Search Results

Search found 19350 results on 774 pages for 'address book'.

Page 251/774 | < Previous Page | 247 248 249 250 251 252 253 254 255 256 257 258  | Next Page >

  • Trouble connecting a Ubuntu system to IPv6 tunnel over NAT

    - by John Millikin
    I'm trying to set up an IPv6 tunnel, via Hurricane Electric's tunnel-broker service. I've configured my system using their example commands: # $ipv4a = tunnel server's IPv4 IP # $ipv4b = user's IPv4 IP # $ipv6a = tunnel server's side of point-to-point /64 allocation # $ipv6b = user's side of point-to-point /64 allocation ip tunnel add he-ipv6 mode sit remote $ipv4a local $ipv4b ttl 255 ip link set he-ipv6 up ip addr add $ipv6b dev he-ipv6 ip route add ::/0 dev he-ipv6 And have configured my desktop to be in my NAT router's DMZ. The router is running Tomato firmware. But I can't ping any IPv6 services: $ ping6 -I he-ipv6 '2001:470:1f04:454::1' PING 2001:470:1f04:454::1(2001:470:1f04:454::1) from 2001:470:1f04:454::2 he-ipv6: 56 data bytes From 2001:470:1f04:454::2 icmp_seq=1 Destination unreachable: Address unreachable From 2001:470:1f04:454::2 icmp_seq=2 Destination unreachable: Address unreachable I can ping my local address: $ ping6 -I he-ipv6 '2001:470:1f04:454::2' PING 2001:470:1f04:454::2(2001:470:1f04:454::2) from 2001:470:1f04:454::2 he-ipv6: 56 data bytes 64 bytes from 2001:470:1f04:454::2: icmp_seq=1 ttl=64 time=0.037 ms 64 bytes from 2001:470:1f04:454::2: icmp_seq=2 ttl=64 time=0.039 ms I don't know much about routing, but results I found online suggested the output of ip -6 route and ip addr could be useful: $ ip -6 route 2001:470:1f04:454::/64 via :: dev he-ipv6 proto kernel metric 256 mtu 1480 advmss 1420 hoplimit 4294967295 fe80::/64 dev virbr0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 4294967295 fe80::/64 dev eth1 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 4294967295 fe80::/64 via :: dev he-ipv6 proto kernel metric 256 mtu 1480 advmss 1420 hoplimit 4294967295 default dev he-ipv6 metric 1024 mtu 1480 advmss 1420 hoplimit 4294967295 $ ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 100 link/ether 00:1c:c0:a1:98:b2 brd ff:ff:ff:ff:ff:ff inet 192.168.1.10/24 brd 192.168.1.255 scope global eth1 inet6 fe80::21c:c0ff:fea1:98b2/64 scope link valid_lft forever preferred_lft forever 3: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 36:4c:33:ab:0d:c6 brd ff:ff:ff:ff:ff:ff inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr0 inet6 fe80::344c:33ff:feab:dc6/64 scope link valid_lft forever preferred_lft forever 4: vboxnet0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 00:76:62:6e:65:74 brd ff:ff:ff:ff:ff:ff 5: pan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether 7e:29:5e:7c:ba:93 brd ff:ff:ff:ff:ff:ff 6: sit0: <NOARP> mtu 1480 qdisc noop state DOWN link/sit 0.0.0.0 brd 0.0.0.0 7: he-ipv6@NONE: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1480 qdisc noqueue state UNKNOWN link/sit 24.130.225.239 peer 72.52.104.74 inet6 2001:470:1f04:454::2/64 scope global valid_lft forever preferred_lft forever inet6 fe80::1882:e1ef/128 scope link valid_lft forever preferred_lft forever

    Read the article

  • SQL SERVER – DMV – sys.dm_os_wait_stats Explanation – Wait Type – Day 3 of 28

    - by pinaldave
    The key Dynamic Management View (DMV) that helps us to understand wait stats is sys.dm_os_wait_stats; this DMV gives us all the information that we need to know regarding wait stats. However, the interpretation is left to us. This is a challenge as understanding wait stats can often be quite tricky. Anyway, we will cover few wait stats in one of the future articles. Today we will go over the basic understanding of the DMV. The Official Book OnLine Reference for DMV is over here: sys.dm_os_wait_stats. I suggest you all to refer this for all the accuracy. Following is a statement from the online book: “Specific types of wait times during query execution can indicate bottlenecks or stall points within the query. Similarly, high wait times, or wait counts server wide can indicate bottlenecks or hot spots in interaction query interactions within the server instance.” This is the statement which has inspired me to write this series. Let us first run the following statement from DMV. SELECT * FROM sys.dm_os_wait_stats ORDER BY wait_time_ms DESC GO Above statement will show us few of the columns. Here it is quick explanation of each of the column. wait_type – this is the name of the wait type. There can be three different kinds of wait types – resource, queue and external. waiting_tasks_count – this incremental counter is a good indication of frequent the wait is happening. If this number is very high, it is good indication for us to investigate that particular wait type. It is quite possible that the wait time is considerably low, but the frequency of the wait is much high. wait_time_ms – this is total wait accumulated for any type of wait. This is the total wait time and includes singal_wait_time_ms. max_wait_time_ms – this indicates the maximum wait type ever occurred for that particular wait type. Using this, one can estimate the intensity of the wait type in past. Again, it is not necessary that this max wait time will occur every time; so do not over invest yourself here. signal_wait_time_ms – this is the wait time when thread is marked as runnable and it gets to the running state. If the runnable queue is very long, you will find that this wait time becomes high. Additionally, please note that this DMV does not show current wait type or wait stats. This is cumulative view of the all the wait stats since server (instance) restarted or wait stats have been cleared. In future blog post, we will also cover two more DMVs which can be helpful to identify wait-related issues. ?sys.dm_os_waiting_tasks sys.dm_exec_requests Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • postfix relaying all mail through office365 problems

    - by amrith
    This is a rather long question with a long list of things tried and travails so please bear with me. The summary is this. I am able to relay email from ubuntu through office365 using postfix; the configuration works. It only works as one of the users; more specifically the user who authenticates against office365 is the only valid "from" More details follow. I have a machine in Amazon's cloud on which I run a bunch of jobs and would like to have statuses mailed over to me. I use office365 at work so I want to relay mail through office365. I'm most familiar with postfix so I used that as the MTA. Configuration is ubuntu 12.04LTS; I've installed postfix and mail-utils. For this example, let me say my company is "company.com" and the machine in question (through an elastic IP and a DNS entry) is called "plaything.company.com". hostname is set to "plaything.company.com", so is /etc/mailname On plaything, I have the following users registered alpha, bravo, and charlie. I have the following configuration files. alias_database = hash:/etc/aliases alias_maps = hash:/etc/aliases append_dot_mydomain = no biff = no config_directory = /etc/postfix inet_interfaces = all inet_protocols = ipv4 mailbox_size_limit = 0 mydestination = plaything.company.com, localhost.company.com, , localhost myhostname = plaything.company.com mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128 myorigin = /etc/mailname readme_directory = no recipient_delimiter = + relayhost = [smtp.office365.com]:587 sender_canonical_maps = hash:/etc/postfix/sender_canonical smtp_sasl_auth_enable = yes smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd smtp_sasl_security_options = noanonymous smtp_sasl_tls_security_options = noanonymous smtp_tls_CAfile = /etc/ssl/certs/ca-certificates.crt smtp_tls_session_cache_database = btree:${data_directory}/smtp_scache smtp_use_tls = yes smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu) smtpd_tls_cert_file = /etc/ssl/certs/ssl-cert-snakeoil.pem smtpd_tls_key_file = /etc/ssl/private/ssl-cert-snakeoil.key smtpd_tls_session_cache_database = btree:${data_directory}/smtpd_scache smtpd_use_tls = yes As the machine is called plaything.company.com I went through the exercise of registering all the appropriate DNS entries to make office365 recognize that I owned plaything.company.com and allowed me to create a user called [email protected] in office365. In office365, I setup [email protected] as having another email address of [email protected]. Then, I made the following sender_canonical [email protected] [email protected] I created a sasl_passwd file that reads: smtp.office365.com [email protected]:123456password123456 let's just say that the password for [email protected] is 1234...456 With all this setup, login as alpha and mail [email protected] Cc: Subject: test test and the whole thing works wonderfully. email gets sent off by postfix, TLS works like a champ, authenticates as daemon@... and [email protected] in Office365 gets an email message. The issue comes up when logged in as bravo to the machine. sender is [email protected] and office365 says: status=bounced (host smtp.office365.com[132.245.12.25] said: 550 5.7.1 Client does not have permissions to send as this sender (in reply to end of DATA command)) this is because I'm trying to send mail as bravo@... and authenticating with office365 as daemon@.... The reason it works with alpha@... is because in office365, I setup [email protected] as having another email address of [email protected]. In Postfix Relay to Office365, Miles Erickson answers the question thusly: Don't send mail to Office365 as a user from your Office365-hosted e-mail domain. Use a subdomain instead, e.g. [email protected] instead of [email protected]. It wouldn't hurt to set up an SPF record for services.mydomain.com or whatever you decide to use. Don't authenticate against mail.messaging.microsoft.com as an Office365 user. Just connect on port 25 and deliver the mail to your domain as any foreign SMTP agent would do. OK, I've done #1, I have those records on DNS but for the most part they are not relevant once Office365 recognizes that I own the domain. Here are those records: CNAME records: - msoid.plaything.company.com - autodiscover.plaything.company.com MX record: - plaything.company.com (plaything-company-com.mail.protection.outlook.com) TXT record: - plaything.company.com (v=spf1 include:spf.protection.outlook.com -all) I've tried #2 but no matter what I do, office365 just blows away the connection with "not authenticated". I can try even a simple telnet to port 25 and attempt to send and it doesn't work. 250 BY2PR01CA007.outlook.office365.com Hello [54.221.245.236] 530 5.7.1 Client was not authenticated Connection closed by foreign host. Is there someone out there who has this kind of a configuration working where multiple users on a linux machine are able to relay mail using postfix through office365? There has to be someone out there doing this who can tell me what is wrong with my setup ...

    Read the article

  • NEC uPD720200 USB 3.0 not working on Ubuntu 12.04

    - by Jagged
    I've recently installed Ubuntu 12.04 64-bit on a HP Envy 15 1104tx. Most stuff appears to be working fine with the exception of the two USB3 ports (USB2 port works fine). I've read a lot of articles but so far have not been able to find a solution. I've tried adding 'pci=nomsi' to '/etc/default/grub' but this made no difference. Some articles suggest booting into Windows and upgrading the firmware on the uPD720200. Any body had any experience of this? Is there a way I can checked the firmware version of the NEC uPD720200 in Linux to see if there is an update available? Any help appreciated. uname -a: Linux HP-ENVY-15-1104tx 3.2.0-26-generic #41-Ubuntu SMP Thu Jun 14 17:49:24 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux lshw: hp-envy-15-1104tx description: Notebook product: HP ENVY 15 Notebook PC (WF591PA#ABG) vendor: Hewlett-Packard version: 0492110000241910001420000 serial: CNF0301C79 width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall32 configuration: boot=normal chassis=notebook family=103C_5335KV sku=WF591PA#ABG uuid=434E4630-3330-3143-3739-60EB6906688F *-core description: Motherboard product: 1522 vendor: Hewlett-Packard physical id: 0 version: 36.35 serial: CNF0301C79 slot: Base Board Chassis Location *-firmware description: BIOS vendor: Hewlett-Packard physical id: 0 version: F.2B date: 10/12/2010 size: 1MiB capacity: 1472KiB capabilities: pci upgrade shadowing cdboot bootselect edd int13floppynec int13floppytoshiba int13floppy360 int13floppy1200 int13floppy720 int13floppy2880 int9keyboard int10video acpi usb biosbootspecification *-memory description: System Memory physical id: 13 slot: System board or motherboard size: 16GiB *-bank:0 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 0 serial: E13C4316 slot: Bottom size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 1 serial: E03C3E16 slot: Bottom size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:2 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 2 serial: 672279CC slot: On Board size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:3 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 3 serial: 652286CC slot: On Board size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-cpu description: CPU product: Intel(R) Core(TM) i7 CPU Q 820 @ 1.73GHz vendor: Intel Corp. physical id: 1d bus info: cpu@0 version: Intel(R) Core(TM) i7 CPU Q 820 @ 1.73GHz slot: CPU size: 1199MHz capacity: 1199MHz width: 64 bits clock: 1066MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt lahf_lm ida tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: cores=4 enabledcores=4 threads=8 *-cache:0 description: L3 cache physical id: 1e slot: L3 Cache size: 8MiB capacity: 8MiB capabilities: synchronous internal write-through unified *-cache:1 description: L2 cache physical id: 20 slot: L2 Cache size: 256KiB capacity: 256KiB capabilities: synchronous internal write-through unified *-cache:2 description: L1 cache physical id: 21 slot: L1 Cache size: 32KiB capacity: 32KiB capabilities: synchronous internal write-through instruction *-cache description: L1 cache physical id: 1f slot: L1 Cache size: 32KiB capacity: 32KiB capabilities: synchronous internal write-through data *-pci:0 description: Host bridge product: Core Processor DMI vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 11 width: 32 bits clock: 33MHz *-pci:0 description: PCI bridge product: Core Processor PCI Express Root Port 1 vendor: Intel Corporation physical id: 3 bus info: pci@0000:00:03.0 version: 11 width: 32 bits clock: 33MHz capabilities: pci msi pciexpress pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 ioport:4000(size=4096) memory:d4100000-d41fffff ioport:c0000000(size=268435456) *-display description: VGA compatible controller product: Broadway PRO [Mobility Radeon HD 5800 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0 bus info: pci@0000:01:00.0 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi vga_controller bus_master cap_list rom configuration: driver=fglrx_pci latency=0 resources: irq:58 memory:c0000000-cfffffff memory:d4100000-d411ffff ioport:4000(size=256) memory:d4140000-d415ffff *-multimedia description: Audio device product: Juniper HDMI Audio [Radeon HD 5700 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0.1 bus info: pci@0000:01:00.1 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:56 memory:d4120000-d4123fff *-pci:1 description: PCI bridge product: Core Processor PCI Express Root Port 3 vendor: Intel Corporation physical id: 5 bus info: pci@0000:00:05.0 version: 11 width: 32 bits clock: 33MHz capabilities: pci msi pciexpress pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 memory:d4000000-d40fffff *-usb description: USB controller product: uPD720200 USB 3.0 Host Controller vendor: NEC Corporation physical id: 0 bus info: pci@0000:02:00.0 version: 03 width: 64 bits clock: 33MHz capabilities: pm msi msix pciexpress xhci bus_master cap_list configuration: driver=xhci_hcd latency=0 resources: irq:16 memory:d4000000-d4001fff *-generic:0 UNCLAIMED description: System peripheral product: Core Processor System Management Registers vendor: Intel Corporation physical id: 8 bus info: pci@0000:00:08.0 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:1 UNCLAIMED description: System peripheral product: Core Processor Semaphore and Scratchpad Registers vendor: Intel Corporation physical id: 8.1 bus info: pci@0000:00:08.1 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:2 UNCLAIMED description: System peripheral product: Core Processor System Control and Status Registers vendor: Intel Corporation physical id: 8.2 bus info: pci@0000:00:08.2 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:3 UNCLAIMED description: System peripheral product: Core Processor Miscellaneous Registers vendor: Intel Corporation physical id: 8.3 bus info: pci@0000:00:08.3 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-generic:4 UNCLAIMED description: System peripheral product: Core Processor QPI Link vendor: Intel Corporation physical id: 10 bus info: pci@0000:00:10.0 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-generic:5 UNCLAIMED description: System peripheral product: Core Processor QPI Routing and Protocol Registers vendor: Intel Corporation physical id: 10.1 bus info: pci@0000:00:10.1 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-multimedia description: Audio device product: 5 Series/3400 Series Chipset High Definition Audio vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 05 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:55 memory:d4200000-d4203fff *-pci:2 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 05 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:17 ioport:3000(size=4096) memory:d3000000-d3ffffff ioport:d0000000(size=16777216) *-network description: Wireless interface product: Centrino Advanced-N 6200 vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 35 serial: 00:27:10:40:e4:68 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.2.0-26-generic firmware=9.221.4.1 build 25532 latency=0 link=no multicast=yes wireless=IEEE 802.11abgn resources: irq:54 memory:d3000000-d3001fff *-pci:3 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: 05 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 ioport:2000(size=4096) memory:d2000000-d2ffffff ioport:d1000000(size=16777216) *-network description: Ethernet interface product: AR8131 Gigabit Ethernet vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:04:00.0 logical name: eth0 version: c0 serial: 60:eb:69:06:68:8f size: 1Gbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI duplex=full firmware=N/A ip=10.161.0.147 latency=0 link=yes multicast=yes port=twisted pair speed=1Gbit/s resources: irq:57 memory:d2000000-d203ffff ioport:2000(size=128) *-usb description: USB controller product: 5 Series/3400 Series Chipset USB2 Enhanced Host Controller vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:20 memory:d4205800-d4205bff *-pci:4 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: a5 width: 32 bits clock: 33MHz capabilities: pci subtractive_decode bus_master cap_list *-isa description: ISA bridge product: Mobile 5 Series Chipset LPC Interface Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 05 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: latency=0 *-storage description: RAID bus controller product: 82801 Mobile SATA Controller [RAID mode] vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 logical name: scsi0 version: 05 width: 32 bits clock: 66MHz capabilities: storage msi pm bus_master cap_list emulated configuration: driver=ahci latency=0 resources: irq:45 ioport:5048(size=8) ioport:5054(size=4) ioport:5040(size=8) ioport:5050(size=4) ioport:5020(size=32) memory:d4205000-d42057ff *-disk description: ATA Disk product: OCZ-VERTEX3 physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 2.15 serial: OCZ-0350P6H316X5KUQE size: 223GiB (240GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000592dd *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: / version: 1.0 serial: e741f18c-cfc5-4bce-b1e7-f80e517a3a22 size: 207GiB capacity: 207GiB capabilities: primary bootable journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2012-06-15 06:49:27 filesystem=ext4 lastmountpoint=/ modified=2012-06-14 21:23:42 mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,user_xattr,barrier=1,data=ordered mounted=2012-07-10 16:18:20 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 15GiB capacity: 15GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 15GiB capabilities: nofs *-serial UNCLAIMED description: SMBus product: 5 Series/3400 Series Chipset SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 05 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:d4205c00-d4205cff ioport:5000(size=32) *-pci:1 description: Host bridge product: Core Processor QuickPath Architecture Generic Non-Core Registers vendor: Intel Corporation physical id: 101 bus info: pci@0000:ff:00.0 version: 04 width: 32 bits clock: 33MHz *-pci:2 description: Host bridge product: Core Processor QuickPath Architecture System Address Decoder vendor: Intel Corporation physical id: 102 bus info: pci@0000:ff:00.1 version: 04 width: 32 bits clock: 33MHz *-pci:3 description: Host bridge product: Core Processor QPI Link 0 vendor: Intel Corporation physical id: 103 bus info: pci@0000:ff:02.0 version: 04 width: 32 bits clock: 33MHz *-pci:4 description: Host bridge product: Core Processor QPI Physical 0 vendor: Intel Corporation physical id: 104 bus info: pci@0000:ff:02.1 version: 04 width: 32 bits clock: 33MHz *-pci:5 description: Host bridge product: Core Processor Integrated Memory Controller vendor: Intel Corporation physical id: 105 bus info: pci@0000:ff:03.0 version: 04 width: 32 bits clock: 33MHz *-pci:6 description: Host bridge product: Core Processor Integrated Memory Controller Target Address Decoder vendor: Intel Corporation physical id: 106 bus info: pci@0000:ff:03.1 version: 04 width: 32 bits clock: 33MHz *-pci:7 description: Host bridge product: Core Processor Integrated Memory Controller Test Registers vendor: Intel Corporation physical id: 107 bus info: pci@0000:ff:03.4 version: 04 width: 32 bits clock: 33MHz *-pci:8 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Control Registers vendor: Intel Corporation physical id: 108 bus info: pci@0000:ff:04.0 version: 04 width: 32 bits clock: 33MHz *-pci:9 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Address Registers vendor: Intel Corporation physical id: 109 bus info: pci@0000:ff:04.1 version: 04 width: 32 bits clock: 33MHz *-pci:10 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Rank Registers vendor: Intel Corporation physical id: 10a bus info: pci@0000:ff:04.2 version: 04 width: 32 bits clock: 33MHz *-pci:11 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Thermal Control Registers vendor: Intel Corporation physical id: 10b bus info: pci@0000:ff:04.3 version: 04 width: 32 bits clock: 33MHz *-pci:12 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Control Registers vendor: Intel Corporation physical id: 10c bus info: pci@0000:ff:05.0 version: 04 width: 32 bits clock: 33MHz *-pci:13 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Address Registers vendor: Intel Corporation physical id: 10d bus info: pci@0000:ff:05.1 version: 04 width: 32 bits clock: 33MHz *-pci:14 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Rank Registers vendor: Intel Corporation physical id: 10e bus info: pci@0000:ff:05.2 version: 04 width: 32 bits clock: 33MHz *-pci:15 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Thermal Control Registers vendor: Intel Corporation physical id: 10f bus info: pci@0000:ff:05.3 version: 04 width: 32 bits clock: 33MHz *-battery description: Lithium Ion Battery product: NK06053 vendor: SMP-ATL24 physical id: 1 slot: Primary capacity: 4800mWh configuration: voltage=11.1V lspci: 02:00.0 USB controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 03) (prog-if 30 [XHCI]) Subsystem: Hewlett-Packard Company Device 1522 Flags: bus master, fast devsel, latency 0, IRQ 16 Memory at d4000000 (64-bit, non-prefetchable) [size=8K] Capabilities: [50] Power Management version 3 Capabilities: [70] MSI: Enable- Count=1/8 Maskable- 64bit+ Capabilities: [90] MSI-X: Enable+ Count=8 Masked- Capabilities: [a0] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting Capabilities: [140] Device Serial Number ff-ff-ff-ff-ff-ff-ff-ff Capabilities: [150] Latency Tolerance Reporting Kernel driver in use: xhci_hcd lsusb (with thumb drive plugged into USB3 port): Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 001 Device 002: ID 8087:0020 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 003: ID 5986:01d0 Acer, Inc Bus 001 Device 004: ID 03f0:231d Hewlett-Packard

    Read the article

  • how to reset the IIS settings ..

    - by infant programmer
    I had been practicing ASP on my local machine.. I just wanted to change the TCP port address to 8080 and that is what I did, since then the URL "http://localhost/" is showing PAGE CANNOT BE DISPLAYED, and technical reason being shown is : "You have attempted to execute a CGI, ISAPI, or other executable program from a directory that does not allow programs to be executed." I tried to change back the TCP port address to 80, (which is default) but its not making any difference. What should I do now, to make localhost to work as before ? When I create a virtual directory for the same path "C:/InetPub/wwwroot" then it works but with this URL "http://localhost/virualname/filename.asp" .. where as "http://localhost/filename.asp" throws error, as mentioned above. Can you please explain me what is this consequence is?? thank you :) Details: IIS verion is 7, OS XP,

    Read the article

  • Dynamic DNS with Comcast

    - by colithium
    I've just recently moved across town. Previously, I had Dynamic DNS set up so I could remotely connect to my desktop (primarily to use TightVNC). My ISP was Comcast and I'm in the Denver, Colorado area. Currently, I'm still with Comcast and still in Denver. My router connects to the internet just fine and my Dynamic DNS record over at DynDNS did get updated with my router's current external IP address. So my router, DynDNS, and public DNS records all agree what my IP address is. However, I can't actually connect to anything from the outside world. My trace route to Google looks something like: Tracing route to google.com [74.125.19.147] 1 3 ms 1 ms 1 ms 192.168.1.1 (this is the internal IP address of my router) 2 * * * Request timed out. 3 9 ms 8 ms 10 ms te-8-2-ur02.wheatridge.co.denver.comcast.net [68.85.221.177] 4 12 ms 12 ms 19 ms te-0-8-0-2-ar02.aurora.co.denver.comcast.net [68.86.103.97] 5 16 ms 13 ms 11 ms pos-0-3-0-0-cr01.denver.co.ibone.comcast.net [68.86.91.1] 6 28 ms 28 ms 27 ms pos-0-9-0-0-cr01.dallas.tx.ibone.comcast.net [68.86.85.174] 7 29 ms 27 ms 28 ms pos-0-1-0-0-pe01.1950stemmons.tx.ibone.comcast.net [68.86.86.94] 8 66 ms 108 ms * 75.149.231.70 9 65 ms 68 ms 93 ms 72.14.233.77 10 67 ms 66 ms 66 ms 72.14.233.111 11 67 ms 67 ms 69 ms 216.239.43.144 12 68 ms 71 ms 73 ms 209.85.249.30 13 66 ms 66 ms 68 ms nuq04s01-in-f147.1e100.net [74.125.19.147] This is what the trace route looks like from an outside source to my DynDNS domain name: traceroute to 98.245.67.65 (98.245.67.65) 1 illuminati-130 138.67.130.61 2 138.67.63.253 138.67.63.253 3 vermiculite 138.67.253.20 4 csm-ct-gw 138.67.253.244 5 138.67.253.2 138.67.253.2 6 ge-7-24-ar01.denver.co.denver.comcast.net 68.86.128.17 7 te-0-4-0-0-ar02.denver.co.denver.comcast.net 68.86.179.21 8 te-9-3-ur01.wheatridge.co.denver.comcast.net 68.86.103.18 9 * * * {Times Out} Now my guess is, whatever is sitting just beyond my router (what the modem connects to) is gumming things up. Even though the routes aren't EXACTLY the same, that appears to be the spot that the trace route either stops or doesn't get a response. My question is, for Comcast networks (particularly in Denver), what would be the device that typically sits there? Is there anything I can do about it? That device seems to not respond to PING but does forward it along when I'm going outwards. But it looks like it eats it when the request is coming in. It's hard to prove that from these logs but I'm assuming that's the case because my router used to accept connections from the outside and I haven't changed anything on it.

    Read the article

  • One IP, One Port, Multiple Servers

    - by Adrian Godong
    I am looking for a solution to forward one public IP address and one specific port to different machines based on hostname (as of now, I need it only for HTTP). The current setup is NAT on a commodity router (it only provide simple public port to private IP address / port forwarding). I can add a Windows Server 2008 R2 machine before the router if required, but prefer not to do so. So ideally, I would like to have the current setup and the forwarding is done on one of the Windows Servers. Is it possible to do this?

    Read the article

  • Nginx ssl redirection of images

    - by krishna raj
    Hi. I am trying to set up nginx as reverse proxy for a tomcat server using SSL connection. I want the client's browser to load my tomcat application when nginx reverse proxy's IP is called from client's browser. My tomcat application's address is 192.168.25.25 and nginx proxy's address is 192.168.25.50 In my nginx.conf file i have added these lines # location / { proxy_pass https://192.168.25.25:443/myapp/; proxy_redirect https://192.168.25.25/myapp/ https://192.168.25.25/; } # Some of the images in my application is stored at 192.168.25.25/images/ . Now these directories cant be accessed as the proxy_pass is set to 192.168.25.25:443/myapp. Is there way to access images directory also without changing proxy_pass ? Thanks in advance.

    Read the article

  • Is there a good XP like windows explorer for windows Vista?

    - by Brett Ryan
    I'm still refusing to go to Windows Vista and now Windows 7 mainly due to the windows explorer, I find it cumbersome and hard to use exclusively with a keyboard. I use XP file explorer in the most basic view, the address bar at the top and files always in list view underneath. The reason I do this is because I'm almost blind and do everything from the keyboard and don't touch the mouse whilst navigating through files, this is because I can type "L[ENTER]D[Enter]B[Enter]" and know that I'm in "c:\documents and settings\Brett Ryan", and I can hit [Tab] once to go to the address bar to type in a folder. Can anyone suggest a replacement for windows explorer that brings back this basic navigational behavior?

    Read the article

  • Running jira at jira.[my domain].com

    - by Ivan Zamylin
    I have jira installed on my server. It was running at http://[my ip address]:8100. I could manage to change it to http://jira.[my domain].com. Now after I access it at http://jira.[my domain].com, a browser path changes to http://jira.[my domain].com:8100/secure/Dashboard.jspa. Why does the port show up? Is there any way to remove 8100 port from this redirect. I'd like it to be http://jira.[my domain].com/secure/Dashboard.jspa Also my jira now responds both to jira.[my domain].com and [my ip address]:8100. The latter one is corrupted. Is it possible to stop user accessing it? Thank you!

    Read the article

  • Using Google Talk with a non-apps, non-gmail Google account

    - by rymo
    I created a Google account with an existing e-mail address from a domain that is NOT hosted by Google. This address is not on an Apps domain and has no gmail service of any kind. Still I am able to add it as a Google account on an Android device with no problem. If the device is running Jelly Bean (where the Google Talk app allows switching between accounts) I can sign in and chat works fine. I can also sign into Talk with this account via the iGoogle home page. Now how can I use this account with a standalone chat client like iChat, Pidgin, or Empathy? It doesn't seem to work with login ID [email protected] using SSL to connect to server talk.google.com (tried ports 5222 and 5223). Are iGoogle and Android doing something magical that no other Jabber client is allowed, or am I just missing a step?

    Read the article

  • SQL SERVER – MSQL_XP – Wait Type – Day 20 of 28

    - by pinaldave
    In this blog post, I am going to discuss something from my field experience. While consultation, I have seen various wait typed, but one of my customers who has been using SQL Server for all his operations had an interesting issue with a particular wait type. Our customer had more than 100+ SQL Server instances running and the whole server had MSSQL_XP wait type as the most number of wait types. While running sp_who2 and other diagnosis queries, I could not immediately figure out what the issue was because the query with that kind of wait type was nowhere to be found. After a day of research, I was relieved that the solution was very easy to figure out. Let us continue discussing this wait type. From Book On-Line: ?MSQL_XP occurs when a task is waiting for an extended stored procedure to end. SQL Server uses this wait state to detect potential MARS application deadlocks. The wait stops when the extended stored procedure call ends. MSQL_XP Explanation: This wait type is created because of the extended stored procedure. Extended Stored Procedures are executed within SQL Server; however, SQL Server has no control over them. Unless you know what the code for the extended stored procedure is and what it is doing, it is impossible to understand why this wait type is coming up. Reducing MSQL_XP wait: As discussed, it is hard to understand the Extended Stored Procedure if the code for it is not available. In the scenario described at the beginning of this post, our client was using third-party backup tool. The third-party backup tool was using Extended Stored Procedure. After we learned that this wait type was coming from the extended stored procedure of the backup tool they were using, we contacted the tech team of its vendor. The vendor admitted that the code was not optimal at some places, and within that day they had provided the patch. Once the updated version was installed, the issue on this wait type disappeared. As viewed in the wait statistics of all the 100+ SQL Server, there was no more MSSQL_XP wait type found. In simpler terms, you must first identify which Extended Stored Procedure is creating the wait type of MSSQL_XP and see if you can get in touch with the creator of the SP so you can help them optimize the code. If you have encountered this MSSQL_XP wait type, I encourage all of you to write how you managed it. Please do not mention the name of the vendor in your comment as I will not approve it. The focus of this blog post is to understand the wait types; not talk about others. Read all the post in the Wait Types and Queue series. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussion of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • configuring two network interfaces in ubuntu 10.04.1

    - by Bill Smith
    I have got two NICs configured on a VM - each is tied to a specific network, one is a DMZ, the other is an internal network. I want MySQL to listen on the internal network only and Apache on the DMZ listening for HTTP and HTTPS. But as soon as I add the second interface I run into trouble. I can hit HTTP on either interface, but can not hit 3306 on the internal network for MySQL. Here's the config... could someone sanity check this please? auto lo iface lo inet loopback auto eth0 iface eth0 inet static address 10.153.24.230 netmask 255.255.255.240 network 10.153.24.224 broadcast 10.153.24.239 dns-nameservers 8.8.8.8 auto eth1 iface eth1 inet static address 10.153.24.195 netmask 255.255.255.224 gateway 10.153.24.193 broadcast 10.153.23.223

    Read the article

  • Lots of TIME_WAIT connections in netstat (Windows Server 2008)

    - by Rhys Causey
    I'm having some issues on a Windows 2008 server with some network connections not going through. For instance, in a web application on the server, we need to open a socket connection to another server, and this fails sometimes with the following message: Only one usage of each socket address (protocol/network address/port) is normally permitted I looked up the error, which led me to this page: http://msdn.microsoft.com/en-us/library/aa560610(v=bts.20).aspx, which indicates that it might be TCP/IP port exhaustion. When I perform netstat -n, I get tons of TIME_WAIT connections on port 80. Does anyone have any idea what could be causing this?

    Read the article

  • How to use rhythmbox-client on LAN?

    - by Kaustubh P
    A few days ago I had asked this question, and according to one suggestion, used rhythmote. It is a web-interface to change songs on a rhythmbox playing on some PC. However, its not what I had thought of, and I stumbled upon documentation for rhythmbox-client. I tried a few ways of using it, but was unsuccessful. Let me show you a few ways of how I did it. The rhythmbox is running at address 192.168.1.4, lets call it jukebox. Passing the address as a parameter Hoping that I would be able to see and browse through songs on the jukebox rhythmbox-client 192.168.1.4 But, I get this message (rhythmbox-client:8370): Rhythmbox-WARNING **: Did not receive a reply. Possible causes include: the remote application did not send a reply, the message bus security policy blocked the reply, the reply timeout expired, or the network connection was broken. (rhythmbox-client:8370): Rhythmbox-WARNING **: Did not receive a reply. Possible causes include: the remote application did not send a reply, the message bus security policy blocked the reply, the reply timeout expired, or the network connection was broken. SSH ssh -l jukebox 192.168.1.4 rhythmbox-client --print-playing Which spat this at me: (rhythmbox-client:9389): Rhythmbox-WARNING **: /bin/dbus-launch terminated abnormally with the following error: Autolaunch error: X11 initialization failed. rhythmbox-client as root gksudo rhythmbox-client 192.168.1.4 A rhythmbox client comes up, but with no music shown in the library. I am guessing this is running on my own computer. Can anyon tell me how rhythmbox-client is to be run, and is it even correct of me to think that I can get a rhythmbox window showing the songs on the jukebox? PS: There were a few other solutions mentioned, but I want to evaluate each and every one of them. Thanks.

    Read the article

  • Setting up Windows 2008 with VPN and NAT

    - by Benson
    I have a Windows 2008 box set up with VPN, and that works quite well. NPS is used to validate the VPN clients, who are able to access the private address of the server, once connected. I can't for the life of me get NAT working for the VPN clients, though. I've added NAT as a routing protocol, and set the one on in the VPN address pool as private, and the other as public - but it still won't NAT connections when I add a route through the VPN server's IP on the client side (route add SomeInternetIp IpOfPrivateInterfaceOnServer). I know I can reach the server's private interface (which happens to be 10.2.2.1) with remote desktop client, so I can't think of any issues with the VPN.

    Read the article

  • hp smart array lock up code 0x15, what is that? (or where can I get a list of descriptions of HP smart array controller lock up codes)

    - by user47650
    Hi, I've had a couple of Dl180 6g boxes hung over the last week, each have a P410 smart array controller. upon reboot the server has indicated that a controller failure event occurred and the previous lock up code was 0x15 - the server rebooted without issue. However there was nothing in the IML log, but the ADU report provided the following; Trap Address High Or Post Results Lockup Reason Or Post Error RIS Updates Or Post Error Detail Firmware Version Trap Address Low 0x8087 0x0015 0x0000033e 0x015e 0xd65c any suggestions on what that code is, my google fu failed. And hp support have not responded with any detail as yet.

    Read the article

  • Sending text messages from Raspberry Pi via email fails

    - by vgm64
    I'm using mailx on my raspberry pi to try to send text messages updates for event monitoring. My phone number: 9876543210 My phone's email-to-text gateway address: [email protected] I can 1) Send emails from my raspberry pi to various email addresses. mail -r [email protected] -s "My Subject" [email protected] < body.txt and off it goes and is successfully delivered. 2) Send emails from various email address (not on RPi) using mailx to the above phone-email address and have them delivered as text messages. However, when sending emails to [email protected] from the Raspberry Pi using mailx the emails seem to spiral into the void and are never heard of again (no errors, no undeliverable messages, nothing). Does anyone know what could be causing this to go awry? Something about the basic deployment of the mail server on the pi? EDIT Based on @kobaltz's suggestion, I used sendmail instead. This led to a hang, then an error that stated that I lacked a fully qualified domain name (FQDN). I then used this website's instructions to add a domain name to the RPi. To paraphrase: I have set the FQDN in /etc/hostname: my-host-name.my-domain.com and /etc/hosts: 127.0.0.1 localhost.localdomain localhost 192.168.0.5 my-host-name.my-domain.com my-host-name Then add to /etc/mail/sendmail.cf: MASQUERADE_AS(`my-domain.com') MASQUERADE_DOMAIN(`my-host-name.my-domain.com') FEATURE(`masquerade_entire_domain') FEATURE(`masquerade_envelope') I put this in /etc/mail/sendmail.cf, BEFORE the MAILER() lines, ran sendmailconfig, answered Yes to the questions about using the existing files, and restarted sendmail. Emails now have the proper domain name. Progress, however, I am now stuck at the following error: 354 Enter mail, end with "." on a line by itself >>> . 050 <[email protected]>... Connecting to mxx.cingularme.com. via esmtp... 050 421 Service not available 050 >>> QUIT 050 <[email protected]>... Deferred: 421 Service not available 250 2.0.0 q9U3ZESt021150 Message accepted for delivery [email protected]... Sent (q9U3ZESt021150 Message accepted for delivery) Closing connection to [127.0.0.1] >>> QUIT

    Read the article

  • 3G/Edge/GPRS IP addresses and geocoding

    - by LookitsPuck
    Hey all! So, we're looking to develop a mobile website. On this mobile website, we'd like to automatically populate a user's location (with proper fallback) based on their IP address. I'm aware of geocoding a location based on IP address (mapping to latitude, longitude and then getting the location with that information). However, I'm curious how accurate this information is? Are mobile devices assigned IP's when they utilize 3G, EDGE, and GPRS connections? I think so. If that is so, does it map to a relatively accurate location? It doesn't have to be spot on, but relatively accurate would be nice. Thanks! -Steve

    Read the article

  • I2C_SLAVE ioctl in i2c linux driver

    - by zac
    I am supposed to write a simple write and read program for i2c but the problem is that i dont have the device at hand presently to test it so i need my code to be perfect. I am confused about the function of the I2C_SLAVE ioctl.From what i read,this ioctl is used to set the slave address. But we pass the slave address again when performing read/write using ioctl I2C_RDWR via addr in the structure i2c_msg. So then,what is the function of I2C_SLAVE command?Do i need to call it every time i perform a read or write operation? Thank you in advance.

    Read the article

  • Linux - Only first virtual interface can ping external gateway

    - by husvar
    I created 3 virtual interfaces with different mac addresses all linked to the same physical interface. I see that they successfully arp for the gw and they can ping (the request is coming in the packet capture in wireshark). However the ping utility does not count the responses. Does anyone knows the issue? I am running Ubuntu 14.04 in a VmWare. root@ubuntu:~# ip link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff inet6 fe80::20c:29ff:febc:fc8b/64 scope link valid_lft forever preferred_lft forever root@ubuntu:~# ip route sh root@ubuntu:~# ip link add link eth0 eth0.1 addr 00:00:00:00:00:11 type macvlan root@ubuntu:~# ip link add link eth0 eth0.2 addr 00:00:00:00:00:22 type macvlan root@ubuntu:~# ip link add link eth0 eth0.3 addr 00:00:00:00:00:33 type macvlan root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh root@ubuntu:~# dhclient -v eth0.1 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.1/00:00:00:00:00:11 Sending on LPF/eth0.1/00:00:00:00:00:11 Sending on Socket/fallback DHCPDISCOVER on eth0.1 to 255.255.255.255 port 67 interval 3 (xid=0x568eac05) DHCPREQUEST of 192.168.1.145 on eth0.1 to 255.255.255.255 port 67 (xid=0x568eac05) DHCPOFFER of 192.168.1.145 from 192.168.1.254 DHCPACK of 192.168.1.145 from 192.168.1.254 bound to 192.168.1.145 -- renewal in 1473 seconds. root@ubuntu:~# dhclient -v eth0.2 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.2/00:00:00:00:00:22 Sending on LPF/eth0.2/00:00:00:00:00:22 Sending on Socket/fallback DHCPDISCOVER on eth0.2 to 255.255.255.255 port 67 interval 3 (xid=0x21e3114e) DHCPREQUEST of 192.168.1.146 on eth0.2 to 255.255.255.255 port 67 (xid=0x21e3114e) DHCPOFFER of 192.168.1.146 from 192.168.1.254 DHCPACK of 192.168.1.146 from 192.168.1.254 bound to 192.168.1.146 -- renewal in 1366 seconds. root@ubuntu:~# dhclient -v eth0.3 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.3/00:00:00:00:00:33 Sending on LPF/eth0.3/00:00:00:00:00:33 Sending on Socket/fallback DHCPDISCOVER on eth0.3 to 255.255.255.255 port 67 interval 3 (xid=0x11dc5f03) DHCPREQUEST of 192.168.1.147 on eth0.3 to 255.255.255.255 port 67 (xid=0x11dc5f03) DHCPOFFER of 192.168.1.147 from 192.168.1.254 DHCPACK of 192.168.1.147 from 192.168.1.254 bound to 192.168.1.147 -- renewal in 1657 seconds. root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.145/24 brd 192.168.1.255 scope global eth0.1 valid_lft forever preferred_lft forever 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.146/24 brd 192.168.1.255 scope global eth0.2 valid_lft forever preferred_lft forever 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.147/24 brd 192.168.1.255 scope global eth0.3 valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh default via 192.168.1.254 dev eth0.1 192.168.1.0/24 dev eth0.1 proto kernel scope link src 192.168.1.145 192.168.1.0/24 dev eth0.2 proto kernel scope link src 192.168.1.146 192.168.1.0/24 dev eth0.3 proto kernel scope link src 192.168.1.147 root@ubuntu:~# arping -c 5 -I eth0.1 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.145 eth0.1 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 6.936ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.986ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 0.654ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.137ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.426ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.2 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.146 eth0.2 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.665ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.753ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 16.500ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.287ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 32.438ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.3 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.147 eth0.3 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 4.422ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.429ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.321ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 40.423ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.268ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# tcpdump -n -i eth0.1 -v & [1] 5317 root@ubuntu:~# ping -c5 -q -I eth0.1 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.145 eth0.1: 56(84) bytes of data. tcpdump: listening on eth0.1, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:37.612558 IP (tos 0x0, ttl 64, id 2595, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 2, length 64 13:18:37.618864 IP (tos 0x68, ttl 64, id 14493, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 2, length 64 13:18:37.743650 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:38.134997 IP (tos 0x0, ttl 128, id 23547, offset 0, flags [none], proto UDP (17), length 229) 192.168.1.86.138 > 192.168.1.255.138: NBT UDP PACKET(138) 13:18:38.614580 IP (tos 0x0, ttl 64, id 2596, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 3, length 64 13:18:38.793479 IP (tos 0x68, ttl 64, id 14495, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 3, length 64 13:18:39.151282 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:39.615612 IP (tos 0x0, ttl 64, id 2597, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 4, length 64 13:18:39.746981 IP (tos 0x68, ttl 64, id 14496, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 4, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 4008ms rtt min/avg/max/mdev = 2.793/67.810/178.934/73.108 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 12 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.1 -v root@ubuntu:~# tcpdump -n -i eth0.2 -v & [1] 5320 root@ubuntu:~# ping -c5 -q -I eth0.2 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.146 eth0.2: 56(84) bytes of data. tcpdump: listening on eth0.2, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:41.536874 ARP, Ethernet (len 6), IPv4 (len 4), Reply 192.168.1.254 is-at 58:98:35:57:a0:70, length 46 13:18:41.536933 IP (tos 0x0, ttl 64, id 2599, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 1, length 64 13:18:41.539255 IP (tos 0x68, ttl 64, id 14507, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 1, length 64 13:18:42.127715 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:42.511725 IP (tos 0x0, ttl 64, id 2600, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 2, length 64 13:18:42.514385 IP (tos 0x68, ttl 64, id 14527, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 2, length 64 13:18:42.743856 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:43.511727 IP (tos 0x0, ttl 64, id 2601, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 3, length 64 13:18:43.513768 IP (tos 0x68, ttl 64, id 14528, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 3, length 64 13:18:43.637598 IP (tos 0x0, ttl 128, id 23551, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.641185 IP (tos 0x0, ttl 128, id 23552, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 192.168.1.255.17500: UDP, length 197 13:18:43.641201 IP (tos 0x0, ttl 128, id 23553, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.743890 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:44.510758 IP (tos 0x0, ttl 64, id 2602, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 4, length 64 13:18:44.512892 IP (tos 0x68, ttl 64, id 14538, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 4, length 64 13:18:45.510794 IP (tos 0x0, ttl 64, id 2603, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 5, length 64 13:18:45.519701 IP (tos 0x68, ttl 64, id 14539, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 5, length 64 13:18:49.287554 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:50.013463 IP (tos 0x0, ttl 255, id 50737, offset 0, flags [DF], proto UDP (17), length 73) 192.168.1.146.5353 > 224.0.0.251.5353: 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:50.218874 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:51.129961 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:52.197074 IP6 (hlim 255, next-header UDP (17) payload length: 53) 2001:818:d812:da00:200:ff:fe00:22.5353 > ff02::fb.5353: [udp sum ok] 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:54.128240 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 0 received, 100% packet loss, time 4000ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 13:18:54.657731 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:54.743174 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 25 packets captured 26 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.2 -v root@ubuntu:~# tcpdump -n -i eth0.3 icmp & [1] 5324 root@ubuntu:~# ping -c5 -q -I eth0.3 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.147 eth0.3: 56(84) bytes of data. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0.3, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:56.373434 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 1, length 64 13:18:57.372116 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 2, length 64 13:18:57.381263 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 2, length 64 13:18:58.371141 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 3, length 64 13:18:58.373275 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 3, length 64 13:18:59.371165 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 4, length 64 13:18:59.373259 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 4, length 64 13:19:00.371211 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 5, length 64 13:19:00.373278 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 5, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 1 received, 80% packet loss, time 4001ms rtt min/avg/max/mdev = 13.666/13.666/13.666/0.000 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 10 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.3 icmp root@ubuntu:~# arp -n Address HWtype HWaddress Flags Mask Iface 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.1 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.2 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.3

    Read the article

  • Expert F# &ndash; Pattern Matching with Adam and Eve

    - by MarkPearl
    So I am loving my Expert F# book. I wish I had more time with it, but the little time I get I really enjoy. However today I was completely stumped by what the book was trying to get across with regards to pattern matching. On Page 38 – Chapter 3, it briefly describes F# option values. On this page it gives the code snippet along the code lines below and then goes on to speak briefly about pattern matching... open System type 'a option = | None | Some of 'a let people = [ ("Adam", None); ("Eve", None); ("Cain", Some("Adam", "Eve")); ("Abel", Some("Adam", "Eve")) ] let showParents(name, parents) = match parents with | Some(dad, mum) -> printfn "%s has father %s, mother %s" name dad mum | None -> printfn "%s has no parents!" name Console.WriteLine(showParents("Adam", None))   Originally when I read this code I think I misunderstood the purpose of the example code. I for some reason thought that the showParents function would magically be parsing the people array and looking for a match of name and then showing the parents. But obviously it cannot do this since there is no reference to the people array in the showParents method. After rereading the page I realized that I had just combined the two segments of code together, possibly incorrectly, and that a better example would have been to have a code snippet like the following. let showParents(name, parents) = match parents with | Some(dad, mum) -> printfn "%s has father %s, mother %s" name dad mum | None -> printfn "%s has no parents!" name Console.WriteLine(showParents("Adam", None)) Console.WriteLine(showParents("Cain", Some("Adam", "Eve"))) Console.ReadLine()   However, what if I wanted to have a function that was passed a list of people and a name would then show the parents of the name if there were any, and if not would show that they had no parents… so that doesnt seem to difficult does it… lets look at my very unoptimized noob F# code to try and achieve this… open System let people = [ ("Adam", None); ("Eve", None); ("Cain", Some("Adam", "Eve")); ("Abel", Some("Adam", "Eve")) ] // // returns the name of the person // let showName(person : string * (string * string) option) = let name = fst(person) name // // Returns a string with the parents details or not // let showParents(itemData : string * (string * string) option) = let name = fst(itemData) let parents = snd(itemData) match parents with | Some(dad, mum) -> "Father " + dad + " and Mother " + mum | None -> "Has no parents!" // // Prints the details // let showDetails(person : string * (string * string) option) = Console.WriteLine(showName(person)) Console.WriteLine(showParents(person)) // // Check if the name matches the first portion of person // if so, return true, else return false // let nameMatch(name : string , person : string * (string * string) option) = match name with | x when x = fst(person) -> true | _ -> false // // Searches an array of people and looks for a match of names // let findPerson(name : string, people : (string * (string * string) option) list) = let o = Seq.tryFind(fun x -> nameMatch(name, x)) people if Option.isSome o then o else Option.None // // Try and find a person, if found show their details // else show no match // let FoundPerson = findPerson("Cain", people) match FoundPerson with | None -> Console.WriteLine("Not found") | Some(x) -> showDetails(x) Console.ReadLine() So, my code isn’t the cleanest but it did teach me a bit more F#. The area that I learnt about was the option keyword. The challenge being, if a match of the name isn’t found – and if a name is found but the person doesn’t have parents it should react accordingly. I’m pretty sure I can optimize this code quite a bit more and I think I may come back to it sometime in the future and relook at it, but for now at least I was able to achieve what I wanted.. and my brain has gone just that wee little bit more functional.

    Read the article

  • Linksys Router/Tomato Firmware DNS issues

    - by jasonh
    I've got a WRT54GS that I've loaded the current version of Tomato onto. I entered static DHCP addresses in for the devices on my network, released and renewed the address on my desktop and tried to ping another computer. All I got was The request could not find host blah. Please check the name and try again. Now, I verified that my desktop and the target machine I'm trying to ping have both received their proper static DHCP lease and that their DNS server is the IP address of my router. What am I missing?

    Read the article

  • How to make a file load in my program when a user double clicks an associated file.

    - by Edward Boyle
    I assume in this article that file extension association has been setup by the installer. I may address file extension association at a later date, but for the purpose of this article, I address what sometimes eludes new C# programmers. This is sometimes confusing because you just don’t think about it — you have to access a file that you rarely access when making Windows forms applications, “Program.cs” static class Program { /// /// The main entry point for the application. /// [STAThread] static void Main() { Application.EnableVisualStyles(); Application.SetCompatibleTextRenderingDefault(false); Application.Run(new Form1()); } } There are so many ways to skin this cat, so you get to see how I skinned my last cat. static class Program { /// /// The main entry point for the application. /// [STAThread] static void Main(string[] args) { Application.EnableVisualStyles(); Application.SetCompatibleTextRenderingDefault(false); Form1 mainf = new Form1(); if (args.Length > 0) { try { if (System.IO.File.Exists(args[0])) { mainf.LoadFile= args[0]; } } catch { MessageBox.Show("Could not open file.", "Could not open file.", MessageBoxButtons.OK, MessageBoxIcon.Information); } } Application.Run(mainf); } } It may be easy to miss, but don’t forget to add the string array for the command line arguments: static void Main(string[] args) this is not a part of the default program.cs You will notice the mainf.LoadFile property. In the main form of my program I have a property for public string LoadFile ... and the field private string loadFile = String.Empty; in the forms load event I check the value of this field. private void Form1_Load(object sender, EventArgs e) { if(loadFile != String.Empty){ // The only way this field is NOT String.empty is if we set it in // static void Main() of program.cs // LOAD it however it is needed OpenFile, SetDatabase, whatever you use. } }

    Read the article

< Previous Page | 247 248 249 250 251 252 253 254 255 256 257 258  | Next Page >