Search Results

Search found 96011 results on 3841 pages for 'sun one'.

Page 25/3841 | < Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >

  • OPN SPECIALIZED Webcasts

    - by Claudia Costa
    OPN Specialized Webcast Series for Partners For the EMEA region the webcasts start at 11:00 CET/10:00GMT. Each training session will run for approximately one hour and include live Q&A. "How to become Specialized in the Applications products portfolio," 25th May 2010,11:00 CET/10:00GMT. Click here for more information& registration. "How to become an OPN Specialized Reseller of Oracle's Sun SPARC Servers, Storage, Software and Services," 1st June 2010,11:00 CET/10:00GMT. Click here for more information& registration.  

    Read the article

  • October 2012 Security "Critical Patch Update" (CPU) information and downloads released

    - by user12244672
    The October 2012 security "Critical Patch Update" information and downloads are now available from My Oracle Support (MOS). See http://www.oracle.com/technetwork/topics/security/alerts-086861.html and in particular Document 1475188.1 on My Oracle Support (MOS), http://support.oracle.com, which includes security CVE mappings for Oracle Sun products. For Solaris 11, Doc 1475188.1 points to the relevant SRUs containing the fixes for each issue.  SRU12.4 was released on the CPU date and contains the current cumulative security fixes for the Solaris 11 OS. For Solaris 10, we take a copy of the Recommended Solaris OS patchset containing the relevant security fixes and rename it as the October CPU patchset on MOS.  See link provided from Doc 1475188.1 Doc 1475188.1 also contains references for Firmware, etc., and links to other useful security documentation, including information on Userland/FOSS vulnerabilities and fixes in https://blogs.oracle.com/sunsecurity/

    Read the article

  • 64-bit Archives Needed

    - by user9154181
    A little over a year ago, we received a question from someone who was trying to build software on Solaris. He was getting errors from the ar command when creating an archive. At that time, the ar command on Solaris was a 32-bit command. There was more than 2GB of data, and the ar command was hitting the file size limit for a 32-bit process that doesn't use the largefile APIs. Even in 2011, 2GB is a very large amount of code, so we had not heard this one before. Most of our toolchain was extended to handle 64-bit sized data back in the 1990's, but archives were not changed, presumably because there was no perceived need for it. Since then of course, programs have continued to get larger, and in 2010, the time had finally come to investigate the issue and find a way to provide for larger archives. As part of that process, I had to do a deep dive into the archive format, and also do some Unix archeology. I'm going to record what I learned here, to document what Solaris does, and in the hope that it might help someone else trying to solve the same problem for their platform. Archive Format Details Archives are hardly cutting edge technology. They are still used of course, but their basic form hasn't changed in decades. Other than to fix a bug, which is rare, we don't tend to touch that code much. The archive file format is described in /usr/include/ar.h, and I won't repeat the details here. Instead, here is a rough overview of the archive file format, implemented by System V Release 4 (SVR4) Unix systems such as Solaris: Every archive starts with a "magic number". This is a sequence of 8 characters: "!<arch>\n". The magic number is followed by 1 or more members. A member starts with a fixed header, defined by the ar_hdr structure in/usr/include/ar.h. Immediately following the header comes the data for the member. Members must be padded at the end with newline characters so that they have even length. The requirement to pad members to an even length is a dead giveaway as to the age of the archive format. It tells you that this format dates from the 1970's, and more specifically from the era of 16-bit systems such as the PDP-11 that Unix was originally developed on. A 32-bit system would have required 4 bytes, and 64-bit systems such as we use today would probably have required 8 bytes. 2 byte alignment is a poor choice for ELF object archive members. 32-bit objects require 4 byte alignment, and 64-bit objects require 64-bit alignment. The link-editor uses mmap() to process archives, and if the members have the wrong alignment, we have to slide (copy) them to the correct alignment before we can access the ELF data structures inside. The archive format requires 2 byte padding, but it doesn't prohibit more. The Solaris ar command takes advantage of this, and pads ELF object members to 8 byte boundaries. Anything else is padded to 2 as required by the format. The archive header (ar_hdr) represents all numeric values using an ASCII text representation rather than as binary integers. This means that an archive that contains only text members can be viewed using tools such as cat, more, or a text editor. The original designers of this format clearly thought that archives would be used for many file types, and not just for objects. Things didn't turn out that way of course — nearly all archives contain relocatable objects for a single operating system and machine, and are used primarily as input to the link-editor (ld). Archives can have special members that are created by the ar command rather than being supplied by the user. These special members are all distinguished by having a name that starts with the slash (/) character. This is an unambiguous marker that says that the user could not have supplied it. The reason for this is that regular archive members are given the plain name of the file that was inserted to create them, and any path components are stripped off. Slash is the delimiter character used by Unix to separate path components, and as such cannot occur within a plain file name. The ar command hides the special members from you when you list the contents of an archive, so most users don't know that they exist. There are only two possible special members: A symbol table that maps ELF symbols to the object archive member that provides it, and a string table used to hold member names that exceed 15 characters. The '/' convention for tagging special members provides room for adding more such members should the need arise. As I will discuss below, we took advantage of this fact to add an alternate 64-bit symbol table special member which is used in archives that are larger than 4GB. When an archive contains ELF object members, the ar command builds a special archive member known as the symbol table that maps all ELF symbols in the object to the archive member that provides it. The link-editor uses this symbol table to determine which symbols are provided by the objects in that archive. If an archive has a symbol table, it will always be the first member in the archive, immediately following the magic number. Unlike member headers, symbol tables do use binary integers to represent offsets. These integers are always stored in big-endian format, even on a little endian host such as x86. The archive header (ar_hdr) provides 15 characters for representing the member name. If any member has a name that is longer than this, then the real name is written into a special archive member called the string table, and the member's name field instead contains a slash (/) character followed by a decimal representation of the offset of the real name within the string table. The string table is required to precede all normal archive members, so it will be the second member if the archive contains a symbol table, and the first member otherwise. The archive format is not designed to make finding a given member easy. Such operations move through the archive from front to back examining each member in turn, and run in O(n) time. This would be bad if archives were commonly used in that manner, but in general, they are not. Typically, the ar command is used to build an new archive from scratch, inserting all the objects in one operation, and then the link-editor accesses the members in the archive in constant time by using the offsets provided by the symbol table. Both of these operations are reasonably efficient. However, listing the contents of a large archive with the ar command can be rather slow. Factors That Limit Solaris Archive Size As is often the case, there was more than one limiting factor preventing Solaris archives from growing beyond the 32-bit limits of 2GB (32-bit signed) and 4GB (32-bit unsigned). These limits are listed in the order they are hit as archive size grows, so the earlier ones mask those that follow. The original Solaris archive file format can handle sizes up to 4GB without issue. However, the ar command was delivered as a 32-bit executable that did not use the largefile APIs. As such, the ar command itself could not create a file larger than 2GB. One can solve this by building ar with the largefile APIs which would allow it to reach 4GB, but a simpler and better answer is to deliver a 64-bit ar, which has the ability to scale well past 4GB. Symbol table offsets are stored as 32-bit big-endian binary integers, which limits the maximum archive size to 4GB. To get around this limit requires a different symbol table format, or an extension mechanism to the current one, similar in nature to the way member names longer than 15 characters are handled in member headers. The size field in the archive member header (ar_hdr) is an ASCII string capable of representing a 32-bit unsigned value. This places a 4GB size limit on the size of any individual member in an archive. In considering format extensions to get past these limits, it is important to remember that very few archives will require the ability to scale past 4GB for many years. The old format, while no beauty, continues to be sufficient for its purpose. This argues for a backward compatible fix that allows newer versions of Solaris to produce archives that are compatible with older versions of the system unless the size of the archive exceeds 4GB. Archive Format Differences Among Unix Variants While considering how to extend Solaris archives to scale to 64-bits, I wanted to know how similar archives from other Unix systems are to those produced by Solaris, and whether they had already solved the 64-bit issue. I've successfully moved archives between different Unix systems before with good luck, so I knew that there was some commonality. If it turned out that there was already a viable defacto standard for 64-bit archives, it would obviously be better to adopt that rather than invent something new. The archive file format is not formally standardized. However, the ar command and archive format were part of the original Unix from Bell Labs. Other systems started with that format, extending it in various often incompatible ways, but usually with the same common shared core. Most of these systems use the same magic number to identify their archives, despite the fact that their archives are not always fully compatible with each other. It is often true that archives can be copied between different Unix variants, and if the member names are short enough, the ar command from one system can often read archives produced on another. In practice, it is rare to find an archive containing anything other than objects for a single operating system and machine type. Such an archive is only of use on the type of system that created it, and is only used on that system. This is probably why cross platform compatibility of archives between Unix variants has never been an issue. Otherwise, the use of the same magic number in archives with incompatible formats would be a problem. I was able to find information for a number of Unix variants, described below. These can be divided roughly into three tribes, SVR4 Unix, BSD Unix, and IBM AIX. Solaris is a SVR4 Unix, and its archives are completely compatible with those from the other members of that group (GNU/Linux, HP-UX, and SGI IRIX). AIX AIX is an exception to rule that Unix archive formats are all based on the original Bell labs Unix format. It appears that AIX supports 2 formats (small and big), both of which differ in fundamental ways from other Unix systems: These formats use a different magic number than the standard one used by Solaris and other Unix variants. They include support for removing archive members from a file without reallocating the file, marking dead areas as unused, and reusing them when new archive items are inserted. They have a special table of contents member (File Member Header) which lets you find out everything that's in the archive without having to actually traverse the entire file. Their symbol table members are quite similar to those from other systems though. Their member headers are doubly linked, containing offsets to both the previous and next members. Of the Unix systems described here, AIX has the only format I saw that will have reasonable insert/delete performance for really large archives. Everyone else has O(n) performance, and are going to be slow to use with large archives. BSD BSD has gone through 4 versions of archive format, which are described in their manpage. They use the same member header as SVR4, but their symbol table format is different, and their scheme for long member names puts the name directly after the member header rather than into a string table. GNU/Linux The GNU toolchain uses the SVR4 format, and is compatible with Solaris. HP-UX HP-UX seems to follow the SVR4 model, and is compatible with Solaris. IRIX IRIX has 32 and 64-bit archives. The 32-bit format is the standard SVR4 format, and is compatible with Solaris. The 64-bit format is the same, except that the symbol table uses 64-bit integers. IRIX assumes that an archive contains objects of a single ELFCLASS/MACHINE, and any archive containing ELFCLASS64 objects receives a 64-bit symbol table. Although they only use it for 64-bit objects, nothing in the archive format limits it to ELFCLASS64. It would be perfectly valid to produce a 64-bit symbol table in an archive containing 32-bit objects, text files, or anything else. Tru64 Unix (Digital/Compaq/HP) Tru64 Unix uses a format much like ours, but their symbol table is a hash table, making specific symbol lookup much faster. The Solaris link-editor uses archives by examining the entire symbol table looking for unsatisfied symbols for the link, and not by looking up individual symbols, so there would be no benefit to Solaris from such a hash table. The Tru64 ld must use a different approach in which the hash table pays off for them. Widening the existing SVR4 archive symbol tables rather than inventing something new is the simplest path forward. There is ample precedent for this approach in the ELF world. When ELF was extended to support 64-bit objects, the approach was largely to take the existing data structures, and define 64-bit versions of them. We called the old set ELF32, and the new set ELF64. My guess is that there was no need to widen the archive format at that time, but had there been, it seems obvious that this is how it would have been done. The Implementation of 64-bit Solaris Archives As mentioned earlier, there was no desire to improve the fundamental nature of archives. They have always had O(n) insert/delete behavior, and for the most part it hasn't mattered. AIX made efforts to improve this, but those efforts did not find widespread adoption. For the purposes of link-editing, which is essentially the only thing that archives are used for, the existing format is adequate, and issues of backward compatibility trump the desire to do something technically better. Widening the existing symbol table format to 64-bits is therefore the obvious way to proceed. For Solaris 11, I implemented that, and I also updated the ar command so that a 64-bit version is run by default. This eliminates the 2 most significant limits to archive size, leaving only the limit on an individual archive member. We only generate a 64-bit symbol table if the archive exceeds 4GB, or when the new -S option to the ar command is used. This maximizes backward compatibility, as an archive produced by Solaris 11 is highly likely to be less than 4GB in size, and will therefore employ the same format understood by older versions of the system. The main reason for the existence of the -S option is to allow us to test the 64-bit format without having to construct huge archives to do so. I don't believe it will find much use outside of that. Other than the new ability to create and use extremely large archives, this change is largely invisible to the end user. When reading an archive, the ar command will transparently accept either form of symbol table. Similarly, the ELF library (libelf) has been updated to understand either format. Users of libelf (such as the link-editor ld) do not need to be modified to use the new format, because these changes are encapsulated behind the existing functions provided by libelf. As mentioned above, this work did not lift the limit on the maximum size of an individual archive member. That limit remains fixed at 4GB for now. This is not because we think objects will never get that large, for the history of computing says otherwise. Rather, this is based on an estimation that single relocatable objects of that size will not appear for a decade or two. A lot can change in that time, and it is better not to overengineer things by writing code that will sit and rot for years without being used. It is not too soon however to have a plan for that eventuality. When the time comes when this limit needs to be lifted, I believe that there is a simple solution that is consistent with the existing format. The archive member header size field is an ASCII string, like the name, and as such, the overflow scheme used for long names can also be used to handle the size. The size string would be placed into the archive string table, and its offset in the string table would then be written into the archive header size field using the same format "/ddd" used for overflowed names.

    Read the article

  • Tip #19 Module Private Visibility in OSGi

    - by ByronNevins
    I hate public and protected methods and classes.  It requires so much work to change them in a huge project like GlassFish.  Not to mention that you may well have to support those APIs forever.  They are highly overused in GlassFish.  In fact I'd bet that > 95% of classes are marked as public for no good reason.  It's just (bad) habit is my guess. private and default visibility (I call it package-private) is easier to maintain.  It is much much easier to change such classes and methods around.  If you have ANY public method or public class in GlassFish you'll need to grep through a tremendous amount of source code to find all callers.  But even that won't be theoretically reliable.  What if a caller is using reflection to access public methods?  You may never find such usages. If you have package private methods, it's easy.  Simply grep through all the code in that one package.  As long as that package compiles ok you're all set.  There can' be any compile errors anywhere else.  It's a waste of time to even look around or build the "outside" world.  So you may be thinking: "Aha!  I'll just make my module have one giant package with all the java files.  Then I can use the default visibility and maintenance will be much easier.  But there's a problem.  You are wasting a very nice feature of java -- organizing code into separate packages.  It also makes the code much more encapsulated.  Unfortunately to share code between the packages you have no choice but to declare public visibility. What happens in practice is that a module ends up having tons of public classes and methods that are used exclusively inside the module.  Which finally brings me to the point of this blog:  If Only There Was A Module-Private Visibility Available Well, surprise!  There is such a mechanism.  If your project is running under OSGi that is.  Like GlassFish does!  With this mechanism you can easily add another level of visibility by telling OSGi exactly which public you want to be exposed outside of the module.  You get the best of both worlds: Better encapsulation of your code so that maintenance is easier and productivity is increased. Usage of public visibility inside the module so that you can encapsulate intra-module better with packages. How I do this in GlassFish: Carefully plan out at least one package that will contain "true" publics.  This is the package that will be exported by OSGi.  I recommend just one package. Here is how to tell OSGi to use it in GlassFish -- edit osgi.bundle like so:-exportcontents:     org.glassfish.mymodule.truepublics;  version=${project.osgi.version} Now all publics declared in any other packages will be visible module-wide but not outside the module. There is one caveat: Accessing "module-private" items outside of the module is controlled at run-time, not compile-time.  The compiler has no clue that a public in a dependent module isn't really public.  it will happily compile it.  At runtime you will definitely see fireworks.  The good news is that you don't have to wait for the code path that tries to use the "module-private" items to fire.  OSGi will complain loudly when that module gets loaded.  OSGi will refuse to load it.  You will see an error like this: remote failure: Error while loading FOO: Exception while adding the new configuration : Error occurred during deployment: Exception while loading the app : org.osgi.framework.BundleException: Unresolved constraint in bundle com.oracle.glassfish.miscreant.code [115]: Unable to resolve 115.0: missing requirement [115.0] osgi.wiring.package; (osgi.wiring.package=org.glassfish.mymodule.unexported). Please see server.log for more details. That is if you accidentally change code in module B to use a public that is really a "module-private" in module A, then you will see the error immediately when you try to test whatever you were changing in module B.

    Read the article

  • J2EE Applications, SPARC T4, Solaris Containers, and Resource Pools

    - by user12620111
    I've obtained a substantial performance improvement on a SPARC T4-2 Server running a J2EE Application Server Cluster by deploying the cluster members into Oracle Solaris Containers and binding those containers to cores of the SPARC T4 Processor. This is not a surprising result, in fact, it is consistent with other results that are available on the Internet. See the "references", below, for some examples. Nonetheless, here is a summary of my configuration and results. (1.0) Before deploying a J2EE Application Server Cluster into a virtualized environment, many decisions need to be made. I'm not claiming that all of the decisions that I have a made will work well for every environment. In fact, I'm not even claiming that all of the decisions are the best possible for my environment. I'm only claiming that of the small sample of configurations that I've tested, this is the one that is working best for me. Here are some of the decisions that needed to be made: (1.1) Which virtualization option? There are several virtualization options and isolation levels that are available. Options include: Hard partitions:  Dynamic Domains on Sun SPARC Enterprise M-Series Servers Hypervisor based virtualization such as Oracle VM Server for SPARC (LDOMs) on SPARC T-Series Servers OS Virtualization using Oracle Solaris Containers Resource management tools in the Oracle Solaris OS to control the amount of resources an application receives, such as CPU cycles, physical memory, and network bandwidth. Oracle Solaris Containers provide the right level of isolation and flexibility for my environment. To borrow some words from my friends in marketing, "The SPARC T4 processor leverages the unique, no-cost virtualization capabilities of Oracle Solaris Zones"  (1.2) How to associate Oracle Solaris Containers with resources? There are several options available to associate containers with resources, including (a) resource pool association (b) dedicated-cpu resources and (c) capped-cpu resources. I chose to create resource pools and associate them with the containers because I wanted explicit control over the cores and virtual processors.  (1.3) Cluster Topology? Is it best to deploy (a) multiple application servers on one node, (b) one application server on multiple nodes, or (c) multiple application servers on multiple nodes? After a few quick tests, it appears that one application server per Oracle Solaris Container is a good solution. (1.4) Number of cluster members to deploy? I chose to deploy four big 64-bit application servers. I would like go back a test many 32-bit application servers, but that is left for another day. (2.0) Configuration tested. (2.1) I was using a SPARC T4-2 Server which has 2 CPU and 128 virtual processors. To understand the physical layout of the hardware on Solaris 10, I used the OpenSolaris psrinfo perl script available at http://hub.opensolaris.org/bin/download/Community+Group+performance/files/psrinfo.pl: test# ./psrinfo.pl -pv The physical processor has 8 cores and 64 virtual processors (0-63) The core has 8 virtual processors (0-7)   The core has 8 virtual processors (8-15)   The core has 8 virtual processors (16-23)   The core has 8 virtual processors (24-31)   The core has 8 virtual processors (32-39)   The core has 8 virtual processors (40-47)   The core has 8 virtual processors (48-55)   The core has 8 virtual processors (56-63)     SPARC-T4 (chipid 0, clock 2848 MHz) The physical processor has 8 cores and 64 virtual processors (64-127)   The core has 8 virtual processors (64-71)   The core has 8 virtual processors (72-79)   The core has 8 virtual processors (80-87)   The core has 8 virtual processors (88-95)   The core has 8 virtual processors (96-103)   The core has 8 virtual processors (104-111)   The core has 8 virtual processors (112-119)   The core has 8 virtual processors (120-127)     SPARC-T4 (chipid 1, clock 2848 MHz) (2.2) The "before" test: without processor binding. I started with a 4-member cluster deployed into 4 Oracle Solaris Containers. Each container used a unique gigabit Ethernet port for HTTP traffic. The containers shared a 10 gigabit Ethernet port for JDBC traffic. (2.3) The "after" test: with processor binding. I ran one application server in the Global Zone and another application server in each of the three non-global zones (NGZ):  (3.0) Configuration steps. The following steps need to be repeated for all three Oracle Solaris Containers. (3.1) Stop AppServers from the BUI. (3.2) Stop the NGZ. test# ssh test-z2 init 5 (3.3) Enable resource pools: test# svcadm enable pools (3.4) Create the resource pool: test# poolcfg -dc 'create pool pool-test-z2' (3.5) Create the processor set: test# poolcfg -dc 'create pset pset-test-z2' (3.6) Specify the maximum number of CPU's that may be addd to the processor set: test# poolcfg -dc 'modify pset pset-test-z2 (uint pset.max=32)' (3.7) bash syntax to add Virtual CPUs to the processor set: test# (( i = 64 )); while (( i < 96 )); do poolcfg -dc "transfer to pset pset-test-z2 (cpu $i)"; (( i = i + 1 )) ; done (3.8) Associate the resource pool with the processor set: test# poolcfg -dc 'associate pool pool-test-z2 (pset pset-test-z2)' (3.9) Tell the zone to use the resource pool that has been created: test# zonecfg -z test-z1 set pool=pool-test-z2 (3.10) Boot the Oracle Solaris Container test# zoneadm -z test-z2 boot (3.11) Save the configuration to /etc/pooladm.conf test# pooladm -s (4.0) Results. Using the resource pools improves both throughput and response time: (5.0) References: System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones Capitalizing on large numbers of processors with WebSphere Portal on Solaris WebSphere Application Server and T5440 (Dileep Kumar's Weblog)  http://www.brendangregg.com/zones.html Reuters Market Data System, RMDS 6 Multiple Instances (Consolidated), Performance Test Results in Solaris, Containers/Zones Environment on Sun Blade X6270 by Amjad Khan, 2009.

    Read the article

  • Keeping files that are often changed in sync between desktop and laptop

    - by N.N.
    I'm looking for a way to keep a desktop and a laptop in sync. What I want to keep in sync are some folders, mainly ~/Documents, that are changed often when working on them. If it matters I can connect to my desktop from anywhere via an URL but my laptop is harder to access since it might be behind NAT and such. I have been looking at Ubuntu One but it seems to not go well with working on documents written in LaTeX. If I work on a .tex file in the Ubuntu One directory and compile it (with pdflatex) every now and then (as often as every 10 sec when working) it will create several new files including a pdf which are uploaded to Ubuntu One and this seems stupid since it will create continuous upload when working on .tex files. I also usually keep .tex documents version controlled by git and then every commit (which also can happen frequently) will cause upload (by changes in ./.git) so that it happens continuously when working. Another example is editing images that are saved often. What I think would be best is for sync to happen every tenth minute or at the end of every working session (but there might be some other way to handle this?).

    Read the article

  • How to synchronize a whole Ubuntu?

    - by Avio
    I think that the time is ripe to have my whole Ubuntu synchronized just as my Dropbox folder is. Given that we are always talking about files and directories, what's the difference between my Documents folder and my /usr system directory? Almost none, except for their location. In fact, I think that there is just one big issue that prevents people to have their beloved installations mirrored wherever they go: symlinks. Dropbox, Google Drive, Ubuntu One, Sugarsync, Skydrive, none of these services support symlinking. This means that if I push a symlink in one of the synced folders, locally the symlink is kept as is, but remotely (in the cloud or on the other synced machines) the symlink is resolved to the actual file that was originally pointed to. This completely disrupts Linux installations, thus these services can't be used for this purpose. So the question is. Does anybody knows a way to achieve this? A whole Ubuntu, always synchronized with a remote running copy, but still locally stored on both disks? My best guess is that I could use NFS. But the main difference between Dropbox and NFS is that NFS is a remote filesystem that always forces to remotely access the files, while Dropbox pushes modifcations to local filesystems (and thus would perform better). I've also heard about NFS caching. Does anybody knows if this solution could approximate Dropbox in this sense? P.s. I know that /boot, /dev, /proc, /run, /tmp and device-specific mountpoints in /mnt and /media will have to be left out the sync mechanism. What I'm interested in is the principle. Can this be done with reasonable performance, having reasonable resources (e.g. ~ 1Mbps upload bandwidth and a public IP address)?

    Read the article

  • Hibernate Query Language Problem

    - by Sarang
    Well, I have implemented a distinct query in hibernate. It returns me result. But, while casting the fields are getting interchanged. So, it generates casting error. What should be the solution? As an example, I do have database, "ProjectAssignment" that has three fields, aid, pid & userName. I want all distinct userName data from this table. I have applied query : select distinct userName, aid, pid from ProjectAssignment Whereas the ProjectAssignment.java file has the fields in sequence aid, pid & userName. Now, here the userName is first field in output. So, Casting is not getting possible. Also, query : select aid, pid, distinct userName from ProjectAssignment is not working. What is the proper query for the same ? Or what else the solution ? The code is as below : System Utilization Service Bean Method where I have to retrieve data : public List<ProjectAssignment> getProjectAssignments() { projectAssignments = ProjectAssignmentHelper.getAllResources(); //Here comes the error return projectAssignments; } ProjectAssignmentHelper from where I fetch Data : package com.hibernate; import java.util.List; import org.hibernate.Query; import org.hibernate.Session; public class ProjectAssignmentHelper { public static List<ProjectAssignment> getAllResources() { List<ProjectAssignment> projectMasters; Session session = HibernateUtil.getSessionFactory().openSession(); Query query = session.createQuery("select distinct aid, pid, userName from ProjectAssignment"); projectMasters = (List<ProjectAssignment>) query.list(); session.close(); return projectMasters; } } Hibernate Data Bean : package com.hibernate; public class ProjectAssignment implements java.io.Serializable { private short aid; private String pid; private String userName; public ProjectAssignment() { } public ProjectAssignment(short aid) { this.aid = aid; } public ProjectAssignment(short aid, String pid, String userName) { this.aid = aid; this.pid = pid; this.userName = userName; } public short getAid() { return this.aid; } public void setAid(short aid) { this.aid = aid; } public String getPid() { return this.pid; } public void setPid(String pid) { this.pid = pid; } public String getUserName() { return this.userName; } public void setUserName(String userName) { this.userName = userName; } } Error : For input string: "userName" java.lang.NumberFormatException: For input string: "userName" at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48) at java.lang.Integer.parseInt(Integer.java:447) at java.lang.Integer.parseInt(Integer.java:497) at javax.el.ArrayELResolver.toInteger(ArrayELResolver.java:375) at javax.el.ArrayELResolver.getValue(ArrayELResolver.java:195) at javax.el.CompositeELResolver.getValue(CompositeELResolver.java:175) at com.sun.faces.el.FacesCompositeELResolver.getValue(FacesCompositeELResolver.java:72) at com.sun.el.parser.AstValue.getValue(AstValue.java:116) at com.sun.el.parser.AstValue.getValue(AstValue.java:163) at com.sun.el.ValueExpressionImpl.getValue(ValueExpressionImpl.java:219) at com.sun.faces.facelets.el.TagValueExpression.getValue(TagValueExpression.java:102) at javax.faces.component.ComponentStateHelper.eval(ComponentStateHelper.java:190) at javax.faces.component.ComponentStateHelper.eval(ComponentStateHelper.java:178) at javax.faces.component.UICommand.getValue(UICommand.java:218) at org.primefaces.component.commandlink.CommandLinkRenderer.encodeMarkup(CommandLinkRenderer.java:113) at org.primefaces.component.commandlink.CommandLinkRenderer.encodeEnd(CommandLinkRenderer.java:54) at javax.faces.component.UIComponentBase.encodeEnd(UIComponentBase.java:878) at org.primefaces.renderkit.CoreRenderer.renderChild(CoreRenderer.java:70) at org.primefaces.renderkit.CoreRenderer.renderChildren(CoreRenderer.java:54) at org.primefaces.component.datatable.DataTableRenderer.encodeTable(DataTableRenderer.java:525) at org.primefaces.component.datatable.DataTableRenderer.encodeMarkup(DataTableRenderer.java:407) at org.primefaces.component.datatable.DataTableRenderer.encodeEnd(DataTableRenderer.java:193) at javax.faces.component.UIComponentBase.encodeEnd(UIComponentBase.java:878) at org.primefaces.renderkit.CoreRenderer.renderChild(CoreRenderer.java:70) at org.primefaces.renderkit.CoreRenderer.renderChildren(CoreRenderer.java:54) at org.primefaces.component.tabview.TabViewRenderer.encodeContents(TabViewRenderer.java:198) at org.primefaces.component.tabview.TabViewRenderer.encodeMarkup(TabViewRenderer.java:130) at org.primefaces.component.tabview.TabViewRenderer.encodeEnd(TabViewRenderer.java:48) at javax.faces.component.UIComponentBase.encodeEnd(UIComponentBase.java:878) at javax.faces.component.UIComponent.encodeAll(UIComponent.java:1620) at javax.faces.render.Renderer.encodeChildren(Renderer.java:168) at javax.faces.component.UIComponentBase.encodeChildren(UIComponentBase.java:848) at javax.faces.component.UIComponent.encodeAll(UIComponent.java:1613) at javax.faces.component.UIComponent.encodeAll(UIComponent.java:1616) at javax.faces.component.UIComponent.encodeAll(UIComponent.java:1616) at com.sun.faces.application.view.FaceletViewHandlingStrategy.renderView(FaceletViewHandlingStrategy.java:380) at com.sun.faces.application.view.MultiViewHandler.renderView(MultiViewHandler.java:126) at com.sun.faces.lifecycle.RenderResponsePhase.execute(RenderResponsePhase.java:127) at com.sun.faces.lifecycle.Phase.doPhase(Phase.java:101) at com.sun.faces.lifecycle.LifecycleImpl.render(LifecycleImpl.java:139) at javax.faces.webapp.FacesServlet.service(FacesServlet.java:313) at org.apache.catalina.core.StandardWrapper.service(StandardWrapper.java:1523) at org.apache.catalina.core.ApplicationDispatcher.doInvoke(ApplicationDispatcher.java:802) at org.apache.catalina.core.ApplicationDispatcher.invoke(ApplicationDispatcher.java:664) at org.apache.catalina.core.ApplicationDispatcher.processRequest(ApplicationDispatcher.java:497) at org.apache.catalina.core.ApplicationDispatcher.doDispatch(ApplicationDispatcher.java:468) at org.apache.catalina.core.ApplicationDispatcher.dispatch(ApplicationDispatcher.java:364) at org.apache.catalina.core.ApplicationDispatcher.forward(ApplicationDispatcher.java:314) at org.apache.jasper.runtime.PageContextImpl.forward(PageContextImpl.java:783) at org.apache.jsp.welcome_jsp._jspService(welcome_jsp.java from :59) at org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:109) at javax.servlet.http.HttpServlet.service(HttpServlet.java:847) at org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:406) at org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:483) at org.apache.jasper.servlet.JspServlet.service(JspServlet.java:373) at javax.servlet.http.HttpServlet.service(HttpServlet.java:847) at org.apache.catalina.core.StandardWrapper.service(StandardWrapper.java:1523) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:279) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:188) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:641) at com.sun.enterprise.web.WebPipeline.invoke(WebPipeline.java:97) at com.sun.enterprise.web.PESessionLockingStandardPipeline.invoke(PESessionLockingStandardPipeline.java:85) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:185) at org.apache.catalina.connector.CoyoteAdapter.doService(CoyoteAdapter.java:332) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:233) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:165) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:791) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:693) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:954) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:170) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:135) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:102) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:88) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:76) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:53) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:57) at com.sun.grizzly.ContextTask.run(ContextTask.java:69) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:330) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:309) at java.lang.Thread.run(Thread.java:619)

    Read the article

  • Avoid generating empty STDOUT and STDERR files with Sun Grid Engine (SGE) and array jobs

    - by vy32
    I am running array jobs with Sun Grid Engine (SGE). My carefully scripted array job workers generate no stdout and no stderr when they function properly. Unfortunately, SGE insists on creating an empty stdout and stderr file for each run. Sun's manual states: STDOUT and STDERR of array job tasks will be written into dif- ferent files with the default location .['e'|'o']'.' In order to change this default, the -e and -o options (see above) can be used together with the pseudo-environment-vari- ables $HOME, $USER, $JOB_ID, $JOB_NAME, $HOSTNAME, and $SGE_TASK_ID. Note, that you can use the output redirection to divert the out- put of all tasks into the same file, but the result of this is undefined. I would like to have the output files suppressed if they are empty. Is there any way to do this?

    Read the article

  • .apk signing fails even with Sun JDK (java.lang.NoClassDefFoundError: com.android.jarutils.DebugKeyP

    - by ianweller
    I'm having an interesting problem signing my Android application, whether or not I'm using a debug key. Regardless of the JDK I have installed to /usr/bin/{java,keytool,jarsigner} (OpenJDK or Sun's JDK) it will always give the following output after compiling successfully: -package-debug-sign: [apkbuilder] Creating RemoteNotify-debug-unaligned.apk and signing it with a debug key... BUILD FAILED /home/ianweller/AndroidSDK/platforms/android-7/templates/android_rules.xml:281: The following error occurred while executing this line: /home/ianweller/AndroidSDK/platforms/android-7/templates/android_rules.xml:152: java.lang.NoClassDefFoundError: com.android.jarutils.DebugKeyProvider The application was built and signed just fine by Eclipse with the ADT plugin (even without Sun's JDK installed). I'm on Fedora 12. I'm wanting to get my code out of Eclipse and move it into a git repository, but being unable to build it from ant will not allow this to happen.

    Read the article

  • do not use com.sun.xml.internal.*?

    - by sarah xia
    Hi all, Is this statement true: com.sun.xml.internal package is an internal package as the name suggestes. Users should not write code that depends on internal JDK implementation classes. Such classes are internal implementation details of the JDK and subject to change without notice One of my colleagues used one of the classes in his code, which caused javac task in Ant fail to compile our project as the compiler couldn't find the class. Answer from Sun/Oracle says that this is expected behavior of the compiler as user shouldn't use the package. Question is why the classes in the package made public in the first place? Thanks, Sarah

    Read the article

  • EL FUTURO DEL CLOUD, A DEBATE EN EL XX CONGRESO NACIONAL DE USUARIOS ORACLE

    - by comunicacion-es_es(at)oracle.com
    Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} ¡Vuelta a un mini Oracle OpenWorld! La Comunidad de Usuarios de Oracle celebrará en Madrid los próximos 16 y 17 de marzo su XX Congreso Nacional, donde estarán representadas TODAS las áreas de Oracle (aplicaciones, tecnología, hardware y canal). Bajo el lema "Agilidad, innovación y optimización del negocio", contaremos con prestigiosos ponentes internacionales como Massimo Pezzini, vicepresidente de Gartner; Rex Wang, experto en Cloud Computing y vicepresidente de marketing de producto de Oracle; y Janny Ekelson, director de aplicaciones y arquitectura FedEx Express Europa. A parte de los más de 15 casos de éxito, en las más de 40 presentaciones programadas, el Cloud Computing será uno de los temas estrella junto a la estrategia en hardware de Oracle tras la adquisición de Sun. ¡Os esperamos!

    Read the article

  • Oracle Solaris Zones Physical to virtual (P2V)

    - by user939057
    IntroductionThis document describes the process of creating and installing a Solaris 10 image build from physical system and migrate it into a virtualized operating system environment using the Oracle Solaris 10 Zones Physical-to-Virtual (P2V) capability.Using an example and various scenarios, this paper describes how to take advantage of theOracle Solaris 10 Zones Physical-to-Virtual (P2V) capability with other Oracle Solaris features to optimize performance using the Solaris 10 resource management advanced storage management using Solaris ZFS plus improving operating system visibility with Solaris DTrace. The most common use for this tool is when performing consolidation of existing systems onto virtualization enabled platforms, in addition to that we can use the Physical-to-Virtual (P2V) capability  for other tasks for example backup your physical system and move them into virtualized operating system environment hosted on the Disaster Recovery (DR) site another option can be building an Oracle Solaris 10 image repository with various configuration and a different software packages in order to reduce provisioning time.Oracle Solaris ZonesOracle Solaris Zones is a virtualization and partitioning technology supported on Oracle Sun servers powered by SPARC and Intel processors.This technology provides an isolated and secure environment for running applications. A zone is a virtualized operating system environment created within a single instance of the Solaris 10 Operating System.Each virtual system is called a zone and runs a unique and distinct copy of the Solaris 10 operating system.Oracle Solaris Zones Physical-to-Virtual (P2V)A new feature for Solaris 10 9/10.This feature provides the ability to build a Solaris 10 images from physical system and migrate it into a virtualized operating system environmentThere are three main steps using this tool1. Image creation on the source system, this image includes the operating system and optionally the software in which we want to include within the image. 2. Preparing the target system by configuring a new zone that will host the new image.3. Image installation on the target system using the image we created on step 1. The host, where the image is built, is referred to as the source system and the host, where theimage is installed, is referred to as the target system. Benefits of Oracle Solaris Zones Physical-to-Virtual (P2V)Here are some benefits of this new feature:  Simple- easy build process using Oracle Solaris 10 built-in commands.  Robust- based on Oracle Solaris Zones a robust and well known virtualization technology.  Flexible- support migration between V series servers into T or -M-series systems.For the latest server information, refer to the Sun Servers web page. PrerequisitesThe target Oracle Solaris system should be running the latest version of the patching patch cluster. and the minimum Solaris version on the target system should be Solaris 10 9/10.Refer to the latest Administration Guide for Oracle Solaris for a complete procedure on how todownload and install Oracle Solaris. NOTE: If the source system that used to build the image is an older version then the targetsystem, then during the process, the operating system will be upgraded to Solaris 10 9/10(update on attach).Creating the Image Used to distribute the software.We will create an image on the source machine. We can create the image on the local file system and then transfer it to the target machine, or build it into a NFS shared storage andmount the NFS file system from the target machine.Optional  before creating the image we need to complete the software installation that we want to include with the Solaris 10 image.An image is created by using the flarcreate command:Source # flarcreate -S -n s10-system -L cpio /var/tmp/solaris_10_up9.flarThe command does the following:  -S specifies that we skip the disk space check and do not write archive size data to the archive (faster).  -n specifies the image name.  -L specifies the archive format (i.e cpio). Optionally, we can add descriptions to the archive identification section, which can help to identify the archive later.Source # flarcreate -S -n s10-system -e "Oracle Solaris with Oracle DB10.2.0.4" -a "oracle" -L cpio /var/tmp/solaris_10_up9.flarYou can see example of the archive identification section in Appendix A: archive identification section.We can compress the flar image using the gzip command or adding the -c option to the flarcreate commandSource # gzip /var/tmp/solaris_10_up9.flarAn md5 checksum can be created for the image in order to ensure no data tamperingSource # digest -v -a md5 /var/tmp/solaris_10_up9.flar Moving the image into the target system.If we created the image on the local file system, we need to transfer the flar archive from the source machine to the target machine.Source # scp /var/tmp/solaris_10_up9.flar target:/var/tmpConfiguring the Zone on the target systemAfter copying the software to the target machine, we need to configure a new zone in order to host the new image on that zone.To install the new zone on the target machine, first we need to configure the zone (for the full zone creation options see the following link: http://docs.oracle.com/cd/E18752_01/html/817-1592/index.html  )ZFS integrationA flash archive can be created on a system that is running a UFS or a ZFS root file system.NOTE: If you create a Solaris Flash archive of a Solaris 10 system that has a ZFS root, then bydefault, the flar will actually be a ZFS send stream, which can be used to recreate the root pool.This image cannot be used to install a zone. You must create the flar with an explicit cpio or paxarchive when the system has a ZFS root.Use the flarcreate command with the -L archiver option, specifying cpio or pax as themethod to archive the files. (For example, see Step 1 in the previous section).Optionally, on the target system you can create the zone root folder on a ZFS file system inorder to benefit from the ZFS features (clones, snapshots, etc...).Target # zpool create zones c2t2d0 Create the zone root folder:Target # chmod 700 /zones Target # zonecfg -z solaris10-up9-zonesolaris10-up9-zone: No such zone configuredUse 'create' to begin configuring a new zone.zonecfg:solaris10-up9-zone> createzonecfg:solaris10-up9-zone> set zonepath=/zoneszonecfg:solaris10-up9-zone> set autoboot=truezonecfg:solaris10-up9-zone> add netzonecfg:solaris10-up9-zone:net> set address=192.168.0.1zonecfg:solaris10-up9-zone:net> set physical=nxge0zonecfg:solaris10-up9-zone:net> endzonecfg:solaris10-up9-zone> verifyzonecfg:solaris10-up9-zone> commitzonecfg:solaris10-up9-zone> exit Installing the Zone on the target system using the imageInstall the configured zone solaris10-up9-zone by using the zoneadm command with the install -a option and the path to the archive.The following example shows how to create an Image and sys-unconfig the zone.Target # zoneadm -z solaris10-up9-zone install -u -a/var/tmp/solaris_10_up9.flarLog File: /var/tmp/solaris10-up9-zone.install_log.AJaGveInstalling: This may take several minutes...The following example shows how we can preserve system identity.Target # zoneadm -z solaris10-up9-zone install -p -a /var/tmp/solaris_10_up9.flar Resource management Some applications are sensitive to the number of CPUs on the target Zone. You need tomatch the number of CPUs on the Zone using the zonecfg command:zonecfg:solaris10-up9-zone>add dedicated-cpuzonecfg:solaris10-up9-zone> set ncpus=16DTrace integrationSome applications might need to be analyzing using DTrace on the target zone, you canadd DTrace support on the zone using the zonecfg command:zonecfg:solaris10-up9-zone>setlimitpriv="default,dtrace_proc,dtrace_user" Exclusive IP stack An Oracle Solaris Container running in Oracle Solaris 10 can have a shared IP stack with the global zone, or it can have an exclusive IP stack (which was released in Oracle Solaris 10 8/07). An exclusive IP stack provides a complete, tunable, manageable and independent networking stack to each zone. A zone with an exclusive IP stack can configure Scalable TCP (STCP), IP routing, IP multipathing, or IPsec. For an example of how to configure an Oracle Solaris zone with an exclusive IP stack, see the following example zonecfg:solaris10-up9-zone set ip-type=exclusivezonecfg:solaris10-up9-zone> add netzonecfg:solaris10-up9-zone> set physical=nxge0 When the installation completes, use the zoneadm list -i -v options to list the installedzones and verify the status.Target # zoneadm list -i -vSee that the new Zone status is installedID NAME STATUS PATH BRAND IP0 global running / native shared- solaris10-up9-zone installed /zones native sharedNow boot the ZoneTarget # zoneadm -z solaris10-up9-zone bootWe need to login into the Zone order to complete the zone set up or insert a sysidcfg file beforebooting the zone for the first time see example for sysidcfg file in Appendix B: sysidcfg filesectionTarget # zlogin -C solaris10-up9-zoneTroubleshootingIf an installation fails, review the log file. On success, the log file is in /var/log inside the zone. Onfailure, the log file is in /var/tmp in the global zone.If a zone installation is interrupted or fails, the zone is left in the incomplete state. Use uninstall -F to reset the zone to the configured state.Target # zoneadm -z solaris10-up9-zone uninstall -FTarget # zonecfg -z solaris10-up9-zone delete -FConclusionOracle Solaris Zones P2V tool provides the flexibility to build pre-configuredimages with different software configuration for faster deployment and server consolidation.In this document, I demonstrated how to build and install images and to integrate the images with other Oracle Solaris features like ZFS and DTrace.Appendix A: archive identification sectionWe can use the head -n 20 /var/tmp/solaris_10_up9.flar command in order to access theidentification section that contains the detailed description.Target # head -n 20 /var/tmp/solaris_10_up9.flarFlAsH-aRcHiVe-2.0section_begin=identificationarchive_id=e4469ee97c3f30699d608b20a36011befiles_archived_method=cpiocreation_date=20100901160827creation_master=mdet5140-1content_name=s10-systemcreation_node=mdet5140-1creation_hardware_class=sun4vcreation_platform=SUNW,T5140creation_processor=sparccreation_release=5.10creation_os_name=SunOScreation_os_version=Generic_142909-16files_compressed_method=nonecontent_architectures=sun4vtype=FULLsection_end=identificationsection_begin=predeploymentbegin 755 predeployment.cpio.ZAppendix B: sysidcfg file sectionTarget # cat sysidcfgsystem_locale=Ctimezone=US/Pacificterminal=xtermssecurity_policy=NONEroot_password=HsABA7Dt/0sXXtimeserver=localhostname_service=NONEnetwork_interface=primary {hostname= solaris10-up9-zonenetmask=255.255.255.0protocol_ipv6=nodefault_route=192.168.0.1}name_service=NONEnfs4_domain=dynamicWe need to copy this file before booting the zoneTarget # cp sysidcfg /zones/solaris10-up9-zone/root/etc/

    Read the article

  • The Oracle EMEA Partner Event of the Year- FREE, LIVE & ONLINE!

    - by Claudia Costa
    New products. New specializations. New opportunities. Find out how you can use them to build your Oracle business even faster and more effectively in 2010/11. The date for your diary is the 29th of June 2010, at 11:00 GMT. And this summer's event is bigger and better than ever. You will learn: What Oracle's acquisition of Sun Microsystems means for your business and your customers How Oracle Specialization can help you grow faster and smarter, and how Oracle partners from across the region are already benefitting Why Oracle's latest technology, applications, middleware and hardware products and solutions offer you unbeatable new business opportunities How Oracle's partner program is evolving to help partners succeed with a live link to the Oracle FY11 Global Partner Kickoff How specialization has helped a former Microsoft executive become one of the world's most successful social entrepreneurs You'll also have the chance to network with Oracle experts and other partners, and download valuable collateral from specially constructed virtual information booths. Plus, at the end of the event, submit your feedback form for the chance to win two passes to Oracle OpenWorld in San Francisco this September! Don't miss out! REGISTER TODAY!  for this exciting, exclusive online event. Visit here for more information and to view the complete agenda We look forward to welcoming you on the 29th of June! Yours sincerely, Stein SurlienSenior Vice President, Alliances & Channels, Oracle EMEA PS. The Oracle PartnerNetwork Days Virtual Event will be followed by "Oracle PartnerNetwork Days Executive Forums", and "Oracle PartnerNetwork Days Satellite Events" in various countries. Please look out for further communications from your local Oracle team.

    Read the article

  • How do I set up one time password authentication?

    - by scraimer
    I have a home network which I access remotely quite a bit. But I'm worried about security. While I do have strong passwords, I'm worried that someone will acquire my password and use it to gain access. I heard about "one time passwords" and even got to use them at my university. We'd just press a button on a device (or run an application on a phone) and get a generated password that would work for the next minute or so. How can I set something like that up? Are there systems that are easy to use and set up? Has anyone played around with an SDK of one of these systems? Where can I get a starter kit from? EDIT: I'm running a mixed Linux and Windows network, and I'm vaguely hoping to use this for authenticating on both operating systems. (No, there's no domain controller, but I can set one up using Samba, I suppose.)

    Read the article

  • newly added files don't sync down

    - by poolie
    I added some files into my Ubuntu One/My Files folder on my desktop machine. I can see them in the U1 web ui. My laptop is connected to the same U1 account, and in the Ubuntu One preference pane I can see it's connected to the account. However, my new files never download. In syncdaemon.log I can see it checking a bunch of other existing files, and then the file ends with many repetitions of 2011-01-04 11:05:42,277 - ubuntuone.SyncDaemon.Main - NOTE - ---- MARK (state: <State: 'READY' (queues WORKING_ON_METADATA connection 'Not User With Network')>; queues: metadata: 1; content: 0; hash: 0, fsm-cache: hit=5086 miss=69) ---- I do have a working network connection. What do I do now?

    Read the article

  • 11 Ubuntu One Features You May Not Be Aware Of

    - by Chris Hoffman
    While Ubuntu One might seem like a Ubuntu-only file synchronization service, it’s more than that – you can use Ubuntu One on Windows, Android, iOS, and from the web. Ubuntu One offers 5GB of free storage space to everyone. Ubuntu One includes features for sharing files or folders online, streaming music to your smartphone, synchronizing installed applications across all your devices, and more. How to Use an Xbox 360 Controller On Your Windows PC Download the Official How-To Geek Trivia App for Windows 8 How to Banish Duplicate Photos with VisiPic

    Read the article

  • Nagging As A Strategy For Better Linking: -z guidance

    - by user9154181
    The link-editor (ld) in Solaris 11 has a new feature that we call guidance that is intended to help you build better objects. The basic idea behind guidance is that if (and only if) you request it, the link-editor will issue messages suggesting better options and other changes you might make to your ld command to get better results. You can choose to take the advice, or you can disable specific types of guidance while acting on others. In some ways, this works like an experienced friend leaning over your shoulder and giving you advice — you're free to take it or leave it as you see fit, but you get nudged to do a better job than you might have otherwise. We use guidance to build the core Solaris OS, and it has proven to be useful, both in improving our objects, and in making sure that regressions don't creep back in later. In this article, I'm going to describe the evolution in thinking and design that led to the implementation of the -z guidance option, as well as give a brief description of how it works. The guidance feature issues non-fatal warnings. However, experience shows that once developers get used to ignoring warnings, it is inevitable that real problems will be lost in the noise and ignored or missed. This is why we have a zero tolerance policy against build noise in the core Solaris OS. In order to get maximum benefit from -z guidance while maintaining this policy, I added the -z fatal-warnings option at the same time. Much of the material presented here is adapted from the arc case: PSARC 2010/312 Link-editor guidance The History Of Unfortunate Link-Editor Defaults The Solaris link-editor is one of the oldest Unix commands. It stands to reason that this would be true — in order to write an operating system, you need the ability to compile and link code. The original link-editor (ld) had defaults that made sense at the time. As new features were needed, command line option switches were added to let the user use them, while maintaining backward compatibility for those who didn't. Backward compatibility is always a concern in system design, but is particularly important in the case of the tool chain (compilers, linker, and related tools), since it is a basic building block for the entire system. Over the years, applications have grown in size and complexity. Important concepts like dynamic linking that didn't exist in the original Unix system were invented. Object file formats changed. In the case of System V Release 4 Unix derivatives like Solaris, the ELF (Extensible Linking Format) was adopted. Since then, the ELF system has evolved to provide tools needed to manage today's larger and more complex environments. Features such as lazy loading, and direct bindings have been added. In an ideal world, many of these options would be defaults, with rarely used options that allow the user to turn them off. However, the reality is exactly the reverse: For backward compatibility, these features are all options that must be explicitly turned on by the user. This has led to a situation in which most applications do not take advantage of the many improvements that have been made in linking over the last 20 years. If their code seems to link and run without issue, what motivation does a developer have to read a complex manpage, absorb the information provided, choose the features that matter for their application, and apply them? Experience shows that only the most motivated and diligent programmers will make that effort. We know that most programs would be improved if we could just get you to use the various whizzy features that we provide, but the defaults conspire against us. We have long wanted to do something to make it easier for our users to use the linkers more effectively. There have been many conversations over the years regarding this issue, and how to address it. They always break down along the following lines: Change ld Defaults Since the world would be a better place the newer ld features were the defaults, why not change things to make it so? This idea is simple, elegant, and impossible. Doing so would break a large number of existing applications, including those of ISVs, big customers, and a plethora of existing open source packages. In each case, the owner of that code may choose to follow our lead and fix their code, or they may view it as an invitation to reconsider their commitment to our platform. Backward compatibility, and our installed base of working software, is one of our greatest assets, and not something to be lightly put at risk. Breaking backward compatibility at this level of the system is likely to do more harm than good. But, it sure is tempting. New Link-Editor One might create a new linker command, not called 'ld', leaving the old command as it is. The new one could use the same code as ld, but would offer only modern options, with the proper defaults for features such as direct binding. The resulting link-editor would be a pleasure to use. However, the approach is doomed to niche status. There is a vast pile of exiting code in the world built around the existing ld command, that reaches back to the 1970's. ld use is embedded in large and unknown numbers of makefiles, and is used by name by compilers that execute it. A Unix link-editor that is not named ld will not find a majority audience no matter how good it might be. Finally, a new linker command will eventually cease to be new, and will accumulate its own burden of backward compatibility issues. An Option To Make ld Do The Right Things Automatically This line of reasoning is best summarized by a CR filed in 2005, entitled 6239804 make it easier for ld(1) to do what's best The idea is to have a '-z best' option that unchains ld from its backward compatibility commitment, and allows it to turn on the "best" set of features, as determined by the authors of ld. The specific set of features enabled by -z best would be subject to change over time, as requirements change. This idea is more realistic than the other two, but was never implemented because it has some important issues that we could never answer to our satisfaction: The -z best proposal assumes that the user can turn it on, and trust it to select good options without the user needing to be aware of the options being applied. This is a fallacy. Features such as direct bindings require the user to do some analysis to ensure that the resulting program will still operate properly. A user who is willing to do the work to verify that what -z best does will be OK for their application is capable of turning on those features directly, and therefore gains little added benefit from -z best. The intent is that when a user opts into -z best, that they understand that z best is subject to sometimes incompatible evolution. Experience teaches us that this won't work. People will use this feature, the meaning of -z best will change, code that used to build will fail, and then there will be complaints and demands to retract the change. When (not if) this occurs, we will of course defend our actions, and point at the disclaimer. We'll win some of those debates, and lose others. Ultimately, we'll end up with -z best2 (-z better), or other compromises, and our goal of simplifying the world will have failed. The -z best idea rolls up a set of features that may or may not be related to each other into a unit that must be taken wholesale, or not at all. It could be that only a subset of what it does is compatible with a given application, in which case the user is expected to abandon -z best and instead set the options that apply to their application directly. In doing so, they lose one of the benefits of -z best, that if you use it, future versions of ld may choose a different set of options, and automatically improve the object through the act of rebuilding it. I drew two conclusions from the above history: For a link-editor, backward compatibility is vital. If a given command line linked your application 10 years ago, you have every reason to expect that it will link today, assuming that the libraries you're linking against are still available and compatible with their previous interfaces. For an application of any size or complexity, there is no substitute for the work involved in examining the code and determining which linker options apply and which do not. These options are largely orthogonal to each other, and it can be reasonable not to use any or all of them, depending on the situation, even in modern applications. It is a mistake to tie them together. The idea for -z guidance came from consideration of these points. By decoupling the advice from the act of taking the advice, we can retain the good aspects of -z best while avoiding its pitfalls: -z guidance gives advice, but the decision to take that advice remains with the user who must evaluate its merit and make a decision to take it or not. As such, we are free to change the specific guidance given in future releases of ld, without breaking existing applications. The only fallout from this will be some new warnings in the build output, which can be ignored or dealt with at the user's convenience. It does not couple the various features given into a single "take it or leave it" option, meaning that there will never be a need to offer "-zguidance2", or other such variants as things change over time. Guidance has the potential to be our final word on this subject. The user is given the flexibility to disable specific categories of guidance without losing the benefit of others, including those that might be added to future versions of the system. Although -z fatal-warnings stands on its own as a useful feature, it is of particular interest in combination with -z guidance. Used together, the guidance turns from advice to hard requirement: The user must either make the suggested change, or explicitly reject the advice by specifying a guidance exception token, in order to get a build. This is valuable in environments with high coding standards. ld Command Line Options The guidance effort resulted in new link-editor options for guidance and for turning warnings into fatal errors. Before I reproduce that text here, I'd like to highlight the strategic decisions embedded in the guidance feature: In order to get guidance, you have to opt in. We hope you will opt in, and believe you'll get better objects if you do, but our default mode of operation will continue as it always has, with full backward compatibility, and without judgement. Guidance suggestions always offers specific advice, and not vague generalizations. You can disable some guidance without turning off the entire feature. When you get guidance warnings, you can choose to take the advice, or you can specify a keyword to disable guidance for just that category. This allows you to get guidance for things that are useful to you, without being bothered about things that you've already considered and dismissed. As the world changes, we will add new guidance to steer you in the right direction. All such new guidance will come with a keyword that let's you turn it off. In order to facilitate building your code on different versions of Solaris, we quietly ignore any guidance keywords we don't recognize, assuming that they are intended for newer versions of the link-editor. If you want to see what guidance tokens ld does and does not recognize on your system, you can use the ld debugging feature as follows: % ld -Dargs -z guidance=foo,nodefs debug: debug: Solaris Linkers: 5.11-1.2275 debug: debug: arg[1] option=-D: option-argument: args debug: arg[2] option=-z: option-argument: guidance=foo,nodefs debug: warning: unrecognized -z guidance item: foo The -z fatal-warning option is straightforward, and generally useful in environments with strict coding standards. Note that the GNU ld already had this feature, and we accept their option names as synonyms: -z fatal-warnings | nofatal-warnings --fatal-warnings | --no-fatal-warnings The -z fatal-warnings and the --fatal-warnings option cause the link-editor to treat warnings as fatal errors. The -z nofatal-warnings and the --no-fatal-warnings option cause the link-editor to treat warnings as non-fatal. This is the default behavior. The -z guidance option is defined as follows: -z guidance[=item1,item2,...] Provide guidance messages to suggest ld options that can improve the quality of the resulting object, or which are otherwise considered to be beneficial. The specific guidance offered is subject to change over time as the system evolves. Obsolete guidance offered by older versions of ld may be dropped in new versions. Similarly, new guidance may be added to new versions of ld. Guidance therefore always represents current best practices. It is possible to enable guidance, while preventing specific guidance messages, by providing a list of item tokens, representing the class of guidance to be suppressed. In this way, unwanted advice can be suppressed without losing the benefit of other guidance. Unrecognized item tokens are quietly ignored by ld, allowing a given ld command line to be executed on a variety of older or newer versions of Solaris. The guidance offered by the current version of ld, and the item tokens used to disable these messages, are as follows. Specify Required Dependencies Dynamic executables and shared objects should explicitly define all of the dependencies they require. Guidance recommends the use of the -z defs option, should any symbol references remain unsatisfied when building dynamic objects. This guidance can be disabled with -z guidance=nodefs. Do Not Specify Non-Required Dependencies Dynamic executables and shared objects should not define any dependencies that do not satisfy the symbol references made by the dynamic object. Guidance recommends that unused dependencies be removed. This guidance can be disabled with -z guidance=nounused. Lazy Loading Dependencies should be identified for lazy loading. Guidance recommends the use of the -z lazyload option should any dependency be processed before either a -z lazyload or -z nolazyload option is encountered. This guidance can be disabled with -z guidance=nolazyload. Direct Bindings Dependencies should be referenced with direct bindings. Guidance recommends the use of the -B direct, or -z direct options should any dependency be processed before either of these options, or the -z nodirect option is encountered. This guidance can be disabled with -z guidance=nodirect. Pure Text Segment Dynamic objects should not contain relocations to non-writable, allocable sections. Guidance recommends compiling objects with Position Independent Code (PIC) should any relocations against the text segment remain, and neither the -z textwarn or -z textoff options are encountered. This guidance can be disabled with -z guidance=notext. Mapfile Syntax All mapfiles should use the version 2 mapfile syntax. Guidance recommends the use of the version 2 syntax should any mapfiles be encountered that use the version 1 syntax. This guidance can be disabled with -z guidance=nomapfile. Library Search Path Inappropriate dependencies that are encountered by ld are quietly ignored. For example, a 32-bit dependency that is encountered when generating a 64-bit object is ignored. These dependencies can result from incorrect search path settings, such as supplying an incorrect -L option. Although benign, this dependency processing is wasteful, and might hide a build problem that should be solved. Guidance recommends the removal of any inappropriate dependencies. This guidance can be disabled with -z guidance=nolibpath. In addition, -z guidance=noall can be used to entirely disable the guidance feature. See Chapter 7, Link-Editor Quick Reference, in the Linker and Libraries Guide for more information on guidance and advice for building better objects. Example The following example demonstrates how the guidance feature is intended to work. We will build a shared object that has a variety of shortcomings: Does not specify all it's dependencies Specifies dependencies it does not use Does not use direct bindings Uses a version 1 mapfile Contains relocations to the readonly allocable text (not PIC) This scenario is sadly very common — many shared objects have one or more of these issues. % cat hello.c #include <stdio.h> #include <unistd.h> void hello(void) { printf("hello user %d\n", getpid()); } % cat mapfile.v1 # This version 1 mapfile will trigger a guidance message % cc hello.c -o hello.so -G -M mapfile.v1 -lelf As you can see, the operation completes without error, resulting in a usable object. However, turning on guidance reveals a number of things that could be better: % cc hello.c -o hello.so -G -M mapfile.v1 -lelf -zguidance ld: guidance: version 2 mapfile syntax recommended: mapfile.v1 ld: guidance: -z lazyload option recommended before first dependency ld: guidance: -B direct or -z direct option recommended before first dependency Undefined first referenced symbol in file getpid hello.o (symbol belongs to implicit dependency /lib/libc.so.1) printf hello.o (symbol belongs to implicit dependency /lib/libc.so.1) ld: warning: symbol referencing errors ld: guidance: -z defs option recommended for shared objects ld: guidance: removal of unused dependency recommended: libelf.so.1 warning: Text relocation remains referenced against symbol offset in file .rodata1 (section) 0xa hello.o getpid 0x4 hello.o printf 0xf hello.o ld: guidance: position independent (PIC) code recommended for shared objects ld: guidance: see ld(1) -z guidance for more information Given the explicit advice in the above guidance messages, it is relatively easy to modify the example to do the right things: % cat mapfile.v2 # This version 2 mapfile will not trigger a guidance message $mapfile_version 2 % cc hello.c -o hello.so -Kpic -G -Bdirect -M mapfile.v2 -lc -zguidance There are situations in which the guidance does not fit the object being built. For instance, you want to build an object without direct bindings: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance ld: guidance: -B direct or -z direct option recommended before first dependency ld: guidance: see ld(1) -z guidance for more information It is easy to disable that specific guidance warning without losing the overall benefit from allowing the remainder of the guidance feature to operate: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance=nodirect Conclusions The linking guidelines enforced by the ld guidance feature correspond rather directly to our standards for building the core Solaris OS. I'm sure that comes as no surprise. It only makes sense that we would want to build our own product as well as we know how. Solaris is usually the first significant test for any new linker feature. We now enable guidance by default for all builds, and the effect has been very positive. Guidance helps us find suboptimal objects more quickly. Programmers get concrete advice for what to change instead of vague generalities. Even in the cases where we override the guidance, the makefile rules to do so serve as documentation of the fact. Deciding to use guidance is likely to cause some up front work for most code, as it forces you to consider using new features such as direct bindings. Such investigation is worthwhile, but does not come for free. However, the guidance suggestions offer a structured and straightforward way to tackle modernizing your objects, and once that work is done, for keeping them that way. The investment is often worth it, and will replay you in terms of better performance and fewer problems. I hope that you find guidance to be as useful as we have.

    Read the article

  • File manager respawns with ubuntuone

    - by pygator
    Starting Feb 11, my Ubuntu 10.10 desktop respawns FileManager many times(hundreds). You can observe the "Starting File Manager" processes at the bottom of the gnome desktop. I can make this behaviour stop by: System - Preferences - Ubuntu One - Services - uncheck "Files". Can someone walk me though the debug process? Linux 2.6.35-25-generic #44-Ubuntu SMP Fri Jan 21 17:40:48 UTC 2011 i686 GNU/Linux I'm trying to reset the Ubuntu One configuration. I found good information here: https://wiki.ubuntu.com/UbuntuOne/Bugs Look for "ROOT_MISMATCH in syncdaemon.log" After running through the steps to reset and restart UbuntuOne, no more "Starting File Mangager" respawns.

    Read the article

  • How do I keep the Thunderbird profile in sync between multiple computers?

    - by David Planella
    I'd like to find a definitive solution to automatically keep my Thunderbird profile in sync between my laptop and my desktop computer. I'm using IMAP, so keeping the e-mail itself in sync is not an issue I can use Ubuntu One for the contacts, so that should not be an issue, either. However, there are a bunch of other files and folders in the Thunderbird profile, and I'm not sure which ones I should keep in sync and which ones I shouldn't bother about. Ideally, I'd like to use Ubuntu One to mark the required ones for syncing, but I would appreciate any help in deciding which ones exactly need to be synced.

    Read the article

  • Installing Java 6 on Ubuntu 10.04 fails on missing Java 6 JRE package

    - by David S
    I'm trying to install Java 6 on Ubuntu 10.04 and it's been harder than it should be. In another question about installing Java on Ubuntu/Linux it said that I needed to do the following: sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner" However, that failed and I kept getting: sudo: add-apt-repository: command not found The solution to this, was to run: sudo apt-get install python-software-properties So, that seemed to work and the command above to "add-apt-repository" seems to complete with no errors. And I have run the following to confirm it got added. sudo vi /etc/apt/sources.list But, now when I run the following: sudo apt-get install sun-java6-jre I get: Reading package lists... Done Building dependency tree Reading state information... Done Package sun-java6-jre is not available, but is referred to by another package. This may mean that the package is missing, has been obsoleted, or is only available from another source E: Package sun-java6-jre has no installation candidate Where do I go from here?

    Read the article

  • certain files not syncing

    - by Josh
    I have UbuntuOne set up to sync a one folder with a number of subfolders. For some reason some of the subfolders have stopped syncing. Within one subfolder with 6 subfolders in it, some are showing up empty (they shouldn't be) and some are showing up with only some of the files they should contain. I have synced recently, and newer files are showing up in other subfolders. There's just some problem with these particular folders. They are not especially big nor do they have especially big files in them. Thoughts?

    Read the article

  • How can one implement RAID1 with a Dell Latitude laptop containing one normal hard drive, and one hard drive in an external bay?

    - by user12583188
    OS: Win7 professional Laptop: latitude e6420 The answer to this question should address how to deploy RAID1 software wise on a dell latitude e6420. I have two Hitachi Z5K500 320GB drives (new). There is one hard drive (320GB capacity) in the system now, which contains the current installation that I would prefer to keep. The drive currently inside the laptop will be replaced with one of the Hitachi drives, and the other Hitachi drive will be fitted into the laptop by way of a Dell hard drive "caddy" enclosure, which inserts into the media bay of the laptop (you remove the cd-rom bay, insert hd-bay).

    Read the article

  • Actionscript - Dropping Multiple Objects Using an Array?

    - by Eratosthenes
    I'm trying to get these fireBalls to drop more often, im not sure if im using Math.random correctly also, for some reason I'm getting a null reference because I think the fireBalls array waits for one to leave the stage before dropping another one? this is the relevant code: var sun:Sun=new Sun var fireBalls:Array=new Array() var left:Boolean; function onEnterFrame(event:Event){ if (left) { sun.x = sun.x - 15; }else{ sun.x = sun.x + 15; } if (fireBalls.length>0&&fireBalls[0].y>stage.stageHeight){ // Fireballs exit stage removeChild(fireBalls[0]); fireBalls.shift(); } for (var j:int=0; j<fireBalls.length; j++){ fireBalls[j].y=fireBalls[j].y+15; if (fireBalls[j].y>stage.stageHeight-fireBall.width/2){ } } if (Math.random()<.2){ // Fireballs shooting from Sun var fireBall:FireBall=new FireBall; fireBall.x=sun.x; addChild(fireBall); fireBalls.push(fireBall); } }

    Read the article

  • More than 2gb of Music without paid plan possible?

    - by user8007
    Hi there, I do not have a paid plan for UbuntuOne and do not intend of buying one, but I do like to buy music from the UbuntuOne Music Store. Is it possible to buy music, once I bought more than 2gb or would I have to move the music out of the UbuntuOne share? In this case, I would suggest to put the music in the official ubuntuone-folder instead of a hidden one. Non-technical users will not understand, why their shared music files are not in this folder, but others are popping up there (e.g. in the webinterface). Best Regards, Lars

    Read the article

< Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >