations ourselves.  The Task and TaskFactory classes simplify this for us, allowing us to write: var server1 = Task.Factory.StartNew( () => networkClass.GetResults(firstServer) ); var server2 = Task.Factory.StartNew( () => networkClass.GetResults(secondServer) ); var server3 = Task.Factory.StartNew( () => networkClass.GetResults(thirdServer) ); var result = Task.Factory.ContinueWhenAll( new[] {server1, server2, server3 }, (tasks) => { // Propogate exceptions (see below) Task.WaitAll(tasks); return this.CompareTaskResults( tasks[0].Result, tasks[1].Result, tasks[2].Result); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This is clean, simple, and elegant.  The one complication is the Task.WaitAll(tasks); statement. Although the continuation will not complete until all three tasks (server1, server2, and server3) have completed, there is a potential snag.  If the networkClass.GetResults method fails, and raises an exception, we want to make sure to handle it cleanly.  By using Task.WaitAll, any exceptions raised within any of our original tasks will get wrapped into a single AggregateException by the WaitAll method, providing us a simplified means of handling the exceptions.  If we wait on the continuation, we can trap this AggregateException, and handle it cleanly.  Without this line, it’s possible that an exception could remain uncaught and unhandled by a task, which later might trigger a nasty UnobservedTaskException.  This would happen any time two of our original tasks failed. Just as we can schedule a continuation to occur when an entire collection of tasks has completed, we can just as easily setup a continuation to run when any single task within a collection completes.  If, for example, we didn’t need to compare the results of all three network locations, but only use one, we could still schedule three tasks.  We could then have our completion logic work on the first task which completed, and ignore the others.  This is done via TaskFactory.ContinueWhenAny: var server1 = Task.Factory.StartNew( () => networkClass.GetResults(firstServer) ); var server2 = Task.Factory.StartNew( () => networkClass.GetResults(secondServer) ); var server3 = Task.Factory.StartNew( () => networkClass.GetResults(thirdServer) ); var result = Task.Factory.ContinueWhenAny( new[] {server1, server2, server3 }, (firstTask) => { return this.ProcessTaskResult(firstTask.Result); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, instead of working with all three tasks, we’re just using the first task which finishes.  This is very useful, as it allows us to easily work with results of multiple operations, and “throw away” the others.  However, you must take care when using ContinueWhenAny to properly handle exceptions.  At some point, you should always wait on each task (or use the Task.Result property) in order to propogate any exceptions raised from within the task.  Failing to do so can lead to an UnobservedTaskException.

    Read the article

  • MSBuild (.NET 4.0) access problems

    - by JMP
    I'm using Cruise Control .NET as my build server (Windows 2008 Server). Yesterday I upgraded my ASP.NET MVC project from VS 2008/.NET 3.5 to VS 2010/.NET 4.0. The only change I made to my ccnet.config's MSBuild task was the location of MSBuild.exe. Ever since I made that change, the build has been broken with the error: MSB4019 - The imported project "C:\Program Files (x86)\MSBuild\Microsoft\VisualStudio\v10.0\WebApplications\Microsoft.WebApplication.targets" was not found. Confirm that the path in the declaration is correct, and that the file exists on disk. This file does, in fact, exist in the location specified (I solved a problem similar to this when setting up the build server for VS2008/.NET 3.5 by copying the files from my dev environment to my build environment). So I RDP'ed into the build machine and opened a command prompt, used MSBUILD to attempt to build my project. MSBUILD returns the error: MSB3021 - Unable to copy file "obj\debug....dll". Access to the path 'bin....dll' is denied. Since I'm running MSBUILD from the command prompt, logged in with an account that has administrative privileges, I'm assuming that MSBUILD is running with the same privileges that I have. Next, I tried to copy the file that MSBUILD was attempting to copy. In this case, I get the UAC dialog that makes me click the [Continue] button to complete the copy. I'd like to avoid installing Visual Studio 2010 on my build machine, can anyone suggest other fixes I might try?

    Read the article

  • Error Running MVC2 application in IIS on .NET 4.0

    - by Matt Wrock
    I recently installed the RTM version of 4.0. I now receive an error when running MVC2 websites in a .net 4 app pool. The error is "User is not available in this context." All works fine on .net 2.0 app pools or if I run the app within the VS10 web server. The error only occurs in IIS on .net 4.0. To verify that it was not something specific to my app, I created a new MVC test app from the VS template and even that app encounters this error. My next step is to reinstall .net 4.0. Has anyone else seen this error?

    Read the article

  • Visual Studio 2010 RC with .net 4 beta 2

    - by aip.cd.aish
    Does anyone know if it is possible to use Visual Studio 2010 RC with the beta 2 version of the .NET 4 framework? The reason I need to use the beta 2 version and not the RC is that there isn't an Expression Blend that can support the .NET 4 RC. I uninstalled the .NET 4 framework that installed with Visual Studio 2010, then I reinstalled the .NET 4 version Beta 2. But now when I launch Visual Studio, I get an error message saying "The operation could not be completed" and it shuts down. How can I make this work? Thanks!

    Read the article

  • ASP.NET MVC, Spring.NET, NHibernate initial setup/example/tutorial.

    - by Bubba88
    Hello! Have you been doing some ASP.NET MVC developement involving Spring.NET and NHibernate both? I would like to see an informative example of such setup, so I could build my own project off that. I tried googling, found some pretty things like S#arp Architecture, an article about regular ASP.NET (WebForms) integrated with the frameworks and so on. Still, I'm missing a good tutorial on ASP.NET MVC & the subj. P.S.: I do know how Spring and Hibernate works, I just need to plug them into an MVC application. Don't want to use S#arp Architecture by now. P.P.S: I'll update the links later, including this one:

    Read the article

  • ASP.Net MVC 2 - Need To Add A Default Property To A Strongly Typed Html.Textbox Helper In Asp.Net MV

    - by Sara
    I'm having a problem with something that I'm sure is very simple. I have been using Asp.Net MVC and I decided to start using Asp.Net MVC 2. Something has changed and now I need a little help. The strongly typed helpers are now written like this - <%= Html.TextBoxFor(model => model.State) %> I need to add a default value to a textbox. In the prior version of Asp.Net MVC it was easy to assign a default value. I thought doing the following would work in MVC 2- <%= Html.TextBoxFor(model => model.CountyId, new{ value = 840 })%> This, however, does not work for me in Asp.Net MVC 2. The value is still blank for the textbox. I want to make sure that this isn't some random error that I am having. Has anyone else encountered the same problem? I have searched and searched to find more information on the default property for the html helpers in MVC 2, but I can't find anything. Does anyone out there know how to correctly assign a default value to a textbox in Asp.Net MVC 2?

    Read the article

  • HtmlForm.Action and .Net Framework 2.0/3.5 Query

    - by Brian
    Disappointingly, the members page for HtmlForm 2.0 is missing... My research seems to indicate that HtmlForm.Action is a property that was added in .Net Framework 3.5. However, I'm using VS2005 and my reference to System.Web (the namespace HtmlForm is under) is to a .Net Framework 2.0 runtime version. Further, my IIS status information also indicates I am using .Net Framework 2.0, when I force an error on my local IIS and read it. Despite this, I am able to use form1.Action successfully...but only on my local IIS. When I try it on vms and external servers, I get [MissingMethodException: Method not found: 'System.String System.Web.UI.HtmlControls.HtmlForm.get_Action()'.] errors. So, my question: 1) Why does it work on my local IIS? Does the fact that I have the 3.5 framework installed make a difference, here? 2) Why does it not work on other IIS? (I think this is because it's not part of .Net 2.0). I guess I just figure that if something is running on .Net Framework 2.0, the presence of 3.5 should not make a difference. Or maybe there's some other cause for these results.

    Read the article

  • ASP.NET custom templates, still ASP.NET controls possible?

    - by Sha Le
    Hello: we currently do not use asp.net controls (no web forms). The way we do is: 1 Read HTML file from disk 2 lookup database, parse tags and populate data finally, Response.Write(page.ToString()); here there is no possibility of using asp.net controls. What I am wondering is, if we use asp.net controls in those HTML files, is there way to process them during step 2? Thanks and appreciate your response.

    Read the article

  • Using ExtJS with ASP.NET, Webforms or MVC?

    - by TigrouMeow
    Hello, For a scenario using 0 ASP.NET controls at all but rather an 100% extJS interface, what would be the advantages of using ASP.NET MVC or ASP.NET WebForms? And the disadvantages? Is there a OBVIOUS way to do it properly? I would love to have feedback's on your experiences. Thank you!

    Read the article

  • Recommend ASP.NET 3.5 SP1 Hosting Providers

    - by tyndall
    Would like to see a list of affordable ASP.NET 3.5 SP1 Hosting providers build up. Along with your review of the service, lacking features, special features, etc... Discount ASP.NET MochaHost At last update MochaHost does not offer SP1  they now offer SP1 CrystalTech Gearhost HostMySite please add more update: Anybody see a better deal for shared hosting ASP.NET than ASP.NETpro From GearHost? I would like to see more SQL storage, but I need keep the multiple domain capabilities. For about the same price.

    Read the article

  • Linq To Sql or classic ADO.net?

    - by Spyros
    I am asking my self many times before start writting a new app or data access library , should I use LinqToSql or classic ADO.net , I have used both and the development time I spend on building an app with Linq To sql is like the 1/3 compared to ADO.net. The only think I like using Linq to sql is that I dont have to design the domain objects Linq does that for me and saves me from spend my time on boring things :P But is Linq to sql suitable for large scale projects , is there an overhead that we can avoid when using ADO.net ?

    Read the article

  • asp.net application install folder

    - by Maximilian Csuk
    Disclaimer: this is not a question about how to install asp.net or an application using it! Hi! I am pretty sure many of you have once installed some kind of forum, blog or CMS (mostly PHP powered applications). All of these contain a folder mostly named "install" where (after you copied the files to the webserver) point your browser to to complete the installation by entering for example database information (servername, username, password, ...). After that, most applications suggest that you delete this folder or at least change the permissions so nobody from the outside can access it anymore. Now to my question: how would you go about that in the asp.net world? I don't really like the "install folder"-approach and I thought there might be a different mechanism for .net/IIS. The person installing my application should be able to enter his database information as painless as possible, which should ultimatively be stored in the web.config file. If it makes a difference, I am using asp.net MVC. Thanks for your help!

    Read the article

  • Membership with Mysql, EF 1 and ASP.NET 3.5

    - by sanfra1983
    Hi, I created a web application with asp.net 3.5 and ado.net entity framework WebForms 1, but have not yet succeeded in creating a memebrship and roles. When I go on ASP.NET Configuration and click the Security Tab I get the following error: Keyword not supported. Parameter name: metadata Someone has already created an application with these same features to help me understand where is the problem? P.S.: I'm going crazy Thanks to all

    Read the article

  • Using ASP.NET C# and Javascript

    - by ctck
    I'm looking for the most efficient / standardized way of passing data between client javascript code and C# code behind in an ASP.NET application. Currently ive been using the following methods to achieve this but they all feel a bit like a fudge. The way i pass data from javascript to the C# code behind is by setting hidden asp variables and triggering a postback <asp:HiddenField ID="RandomList" runat="server" /> function SetDataField(data) { document.getElementById('<%=RandomList.ClientID%>').value = data; } Then in C# code i collect the list protected void GetData(object sender, EventArgs e) { var _list = RandomList.value; } Going back the other way i often use either scriptmanager to register a function and pass it data during Page_Load: ScriptManager.RegisterStartupScript(this.GetType(), "Set","get("Test();",true); or i add attributes to controls before a post back or during Initialization / pre rendering stages: Btn.Attributes.Add("onclick", "DisplayMessage("Hello");"); These methods have served me well and do the job. However they just dont feel complete. Is there a more standardized way of passing data between client side markup / javascript and backend code. Ive seen some posts like this one: Injecting JavaScrip : StackOverflow that describe HtmlElement class. Is this something is should look into? Thanks everyone for your time.

    Read the article

  • ASP.NET ViewState Tips and Tricks #2

    - by João Angelo
    If you need to store complex types in ViewState DO implement IStateManager to control view state persistence and reduce its size. By default a serializable object will be fully stored in view state using BinaryFormatter. A quick comparison for a complex type with two integers and one string property produces the following results measured using ASP.NET tracing: BinaryFormatter: 328 bytes in view state IStateManager: 28 bytes in view state BinaryFormatter sample code: // DO NOT [Serializable] public class Info { public int Id { get; set; } public string Name { get; set; } public int Age { get; set; } } public class ExampleControl : WebControl { protected override void OnLoad(EventArgs e) { base.OnLoad(e); if (!this.Page.IsPostBack) { this.User = new Info { Id = 1, Name = "John Doe", Age = 27 }; } } public Info User { get { object o = this.ViewState["Example_User"]; if (o == null) return null; return (Info)o; } set { this.ViewState["Example_User"] = value; } } } IStateManager sample code: // DO public class Info : IStateManager { public int Id { get; set; } public string Name { get; set; } public int Age { get; set; } private bool isTrackingViewState; bool IStateManager.IsTrackingViewState { get { return this.isTrackingViewState; } } void IStateManager.LoadViewState(object state) { var triplet = (Triplet)state; this.Id = (int)triplet.First; this.Name = (string)triplet.Second; this.Age = (int)triplet.Third; } object IStateManager.SaveViewState() { return new Triplet(this.Id, this.Name, this.Age); } void IStateManager.TrackViewState() { this.isTrackingViewState = true; } } public class ExampleControl : WebControl { protected override void OnLoad(EventArgs e) { base.OnLoad(e); if (!this.Page.IsPostBack) { this.User = new Info { Id = 1, Name = "John Doe", Age = 27 }; } } public Info User { get; set; } protected override object SaveViewState() { return new Pair( ((IStateManager)this.User).SaveViewState(), base.SaveViewState()); } protected override void LoadViewState(object savedState) { if (savedState != null) { var pair = (Pair)savedState; this.User = new Info(); ((IStateManager)this.User).LoadViewState(pair.First); base.LoadViewState(pair.Second); } } }

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by Mohammad Ashraful Alam
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves most of the major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • Issues integrating NCover with CC.NET, .NET framework 4.0 and MsTest

    - by Nikhil
    I'm implementing continuous integration with CruiseControl.NET, .NET 4.0, NCover and MsTest. On the build server I'm unable to run code coverage from the Ncover explorer or NCover console. When I run where vstesthost.exe from the Ncover console it returns the Visual Studio 9.0 path and does not seem to pick up .net framework 4.0. I've followed instructions from this MSTest: Measuring Test Quality With NCover post with slight modifications for .net framework 4.0, without any success. My CC.NET script looks like this <exec> <executable>C:\Program Files (x86)\NCover\NCover.Console.exe</executable> <baseDirectory>$(project_root)\</baseDirectory> <buildArgs>"C:\Program Files (x86)\**Microsoft Visual Studio 10.0**\Common7\IDE\MSTest.exe" /testcontainer:...\...\UnitTests.dll /resultsfile:TestResults.trx //xml D:\_Projects\....\Temp_Coverage.xml //pm vstesthost.exe</buildArgs> <buildTimeoutSeconds>$(ncover.timeout)</buildTimeoutSeconds> </exec> Has anyone come across similar issue. Any help would be much appreciated.

    Read the article

  • Parallelism in .NET – Part 16, Creating Tasks via a TaskFactory

    - by Reed
    The Task class in the Task Parallel Library supplies a large set of features.  However, when creating the task, and assigning it to a TaskScheduler, and starting the Task, there are quite a few steps involved.  This gets even more cumbersome when multiple tasks are involved.  Each task must be constructed, duplicating any options required, then started individually, potentially on a specific scheduler.  At first glance, this makes the new Task class seem like more work than ThreadPool.QueueUserWorkItem in .NET 3.5. In order to simplify this process, and make Tasks simple to use in simple cases, without sacrificing their power and flexibility, the Task Parallel Library added a new class: TaskFactory. The TaskFactory class is intended to “Provide support for creating and scheduling Task objects.”  Its entire purpose is to simplify development when working with Task instances.  The Task class provides access to the default TaskFactory via the Task.Factory static property.  By default, TaskFactory uses the default TaskScheduler to schedule tasks on a ThreadPool thread.  By using Task.Factory, we can automatically create and start a task in a single “fire and forget” manner, similar to how we did with ThreadPool.QueueUserWorkItem: Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides us with the same level of simplicity we had with ThreadPool.QueueUserWorkItem, but even more power.  For example, we can now easily wait on the task: // Start our task on a background thread var task = Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); // Do other work on the main thread, // while the task above executes in the background this.ExecuteWorkSynchronously(); // Wait for the background task to finish task.Wait(); TaskFactory simplifies creation and startup of simple background tasks dramatically. In addition to using the default TaskFactory, it’s often useful to construct a custom TaskFactory.  The TaskFactory class includes an entire set of constructors which allow you to specify the default configuration for every Task instance created by that factory.  This is particularly useful when using a custom TaskScheduler.  For example, look at the sample code for starting a task on the UI thread in Part 15: // Given the following, constructed on the UI thread // TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // When inside a background task, we can do string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); This is actually quite a bit more complicated than necessary.  When we create the uiScheduler instance, we can use that to construct a TaskFactory that will automatically schedule tasks on the UI thread.  To do that, we’d create the following on our main thread, prior to constructing our background tasks: // Construct a task scheduler from the current SynchronizationContext (UI thread) var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // Construct a new TaskFactory using our UI scheduler var uiTaskFactory = new TaskFactory(uiScheduler); If we do this, when we’re on a background thread, we can use this new TaskFactory to marshal a Task back onto the UI thread.  Our previous code simplifies to: // When inside a background task, we can do string status = GetUpdatedStatus(); // Update our UI uiTaskFactory.StartNew( () => statusLabel.Text = status); Notice how much simpler this becomes!  By taking advantage of the convenience provided by a custom TaskFactory, we can now marshal to set data on the UI thread in a single, clear line of code!

    Read the article

  • Parallelism in .NET – Part 8, PLINQ’s ForAll Method

    - by Reed
    Parallel LINQ extends LINQ to Objects, and is typically very similar.  However, as I previously discussed, there are some differences.  Although the standard way to handle simple Data Parellelism is via Parallel.ForEach, it’s possible to do the same thing via PLINQ. PLINQ adds a new method unavailable in standard LINQ which provides new functionality… LINQ is designed to provide a much simpler way of handling querying, including filtering, ordering, grouping, and many other benefits.  Reading the description in LINQ to Objects on MSDN, it becomes clear that the thinking behind LINQ deals with retrieval of data.  LINQ works by adding a functional programming style on top of .NET, allowing us to express filters in terms of predicate functions, for example. PLINQ is, generally, very similar.  Typically, when using PLINQ, we write declarative statements to filter a dataset or perform an aggregation.  However, PLINQ adds one new method, which provides a very different purpose: ForAll. The ForAll method is defined on ParallelEnumerable, and will work upon any ParallelQuery<T>.  Unlike the sequence operators in LINQ and PLINQ, ForAll is intended to cause side effects.  It does not filter a collection, but rather invokes an action on each element of the collection. At first glance, this seems like a bad idea.  For example, Eric Lippert clearly explained two philosophical objections to providing an IEnumerable<T>.ForEach extension method, one of which still applies when parallelized.  The sole purpose of this method is to cause side effects, and as such, I agree that the ForAll method “violates the functional programming principles that all the other sequence operators are based upon”, in exactly the same manner an IEnumerable<T>.ForEach extension method would violate these principles.  Eric Lippert’s second reason for disliking a ForEach extension method does not necessarily apply to ForAll – replacing ForAll with a call to Parallel.ForEach has the same closure semantics, so there is no loss there. Although ForAll may have philosophical issues, there is a pragmatic reason to include this method.  Without ForAll, we would take a fairly serious performance hit in many situations.  Often, we need to perform some filtering or grouping, then perform an action using the results of our filter.  Using a standard foreach statement to perform our action would avoid this philosophical issue: // Filter our collection var filteredItems = collection.AsParallel().Where( i => i.SomePredicate() ); // Now perform an action foreach (var item in filteredItems) { // These will now run serially item.DoSomething(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This would cause a loss in performance, since we lose any parallelism in place, and cause all of our actions to be run serially. We could easily use a Parallel.ForEach instead, which adds parallelism to the actions: // Filter our collection var filteredItems = collection.AsParallel().Where( i => i.SomePredicate() ); // Now perform an action once the filter completes Parallel.ForEach(filteredItems, item => { // These will now run in parallel item.DoSomething(); }); This is a noticeable improvement, since both our filtering and our actions run parallelized.  However, there is still a large bottleneck in place here.  The problem lies with my comment “perform an action once the filter completes”.  Here, we’re parallelizing the filter, then collecting all of the results, blocking until the filter completes.  Once the filtering of every element is completed, we then repartition the results of the filter, reschedule into multiple threads, and perform the action on each element.  By moving this into two separate statements, we potentially double our parallelization overhead, since we’re forcing the work to be partitioned and scheduled twice as many times. This is where the pragmatism comes into play.  By violating our functional principles, we gain the ability to avoid the overhead and cost of rescheduling the work: // Perform an action on the results of our filter collection .AsParallel() .Where( i => i.SomePredicate() ) .ForAll( i => i.DoSomething() ); The ability to avoid the scheduling overhead is a compelling reason to use ForAll.  This really goes back to one of the key points I discussed in data parallelism: Partition your problem in a way to place the most work possible into each task.  Here, this means leaving the statement attached to the expression, even though it causes side effects and is not standard usage for LINQ. This leads to my one guideline for using ForAll: The ForAll extension method should only be used to process the results of a parallel query, as returned by a PLINQ expression. Any other usage scenario should use Parallel.ForEach, instead.

    Read the article

  • Parallelism in .NET – Part 17, Think Continuations, not Callbacks

    - by Reed
    In traditional asynchronous programming, we’d often use a callback to handle notification of a background task’s completion.  The Task class in the Task Parallel Library introduces a cleaner alternative to the traditional callback: continuation tasks. Asynchronous programming methods typically required callback functions.  For example, MSDN’s Asynchronous Delegates Programming Sample shows a class that factorizes a number.  The original method in the example has the following signature: public static bool Factorize(int number, ref int primefactor1, ref int primefactor2) { //... .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, calling this is quite “tricky”, even if we modernize the sample to use lambda expressions via C# 3.0.  Normally, we could call this method like so: int primeFactor1 = 0; int primeFactor2 = 0; bool answer = Factorize(10298312, ref primeFactor1, ref primeFactor2); Console.WriteLine("{0}/{1} [Succeeded {2}]", primeFactor1, primeFactor2, answer); If we want to make this operation run in the background, and report to the console via a callback, things get tricker.  First, we need a delegate definition: public delegate bool AsyncFactorCaller( int number, ref int primefactor1, ref int primefactor2); Then we need to use BeginInvoke to run this method asynchronously: int primeFactor1 = 0; int primeFactor2 = 0; AsyncFactorCaller caller = new AsyncFactorCaller(Factorize); caller.BeginInvoke(10298312, ref primeFactor1, ref primeFactor2, result => { int factor1 = 0; int factor2 = 0; bool answer = caller.EndInvoke(ref factor1, ref factor2, result); Console.WriteLine("{0}/{1} [Succeeded {2}]", factor1, factor2, answer); }, null); This works, but is quite difficult to understand from a conceptual standpoint.  To combat this, the framework added the Event-based Asynchronous Pattern, but it isn’t much easier to understand or author. Using .NET 4’s new Task<T> class and a continuation, we can dramatically simplify the implementation of the above code, as well as make it much more understandable.  We do this via the Task.ContinueWith method.  This method will schedule a new Task upon completion of the original task, and provide the original Task (including its Result if it’s a Task<T>) as an argument.  Using Task, we can eliminate the delegate, and rewrite this code like so: var background = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); background.ContinueWith(task => Console.WriteLine("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result)); This is much simpler to understand, in my opinion.  Here, we’re explicitly asking to start a new task, then continue the task with a resulting task.  In our case, our method used ref parameters (this was from the MSDN Sample), so there is a little bit of extra boiler plate involved, but the code is at least easy to understand. That being said, this isn’t dramatically shorter when compared with our C# 3 port of the MSDN code above.  However, if we were to extend our requirements a bit, we can start to see more advantages to the Task based approach.  For example, supposed we need to report the results in a user interface control instead of reporting it to the Console.  This would be a common operation, but now, we have to think about marshaling our calls back to the user interface.  This is probably going to require calling Control.Invoke or Dispatcher.Invoke within our callback, forcing us to specify a delegate within the delegate.  The maintainability and ease of understanding drops.  However, just as a standard Task can be created with a TaskScheduler that uses the UI synchronization context, so too can we continue a task with a specific context.  There are Task.ContinueWith method overloads which allow you to provide a TaskScheduler.  This means you can schedule the continuation to run on the UI thread, by simply doing: Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }).ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), TaskScheduler.FromCurrentSynchronizationContext()); This is far more understandable than the alternative.  By using Task.ContinueWith in conjunction with TaskScheduler.FromCurrentSynchronizationContext(), we get a simple way to push any work onto a background thread, and update the user interface on the proper UI thread.  This technique works with Windows Presentation Foundation as well as Windows Forms, with no change in methodology.

    Read the article

< Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >